// Copyright 2014 the V8 project authors. All rights reserved. Use of this // source code is governed by a BSD-style license that can be found in the // LICENSE file. // TODO(jochen): Remove this after the setting is turned on globally. #define V8_IMMINENT_DEPRECATION_WARNINGS #include #include #include #include "src/base/bits.h" #include "src/base/utils/random-number-generator.h" #include "src/codegen.h" #include "test/cctest/cctest.h" #include "test/cctest/compiler/codegen-tester.h" #include "test/cctest/compiler/graph-builder-tester.h" #include "test/cctest/compiler/value-helper.h" using namespace v8::base; namespace v8 { namespace internal { namespace compiler { typedef RawMachineAssembler::Label MLabel; TEST(RunInt32Add) { RawMachineAssemblerTester m; Node* add = m.Int32Add(m.Int32Constant(0), m.Int32Constant(1)); m.Return(add); CHECK_EQ(1, m.Call()); } TEST(RunWord32Ctz) { BufferedRawMachineAssemblerTester m(kMachUint32); if (!m.machine()->Word32Ctz().IsSupported()) { // We can only test the operator if it exists on the testing platform. return; } m.Return(m.AddNode(m.machine()->Word32Ctz().op(), m.Parameter(0))); CHECK_EQ(32, m.Call(uint32_t(0x00000000))); CHECK_EQ(31, m.Call(uint32_t(0x80000000))); CHECK_EQ(30, m.Call(uint32_t(0x40000000))); CHECK_EQ(29, m.Call(uint32_t(0x20000000))); CHECK_EQ(28, m.Call(uint32_t(0x10000000))); CHECK_EQ(27, m.Call(uint32_t(0xa8000000))); CHECK_EQ(26, m.Call(uint32_t(0xf4000000))); CHECK_EQ(25, m.Call(uint32_t(0x62000000))); CHECK_EQ(24, m.Call(uint32_t(0x91000000))); CHECK_EQ(23, m.Call(uint32_t(0xcd800000))); CHECK_EQ(22, m.Call(uint32_t(0x09400000))); CHECK_EQ(21, m.Call(uint32_t(0xaf200000))); CHECK_EQ(20, m.Call(uint32_t(0xac100000))); CHECK_EQ(19, m.Call(uint32_t(0xe0b80000))); CHECK_EQ(18, m.Call(uint32_t(0x9ce40000))); CHECK_EQ(17, m.Call(uint32_t(0xc7920000))); CHECK_EQ(16, m.Call(uint32_t(0xb8f10000))); CHECK_EQ(15, m.Call(uint32_t(0x3b9f8000))); CHECK_EQ(14, m.Call(uint32_t(0xdb4c4000))); CHECK_EQ(13, m.Call(uint32_t(0xe9a32000))); CHECK_EQ(12, m.Call(uint32_t(0xfca61000))); CHECK_EQ(11, m.Call(uint32_t(0x6c8a7800))); CHECK_EQ(10, m.Call(uint32_t(0x8ce5a400))); CHECK_EQ(9, m.Call(uint32_t(0xcb7d0200))); CHECK_EQ(8, m.Call(uint32_t(0xcb4dc100))); CHECK_EQ(7, m.Call(uint32_t(0xdfbec580))); CHECK_EQ(6, m.Call(uint32_t(0x27a9db40))); CHECK_EQ(5, m.Call(uint32_t(0xde3bcb20))); CHECK_EQ(4, m.Call(uint32_t(0xd7e8a610))); CHECK_EQ(3, m.Call(uint32_t(0x9afdbc88))); CHECK_EQ(2, m.Call(uint32_t(0x9afdbc84))); CHECK_EQ(1, m.Call(uint32_t(0x9afdbc82))); CHECK_EQ(0, m.Call(uint32_t(0x9afdbc81))); } TEST(RunWord32Clz) { BufferedRawMachineAssemblerTester