// Copyright 2009 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "codegen-inl.h" #include "ic-inl.h" #include "runtime.h" #include "stub-cache.h" namespace v8 { namespace internal { // ---------------------------------------------------------------------------- // Static IC stub generators. // #define __ ACCESS_MASM(masm) // Helper function used to load a property from a dictionary backing storage. // This function may return false negatives, so miss_label // must always call a backup property load that is complete. // This function is safe to call if the receiver has fast properties, // or if name is not a symbol, and will jump to the miss_label in that case. static void GenerateDictionaryLoad(MacroAssembler* masm, Label* miss_label, Register r0, Register r1, Register r2, Register name) { // Register use: // // r0 - used to hold the property dictionary. // // r1 - initially the receiver // - used for the index into the property dictionary // - holds the result on exit. // // r2 - used to hold the capacity of the property dictionary. // // name - holds the name of the property and is unchanged. Label done; // Check for the absence of an interceptor. // Load the map into r0. __ movq(r0, FieldOperand(r1, JSObject::kMapOffset)); // Test the has_named_interceptor bit in the map. __ testl(FieldOperand(r0, Map::kInstanceAttributesOffset), Immediate(1 << (Map::kHasNamedInterceptor + (3 * 8)))); // Jump to miss if the interceptor bit is set. __ j(not_zero, miss_label); // Bail out if we have a JS global proxy object. __ movzxbq(r0, FieldOperand(r0, Map::kInstanceTypeOffset)); __ cmpb(r0, Immediate(JS_GLOBAL_PROXY_TYPE)); __ j(equal, miss_label); // Possible work-around for http://crbug.com/16276. __ cmpb(r0, Immediate(JS_GLOBAL_OBJECT_TYPE)); __ j(equal, miss_label); __ cmpb(r0, Immediate(JS_BUILTINS_OBJECT_TYPE)); __ j(equal, miss_label); // Check that the properties array is a dictionary. __ movq(r0, FieldOperand(r1, JSObject::kPropertiesOffset)); __ Cmp(FieldOperand(r0, HeapObject::kMapOffset), Factory::hash_table_map()); __ j(not_equal, miss_label); // Compute the capacity mask. const int kCapacityOffset = StringDictionary::kHeaderSize + StringDictionary::kCapacityIndex * kPointerSize; __ movq(r2, FieldOperand(r0, kCapacityOffset)); __ SmiToInteger32(r2, r2); __ decl(r2); // Generate an unrolled loop that performs a few probes before // giving up. Measurements done on Gmail indicate that 2 probes // cover ~93% of loads from dictionaries. static const int kProbes = 4; const int kElementsStartOffset = StringDictionary::kHeaderSize + StringDictionary::kElementsStartIndex * kPointerSize; for (int i = 0; i < kProbes; i++) { // Compute the masked index: (hash + i + i * i) & mask. __ movl(r1, FieldOperand(name, String::kLengthOffset)); __ shrl(r1, Immediate(String::kHashShift)); if (i > 0) { __ addl(r1, Immediate(StringDictionary::GetProbeOffset(i))); } __ and_(r1, r2); // Scale the index by multiplying by the entry size. ASSERT(StringDictionary::kEntrySize == 3); __ lea(r1, Operand(r1, r1, times_2, 0)); // r1 = r1 * 3 // Check if the key is identical to the name. __ cmpq(name, Operand(r0, r1, times_pointer_size, kElementsStartOffset - kHeapObjectTag)); if (i != kProbes - 1) { __ j(equal, &done); } else { __ j(not_equal, miss_label); } } // Check that the value is a normal property. __ bind(&done); const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize; __ Test(Operand(r0, r1, times_pointer_size, kDetailsOffset - kHeapObjectTag), Smi::FromInt(PropertyDetails::TypeField::mask())); __ j(not_zero, miss_label); // Get the value at the masked, scaled index. const int kValueOffset = kElementsStartOffset + kPointerSize; __ movq(r1, Operand(r0, r1, times_pointer_size, kValueOffset - kHeapObjectTag)); } // Helper function used to check that a value is either not an object // or is loaded if it is an object. static void GenerateCheckNonObjectOrLoaded(MacroAssembler* masm, Label* miss, Register value) { Label done; // Check if the value is a Smi. __ JumpIfSmi(value, &done); // Check if the object has been loaded. __ movq(kScratchRegister, FieldOperand(value, JSFunction::kMapOffset)); __ testb(FieldOperand(kScratchRegister, Map::kBitField2Offset), Immediate(1 << Map::kNeedsLoading)); __ j(not_zero, miss); __ bind(&done); } // One byte opcode for test eax,0xXXXXXXXX. static const byte kTestEaxByte = 0xA9; static bool PatchInlinedMapCheck(Address address, Object* map) { // Arguments are address of start of call sequence that called // the IC, Address test_instruction_address = address + Assembler::kCallTargetAddressOffset; // The keyed load has a fast inlined case if the IC call instruction // is immediately followed by a test instruction. if (*test_instruction_address != kTestEaxByte) return false; // Fetch the offset from the test instruction to the map compare // instructions (starting with the 64-bit immediate mov of the map // address). This offset is stored in the last 4 bytes of the 5 // byte test instruction. Address