// Copyright 2021 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_CCTEST_TEST_HELPER_RISCV_H_ #define V8_CCTEST_TEST_HELPER_RISCV_H_ #include "src/codegen/assembler-inl.h" #include "src/codegen/macro-assembler.h" #include "src/diagnostics/disassembler.h" #include "src/execution/simulator.h" #include "src/heap/factory.h" #include "src/init/v8.h" #include "src/utils/utils.h" #include "test/cctest/cctest.h" #define PRINT_RES(res, expected_res, in_hex) \ if (in_hex) std::cout << "[hex-form]" << std::hex; \ std::cout << "res = " << (res) << " expected = " << (expected_res) \ << std::endl; namespace v8 { namespace internal { using Func = std::function; int32_t GenAndRunTest(Func test_generator); // f.Call(...) interface is implemented as varargs in V8. For varargs, // floating-point arguments and return values are passed in GPRs, therefore // the special handling to reinterpret floating-point as integer values when // passed in and out of f.Call() template OUTPUT_T GenAndRunTest(INPUT_T input0, Func test_generator) { DCHECK((sizeof(INPUT_T) == 4 || sizeof(INPUT_T) == 8)); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, v8::internal::CodeObjectRequired::kYes); // handle floating-point parameters if (std::is_same::value) { assm.fmv_w_x(fa0, a0); } else if (std::is_same::value) { UNIMPLEMENTED(); } test_generator(assm); // handle floating-point result if (std::is_same::value) { assm.fmv_x_w(a0, fa0); } else if (std::is_same::value) { UNIMPLEMENTED(); } assm.jr(ra); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build(); using OINT_T = typename std::conditional< std::is_integral::value, OUTPUT_T, typename std::conditional::type>::type; using IINT_T = typename std::conditional< std::is_integral::value, INPUT_T, typename std::conditional::type>::type; auto f = GeneratedCode::FromCode(*code); auto res = f.Call(base::bit_cast(input0)); return base::bit_cast(res); } template OUTPUT_T GenAndRunTest(INPUT_T input0, INPUT_T input1, Func test_generator) { DCHECK((sizeof(INPUT_T) == 4 || sizeof(INPUT_T) == 8)); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, v8::internal::CodeObjectRequired::kYes); // handle floating-point parameters if (std::is_same::value) { assm.fmv_w_x(fa0, a0); assm.fmv_w_x(fa1, a1); } else if (std::is_same::value) { UNIMPLEMENTED(); } test_generator(assm); // handle floating-point result if (std::is_same::value) { assm.fmv_x_w(a0, fa0); } else if (std::is_same::value) { UNIMPLEMENTED(); } assm.jr(ra); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build(); using OINT_T = typename std::conditional< std::is_integral::value, OUTPUT_T, typename std::conditional::type>::type; using IINT_T = typename std::conditional< std::is_integral::value, INPUT_T, typename std::conditional::type>::type; auto f = GeneratedCode::FromCode(*code); auto res = f.Call(base::bit_cast(input0), base::bit_cast(input1)); return base::bit_cast(res); } template OUTPUT_T GenAndRunTest(INPUT_T input0, INPUT_T input1, INPUT_T input2, Func test_generator) { DCHECK((sizeof(INPUT_T) == 4 || sizeof(INPUT_T) == 8)); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, v8::internal::CodeObjectRequired::kYes); // handle floating-point parameters if (std::is_same::value) { assm.fmv_w_x(fa0, a0); assm.fmv_w_x(fa1, a1); assm.fmv_w_x(fa2, a2); } else if (std::is_same::value) { UNIMPLEMENTED(); } test_generator(assm); // handle floating-point result if (std::is_same::value) { assm.fmv_x_w(a0, fa0); } else if (std::is_same::value) { UNIMPLEMENTED(); } assm.jr(ra); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build(); using