m(kMachUint32); m.Return(m.Word32Clz(m.Parameter(0))); CHECK_EQ(0, m.Call(uint32_t(0x80001000))); CHECK_EQ(1, m.Call(uint32_t(0x40000500))); CHECK_EQ(2, m.Call(uint32_t(0x20000300))); CHECK_EQ(3, m.Call(uint32_t(0x10000003))); CHECK_EQ(4, m.Call(uint32_t(0x08050000))); CHECK_EQ(5, m.Call(uint32_t(0x04006000))); CHECK_EQ(6, m.Call(uint32_t(0x02000000))); CHECK_EQ(7, m.Call(uint32_t(0x010000a0))); CHECK_EQ(8, m.Call(uint32_t(0x00800c00))); CHECK_EQ(9, m.Call(uint32_t(0x00400000))); CHECK_EQ(10, m.Call(uint32_t(0x0020000d))); CHECK_EQ(11, m.Call(uint32_t(0x00100f00))); CHECK_EQ(12, m.Call(uint32_t(0x00080000))); CHECK_EQ(13, m.Call(uint32_t(0x00041000))); CHECK_EQ(14, m.Call(uint32_t(0x00020020))); CHECK_EQ(15, m.Call(uint32_t(0x00010300))); CHECK_EQ(16, m.Call(uint32_t(0x00008040))); CHECK_EQ(17, m.Call(uint32_t(0x00004005))); CHECK_EQ(18, m.Call(uint32_t(0x00002050))); CHECK_EQ(19, m.Call(uint32_t(0x00001700))); CHECK_EQ(20, m.Call(uint32_t(0x00000870))); CHECK_EQ(21, m.Call(uint32_t(0x00000405))); CHECK_EQ(22, m.Call(uint32_t(0x00000203))); CHECK_EQ(23, m.Call(uint32_t(0x00000101))); CHECK_EQ(24, m.Call(uint32_t(0x00000089))); CHECK_EQ(25, m.Call(uint32_t(0x00000041))); CHECK_EQ(26, m.Call(uint32_t(0x00000022))); CHECK_EQ(27, m.Call(uint32_t(0x00000013))); CHECK_EQ(28, m.Call(uint32_t(0x00000008))); CHECK_EQ(29, m.Call(uint32_t(0x00000004))); CHECK_EQ(30, m.Call(uint32_t(0x00000002))); CHECK_EQ(31, m.Call(uint32_t(0x00000001))); CHECK_EQ(32, m.Call(uint32_t(0x00000000))); } TEST(RunWord32Popcnt) { BufferedRawMachineAssemblerTester m(kMachUint32); if (!m.machine()->Word32Popcnt().IsSupported()) { // We can only test the operator if it exists on the testing platform. return; } m.Return(m.AddNode(m.machine()->Word32Popcnt().op(), m.Parameter(0))); CHECK_EQ(0, m.Call(uint32_t(0x00000000))); CHECK_EQ(1, m.Call(uint32_t(0x00000001))); CHECK_EQ(1, m.Call(uint32_t(0x80000000))); CHECK_EQ(32, m.Call(uint32_t(0xffffffff))); CHECK_EQ(6, m.Call(uint32_t(0x000dc100))); CHECK_EQ(9, m.Call(uint32_t(0xe00dc100))); CHECK_EQ(11, m.Call(uint32_t(0xe00dc103))); CHECK_EQ(9, m.Call(uint32_t(0x000dc107))); } #if V8_TARGET_ARCH_64_BIT TEST(RunWord64Clz) { BufferedRawMachineAssemblerTester m(kMachUint64); m.Return(m.Word64Clz(m.Parameter(0))); CHECK_EQ(0, m.Call(uint64_t(0x8000100000000000))); CHECK_EQ(1, m.Call(uint64_t(0x4000050000000000))); CHECK_EQ(2, m.Call(uint64_t(0x2000030000000000))); CHECK_EQ(3, m.Call(uint64_t(0x1000000300000000))); CHECK_EQ(4, m.Call(uint64_t(0x0805000000000000))); CHECK_EQ(5, m.Call(uint64_t(0x0400600000000000))); CHECK_EQ(6, m.Call(uint64_t(0x0200000000000000))); CHECK_EQ(7, m.Call(uint64_t(0x010000a000000000))); CHECK_EQ(8, m.Call(uint64_t(0x00800c0000000000))); CHECK_EQ(9, m.Call(uint64_t(0x0040000000000000))); CHECK_EQ(10, m.Call(uint64_t(0x0020000d00000000))); CHECK_EQ(11, m.Call(uint64_t(0x00100f0000000000))); CHECK_EQ(12, m.Call(uint64_t(0x0008000000000000))); CHECK_EQ(13, m.Call(uint64_t(0x0004100000000000))); CHECK_EQ(14, m.Call(uint64_t(0x0002002000000000))); CHECK_EQ(15, m.Call(uint64_t(0x0001030000000000))); CHECK_EQ(16, m.Call(uint64_t(0x0000804000000000))); CHECK_EQ(17, m.Call(uint64_t(0x0000400500000000))); CHECK_EQ(18, m.Call(uint64_t(0x0000205000000000))); CHECK_EQ(19, m.Call(uint64_t(0x0000170000000000))); CHECK_EQ(20, m.Call(uint64_t(0x0000087000000000))); CHECK_EQ(21, m.Call(uint64_t(0x0000040500000000))); CHECK_EQ(22, m.Call(uint64_t(0x0000020300000000))); CHECK_EQ(23, m.Call(uint64_t(0x0000010100000000))); CHECK_EQ(24, m.Call