// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if V8_TARGET_ARCH_IA32 #include "codegen.h" #include "deoptimizer.h" #include "full-codegen.h" #include "stub-cache.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void Builtins::Generate_Adaptor(MacroAssembler* masm, CFunctionId id, BuiltinExtraArguments extra_args) { // ----------- S t a t e ------------- // -- eax : number of arguments excluding receiver // -- edi : called function (only guaranteed when // extra_args requires it) // -- esi : context // -- esp[0] : return address // -- esp[4] : last argument // -- ... // -- esp[4 * argc] : first argument (argc == eax) // -- esp[4 * (argc +1)] : receiver // ----------------------------------- // Insert extra arguments. int num_extra_args = 0; if (extra_args == NEEDS_CALLED_FUNCTION) { num_extra_args = 1; Register scratch = ebx; __ pop(scratch); // Save return address. __ push(edi); __ push(scratch); // Restore return address. } else { ASSERT(extra_args == NO_EXTRA_ARGUMENTS); } // JumpToExternalReference expects eax to contain the number of arguments // including the receiver and the extra arguments. __ add(eax, Immediate(num_extra_args + 1)); __ JumpToExternalReference(ExternalReference(id, masm->isolate())); } static void CallRuntimePassFunction( MacroAssembler* masm, Runtime::FunctionId function_id) { FrameScope scope(masm, StackFrame::INTERNAL); // Push a copy of the function. __ push(edi); // Function is also the parameter to the runtime call. __ push(edi); __ CallRuntime(function_id, 1); // Restore receiver. __ pop(edi); } static void GenerateTailCallToSharedCode(MacroAssembler* masm) { __ mov(eax, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ mov(eax, FieldOperand(eax, SharedFunctionInfo::kCodeOffset)); __ lea(eax, FieldOperand(eax, Code::kHeaderSize)); __ jmp(eax); } static void GenerateTailCallToReturnedCode(MacroAssembler* masm) { __ lea(eax, FieldOperand(eax, Code::kHeaderSize)); __ jmp(eax); } void Builtins::Generate_InOptimizationQueue(MacroAssembler* masm) { // Checking whether the queued function is ready for install is optional, // since we come across interrupts and stack checks elsewhere. However, // not checking may delay installing ready functions, and always checking // would be quite expensive. A good compromise is to first check against // stack limit as a cue for an interrupt signal. Label ok; ExternalReference stack_limit = ExternalReference::address_of_stack_limit(masm->isolate()); __ cmp(esp, Operand::StaticVariable(stack_limit)); __ j(above_equal, &ok, Label::kNear); CallRuntimePassFunction(masm, Runtime::kTryInstallOptimizedCode); GenerateTailCallToReturnedCode(masm); __ bind(&ok); GenerateTailCallToSharedCode(masm); } static void Generate_JSConstructStubHelper(MacroAssembler* masm, bool is_api_function, bool count_constructions) { // ----------- S t a t e ------------- // -- eax: number of arguments // -- edi: constructor function // ----------------------------------- // Should never count constructions for api objects. ASSERT(!is_api_function || !count_constructions); // Enter a construct frame. { FrameScope scope(masm, StackFrame::CONSTRUCT); // Store a smi-tagged arguments count on the stack. __ SmiTag(eax); __ push(eax); // Push the function to invoke on the stack. __ push(edi); // Try to allocate the object without transitioning into C code. If any of // the preconditions is not met, the code bails out to the runtime call. Label rt_call, allocated; if (FLAG_inline_new) { Label undo_allocation; #ifdef ENABLE_DEBUGGER_SUPPORT ExternalReference debug_step_in_fp = ExternalReference::debug_step_in_fp_address(masm->isolate()); __ cmp(Operand::StaticVariable(debug_step_in_fp), Immediate(0)); __ j(not_equal, &rt_call); #endif // Verified that the constructor is a JSFunction. // Load the initial map and verify that it is in fact a map. // edi: constructor __ mov(eax, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi __ JumpIfSmi(eax, &rt_call); // edi: constructor // eax: initial map (if proven valid below) __ CmpObjectType(eax, MAP_TYPE, ebx); __ j(not_equal, &rt_call); // Check that the constructor is not constructing a JSFunction (see // comments in Runtime_NewObject in runtime.cc). In which case the // initial map's instance type would be JS_FUNCTION_TYPE. // edi: constructor // eax: initial map __ CmpInstanceType(eax, JS_FUNCTION_TYPE); __ j(equal, &rt_call); if (count_constructions) { Label allocate; // Decrease generous allocation count. __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ dec_b(FieldOperand(ecx, SharedFunctionInfo::kConstructionCountOffset)); __ j(not_zero, &allocate); __ push(eax); __ push(edi); __ push(edi); // constructor // The call will replace the stub, so the countdown is only done once. __ CallRuntime(Runtime::kFinalizeInstanceSize, 1); __ pop(edi); __ pop(eax); __ bind(&allocate); } // Now allocate the JSObject on the heap. // edi: constructor // eax: initial map __ movzx_b(edi, FieldOperand(eax, Map::kInstanceSizeOffset)); __ shl(edi, kPointerSizeLog2); __ Allocate(edi, ebx, edi, no_reg, &rt_call, NO_ALLOCATION_FLAGS); // Allocated the JSObject, now initialize the fields. // eax: initial map // ebx: JSObject // edi: start of next object __ mov(Operand(ebx, JSObject::kMapOffset), eax); Factory* factory = masm->isolate()->factory(); __ mov(ecx, factory->empty_fixed_array()); __ mov(Operand(ebx, JSObject::kPropertiesOffset), ecx); __ mov(Operand(ebx, JSObject::kElementsOffset), ecx); // Set extra fields in the newly allocated object. // eax: initial map // ebx: JSObject // edi: start of next object __ lea(ecx, Operand(ebx, JSObject::kHeaderSize)); __ mov(edx, factory->undefined_value()); if (count_constructions) { __ movzx_b(esi, FieldOperand(eax, Map::kPreAllocatedPropertyFieldsOffset)); __ lea(esi, Operand(ebx, esi, times_pointer_size, JSObject::kHeaderSize)); // esi: offset of first field after pre-allocated fields if (FLAG_debug_code) { __ cmp(esi, edi); __ Assert(less_equal, kUnexpectedNumberOfPreAllocatedPropertyFields); } __ InitializeFieldsWithFiller(ecx, esi, edx); __ mov(edx, factory->one_pointer_filler_map()); } __ InitializeFieldsWithFiller(ecx, edi, edx); // Add the object tag to make the JSObject real, so that we can continue // and jump into the continuation code at any time from now on. Any // failures need to undo the allocation, so that the heap is in a // consistent state and verifiable. // eax: initial map // ebx: JSObject // edi: start of next object __ or_(ebx, Immediate(kHeapObjectTag)); // Check if a non-empty properties array is needed. // Allocate and initialize a FixedArray if it is. // eax: initial map // ebx: JSObject // edi: start of next object // Calculate the total number of properties described by the map. __ movzx_b(edx, FieldOperand(eax, Map::kUnusedPropertyFieldsOffset)); __ movzx_b(ecx, FieldOperand(eax, Map::kPreAllocatedPropertyFieldsOffset)); __ add(edx, ecx); // Calculate unused properties past the end of the in-object properties. __ movzx_b(ecx, FieldOperand(eax, Map::kInObjectPropertiesOffset)); __ sub(edx, ecx); // Done if no extra properties are to be allocated. __ j(zero, &allocated); __ Assert(positive, kPropertyAllocationCountFailed); // Scale the number of elements by pointer size and add the header for // FixedArrays to the start of the next object calculation from above. // ebx: JSObject // edi: start of next object (will be start of FixedArray) // edx: number of elements in properties array __ Allocate(FixedArray::kHeaderSize, times_pointer_size, edx, REGISTER_VALUE_IS_INT32, edi, ecx, no_reg, &undo_allocation, RESULT_CONTAINS_TOP); // Initialize the FixedArray. // ebx: JSObject // edi: FixedArray // edx: number of elements // ecx: start of next object __ mov(eax, factory->fixed_array_map()); __ mov(Operand(edi, FixedArray::kMapOffset), eax); // setup the map __ SmiTag(edx); __ mov(Operand(edi, FixedArray::kLengthOffset), edx); // and length // Initialize the fields to undefined. // ebx: JSObject // edi: FixedArray // ecx: start of next object { Label loop, entry; __ mov(edx, factory->undefined_value()); __ lea(eax, Operand(edi, FixedArray::kHeaderSize)); __ jmp(&entry); __ bind(&loop); __ mov(Operand(eax, 0), edx); __ add(eax, Immediate(kPointerSize)); __ bind(&entry); __ cmp(eax, ecx); __ j(below, &loop); } // Store the initialized FixedArray into the properties field of // the JSObject // ebx: JSObject // edi: FixedArray __ or_(edi, Immediate(kHeapObjectTag)); // add the heap tag __ mov(FieldOperand(ebx, JSObject::kPropertiesOffset), edi); // Continue with JSObject being successfully allocated // ebx: JSObject __ jmp(&allocated); // Undo the setting of the new top so that the heap is verifiable. For // example, the map's unused properties potentially do not match the // allocated objects unused properties. // ebx: JSObject (previous new top) __ bind(&undo_allocation); __ UndoAllocationInNewSpace(ebx); } // Allocate the new receiver object using the runtime call. __ bind(&rt_call); // Must restore edi (constructor) before calling runtime. __ mov(edi, Operand(esp, 0)); // edi: function (constructor) __ push(edi); __ CallRuntime(Runtime::kNewObject, 1); __ mov(ebx, eax); // store result in ebx // New object allocated. // ebx: newly allocated object __ bind(&allocated); // Retrieve the function from the stack. __ pop(edi); // Retrieve smi-tagged arguments count from the stack. __ mov(eax, Operand(esp, 0)); __ SmiUntag(eax); // Push the allocated receiver to the stack. We need two copies // because we may have to return the original one and the calling // conventions dictate that the called function pops the receiver. __ push(ebx); __ push(ebx); // Set up pointer to last argument. __ lea(ebx, Operand(ebp, StandardFrameConstants::kCallerSPOffset)); // Copy arguments and receiver to the expression stack. Label loop, entry; __ mov(ecx, eax); __ jmp(&entry); __ bind(&loop); __ push(Operand(ebx, ecx, times_4, 0)); __ bind(&entry); __ dec(ecx); __ j(greater_equal, &loop); // Call the function. if (is_api_function) { __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); Handle