delta_address = test_instruction_address + 1; int delta = *reinterpret_cast(delta_address); // Compute the map address. The map address is in the last 8 bytes // of the 10-byte immediate mov instruction (incl. REX prefix), so we add 2 // to the offset to get the map address. Address map_address = test_instruction_address + delta + 2; // Patch the map check. *(reinterpret_cast(map_address)) = map; return true; } bool KeyedLoadIC::PatchInlinedLoad(Address address, Object* map) { return PatchInlinedMapCheck(address, map); } bool KeyedStoreIC::PatchInlinedStore(Address address, Object* map) { return PatchInlinedMapCheck(address, map); } void KeyedLoadIC::ClearInlinedVersion(Address address) { // Insert null as the map to check for to make sure the map check fails // sending control flow to the IC instead of the inlined version. PatchInlinedLoad(address, Heap::null_value()); } void KeyedStoreIC::ClearInlinedVersion(Address address) { // Insert null as the elements map to check for. This will make // sure that the elements fast-case map check fails so that control // flows to the IC instead of the inlined version. PatchInlinedStore(address, Heap::null_value()); } void KeyedStoreIC::RestoreInlinedVersion(Address address) { // Restore the fast-case elements map check so that the inlined // version can be used again. PatchInlinedStore(address, Heap::fixed_array_map()); } void KeyedLoadIC::Generate(MacroAssembler* masm, ExternalReference const& f) { // ----------- S t a t e ------------- // -- rsp[0] : return address // -- rsp[8] : name // -- rsp[16] : receiver // ----------------------------------- __ movq(rax, Operand(rsp, kPointerSize)); __ movq(rcx, Operand(rsp, 2 * kPointerSize)); __ pop(rbx); __ push(rcx); // receiver __ push(rax); // name __ push(rbx); // return address // Perform tail call to the entry. __ TailCallRuntime(f, 2, 1); } #ifdef DEBUG // For use in assert below. static int TenToThe(int exponent) { ASSERT(exponent <= 9); ASSERT(exponent >= 1); int answer = 10; for (int i = 1; i < exponent; i++) answer *= 10; return answer; } #endif void KeyedLoadIC::GenerateGeneric(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rsp[0] : return address // -- rsp[8] : name // -- rsp[16] : receiver // ----------------------------------- Label slow, check_string, index_int, index_string, check_pixel_array; // Load name and receiver. __ movq(rax, Operand(rsp, kPointerSize)); __ movq(rcx, Operand(rsp, 2 * kPointerSize)); // Check that the object isn't a smi. __ JumpIfSmi(rcx, &slow); // Check that the object is some kind of JS object EXCEPT JS Value type. // In the case that the object is a value-wrapper object, // we enter the runtime system to make sure that indexing // into string objects work as intended. ASSERT(JS_OBJECT_TYPE > JS_VALUE_TYPE); __ CmpObjectType(rcx, JS_OBJECT_TYPE, rdx); __ j(below, &slow); // Check that the receiver does not require access checks. We need // to check this explicitly since this generic stub does not perform // map checks. The map is already in rdx. __ testb(FieldOperand(rdx, Map::kBitFieldOffset), Immediate(1 << Map::kIsAccessCheckNeeded)); __ j(not_zero, &slow); // Check that the key is a smi. __ JumpIfNotSmi(rax, &check_string); __ SmiToInteger32(rax, rax); // Get the elements array of the object. __ bind(&index_int); __ movq(rcx, FieldOperand(rcx, JSObject::kElementsOffset)); // Check that the object is in fast mode (not dictionary). __ CompareRoot(FieldOperand(rcx, HeapObject::kMapOffset), Heap::kFixedArrayMapRootIndex); __ j(not_equal, &check_pixel_array); // Check that the key (index) is within bounds. __ cmpl(rax, FieldOperand(rcx, FixedArray::kLengthOffset)); __ j(above_equal, &slow); // Unsigned comparison rejects negative indices. // Fast case: Do the load. __ movq(rax, Operand(rcx, rax, times_pointer_size, FixedArray::kHeaderSize - kHeapObjectTag)); __ CompareRoot(rax, Heap::kTheHoleValueRootIndex); // In case the loaded value is the_hole we have to consult GetProperty // to ensure the prototype chain is searched. __ j(equal, &slow); __ IncrementCounter(&Counters::keyed_load_generic_smi, 1); __ ret(0); // Check whether the elements is a pixel array. // rax: untagged index // rcx: elements array __ bind(&check_pixel_array); __ CompareRoot(FieldOperand(rcx, HeapObject::kMapOffset), Heap::kPixelArrayMapRootIndex); __ j(not_equal, &slow); __ cmpl(rax, FieldOperand(rcx, PixelArray::kLengthOffset)); __ j(above_equal, &slow); __ movq(rcx, FieldOperand(rcx, PixelArray::kExternalPointerOffset)); __ movb(rax, Operand(rcx, rax, times_1, 0)); __ Integer32ToSmi(rax, rax); __ ret(0); // Slow case: Load name and receiver from stack and jump to runtime. __ bind(&slow); __ IncrementCounter(&Counters::keyed_load_generic_slow, 1); Generate(masm, ExternalReference(Runtime::kKeyedGetProperty)); __ bind(&check_string); // The key is not a smi. // Is it a string? __ CmpObjectType(rax, FIRST_NONSTRING_TYPE, rdx); __ j(above_equal, &slow); // Is the string an array index, with cached numeric value? __ movl(rbx, FieldOperand(rax, String::kLengthOffset)); __ testl(rbx, Immediate(String::kIsArrayIndexMask)); // If the string is a symbol, do a quick inline probe of the receiver's // dictionary, if it exists. __ j(not_zero, &index_string); // The value in rbx is used at jump target. __ testb(FieldOperand(rdx, Map::kInstanceTypeOffset), Immediate(kIsSymbolMask)); __ j(zero, &slow); // Probe the dictionary leaving result in rcx. GenerateDictionaryLoad(masm, &slow, rbx, rcx, rdx, rax); GenerateCheckNonObjectOrLoaded(masm, &slow, rcx); __ movq(rax, rcx); __ IncrementCounter(&Counters::keyed_load_generic_symbol, 1); __ ret(0); // Array index string: If short enough use cache in length/hash field (rbx). // We assert that there are enough bits in an int32_t after the hash shift // bits have been subtracted to allow space for the length and the cached // array index. ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) < (1 << (String::kShortLengthShift - String::kHashShift))); __ bind(&index_string); const int kLengthFieldLimit = (String::kMaxCachedArrayIndexLength + 1) << String::kShortLengthShift; __ cmpl(rbx, Immediate(kLengthFieldLimit)); __ j(above_equal, &slow); __ movl(rax, rbx); __ and_(rax, Immediate((1 << String::kShortLengthShift) - 1)); __ shrl(rax, Immediate(String::kLongLengthShift)); __ jmp(&index_int); } void KeyedLoadIC::GenerateExternalArray(MacroAssembler* masm, ExternalArrayType array_type) { // ----------- S t a t e ------------- // -- rsp[0] : return address // -- rsp[8] : name // -- rsp[16] : receiver // ----------------------------------- Label slow, failed_allocation; // Load name and receiver. __ movq(rax, Operand(rsp, kPointerSize)); __ movq(rcx, Operand(rsp, 2 * kPointerSize)); // Check that the object isn't a smi. __ JumpIfSmi(rcx, &slow); // Check that the key is a smi. __ JumpIfNotSmi(rax, &slow); // Check that the object is a JS object. __ CmpObjectType(rcx, JS_OBJECT_TYPE, rdx); __ j(not_equal, &slow); // Check that the receiver does not require access checks. We need // to check this explicitly since this generic stub does not perform // map checks. The map is already in rdx. __ testb(FieldOperand(rdx, Map::kBitFieldOffset), Immediate(1 << Map::kIsAccessCheckNeeded)); __ j(not_zero, &slow); // Check that the elements array is the appropriate type of // ExternalArray. // rax: index (as a smi) // rcx: JSObject __ movq(rcx, FieldOperand(rdx, JSObject::kElementsOffset)); __ CompareRoot(FieldOperand(rcx, HeapObject::kMapOffset), Heap::RootIndexForExternalArrayType(array_type)); __ j(not_equal, &slow); // Check that the index is in range. __ SmiToInteger32(rax, rax); __ cmpl(rax, FieldOperand(rcx, ExternalArray::kLengthOffset)); // Unsigned comparison catches both negative and too-large values. __ j(above_equal, &slow); // rax: untagged index // rcx: elements array __ movq(rcx, FieldOperand(rcx, ExternalArray::kExternalPointerOffset)); // rcx: base pointer of external storage switch (array_type) { case kExternalByteArray: __ movsxbq(rax, Operand(rcx, rax, times_1, 0)); break; case kExternalUnsignedByteArray: __ movb(rax, Operand(rcx, rax, times_1, 0)); break; case kExternalShortArray: __ movsxwq(rax, Operand(rcx, rax, times_2, 0)); break; case kExternalUnsignedShortArray: __ movzxwq(rax, Operand(rcx, rax, times_2, 0)); break; case kExternalIntArray: __ movsxlq(rax, Operand(rcx, rax, times_4, 0)); break; case kExternalUnsignedIntArray: __ movl(rax, Operand(rcx, rax, times_4, 0)); break; case kExternalFloatArray: __ fld_s(Operand(rcx, rax, times_4, 0)); break; default: UNREACHABLE(); break; } // For integer array types: // rax: value // For floating-point array type: // FP(0): value if (array_type == kExternalIntArray || array_type == kExternalUnsignedIntArray) { // For the Int and UnsignedInt array types, we need to see whether // the value can be represented in a Smi. If not, we need to convert // it to a HeapNumber. Label box_int; if (array_type == kExternalIntArray) { __ JumpIfNotValidSmiValue(rax, &box_int); } else { ASSERT_EQ(array_type, kExternalUnsignedIntArray); __ JumpIfUIntNotValidSmiValue(rax, &box_int); } __ Integer32ToSmi(rax, rax); __ ret(0); __ bind(&box_int); // Allocate a HeapNumber for the int and perform int-to-double // conversion. __ push(rax); if (array_type == kExternalIntArray) { __ fild_s(Operand(rsp, 0)); } else { ASSERT(array_type == kExternalUnsignedIntArray); // Need to zero-extend the value. __ fild_d(Operand(rsp, 0)); } __ pop(rax); // FP(0): value __ AllocateHeapNumber(rax, rbx, &failed_allocation); // Set the value. __ fstp_d(FieldOperand(rax, HeapNumber::kValueOffset)); __ ret(0); } else if (array_type == kExternalFloatArray) { // For the floating-point array type, we need to always allocate a // HeapNumber. __ AllocateHeapNumber(rax, rbx, &failed_allocation); // Set the value. __ fstp_d(FieldOperand(rax, HeapNumber::kValueOffset)); __ ret(0); } else { __ Integer32ToSmi(rax, rax); __ ret(0); } // If we fail allocation of the HeapNumber, we still have a value on // top of