(uint64_t(0x0000008900000000))); CHECK_EQ(25, m.Call(uint64_t(0x0000004100000000))); CHECK_EQ(26, m.Call(uint64_t(0x0000002200000000))); CHECK_EQ(27, m.Call(uint64_t(0x0000001300000000))); CHECK_EQ(28, m.Call(uint64_t(0x0000000800000000))); CHECK_EQ(29, m.Call(uint64_t(0x0000000400000000))); CHECK_EQ(30, m.Call(uint64_t(0x0000000200000000))); CHECK_EQ(31, m.Call(uint64_t(0x0000000100000000))); CHECK_EQ(32, m.Call(uint64_t(0x0000000080001000))); CHECK_EQ(33, m.Call(uint64_t(0x0000000040000500))); CHECK_EQ(34, m.Call(uint64_t(0x0000000020000300))); CHECK_EQ(35, m.Call(uint64_t(0x0000000010000003))); CHECK_EQ(36, m.Call(uint64_t(0x0000000008050000))); CHECK_EQ(37, m.Call(uint64_t(0x0000000004006000))); CHECK_EQ(38, m.Call(uint64_t(0x0000000002000000))); CHECK_EQ(39, m.Call(uint64_t(0x00000000010000a0))); CHECK_EQ(40, m.Call(uint64_t(0x0000000000800c00))); CHECK_EQ(41, m.Call(uint64_t(0x0000000000400000))); CHECK_EQ(42, m.Call(uint64_t(0x000000000020000d))); CHECK_EQ(43, m.Call(uint64_t(0x0000000000100f00))); CHECK_EQ(44, m.Call(uint64_t(0x0000000000080000))); CHECK_EQ(45, m.Call(uint64_t(0x0000000000041000))); CHECK_EQ(46, m.Call(uint64_t(0x0000000000020020))); CHECK_EQ(47, m.Call(uint64_t(0x0000000000010300))); CHECK_EQ(48, m.Call(uint64_t(0x0000000000008040))); CHECK_EQ(49, m.Call(uint64_t(0x0000000000004005))); CHECK_EQ(50, m.Call(uint64_t(0x0000000000002050))); CHECK_EQ(51, m.Call(uint64_t(0x0000000000001700))); CHECK_EQ(52, m.Call(uint64_t(0x0000000000000870))); CHECK_EQ(53, m.Call(uint64_t(0x0000000000000405))); CHECK_EQ(54, m.Call(uint64_t(0x0000000000000203))); CHECK_EQ(55, m.Call(uint64_t(0x0000000000000101))); CHECK_EQ(56, m.Call(uint64_t(0x0000000000000089))); CHECK_EQ(57, m.Call(uint64_t(0x0000000000000041))); CHECK_EQ(58, m.Call(uint64_t(0x0000000000000022))); CHECK_EQ(59, m.Call(uint64_t(0x0000000000000013))); CHECK_EQ(60, m.Call(uint64_t(0x0000000000000008))); CHECK_EQ(61, m.Call(uint64_t(0x0000000000000004))); CHECK_EQ(62, m.Call(uint64_t(0x0000000000000002))); CHECK_EQ(63, m.Call(uint64_t(0x0000000000000001))); CHECK_EQ(64, m.Call(uint64_t(0x0000000000000000))); } #endif // V8_TARGET_ARCH_64_BIT static Node* Int32Input(RawMachineAssemblerTester* m, int index) { switch (index) { case 0: return m->Parameter(0); case 1: return m->Parameter(1); case 2: return m->Int32Constant(0); case 3: return m->Int32Constant(1); case 4: return m->Int32Constant(-1); case 5: return m->Int32Constant(0xff); case 6: return m->Int32Constant(0x01234567); case 7: return m->Load(kMachInt32, m->PointerConstant(NULL)); default: return NULL; } } TEST(CodeGenInt32Binop) { RawMachineAssemblerTester m; const Operator* kOps[] = { m.machine()->Word32And(), m.machine()->Word32Or(), m.machine()->Word32Xor(), m.machine()->Word32Shl(), m.machine()->Word32Shr(), m.machine()->Word32Sar(), m.machine()->Word32Equal(), m.machine()->Int32Add(), m.machine()->Int32Sub(), m.machine()->Int32Mul(), m.machine()->Int32MulHigh(), m.machine()->Int32Div(), m.machine()->Uint32Div(), m.machine()->Int32Mod(), m.machine()->Uint32Mod(), m.machine()->Uint32MulHigh(), m.machine()->Int32LessThan(), m.machine()->Int32LessThanOrEqual(), m.machine()->Uint32LessThan(), m.machine()->Uint32LessThanOrEqual()}; for (size_t i = 0; i < arraysize(kOps); ++i) { for (int j = 0; j < 8; j++) { for (int k = 0; k < 8; k++) { RawMachineAssemblerTester m(kMachInt32, kMachInt32); Node* a = Int32Input(&m, j); Node* b = Int32Input(&m, k); m.Return(m.AddNode(kOps[i], a, b)); m.GenerateCode(); } } } } TEST(CodeGenNop) { RawMachineAssemblerTester m; m.Return(m.Int32Constant(0)); m.GenerateCode(); } #if V8_TARGET_ARCH_64_BIT static Node* Int64Input(RawMachineAssemblerTester* m, int index) { switch (index) { case 0: return m->Parameter(0); case 1: return m->Parameter(1); case 2: return m->Int64Constant(0); case 3: return m->Int64Constant(1); case 4: return m->Int64Constant(-1); case 5: return m->Int64Constant(0xff); case 6: return m->Int64Constant(0x0123456789abcdefLL); case 7: return m->Load(kMachInt64, m->PointerConstant(NULL)); default: return NULL; } } TEST(CodeGenInt64Binop) { RawMachineAssemblerTester m; const Operator* kOps[] = { m.machine()->Word64And(), m.machine()->Word64Or(), m.machine()->Word64Xor(), m.machine()->Word64Shl(), m.machine()->Word64Shr(), m.machine()->Word64Sar(), m.machine()->Word64Equal(), m.machine()->Int64Add(), m.machine()->Int64Sub(), m.machine()->Int64Mul(), m.machine()->Int64Div(), m.machine()->Uint64Div(), m.machine()->Int64Mod(), m.machine()->Uint64Mod(), m.machine()->Int64LessThan(), m.machine()->Int64LessThanOrEqual(), m.machine()->Uint64LessThan(), m.machine()->Uint64LessThanOrEqual()}; for (size_t i = 0; i < arraysize(kOps); ++i) { for (int j = 0; j < 8; j++) { for (int k = 0; k < 8; k++) { RawMachineAssemblerTester m(kMachInt64, kMachInt64); Node* a = Int64Input(&m, j); Node* b = Int64Input(&m, k); m.Return(m.AddNode(kOps[i], a, b)); m.GenerateCode(); } } } } // TODO(titzer): add tests that run 64-bit integer operations. #endif // V8_TARGET_ARCH_64_BIT TEST(RunGoto) { RawMachineAssemblerTester m; int constant = 99999; MLabel next; m.Goto(&next); m.Bind(&next); m.Return(m.Int32Constant(constant)); CHECK_EQ(constant, m.Call()); } TEST(RunGotoMultiple) { RawMachineAssemblerTester m; int constant = 9999977; MLabel labels[10]; for (size_t i = 0; i < arraysize(labels); i++) { m.Goto(&labels[i]); m.Bind(&labels[i]); } m.Return(m.Int32Constant(constant)); CHECK_EQ(constant, m.Call()); } TEST(RunBranch) { RawMachineAssemblerTester m; int constant = 999777; MLabel blocka, blockb; m.Branch(m.Int32Constant(0), &blocka, &blockb); m.Bind(&blocka); m.Return(m.Int32Constant(0 - constant)); m.Bind(&blockb); m.Return(m.Int32Constant(constant)); CHECK_EQ(constant, m.Call()); } TEST(RunDiamond2) { RawMachineAssemblerTester m; int constant = 995666; MLabel blocka, blockb, end; m.Branch(m.Int32Constant(0), &blocka, &blockb); m.Bind(&blocka); m.Goto(&end); m.Bind(&blockb); m.Goto(&end); m.Bind(&end); m.Return(m.Int32Constant(constant)); CHECK_EQ(constant, m.Call()); } TEST(RunLoop) { RawMachineAssemblerTester m; int constant = 999555; MLabel