code = masm->isolate()->builtins()->HandleApiCallConstruct(); __ call(code, RelocInfo::CODE_TARGET); } else { ParameterCount actual(eax); __ InvokeFunction(edi, actual, CALL_FUNCTION, NullCallWrapper()); } // Store offset of return address for deoptimizer. if (!is_api_function && !count_constructions) { masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset()); } // Restore context from the frame. __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); // If the result is an object (in the ECMA sense), we should get rid // of the receiver and use the result; see ECMA-262 section 13.2.2-7 // on page 74. Label use_receiver, exit; // If the result is a smi, it is *not* an object in the ECMA sense. __ JumpIfSmi(eax, &use_receiver); // If the type of the result (stored in its map) is less than // FIRST_SPEC_OBJECT_TYPE, it is not an object in the ECMA sense. __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx); __ j(above_equal, &exit); // Throw away the result of the constructor invocation and use the // on-stack receiver as the result. __ bind(&use_receiver); __ mov(eax, Operand(esp, 0)); // Restore the arguments count and leave the construct frame. __ bind(&exit); __ mov(ebx, Operand(esp, kPointerSize)); // Get arguments count. // Leave construct frame. } // Remove caller arguments from the stack and return. STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); __ pop(ecx); __ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize)); // 1 ~ receiver __ push(ecx); __ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1); __ ret(0); } void Builtins::Generate_JSConstructStubCountdown(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, false, true); } void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, false, false); } void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, true, false); } static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, bool is_construct) { ProfileEntryHookStub::MaybeCallEntryHook(masm); // Clear the context before we push it when entering the internal frame. __ Set(esi, Immediate(0)); { FrameScope scope(masm, StackFrame::INTERNAL); // Load the previous frame pointer (ebx) to access C arguments __ mov(ebx, Operand(ebp, 0)); // Get the function from the frame and setup the context. __ mov(ecx, Operand(ebx, EntryFrameConstants::kFunctionArgOffset)); __ mov(esi, FieldOperand(ecx, JSFunction::kContextOffset)); // Push the function and the receiver onto the stack. __ push(ecx); __ push(Operand(ebx, EntryFrameConstants::kReceiverArgOffset)); // Load the number of arguments and setup pointer to the arguments. __ mov(eax, Operand(ebx, EntryFrameConstants::kArgcOffset)); __ mov(ebx, Operand(ebx, EntryFrameConstants::kArgvOffset)); // Copy arguments to the stack in a loop. Label loop, entry; __ Set(ecx, Immediate(0)); __ jmp(&entry); __ bind(&loop); __ mov(edx, Operand(ebx, ecx, times_4, 0)); // push parameter from argv __ push(Operand(edx, 0)); // dereference handle __ inc(ecx); __ bind(&entry); __ cmp(ecx, eax); __ j(not_equal, &loop); // Get the function from the stack and call it. // kPointerSize for the receiver. __ mov(edi, Operand(esp, eax, times_4, kPointerSize)); // Invoke the code. if (is_construct) { // No type feedback cell is available Handle undefined_sentinel( masm->isolate()->heap()->undefined_value(), masm->isolate()); __ mov(ebx, Immediate(undefined_sentinel)); CallConstructStub stub(NO_CALL_FUNCTION_FLAGS); __ CallStub(&stub); } else { ParameterCount actual(eax); __ InvokeFunction(edi, actual, CALL_FUNCTION, NullCallWrapper()); } // Exit the internal frame. Notice that this also removes the empty. // context and the function left on the stack by the code // invocation. } __ ret(kPointerSize); // Remove receiver. } void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, false); } void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, true); } void Builtins::Generate_CompileUnoptimized(MacroAssembler* masm) { CallRuntimePassFunction(masm, Runtime::kCompileUnoptimized); GenerateTailCallToReturnedCode(masm); } static void CallCompileOptimized(MacroAssembler* masm, bool concurrent) { FrameScope scope(masm, StackFrame::INTERNAL); // Push a copy of the function. __ push(edi); // Function is also the parameter to the runtime call. __ push(edi); // Whether to compile in a background thread. __ Push(masm->isolate()->factory()->ToBoolean(concurrent)); __ CallRuntime(Runtime::kCompileOptimized, 2); // Restore receiver. __ pop(edi); } void Builtins::Generate_CompileOptimized(MacroAssembler* masm) { CallCompileOptimized(masm, false); GenerateTailCallToReturnedCode(masm); } void Builtins::Generate_CompileOptimizedConcurrent(MacroAssembler* masm) { CallCompileOptimized(masm, true); GenerateTailCallToReturnedCode(masm); } static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) { // For now, we are relying on the fact that make_code_young doesn't do any // garbage collection which allows us to save/restore the registers without // worrying about which of them contain