OINT_T = typename std::conditional< std::is_integral::value, OUTPUT_T, typename std::conditional::type>::type; using IINT_T = typename std::conditional< std::is_integral::value, INPUT_T, typename std::conditional::type>::type; auto f = GeneratedCode::FromCode(*code); auto res = f.Call(base::bit_cast(input0), base::bit_cast(input1), base::bit_cast(input2)); return base::bit_cast(res); } template void GenAndRunTestForLoadStore(T value, Func test_generator) { DCHECK(sizeof(T) == 4 || sizeof(T) == 8); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, v8::internal::CodeObjectRequired::kYes); if (std::is_same::value) { assm.fmv_w_x(fa0, a1); } else if (std::is_same::value) { UNIMPLEMENTED(); } test_generator(assm); if (std::is_same::value) { assm.fmv_x_w(a0, fa0); } else if (std::is_same::value) { UNIMPLEMENTED(); } assm.jr(ra); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build(); using INT_T = typename std::conditional< std::is_integral::value, T, typename std::conditional::type>::type; auto f = GeneratedCode::FromCode(*code); int64_t tmp = 0; auto res = f.Call(&tmp, base::bit_cast(value)); CHECK_EQ(base::bit_cast(res), value); } template void GenAndRunTestForLRSC(T value, Func test_generator) { DCHECK(sizeof(T) == 4 || sizeof(T) == 8); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, v8::internal::CodeObjectRequired::kYes); if (std::is_same::value) { assm.fmv_w_x(fa0, a1); } else if (std::is_same::value) { UNIMPLEMENTED(); } if (std::is_same::value) { assm.sw(a1, a0, 0); } else if (std::is_same::value) { UNREACHABLE(); } test_generator(assm); if (std::is_same::value) { assm.fmv_x_w(a0, fa0); } else if (std::is_same::value) { UNIMPLEMENTED(); } assm.jr(ra); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build(); #if defined(DEBUG) code->Print(); #endif using INT_T = typename std::conditional::type; T tmp = 0; auto f = GeneratedCode::FromCode(*code); auto res = f.Call(&tmp, base::bit_cast(value)); CHECK_EQ(base::bit_cast(res), static_cast(0)); } template OUTPUT_T GenAndRunTestForAMO(INPUT_T input0, INPUT_T input1, Func test_generator) { DCHECK(sizeof(INPUT_T) == 4 || sizeof(INPUT_T) == 8); DCHECK(sizeof(OUTPUT_T) == 4 || sizeof(OUTPUT_T) == 8); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, v8::internal::CodeObjectRequired::kYes); // handle floating-point parameters if (std::is_same::value) { assm.fmv_w_x(fa0, a1); assm.fmv_w_x(fa1, a2); } else if (std::is_same::value) { UNIMPLEMENTED(); } // store base integer if (std::is_same::value || std::is_same::value) { assm.sw(a1, a0, 0); } else if (std::is_same::value || std::is_same::value) { UNREACHABLE(); } test_generator(assm); // handle floating-point result if (std::is_same::value) { assm.fmv_x_w(a0, fa0); } else if (std::is_same::value) { UNIMPLEMENTED(); } // load written integer if (std::is_same::value || std::is_same::value) { assm.lw(a0, a0, 0); } else if (std::is_same::value || std::is_same::value) { UNREACHABLE(); } assm.jr(ra); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build(); #if defined(DEBUG) code->Print(); #endif OUTPUT_T tmp = 0; auto f = GeneratedCode::FromCode(*code); auto res = f.Call(&tmp, base::bit_cast(input0), base::bit_cast(input1)); return base::bit_cast(res); } Handle AssembleCodeImpl(Func assemble); template GeneratedCode AssembleCode(Func assemble) { return GeneratedCode::FromCode(*AssembleCodeImpl(assemble)); } template T UseCanonicalNan(T x) { return isnan(x) ? std::numeric_limits::quiet_NaN() : x; } } // namespace internal } // namespace v8 #endif // V8_CCTEST_TEST_HELPER_RISCV_H_