header, body, exit; m.Goto(&header); m.Bind(&header); m.Branch(m.Int32Constant(0), &body, &exit); m.Bind(&body); m.Goto(&header); m.Bind(&exit); m.Return(m.Int32Constant(constant)); CHECK_EQ(constant, m.Call()); } template static void BuildDiamondPhi(RawMachineAssemblerTester* m, Node* cond_node, MachineType type, Node* true_node, Node* false_node) { MLabel blocka, blockb, end; m->Branch(cond_node, &blocka, &blockb); m->Bind(&blocka); m->Goto(&end); m->Bind(&blockb); m->Goto(&end); m->Bind(&end); Node* phi = m->Phi(type, true_node, false_node); m->Return(phi); } TEST(RunDiamondPhiConst) { RawMachineAssemblerTester m(kMachInt32); int false_val = 0xFF666; int true_val = 0x00DDD; Node* true_node = m.Int32Constant(true_val); Node* false_node = m.Int32Constant(false_val); BuildDiamondPhi(&m, m.Parameter(0), kMachInt32, true_node, false_node); CHECK_EQ(false_val, m.Call(0)); CHECK_EQ(true_val, m.Call(1)); } TEST(RunDiamondPhiNumber) { RawMachineAssemblerTester m(kMachInt32); double false_val = -11.1; double true_val = 200.1; Node* true_node = m.NumberConstant(true_val); Node* false_node = m.NumberConstant(false_val); BuildDiamondPhi(&m, m.Parameter(0), kMachAnyTagged, true_node, false_node); m.CheckNumber(false_val, m.Call(0)); m.CheckNumber(true_val, m.Call(1)); } TEST(RunDiamondPhiString) { RawMachineAssemblerTester m(kMachInt32); const char* false_val = "false"; const char* true_val = "true"; Node* true_node = m.StringConstant(true_val); Node* false_node = m.StringConstant(false_val); BuildDiamondPhi(&m, m.Parameter(0), kMachAnyTagged, true_node, false_node); m.CheckString(false_val, m.Call(0)); m.CheckString(true_val, m.Call(1)); } TEST(RunDiamondPhiParam) { RawMachineAssemblerTester m(kMachInt32, kMachInt32, kMachInt32); BuildDiamondPhi(&m, m.Parameter(0), kMachInt32, m.Parameter(1), m.Parameter(2)); int32_t c1 = 0x260cb75a; int32_t c2 = 0xcd3e9c8b; int result = m.Call(0, c1, c2); CHECK_EQ(c2, result); result = m.Call(1, c1, c2); CHECK_EQ(c1, result); } TEST(RunLoopPhiConst) { RawMachineAssemblerTester m; int true_val = 0x44000; int false_val = 0x00888; Node* cond_node = m.Int32Constant(0); Node* true_node = m.Int32Constant(true_val); Node* false_node = m.Int32Constant(false_val); // x = false_val; while(false) { x = true_val; } return x; MLabel body, header, end; m.Goto(&header); m.Bind(&header); Node* phi = m.Phi(kMachInt32, false_node, true_node); m.Branch(cond_node, &body, &end); m.Bind(&body); m.Goto(&header); m.Bind(&end); m.Return(phi); CHECK_EQ(false_val, m.Call()); } TEST(RunLoopPhiParam) { RawMachineAssemblerTester m(kMachInt32, kMachInt32, kMachInt32); MLabel blocka, blockb, end; m.Goto(&blocka); m.Bind(&blocka); Node* phi = m.Phi(kMachInt32, m.Parameter(1), m.Parameter(2)); Node* cond = m.Phi(kMachInt32, m.Parameter(0), m.Int32Constant(0)); m.Branch(cond, &blockb, &end); m.Bind(&blockb); m.Goto(&blocka); m.Bind(&end); m.Return(phi); int32_t c1 = 0xa81903b4; int32_t c2 = 0x5a1207da; int result = m.Call(0, c1, c2); CHECK_EQ(c1, result); result = m.Call(1, c1, c2); CHECK_EQ(c2, result); } TEST(RunLoopPhiInduction) { RawMachineAssemblerTester m; int false_val = 