pointers. We also don't build an // internal frame to make the code faster, since we shouldn't have to do stack // crawls in MakeCodeYoung. This seems a bit fragile. // Re-execute the code that was patched back to the young age when // the stub returns. __ sub(Operand(esp, 0), Immediate(5)); __ pushad(); __ mov(eax, Operand(esp, 8 * kPointerSize)); { FrameScope scope(masm, StackFrame::MANUAL); __ PrepareCallCFunction(2, ebx); __ mov(Operand(esp, 1 * kPointerSize), Immediate(ExternalReference::isolate_address(masm->isolate()))); __ mov(Operand(esp, 0), eax); __ CallCFunction( ExternalReference::get_make_code_young_function(masm->isolate()), 2); } __ popad(); __ ret(0); } #define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C) \ void Builtins::Generate_Make##C##CodeYoungAgainEvenMarking( \ MacroAssembler* masm) { \ GenerateMakeCodeYoungAgainCommon(masm); \ } \ void Builtins::Generate_Make##C##CodeYoungAgainOddMarking( \ MacroAssembler* masm) { \ GenerateMakeCodeYoungAgainCommon(masm); \ } CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR) #undef DEFINE_CODE_AGE_BUILTIN_GENERATOR void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) { // For now, as in GenerateMakeCodeYoungAgainCommon, we are relying on the fact // that make_code_young doesn't do any garbage collection which allows us to // save/restore the registers without worrying about which of them contain // pointers. __ pushad(); __ mov(eax, Operand(esp, 8 * kPointerSize)); __ sub(eax, Immediate(Assembler::kCallInstructionLength)); { // NOLINT FrameScope scope(masm, StackFrame::MANUAL); __ PrepareCallCFunction(2, ebx); __ mov(Operand(esp, 1 * kPointerSize), Immediate(ExternalReference::isolate_address(masm->isolate()))); __ mov(Operand(esp, 0), eax); __ CallCFunction( ExternalReference::get_mark_code_as_executed_function(masm->isolate()), 2); } __ popad(); // Perform prologue operations usually performed by the young code stub. __ pop(eax); // Pop return address into scratch register. __ push(ebp); // Caller's frame pointer. __ mov(ebp, esp); __ push(esi); // Callee's context. __ push(edi); // Callee's JS Function. __ push(eax); // Push return address after frame prologue. // Jump to point after the code-age stub. __ ret(0); } void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) { GenerateMakeCodeYoungAgainCommon(masm); } static void Generate_NotifyStubFailureHelper(MacroAssembler* masm, SaveFPRegsMode save_doubles) { // Enter an internal frame. { FrameScope scope(masm, StackFrame::INTERNAL); // Preserve registers across notification, this is important for compiled // stubs that tail call the runtime on deopts passing their parameters in // registers. __ pushad(); __ CallRuntime(Runtime::kNotifyStubFailure, 0, save_doubles); __ popad(); // Tear down internal frame. } __ pop(MemOperand(esp, 0)); // Ignore state offset __ ret(0); // Return to IC Miss stub, continuation still on stack. } void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) { Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs); } void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) { if (Serializer::enabled()) { PlatformFeatureScope sse2(SSE2); Generate_NotifyStubFailureHelper(masm, kSaveFPRegs); } else { Generate_NotifyStubFailureHelper(masm, kSaveFPRegs); } } static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm, Deoptimizer::BailoutType type) { { FrameScope scope(masm, StackFrame::INTERNAL); // Pass deoptimization type to the runtime system. __ push(Immediate(Smi::FromInt(static_cast(type)))); __ CallRuntime(Runtime::kNotifyDeoptimized, 1); // Tear down internal frame. } // Get the full codegen state from the stack and untag it. __ mov(ecx, Operand(esp, 1 * kPointerSize)); __ SmiUntag(ecx); // Switch on the state. Label not_no_registers, not_tos_eax; __ cmp(ecx, FullCodeGenerator::NO_REGISTERS); __ j(not_equal, ¬_no_registers, Label::kNear); __ ret(1 * kPointerSize); // Remove state. __ bind(¬_no_registers); __ mov(eax, Operand(esp, 2 * kPointerSize)); __ cmp(ecx, FullCodeGenerator::TOS_REG); __ j(not_equal, ¬_tos_eax, Label::kNear); __ ret(2 * kPointerSize); // Remove state, eax. __ bind(¬_tos_eax); __ Abort(kNoCasesLeft); } void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER); } void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT); } void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY); } void Builtins::Generate_FunctionCall(MacroAssembler* masm) { Factory* factory = masm->isolate()->factory(); // 1. Make sure we have at least one argument. { Label done; __ test(eax, eax); __ j(not_zero, &done); __ pop(ebx); __ push(Immediate(factory->undefined_value())); __ push(ebx); __ inc(eax); __ bind(&done); } // 2. Get the function to call (passed as receiver) from the stack, check // if it is a function. Label slow, non_function; // 1 ~ return address. __ mov(edi, Operand(esp, eax, times_4, 1 * kPointerSize)); __ JumpIfSmi(edi, &non_function); __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx); __ j(not_equal, &slow); // 3a. Patch the first argument if necessary