the FPU stack. Remove it. __ bind(&failed_allocation); __ ffree(); __ fincstp(); // Fall through to slow case. // Slow case: Load name and receiver from stack and jump to runtime. __ bind(&slow); __ IncrementCounter(&Counters::keyed_load_external_array_slow, 1); Generate(masm, ExternalReference(Runtime::kKeyedGetProperty)); } void KeyedLoadIC::GenerateMiss(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rsp[0] : return address // -- rsp[8] : name // -- rsp[16] : receiver // ----------------------------------- Generate(masm, ExternalReference(IC_Utility(kKeyedLoadIC_Miss))); } void KeyedStoreIC::Generate(MacroAssembler* masm, ExternalReference const& f) { // ----------- S t a t e ------------- // -- rax : value // -- rsp[0] : return address // -- rsp[8] : key // -- rsp[16] : receiver // ----------------------------------- __ pop(rcx); __ push(Operand(rsp, 1 * kPointerSize)); // receiver __ push(Operand(rsp, 1 * kPointerSize)); // key __ push(rax); // value __ push(rcx); // return address // Do tail-call to runtime routine. __ TailCallRuntime(f, 3, 1); } void KeyedStoreIC::GenerateExtendStorage(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : value // -- rcx : transition map // -- rsp[0] : return address // -- rsp[8] : key // -- rsp[16] : receiver // ----------------------------------- __ pop(rbx); __ push(Operand(rsp, 1 * kPointerSize)); // receiver __ push(rcx); // transition map __ push(rax); // value __ push(rbx); // return address // Do tail-call to runtime routine. __ TailCallRuntime( ExternalReference(IC_Utility(kSharedStoreIC_ExtendStorage)), 3, 1); } void KeyedStoreIC::GenerateGeneric(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : value // -- rsp[0] : return address // -- rsp[8] : key // -- rsp[16] : receiver // ----------------------------------- Label slow, fast, array, extra, check_pixel_array; // Get the receiver from the stack. __ movq(rdx, Operand(rsp, 2 * kPointerSize)); // 2 ~ return address, key // Check that the object isn't a smi. __ JumpIfSmi(rdx, &slow); // Get the map from the receiver. __ movq(rcx, FieldOperand(rdx, HeapObject::kMapOffset)); // Check that the receiver does not require access checks. We need // to do this because this generic stub does not perform map checks. __ testb(FieldOperand(rcx, Map::kBitFieldOffset), Immediate(1 << Map::kIsAccessCheckNeeded)); __ j(not_zero, &slow); // Get the key from the stack. __ movq(rbx, Operand(rsp, 1 * kPointerSize)); // 1 ~ return address // Check that the key is a smi. __ JumpIfNotSmi(rbx, &slow); __ CmpInstanceType(rcx, JS_ARRAY_TYPE); __ j(equal, &array); // Check that the object is some kind of JS object. __ CmpInstanceType(rcx, FIRST_JS_OBJECT_TYPE); __ j(below, &slow); // Object case: Check key against length in the elements array. // rax: value // rdx: JSObject // rbx: index (as a smi) __ movq(rcx, FieldOperand(rdx, JSObject::kElementsOffset)); // Check that the object is in fast mode (not dictionary). __ CompareRoot(FieldOperand(rcx, HeapObject::kMapOffset), Heap::kFixedArrayMapRootIndex); __ j(not_equal, &check_pixel_array); // Untag the key (for checking against untagged length in the fixed array). __ SmiToInteger32(rdx, rbx); __ cmpl(rdx, FieldOperand(rcx, Array::kLengthOffset)); // rax: value // rcx: FixedArray // rbx: index (as a smi) __ j(below, &fast); // Slow case: call runtime. __ bind(&slow); Generate(masm, ExternalReference(Runtime::kSetProperty)); // Check whether the elements is a pixel array. // rax: value // rcx: elements array // rbx: index (as a smi), zero-extended. __ bind(&check_pixel_array); __ CompareRoot(FieldOperand(rcx, HeapObject::kMapOffset), Heap::kPixelArrayMapRootIndex); __ j(not_equal, &slow); // Check that the value is a smi. If a conversion is needed call into the // runtime to convert and clamp. __ JumpIfNotSmi(rax, &slow); __ SmiToInteger32(rbx, rbx); __ cmpl(rbx, FieldOperand(rcx, PixelArray::kLengthOffset)); __ j(above_equal, &slow); __ movq(rdx, rax); // Save the value. __ SmiToInteger32(rax, rax); { // Clamp the value to [0..255]. Label done; __ testl(rax, Immediate(0xFFFFFF00)); __ j(zero, &done); __ setcc(negative, rax); // 1 if negative, 0 if positive. __ decb(rax); // 0 if negative, 255 if positive. __ bind(&done); } __ movq(rcx, FieldOperand(rcx, PixelArray::kExternalPointerOffset)); __ movb(Operand(rcx, rbx, times_1, 0), rax); __ movq(rax, rdx); // Return the original value. __ ret(0); // Extra capacity case: Check if there is extra capacity to // perform the store and update the length. Used for adding one // element to the array by writing to array[array.length]. __ bind(&extra); // rax: value // rdx: JSArray // rcx: FixedArray // rbx: index (as a smi) // flags: smicompare (rdx.length(), rbx) __ j(not_equal, &slow); // do not leave holes in the array __ SmiToInteger64(rbx, rbx); __ cmpl(rbx, FieldOperand(rcx, FixedArray::kLengthOffset)); __ j(above_equal, &slow); // Increment and restore smi-tag. __ Integer64PlusConstantToSmi(rbx, rbx, 1); __ movq(FieldOperand(rdx, JSArray::kLengthOffset), rbx); __ SmiSubConstant(rbx, rbx, Smi::FromInt(1)); __ jmp(&fast); // Array case: Get the length and the elements array from the JS // array. Check that the array is in fast mode; if it is the // length is always a smi. __ bind(&array); // rax: value // rdx: JSArray // rbx: index (as a smi) __ movq(rcx, FieldOperand(rdx, JSObject::kElementsOffset)); __ CompareRoot(FieldOperand(rcx, HeapObject::kMapOffset), Heap::kFixedArrayMapRootIndex); __ j(not_equal, &slow); // Check the key against the length in the array, compute the // address to store into and fall through to fast case. __ SmiCompare(FieldOperand(rdx, JSArray::kLengthOffset), rbx); __ j(below_equal, &extra); // Fast case: Do the store. __ bind(&fast); // rax: value // rcx: FixedArray // rbx: index (as a smi) Label non_smi_value; __ JumpIfNotSmi(rax, &non_smi_value); SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2); __ movq(Operand(rcx, index.reg, index.scale, FixedArray::kHeaderSize - kHeapObjectTag), rax); __ ret(0); __ bind(&non_smi_value); // Slow case that needs to retain rbx for use by RecordWrite. // Update write barrier for the elements array address. SmiIndex index2 = masm->SmiToIndex(kScratchRegister, rbx, kPointerSizeLog2); __ movq(Operand(rcx, index2.reg, index2.scale, FixedArray::kHeaderSize - kHeapObjectTag), rax); __ movq(rdx, rax); __ RecordWriteNonSmi(rcx, 0, rdx, rbx); __ ret(0); } void KeyedStoreIC::GenerateExternalArray(MacroAssembler* masm, ExternalArrayType array_type) { // ----------- S t a t e ------------- // -- rax : value // -- rsp[0] : return address // -- rsp[8] : key // -- rsp[16] : receiver // ----------------------------------- Label slow, check_heap_number; // Get the receiver from the stack. __ movq(rdx, Operand(rsp, 2 * kPointerSize)); // Check that the object isn't a smi. __ JumpIfSmi(rdx, &slow); // Get the map from the receiver. __ movq(rcx, FieldOperand(rdx, HeapObject::kMapOffset)); // Check that the receiver does not require access checks. We need // to do this because this generic stub does not perform map checks. __ testb(FieldOperand(rcx, Map::kBitFieldOffset), Immediate(1 << Map::kIsAccessCheckNeeded)); __ j(not_zero, &slow); // Get the key from the stack. __ movq(rbx, Operand(rsp, 1 * kPointerSize)); // 1 ~ return address // Check that the key is a smi. __ JumpIfNotSmi(rbx, &slow); // Check that the object is a JS object. __ CmpInstanceType(rcx, JS_OBJECT_TYPE); __ j(not_equal, &slow); // Check that the elements array is the appropriate type of // ExternalArray. // rax: value // rdx: JSObject // rbx: index (as a smi) __ movq(rcx, FieldOperand(rdx, JSObject::kElementsOffset)); __ CompareRoot(FieldOperand(rcx, HeapObject::kMapOffset), Heap::RootIndexForExternalArrayType(array_type)); __ j(not_equal, &slow); // Check that the index is in range. __ SmiToInteger32(rbx, rbx); // Untag the index. __ cmpl(rbx, FieldOperand(rcx, ExternalArray::kLengthOffset)); // Unsigned comparison catches both negative and too-large values. __ j(above_equal, &slow); // Handle both smis and HeapNumbers in the fast path. Go to the // runtime for all other kinds of values. // rax: value // rcx: elements array // rbx: untagged index __ JumpIfNotSmi(rax, &check_heap_number); __ movq(rdx, rax); // Save the value. __ SmiToInteger32(rax, rax); __ movq(rcx, FieldOperand(rcx, ExternalArray::kExternalPointerOffset)); // rcx: base pointer of external storage switch (array_type) { case kExternalByteArray: case kExternalUnsignedByteArray: __ movb(Operand(rcx, rbx, times_1, 0), rax); break; case kExternalShortArray: case kExternalUnsignedShortArray: __ movw(Operand(rcx, rbx, times_2, 0), rax); break; case kExternalIntArray: case kExternalUnsignedIntArray: __ movl(Operand(rcx, rbx, times_4, 0), rax); break; case kExternalFloatArray: // Need to perform int-to-float conversion. __ push(rax); __ fild_s(Operand(rsp, 0)); __ pop(rax); __ fstp_s(Operand(rcx, rbx, times_4, 0)); break; default: UNREACHABLE(); break; } __ movq(rax, rdx); // Return the original value. __ ret(0); __ bind(&check_heap_number); __ CmpObjectType(rax, HEAP_NUMBER_TYPE, rdx); __ j(not_equal, &slow); // The WebGL specification leaves the behavior of storing NaN and // +/-Infinity into integer arrays basically undefined. For more // reproducible behavior, convert these to zero. __ fld_d(FieldOperand(rax, HeapNumber::kValueOffset)); __ movq(rdx, rax); // Save the value. __ movq(rcx, FieldOperand(rcx, ExternalArray::kExternalPointerOffset)); // rbx: untagged index // rcx: base pointer of external storage // top of FPU stack: value if (array_type == kExternalFloatArray) { __ fstp_s(Operand(rcx, rbx, times_4, 0)); } else { // Need to perform float-to-int conversion. // Test the top of the FP stack for NaN. Label is_nan; __ fucomi(0); __ j(parity_even, &is_nan); __ push(rax); // Make room on stack __ fistp_d(Operand(rsp, 0)); __ pop(rax); // rax: untagged integer value switch (array_type) { case kExternalByteArray: case kExternalUnsignedByteArray: __ movb(Operand(rcx, rbx, times_1, 