// Copyright (c) 1994-2006 Sun Microsystems Inc. // All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // - Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // - Redistribution in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // - Neither the name of Sun Microsystems or the names of contributors may // be used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // The original source code covered by the above license above has been // modified significantly by Google Inc. // Copyright 2006-2008 the V8 project authors. All rights reserved. // A light-weight IA32 Assembler. #ifndef V8_IA32_ASSEMBLER_IA32_INL_H_ #define V8_IA32_ASSEMBLER_IA32_INL_H_ #include "cpu.h" namespace v8 { namespace internal { Condition NegateCondition(Condition cc) { return static_cast(cc ^ 1); } // The modes possibly affected by apply must be in kApplyMask. void RelocInfo::apply(intptr_t delta) { if (rmode_ == RUNTIME_ENTRY || IsCodeTarget(rmode_)) { int32_t* p = reinterpret_cast(pc_); *p -= delta; // relocate entry } else if (rmode_ == JS_RETURN && IsPatchedReturnSequence()) { // Special handling of js_return when a break point is set (call // instruction has been inserted). int32_t* p = reinterpret_cast(pc_ + 1); *p -= delta; // relocate entry } else if (IsInternalReference(rmode_)) { // absolute code pointer inside code object moves with the code object. int32_t* p = reinterpret_cast(pc_); *p += delta; // relocate entry } } Address RelocInfo::target_address() { ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY); return Assembler::target_address_at(pc_); } Address RelocInfo::target_address_address() { ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY); return reinterpret_cast
(pc_); } void RelocInfo::set_target_address(Address target) { ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY); Assembler::set_target_address_at(pc_, target); } Object* RelocInfo::target_object() { ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); return Memory::Object_at(pc_); } Handle RelocInfo::target_object_handle(Assembler* origin) { ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); return Memory::Object_Handle_at(pc_); } Object** RelocInfo::target_object_address() { ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); return &Memory::Object_at(pc_); } void RelocInfo::set_target_object(Object* target) { ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); Memory::Object_at(pc_) = target; } Address* RelocInfo::target_reference_address() { ASSERT(rmode_ == RelocInfo::EXTERNAL_REFERENCE); return reinterpret_cast(pc_); } Address RelocInfo::call_address() { ASSERT(IsPatchedReturnSequence()); return Assembler::target_address_at(pc_ + 1); } void RelocInfo::set_call_address(Address target) { ASSERT(IsPatchedReturnSequence()); Assembler::set_target_address_at(pc_ + 1, target); } Object* RelocInfo::call_object() { ASSERT(IsPatchedReturnSequence()); return *call_object_address(); } Object** RelocInfo::call_object_address() { ASSERT(IsPatchedReturnSequence()); return reinterpret_cast(pc_ + 1); } void RelocInfo::set_call_object(Object* target) { ASSERT(IsPatchedReturnSequence()); *call_object_address() = target; } bool RelocInfo::IsPatchedReturnSequence() { return *pc_ == 0xE8; } Immediate::Immediate(int x) { x_ = x; rmode_ = RelocInfo::NONE; } Immediate::Immediate(const ExternalReference& ext) { x_ = reinterpret_cast(ext.address()); rmode_ = RelocInfo::EXTERNAL_REFERENCE; } Immediate::Immediate(Label* internal_offset) { x_ = reinterpret_cast(internal_offset); rmode_ = RelocInfo::INTERNAL_REFERENCE; } Immediate::Immediate(Handle handle) { // Verify all Objects referred by code are NOT in new space. Object* obj = *handle; ASSERT(!Heap::InNewSpace(obj)); if (obj->IsHeapObject()) { x_ = reinterpret_cast(handle.location()); rmode_ = RelocInfo::EMBEDDED_OBJECT; } else { // no relocation needed x_ = reinterpret_cast(obj); rmode_ = RelocInfo::NONE; } } Immediate::Immediate(Smi* value) { x_ = reinterpret_cast(value); rmode_ = RelocInfo::NONE; } void Assembler::emit(uint32_t x) { *reinterpret_cast(pc_) = x; pc_ += sizeof(uint32_t); } void Assembler::emit(Handle handle) { // Verify all Objects referred by code are NOT in new space. Object* obj = *handle; ASSERT(!Heap::InNewSpace(obj)); if (obj->IsHeapObject()) { emit(reinterpret_cast(handle.location()), RelocInfo::EMBEDDED_OBJECT); } else { // no relocation needed emit(reinterpret_cast(obj)); } } void Assembler::emit(uint32_t x, RelocInfo::Mode rmode) { if (rmode != RelocInfo::NONE) RecordRelocInfo(rmode); emit(x); } void Assembler::emit(const Immediate& x) { if (x.rmode_ == RelocInfo::INTERNAL_REFERENCE) { Label* label = reinterpret_cast(x.x_); emit_code_relative_offset(label); return; } if (x.rmode_ != RelocInfo::NONE) RecordRelocInfo(x.rmode_); emit(x.x_); } void Assembler::emit_code_relative_offset(Label* label) { if (label->is_bound()) { int32_t pos; pos = label->pos() + Code::kHeaderSize - kHeapObjectTag; emit(pos); } else { emit_disp(label, Displacement::CODE_RELATIVE); } } void Assembler::emit_w(const Immediate& x) { ASSERT(x.rmode_ == RelocInfo::NONE); uint16_t value = static_cast(x.x_); reinterpret_cast(pc_)[0] = value; pc_ += sizeof(uint16_t); } Address Assembler::target_address_at(Address pc) { return pc + sizeof(int32_t) + *reinterpret_cast(pc); } void Assembler::set_target_address_at(Address pc, Address target) { int32_t* p = reinterpret_cast(pc); *p = target - (pc + sizeof(int32_t)); CPU::FlushICache(p, sizeof(int32_t)); } Displacement Assembler::disp_at(Label* L) { return Displacement(long_at(L->pos())); } void Assembler::disp_at_put(Label* L, Displacement disp) { long_at_put(L->pos(), disp.data()); } void Assembler::emit_disp(Label* L, Displacement::Type type) { Displacement disp(L, type); L->link_to(pc_offset()); emit(static_cast(disp.data())); } void Operand::set_modrm(int mod, Register rm) { ASSERT((mod & -4) == 0); buf_[0] = mod << 6 | rm.code(); len_ = 1; } void Operand::set_sib(ScaleFactor scale, Register index, Register base) { ASSERT(len_ == 1); ASSERT((scale & -4) == 0); // Use SIB with no index register only for base esp. ASSERT(!index.is(esp) || base.is(esp)); buf_[1] = scale << 6 | index.code() << 3 | base.code(); len_ = 2; } void Operand::set_disp8(int8_t disp) { ASSERT(len_ == 1 || len_ == 2); *reinterpret_cast(&buf_[len_++]) = disp; } void Operand::set_dispr(int32_t disp, RelocInfo::Mode rmode) { ASSERT(len_ == 1 || len_ == 2); int32_t* p = reinterpret_cast(&buf_[len_]); *p = disp; len_ += sizeof(int32_t); rmode_ = rmode; } Operand::Operand(Register reg) { // reg set_modrm(3, reg); } Operand::Operand(XMMRegister xmm_reg) { Register reg = { xmm_reg.code() }; set_modrm(3, reg); } Operand::Operand(int32_t disp, RelocInfo::Mode rmode) { // [disp/r] set_modrm(0, ebp); set_dispr(disp, rmode); } } } // namespace v8::internal #endif // V8_IA32_ASSEMBLER_IA32_INL_H_