when calling a function. Label shift_arguments; __ Set(edx, Immediate(0)); // indicate regular JS_FUNCTION { Label convert_to_object, use_global_receiver, patch_receiver; // Change context eagerly in case we need the global receiver. __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); // Do not transform the receiver for strict mode functions. __ mov(ebx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ test_b(FieldOperand(ebx, SharedFunctionInfo::kStrictModeByteOffset), 1 << SharedFunctionInfo::kStrictModeBitWithinByte); __ j(not_equal, &shift_arguments); // Do not transform the receiver for natives (shared already in ebx). __ test_b(FieldOperand(ebx, SharedFunctionInfo::kNativeByteOffset), 1 << SharedFunctionInfo::kNativeBitWithinByte); __ j(not_equal, &shift_arguments); // Compute the receiver in non-strict mode. __ mov(ebx, Operand(esp, eax, times_4, 0)); // First argument. // Call ToObject on the receiver if it is not an object, or use the // global object if it is null or undefined. __ JumpIfSmi(ebx, &convert_to_object); __ cmp(ebx, factory->null_value()); __ j(equal, &use_global_receiver); __ cmp(ebx, factory->undefined_value()); __ j(equal, &use_global_receiver); STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); __ CmpObjectType(ebx, FIRST_SPEC_OBJECT_TYPE, ecx); __ j(above_equal, &shift_arguments); __ bind(&convert_to_object); { // In order to preserve argument count. FrameScope scope(masm, StackFrame::INTERNAL); __ SmiTag(eax); __ push(eax); __ push(ebx); __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); __ mov(ebx, eax); __ Set(edx, Immediate(0)); // restore __ pop(eax); __ SmiUntag(eax); } // Restore the function to edi. __ mov(edi, Operand(esp, eax, times_4, 1 * kPointerSize)); __ jmp(&patch_receiver); __ bind(&use_global_receiver); __ mov(ebx, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); __ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalReceiverOffset)); __ bind(&patch_receiver); __ mov(Operand(esp, eax, times_4, 0), ebx); __ jmp(&shift_arguments); } // 3b. Check for function proxy. __ bind(&slow); __ Set(edx, Immediate(1)); // indicate function proxy __ CmpInstanceType(ecx, JS_FUNCTION_PROXY_TYPE); __ j(equal, &shift_arguments); __ bind(&non_function); __ Set(edx, Immediate(2)); // indicate non-function // 3c. Patch the first argument when calling a non-function. The // CALL_NON_FUNCTION builtin expects the non-function callee as // receiver, so overwrite the first argument which will ultimately // become the receiver. __ mov(Operand(esp, eax, times_4, 0), edi); // 4. Shift arguments and return address one slot down on the stack // (overwriting the original receiver). Adjust argument count to make // the original first argument the new receiver. __ bind(&shift_arguments); { Label loop; __ mov(ecx, eax); __ bind(&loop); __ mov(ebx, Operand(esp, ecx, times_4, 0)); __ mov(Operand(esp, ecx, times_4, kPointerSize), ebx); __ dec(ecx); __ j(not_sign, &loop); // While non-negative (to copy return address). __ pop(ebx); // Discard copy of return address. __ dec(eax); // One fewer argument (first argument is new receiver). } // 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin, // or a function proxy via CALL_FUNCTION_PROXY. { Label function, non_proxy; __ test(edx, edx); __ j(zero, &function); __ Set(ebx, Immediate(0)); __ cmp(edx, Immediate(1)); __ j(not_equal, &non_proxy); __ pop(edx); // return address __ push(edi); // re-add proxy object as additional argument __ push(edx); __ inc(eax); __ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY); __ jmp(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), RelocInfo::CODE_TARGET); __ bind(&non_proxy); __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION); __ jmp(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), RelocInfo::CODE_TARGET); __ bind(&function); } // 5b. Get the code to call from the function and check that the number of // expected arguments matches what we're providing. If so, jump // (tail-call) to the code in register edx without checking arguments. __ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ mov(ebx, FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset)); __ mov(edx, FieldOperand(edi, JSFunction::kCodeEntryOffset)); __ SmiUntag(ebx); __ cmp(eax, ebx); __ j(not_equal, masm->isolate()->builtins()->ArgumentsAdaptorTrampoline()); ParameterCount expected(0); __ InvokeCode(edx, expected, expected, JUMP_FUNCTION, NullCallWrapper()); } void Builtins::Generate_FunctionApply(MacroAssembler* masm) { static const int kArgumentsOffset = 2 * kPointerSize; static const int kReceiverOffset = 3 * kPointerSize; static const int kFunctionOffset = 4 * kPointerSize; { FrameScope frame_scope(masm, StackFrame::INTERNAL); __ push(Operand(ebp, kFunctionOffset)); // push this __ push(Operand(ebp, kArgumentsOffset)); // push arguments __ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION); // Check the stack for overflow. We are not trying to catch // interruptions (e.g. debug break and preemption) here, so the "real