0), rax); break; case kExternalShortArray: case kExternalUnsignedShortArray: __ movw(Operand(rcx, rbx, times_2, 0), rax); break; case kExternalIntArray: case kExternalUnsignedIntArray: { // We also need to explicitly check for +/-Infinity. These are // converted to MIN_INT, but we need to be careful not to // confuse with legal uses of MIN_INT. Label not_infinity; // This test would apparently detect both NaN and Infinity, // but we've already checked for NaN using the FPU hardware // above. __ movzxwq(rdi, FieldOperand(rdx, HeapNumber::kValueOffset + 6)); __ and_(rdi, Immediate(0x7FF0)); __ cmpw(rdi, Immediate(0x7FF0)); __ j(not_equal, ¬_infinity); __ movq(rax, Immediate(0)); __ bind(¬_infinity); __ movl(Operand(rcx, rbx, times_4, 0), rax); break; } default: UNREACHABLE(); break; } __ movq(rax, rdx); // Return the original value. __ ret(0); __ bind(&is_nan); __ ffree(); __ fincstp(); __ movq(rax, Immediate(0)); switch (array_type) { case kExternalByteArray: case kExternalUnsignedByteArray: __ movb(Operand(rcx, rbx, times_1, 0), rax); break; case kExternalShortArray: case kExternalUnsignedShortArray: __ movw(Operand(rcx, rbx, times_2, 0), rax); break; case kExternalIntArray: case kExternalUnsignedIntArray: __ movl(Operand(rcx, rbx, times_4, 0), rax); break; default: UNREACHABLE(); break; } __ movq(rax, rdx); // Return the original value. __ ret(0); } // Slow case: call runtime. __ bind(&slow); Generate(masm, ExternalReference(Runtime::kSetProperty)); } void CallIC::Generate(MacroAssembler* masm, int argc, ExternalReference const& f) { // Get the receiver of the function from the stack; 1 ~ return address. __ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize)); // Get the name of the function to call from the stack. // 2 ~ receiver, return address. __ movq(rbx, Operand(rsp, (argc + 2) * kPointerSize)); // Enter an internal frame. __ EnterInternalFrame(); // Push the receiver and the name of the function. __ push(rdx); __ push(rbx); // Call the entry. CEntryStub stub(1); __ movq(rax, Immediate(2)); __ movq(rbx, f); __ CallStub(&stub); // Move result to rdi and exit the internal frame. __ movq(rdi, rax); __ LeaveInternalFrame(); // Check if the receiver is a global object of some sort. Label invoke, global; __ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize)); // receiver __ JumpIfSmi(rdx, &invoke); __ CmpObjectType(rdx, JS_GLOBAL_OBJECT_TYPE, rcx); __ j(equal, &global); __ CmpInstanceType(rcx, JS_BUILTINS_OBJECT_TYPE); __ j(not_equal, &invoke); // Patch the receiver on the stack. __ bind(&global); __ movq(rdx, FieldOperand(rdx, GlobalObject::kGlobalReceiverOffset)); __ movq(Operand(rsp, (argc + 1) * kPointerSize), rdx); // Invoke the function. ParameterCount actual(argc); __ bind(&invoke); __ InvokeFunction(rdi, actual, JUMP_FUNCTION); } // Defined in ic.cc. Object* CallIC_Miss(Arguments args); void CallIC::GenerateMegamorphic(MacroAssembler* masm, int argc) { // ----------- S t a t e ------------- // rsp[0] return address // rsp[8] argument argc // rsp[16] argument argc - 1 // ... // rsp[argc * 8] argument 1 // rsp[(argc + 1) * 8] argument 0 = reciever // rsp[(argc + 2) * 8] function name // ----------------------------------- Label number, non_number, non_string, boolean, probe, miss; // Get the receiver of the function from the stack; 1 ~ return address. __ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize)); // Get the name of the function from the stack; 2 ~ return address, receiver __ movq(rcx, Operand(rsp, (argc + 2) * kPointerSize)); // Probe the stub cache. Code::Flags flags = Code::ComputeFlags(Code::CALL_IC, NOT_IN_LOOP, MONOMORPHIC, NORMAL, argc); StubCache::GenerateProbe(masm, flags, rdx, rcx, rbx, rax); // If the stub cache probing failed, the receiver might be a value. // For value objects, we use the map of the prototype objects for // the corresponding JSValue for the cache and that is what we need // to probe. // // Check for number. __ JumpIfSmi(rdx, &number); __ CmpObjectType(rdx, HEAP_NUMBER_TYPE, rbx); __ j(not_equal, &non_number); __ bind(&number); StubCompiler::GenerateLoadGlobalFunctionPrototype( masm, Context::NUMBER_FUNCTION_INDEX, rdx); __ jmp(&probe); // Check for string. __ bind(&non_number); __ CmpInstanceType(rbx, FIRST_NONSTRING_TYPE); __ j(above_equal, &non_string); StubCompiler::GenerateLoadGlobalFunctionPrototype( masm, Context::STRING_FUNCTION_INDEX, rdx); __ jmp(&probe); // Check for boolean. __ bind(&non_string); __ CompareRoot(rdx, Heap::kTrueValueRootIndex); __ j(equal, &boolean); __ CompareRoot(rdx, Heap::kFalseValueRootIndex); __ j(not_equal, &miss); __ bind(&boolean); StubCompiler::GenerateLoadGlobalFunctionPrototype( masm, Context::BOOLEAN_FUNCTION_INDEX, rdx); // Probe the stub cache for the value object. __ bind(&probe); StubCache::GenerateProbe(masm, flags, rdx, rcx, rbx, no_reg); // Cache miss: Jump to runtime. __ bind(&miss); Generate(masm, argc, ExternalReference(IC_Utility(kCallIC_Miss))); } static void GenerateNormalHelper(MacroAssembler* masm, int