stack // limit" is checked. Label okay; ExternalReference real_stack_limit = ExternalReference::address_of_real_stack_limit(masm->isolate()); __ mov(edi, Operand::StaticVariable(real_stack_limit)); // Make ecx the space we have left. The stack might already be overflowed // here which will cause ecx to become negative. __ mov(ecx, esp); __ sub(ecx, edi); // Make edx the space we need for the array when it is unrolled onto the // stack. __ mov(edx, eax); __ shl(edx, kPointerSizeLog2 - kSmiTagSize); // Check if the arguments will overflow the stack. __ cmp(ecx, edx); __ j(greater, &okay); // Signed comparison. // Out of stack space. __ push(Operand(ebp, 4 * kPointerSize)); // push this __ push(eax); __ InvokeBuiltin(Builtins::APPLY_OVERFLOW, CALL_FUNCTION); __ bind(&okay); // End of stack check. // Push current index and limit. const int kLimitOffset = StandardFrameConstants::kExpressionsOffset - 1 * kPointerSize; const int kIndexOffset = kLimitOffset - 1 * kPointerSize; __ push(eax); // limit __ push(Immediate(0)); // index // Get the receiver. __ mov(ebx, Operand(ebp, kReceiverOffset)); // Check that the function is a JS function (otherwise it must be a proxy). Label push_receiver, use_global_receiver; __ mov(edi, Operand(ebp, kFunctionOffset)); __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx); __ j(not_equal, &push_receiver); // Change context eagerly to get the right global object if necessary. __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); // Compute the receiver. // Do not transform the receiver for strict mode functions. Label call_to_object; __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ test_b(FieldOperand(ecx, SharedFunctionInfo::kStrictModeByteOffset), 1 << SharedFunctionInfo::kStrictModeBitWithinByte); __ j(not_equal, &push_receiver); Factory* factory = masm->isolate()->factory(); // Do not transform the receiver for natives (shared already in ecx). __ test_b(FieldOperand(ecx, SharedFunctionInfo::kNativeByteOffset), 1 << SharedFunctionInfo::kNativeBitWithinByte); __ j(not_equal, &push_receiver); // Compute the receiver in non-strict mode. // Call ToObject on the receiver if it is not an object, or use the // global object if it is null or undefined. __ JumpIfSmi(ebx, &call_to_object); __ cmp(ebx, factory->null_value()); __ j(equal, &use_global_receiver); __ cmp(ebx, factory->undefined_value()); __ j(equal, &use_global_receiver); STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); __ CmpObjectType(ebx, FIRST_SPEC_OBJECT_TYPE, ecx); __ j(above_equal, &push_receiver); __ bind(&call_to_object); __ push(ebx); __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); __ mov(ebx, eax); __ jmp(&push_receiver); __ bind(&use_global_receiver); __ mov(ebx, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); __ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalReceiverOffset)); // Push the receiver. __ bind(&push_receiver); __ push(ebx); // Copy all arguments from the array to the stack. Label entry, loop; __ mov(ecx, Operand(ebp, kIndexOffset)); __ jmp(&entry); __ bind(&loop); __ mov(edx, Operand(ebp, kArgumentsOffset)); // load arguments // Use inline caching to speed up access to arguments. Handle ic = masm->isolate()->builtins()->KeyedLoadIC_Initialize(); __ call(ic, RelocInfo::CODE_TARGET); // It is important that we do not have a test instruction after the // call. A test instruction after the call is used to indicate that // we have generated an inline version of the keyed load. In this // case, we know that we are not generating a test instruction next. // Push the nth argument. __ push(eax); // Update the index on the stack and in register eax. __ mov(ecx, Operand(ebp, kIndexOffset)); __ add(ecx, Immediate(1 << kSmiTagSize)); __ mov(Operand(ebp, kIndexOffset), ecx); __ bind(&entry); __ cmp(ecx, Operand(ebp, kLimitOffset)); __ j(not_equal, &loop); // Call the function. Label call_proxy; __ mov(eax, ecx); ParameterCount actual(eax); __ SmiUntag(eax); __ mov(edi, Operand(ebp, kFunctionOffset)); __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx); __ j(not_equal, &call_proxy); __ InvokeFunction(edi, actual, CALL_FUNCTION, NullCallWrapper()); frame_scope.GenerateLeaveFrame(); __ ret(3 * kPointerSize); // remove this, receiver, and arguments // Call the function proxy. __ bind(&call_proxy); __ push(edi); // add function proxy as last argument __ inc(eax); __ Set(ebx, Immediate(0)); __ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY); __ call(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), RelocInfo::CODE_TARGET); // Leave internal frame. } __ ret(3 * kPointerSize); // remove this, receiver, and arguments } void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : argc // -- esp[0] : return address // -- esp[4] : last argument // ----------------------------------- Label generic_array_code; // Get the InternalArray function. __ LoadGlobalFunction(Context::INTERNAL_ARRAY_FUNCTION_INDEX, edi); if (FLAG_debug_code) { // Initial map for the builtin InternalArray function should be a