argc, bool is_global_object, Label* miss) { // Search dictionary - put result in register edx. GenerateDictionaryLoad(masm, miss, rax, rdx, rbx, rcx); // Move the result to register rdi and check that it isn't a smi. __ movq(rdi, rdx); __ JumpIfSmi(rdx, miss); // Check that the value is a JavaScript function. __ CmpObjectType(rdx, JS_FUNCTION_TYPE, rdx); __ j(not_equal, miss); // Check that the function has been loaded. __ testb(FieldOperand(rdx, Map::kBitField2Offset), Immediate(1 << Map::kNeedsLoading)); __ j(not_zero, miss); // Patch the receiver with the global proxy if necessary. if (is_global_object) { __ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize)); __ movq(rdx, FieldOperand(rdx, GlobalObject::kGlobalReceiverOffset)); __ movq(Operand(rsp, (argc + 1) * kPointerSize), rdx); } // Invoke the function. ParameterCount actual(argc); __ InvokeFunction(rdi, actual, JUMP_FUNCTION); } void CallIC::GenerateNormal(MacroAssembler* masm, int argc) { // ----------- S t a t e ------------- // rsp[0] return address // rsp[8] argument argc // rsp[16] argument argc - 1 // ... // rsp[argc * 8] argument 1 // rsp[(argc + 1) * 8] argument 0 = reciever // rsp[(argc + 2) * 8] function name // ----------------------------------- Label miss, global_object, non_global_object; // Get the receiver of the function from the stack. __ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize)); // Get the name of the function from the stack. __ movq(rcx, Operand(rsp, (argc + 2) * kPointerSize)); // Check that the receiver isn't a smi. __ JumpIfSmi(rdx, &miss); // Check that the receiver is a valid JS object. // Because there are so many map checks and type checks, do not // use CmpObjectType, but load map and type into registers. __ movq(rbx, FieldOperand(rdx, HeapObject::kMapOffset)); __ movb(rax, FieldOperand(rbx, Map::kInstanceTypeOffset)); __ cmpb(rax, Immediate(FIRST_JS_OBJECT_TYPE)); __ j(below, &miss); // If this assert fails, we have to check upper bound too. ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); // Check for access to global object. __ cmpb(rax, Immediate(JS_GLOBAL_OBJECT_TYPE)); __ j(equal, &global_object); __ cmpb(rax, Immediate(JS_BUILTINS_OBJECT_TYPE)); __ j(not_equal, &non_global_object); // Accessing global object: Load and invoke. __ bind(&global_object); // Check that the global object does not require access checks. __ movb(rbx, FieldOperand(rbx, Map::kBitFieldOffset)); __ testb(rbx, Immediate(1 << Map::kIsAccessCheckNeeded)); __ j(not_equal, &miss); GenerateNormalHelper(masm, argc, true, &miss); // Accessing non-global object: Check for access to global proxy. Label global_proxy, invoke; __ bind(&non_global_object); __ cmpb(rax, Immediate(JS_GLOBAL_PROXY_TYPE)); __ j(equal, &global_proxy); // Check that the non-global, non-global-proxy object does not // require access checks. __ movb(rbx, FieldOperand(rbx, Map::kBitFieldOffset)); __ testb(rbx, Immediate(1 << Map::kIsAccessCheckNeeded)); __ j(not_equal, &miss); __ bind(&invoke); GenerateNormalHelper(masm, argc, false, &miss); // Global object proxy access: Check access rights. __ bind(&global_proxy); __ CheckAccessGlobalProxy(rdx, rax, &miss); __ jmp(&invoke); // Cache miss: Jump to runtime. __ bind(&miss); Generate(masm, argc, ExternalReference(IC_Utility(kCallIC_Miss))); } // The offset from the inlined patch site to the start of the // inlined load instruction. const int LoadIC::kOffsetToLoadInstruction = 20; void LoadIC::ClearInlinedVersion(Address address) { // Reset the map check of the inlined inobject property load (if // present) to guarantee failure by holding an invalid map (the null // value). The offset can be patched to anything. PatchInlinedLoad(address, Heap::null_value(), kMaxInt); } void LoadIC::Generate(MacroAssembler* masm, ExternalReference const& f) { // ----------- S t a t e ------------- // -- rcx : name // -- rsp[0] : return address // -- rsp[8] : receiver // ----------------------------------- __ movq(rax, Operand(rsp, kPointerSize)); __ pop(rbx); __ push(rax); // receiver __ push(rcx); // name __ push(rbx); // return address // Perform tail call to the entry. __ TailCallRuntime(f, 2, 1); } void LoadIC::GenerateArrayLength(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rcx : name // -- rsp[0] : return address // -- rsp[8] : receiver // ----------------------------------- Label miss; __ movq(rax, Operand(rsp, kPointerSize)); StubCompiler::GenerateLoadArrayLength(masm, rax, rdx, &miss); __ bind(&miss); StubCompiler::GenerateLoadMiss(masm, Code::LOAD_IC); } void LoadIC::GenerateFunctionPrototype(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rcx : name // -- rsp[0] : return address // -- rsp[8] : receiver // ----------------------------------- Label miss; __ movq(rax, Operand(rsp, kPointerSize)); StubCompiler::GenerateLoadFunctionPrototype(masm, rax, rdx, rbx, &miss); __ bind(&miss); StubCompiler::GenerateLoadMiss(masm, Code::LOAD_IC); } void LoadIC::GenerateMegamorphic(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rcx : name // -- rsp[0] : return address // -- rsp[8] : receiver // ----------------------------------- __ movq(rax, Operand(rsp, kPointerSize)); // Probe the stub cache. Code::Flags flags = Code::ComputeFlags(Code::LOAD_IC, NOT_IN_LOOP, MONOMORPHIC); StubCache::GenerateProbe(masm, flags, rax, rcx, rbx, rdx); // Cache miss: Jump to runtime. StubCompiler::GenerateLoadMiss(masm, Code::LOAD_IC); } void LoadIC::GenerateMiss(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rcx : name // -- rsp[0] : return address // -- rsp[8] : receiver // ----------------------------------- Generate(masm, ExternalReference(IC_Utility(kLoadIC_Miss))); } void LoadIC::GenerateNormal(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rcx : name // -- rsp[0] : return address // -- rsp[8] : receiver // ----------------------------------- Label miss, probe, global; __ movq(rax, Operand(rsp, kPointerSize)); // Check that the receiver isn't a smi. __ JumpIfSmi(rax, &miss); // Check that the receiver is a valid JS object. __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rbx); __ j(below, &miss); // If this assert fails, we have to check upper bound too. ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); // Check for access to global object (unlikely). __ CmpInstanceType(rbx, JS_GLOBAL_PROXY_TYPE); __ j(equal, &global); // Check for non-global object that requires access check. __ testl(FieldOperand(rbx, Map::kBitFieldOffset), Immediate(1 << Map::kIsAccessCheckNeeded)); __ j(not_zero, &miss); // Search the dictionary placing the result in eax. __ bind(&probe); GenerateDictionaryLoad(masm, &miss, rdx, rax, rbx, rcx); GenerateCheckNonObjectOrLoaded(masm, &miss, rax); __ ret(0); // Global object access: Check access rights. __ bind(&global); __ CheckAccessGlobalProxy(rax, rdx, &miss); __ jmp(&probe); // Cache miss: Restore receiver from stack and jump to runtime. __ bind(&miss); __ movq(rax, Operand(rsp, 1 * kPointerSize)); Generate(masm, ExternalReference(IC_Utility(kLoadIC_Miss))); } void LoadIC::GenerateStringLength(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rcx : name // -- rsp[0] : return address // -- rsp[8] : receiver // ----------------------------------- Label miss; __ movq(rax, Operand(rsp, kPointerSize)); StubCompiler::GenerateLoadStringLength(masm, rax, rdx, &miss); __ bind(&miss); StubCompiler::GenerateLoadMiss(masm, Code::LOAD_IC); } bool LoadIC::PatchInlinedLoad(Address address, Object* map, int offset) { // The address of the instruction following the call. Address test_instruction_address = address + Assembler::kCallTargetAddressOffset; // If the instruction following the call is not a test eax, nothing // was inlined. if (*test_instruction_address != kTestEaxByte) return false; Address delta_address = test_instruction_address + 1; // The delta to the start of the map check instruction. int delta = *reinterpret_cast(delta_address); // The map address is the last 8 bytes of the 10-byte // immediate move instruction, so we add 2 to get the // offset to the last 8 bytes. Address map_address = test_instruction_address + delta + 2; *(reinterpret_cast(map_address)) = map; // The offset is in the 32-bit displacement of a seven byte // memory-to-register move instruction (REX.W 0x88 ModR/M disp32), // so we add 3 to get the offset of the displacement. Address offset_address = test_instruction_address + delta + kOffsetToLoadInstruction + 3; *reinterpret_cast(offset_address) = offset - kHeapObjectTag; return true; } void StoreIC::Generate(MacroAssembler* masm, ExternalReference const& f) { // ----------- S t a t e ------------- // -- rax : value // -- rcx : name // -- rsp[0] : return address // -- rsp[8] : receiver // ----------------------------------- __ pop(rbx); __ push(Operand(rsp, 0)); // receiver __ push(rcx); // name __ push(rax); // value __ push(rbx); // return address // Perform tail call to the entry. __ TailCallRuntime(f, 3, 1); } void StoreIC::GenerateExtendStorage(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : value // -- rcx : Map (target of map transition) // -- rsp[0] : return address // -- rsp[8] : receiver // ----------------------------------- __ pop(rbx); __ push(Operand(rsp, 0)); // receiver __ push(rcx); // transition map __ push(rax); // value __ push(rbx); // return address // Perform tail call to the entry. __ TailCallRuntime( ExternalReference(IC_Utility(kSharedStoreIC_ExtendStorage)), 3, 1); } void StoreIC::GenerateMegamorphic(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : value // -- rcx : name // -- rsp[0] : return address // -- rsp[8] : receiver // ----------------------------------- // Get the receiver from the stack and probe the stub cache. __ movq(rdx, Operand(rsp, kPointerSize)); Code::Flags flags = Code::ComputeFlags(Code::STORE_IC, NOT_IN_LOOP, MONOMORPHIC); StubCache::GenerateProbe(masm, flags, rdx, rcx, rbx, no_reg); // Cache miss: Jump to runtime. Generate(masm, ExternalReference(IC_Utility(kStoreIC_Miss))); } #undef __ } } // namespace v8::internal