map. __ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi. __ test(ebx, Immediate(kSmiTagMask)); __ Assert(not_zero, kUnexpectedInitialMapForInternalArrayFunction); __ CmpObjectType(ebx, MAP_TYPE, ecx); __ Assert(equal, kUnexpectedInitialMapForInternalArrayFunction); } // Run the native code for the InternalArray function called as a normal // function. // tail call a stub InternalArrayConstructorStub stub(masm->isolate()); __ TailCallStub(&stub); } void Builtins::Generate_ArrayCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : argc // -- esp[0] : return address // -- esp[4] : last argument // ----------------------------------- Label generic_array_code; // Get the Array function. __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, edi); if (FLAG_debug_code) { // Initial map for the builtin Array function should be a map. __ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi. __ test(ebx, Immediate(kSmiTagMask)); __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction); __ CmpObjectType(ebx, MAP_TYPE, ecx); __ Assert(equal, kUnexpectedInitialMapForArrayFunction); } // Run the native code for the Array function called as a normal function. // tail call a stub Handle undefined_sentinel( masm->isolate()->heap()->undefined_value(), masm->isolate()); __ mov(ebx, Immediate(undefined_sentinel)); ArrayConstructorStub stub(masm->isolate()); __ TailCallStub(&stub); } void Builtins::Generate_StringConstructCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : number of arguments // -- edi : constructor function // -- esp[0] : return address // -- esp[(argc - n) * 4] : arg[n] (zero-based) // -- esp[(argc + 1) * 4] : receiver // ----------------------------------- Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->string_ctor_calls(), 1); if (FLAG_debug_code) { __ LoadGlobalFunction(Context::STRING_FUNCTION_INDEX, ecx); __ cmp(edi, ecx); __ Assert(equal, kUnexpectedStringFunction); } // Load the first argument into eax and get rid of the rest // (including the receiver). Label no_arguments; __ test(eax, eax); __ j(zero, &no_arguments); __ mov(ebx, Operand(esp, eax, times_pointer_size, 0)); __ pop(ecx); __ lea(esp, Operand(esp, eax, times_pointer_size, kPointerSize)); __ push(ecx); __ mov(eax, ebx); // Lookup the argument in the number to string cache. Label not_cached, argument_is_string; __ LookupNumberStringCache(eax, // Input. ebx, // Result. ecx, // Scratch 1. edx, // Scratch 2. ¬_cached); __ IncrementCounter(counters->string_ctor_cached_number(), 1); __ bind(&argument_is_string); // ----------- S t a t e ------------- // -- ebx : argument converted to string // -- edi : constructor function // -- esp[0] : return address // ----------------------------------- // Allocate a JSValue and put the tagged pointer into eax. Label gc_required; __ Allocate(JSValue::kSize, eax, // Result. ecx, // New allocation top (we ignore it). no_reg, &gc_required, TAG_OBJECT); // Set the map. __ LoadGlobalFunctionInitialMap(edi, ecx); if (FLAG_debug_code) { __ cmpb(FieldOperand(ecx, Map::kInstanceSizeOffset), JSValue::kSize >> kPointerSizeLog2); __ Assert(equal, kUnexpectedStringWrapperInstanceSize); __ cmpb(FieldOperand(ecx, Map::kUnusedPropertyFieldsOffset), 0); __ Assert(equal, kUnexpectedUnusedPropertiesOfStringWrapper); } __ mov(FieldOperand(eax, HeapObject::kMapOffset), ecx); // Set properties and elements. Factory* factory = masm->isolate()->factory(); __ Set(ecx, Immediate(factory->empty_fixed_array())); __ mov(FieldOperand(eax, JSObject::kPropertiesOffset), ecx); __ mov(FieldOperand(eax, JSObject::kElementsOffset), ecx); // Set the value. __ mov(FieldOperand(eax, JSValue::kValueOffset), ebx); // Ensure the object is fully initialized. STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize); // We're done. Return. __ ret(0); // The argument was not found in the number to string cache. Check // if it's a string already before calling the conversion builtin. Label convert_argument; __ bind(¬_cached); STATIC_ASSERT(kSmiTag == 0); __ JumpIfSmi(eax, &convert_argument); Condition is_string = masm->IsObjectStringType(eax, ebx, ecx); __ j(NegateCondition(is_string), &convert_argument); __ mov(ebx, eax); __ IncrementCounter(counters->string_ctor_string_value(), 1); __ jmp(&argument_is_string); // Invoke the conversion builtin and put the result into ebx. __ bind(&convert_argument); __ IncrementCounter(counters->string_ctor_conversions(), 1); { FrameScope scope(masm, StackFrame::INTERNAL); __ push(edi); // Preserve the function. __ push(eax); __ InvokeBuiltin(Builtins::TO_STRING, CALL_FUNCTION); __ pop(edi); } __ mov(ebx, eax); __ jmp(&argument_is_string); // Load the empty string into ebx, remove the receiver from the // stack, and jump back to the case where the argument is a string. __ bind(&no_arguments); __ Set(ebx, Immediate(factory->empty_string())); __ pop(ecx); __ lea(esp, Operand(esp, kPointerSize)); __ push(ecx); __ jmp(&argument_is_string); // At this point the argument is already a string. Call runtime to // create a string wrapper. __ bind(&gc_required); __ IncrementCounter(counters->string_ctor_gc_required(), 1); { FrameScope scope(masm, StackFrame::INTERNAL); __ push(ebx); __ CallRuntime(Runtime::kNewStringWrapper, 1); } __ ret(0); } static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { __ push(ebp); __ mov(ebp, esp); // Store the arguments adaptor context sentinel. __ push(Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); // Push the function on the stack. __ push(edi); // Preserve the number of arguments on the stack. Must preserve eax, // ebx and ecx because these registers are used when copying the // arguments and the receiver. STATIC_ASSERT(kSmiTagSize == 1); __ lea(edi, Operand(eax, eax, times_1, kSmiTag)); __ push(edi); } static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { // Retrieve the number of arguments from the stack. __ mov(ebx, Operand(ebp, ArgumentsAdaptorFrameConstants::kLengthOffset)); // Leave the frame. __ leave(); // Remove caller arguments from the stack. STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); __ pop(ecx); __ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize)); // 1 ~ receiver __ push(ecx); } void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : actual number of arguments // -- ebx : expected number of arguments // -- edi : function (passed through to callee) // ----------------------------------- Label invoke, dont_adapt_arguments; __ IncrementCounter(masm->isolate()->counters()->arguments_adaptors(), 1); Label enough, too_few; __ mov(edx, FieldOperand(edi, JSFunction::kCodeEntryOffset)); __ cmp(eax, ebx); __ j(less, &too_few); __ cmp(ebx, SharedFunctionInfo::kDontAdaptArgumentsSentinel); __ j(equal, &dont_adapt_arguments); { // Enough parameters: Actual >= expected. __ bind(&enough); EnterArgumentsAdaptorFrame(masm); // Copy receiver and all expected arguments. const int offset = StandardFrameConstants::kCallerSPOffset; __ lea(eax, Operand(ebp, eax, times_4, offset)); __ mov(edi, -1); // account for receiver Label copy; __ bind(©); __ inc(edi); __ push(Operand(eax, 0)); __ sub(eax, Immediate(kPointerSize)); __ cmp(edi, ebx); __ j(less, ©); __ jmp(&invoke); } { // Too few parameters: Actual < expected. __ bind(&too_few); EnterArgumentsAdaptorFrame(masm); // Copy receiver and all actual arguments. const int offset = StandardFrameConstants::kCallerSPOffset; __ lea(edi, Operand(ebp, eax, times_4, offset)); // ebx = expected - actual. __ sub(ebx, eax); // eax = -actual - 1 __ neg(eax); __ sub(eax, Immediate(1)); Label copy; __ bind(©); __ inc(eax); __ push(Operand(edi, 0)); __ sub(edi, Immediate(kPointerSize)); __ test(eax, eax); __ j(not_zero, ©); // Fill remaining expected arguments with undefined values. Label fill; __ bind(&fill); __ inc(eax); __ push(Immediate(masm->isolate()->factory()->undefined_value())); __ cmp(eax, ebx); __ j(less, &fill); } // Call the entry point. __ bind(&invoke); // Restore function pointer. __ mov(edi, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); __ call(edx); // Store offset of return address for deoptimizer. masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset()); // Leave frame and return. LeaveArgumentsAdaptorFrame(masm); __ ret(0); // ------------------------------------------- // Dont adapt arguments. // ------------------------------------------- __ bind(&dont_adapt_arguments); __ jmp(edx); } void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) { // Lookup the function in the JavaScript frame. __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); { FrameScope scope(masm, StackFrame::INTERNAL); // Pass function as argument. __ push(eax); __ CallRuntime(Runtime::kCompileForOnStackReplacement, 1); } Label skip; // If the code object is null, just return to the unoptimized code. __ cmp(eax, Immediate(0)); __ j(not_equal, &skip, Label::kNear); __ ret(0); __ bind(&skip); // Load deoptimization data from the code object. __ mov(ebx, Operand(eax, Code::kDeoptimizationDataOffset - kHeapObjectTag)); // Load the OSR entrypoint offset from the deoptimization data. __ mov(ebx, Operand(ebx, FixedArray::OffsetOfElementAt( DeoptimizationInputData::kOsrPcOffsetIndex) - kHeapObjectTag)); __ SmiUntag(ebx); // Compute the target address = code_obj + header_size + osr_offset __ lea(eax, Operand(eax, ebx, times_1, Code::kHeaderSize - kHeapObjectTag)); // Overwrite the return address on the stack. __ mov(Operand(esp, 0), eax); // And "return" to the OSR entry point of the function. __ ret(0); } void Builtins::Generate_OsrAfterStackCheck(MacroAssembler* masm) { // We check the stack limit as indicator that recompilation might be done. Label ok; ExternalReference stack_limit = ExternalReference::address_of_stack_limit(masm->isolate()); __ cmp(esp, Operand::StaticVariable(stack_limit)); __ j(above_equal, &ok, Label::kNear); { FrameScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kStackGuard, 0); } __ jmp(masm->isolate()->builtins()->OnStackReplacement(), RelocInfo::CODE_TARGET); __ bind(&ok); __ ret(0); } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_IA32