0x10777; // x = false_val; while(false) { x++; } return x; MLabel header, body, end; Node* false_node = m.Int32Constant(false_val); m.Goto(&header); m.Bind(&header); Node* phi = m.Phi(kMachInt32, false_node, false_node); m.Branch(m.Int32Constant(0), &body, &end); m.Bind(&body); Node* add = m.Int32Add(phi, m.Int32Constant(1)); phi->ReplaceInput(1, add); m.Goto(&header); m.Bind(&end); m.Return(phi); CHECK_EQ(false_val, m.Call()); } TEST(RunLoopIncrement) { RawMachineAssemblerTester m; Int32BinopTester bt(&m); // x = 0; while(x ^ param) { x++; } return x; MLabel header, body, end; Node* zero = m.Int32Constant(0); m.Goto(&header); m.Bind(&header); Node* phi = m.Phi(kMachInt32, zero, zero); m.Branch(m.WordXor(phi, bt.param0), &body, &end); m.Bind(&body); phi->ReplaceInput(1, m.Int32Add(phi, m.Int32Constant(1))); m.Goto(&header); m.Bind(&end); bt.AddReturn(phi); CHECK_EQ(11, bt.call(11, 0)); CHECK_EQ(110, bt.call(110, 0)); CHECK_EQ(176, bt.call(176, 0)); } TEST(RunLoopIncrement2) { RawMachineAssemblerTester m; Int32BinopTester bt(&m); // x = 0; while(x < param) { x++; } return x; MLabel header, body, end; Node* zero = m.Int32Constant(0); m.Goto(&header); m.Bind(&header); Node* phi = m.Phi(kMachInt32, zero, zero); m.Branch(m.Int32LessThan(phi, bt.param0), &body, &end); m.Bind(&body); phi->ReplaceInput(1, m.Int32Add(phi, m.Int32Constant(1))); m.Goto(&header); m.Bind(&end); bt.AddReturn(phi); CHECK_EQ(11, bt.call(11, 0)); CHECK_EQ(110, bt.call(110, 0)); CHECK_EQ(176, bt.call(176, 0)); CHECK_EQ(0, bt.call(-200, 0)); } TEST(RunLoopIncrement3) { RawMachineAssemblerTester m; Int32BinopTester bt(&m); // x = 0; while(x < param) { x++; } return x; MLabel header, body, end; Node* zero = m.Int32Constant(0); m.Goto(&header); m.Bind(&header); Node* phi = m.Phi(kMachInt32, zero, zero); m.Branch(m.Uint32LessThan(phi, bt.param0), &body, &end); m.Bind(&body); phi->ReplaceInput(1, m.Int32Add(phi, m.Int32Constant(1))); m.Goto(&header); m.Bind(&end); bt.AddReturn(phi); CHECK_EQ(11, bt.call(11, 0)); CHECK_EQ(110, bt.call(110, 0)); CHECK_EQ(176, bt.call(176, 0)); CHECK_EQ(200, bt.call(200, 0)); } TEST(RunLoopDecrement) { RawMachineAssemblerTester m; Int32BinopTester bt(&m); // x = param; while(x) { x--; } return x; MLabel header, body, end; m.Goto(&header); m.Bind(&header); Node* phi = m.Phi(kMachInt32, bt.param0, m.Int32Constant(0)); m.Branch(phi, &body, &end); m.Bind(&body); phi->ReplaceInput(1, m.Int32Sub(phi, m.Int32Constant(1))); m.Goto(&header); m.Bind(&end); bt.AddReturn(phi); CHECK_EQ(0, bt.call(11, 0)); CHECK_EQ(0, bt.call(110, 0)); CHECK_EQ(0, bt.call(197, 0)); } TEST(RunLoopIncrementFloat32) { RawMachineAssemblerTester m; // x = -3.0f; while(x < 10f) { x = x + 0.5f; } return (int) (double) x; MLabel header, body, end; Node* minus_3 = m.Float32Constant(-3.0f); Node* ten = m.Float32Constant(10.0f); m.Goto(&header); m.Bind(&header); Node* phi = m.Phi(kMachFloat32, minus_3, ten); m.Branch(m.Float32LessThan(phi, ten), &body, &end); m.Bind(&body); phi->ReplaceInput(1, m.Float32Add(phi, m.Float32Constant(0.5f))); m.Goto(&header); m.Bind(&end); m.Return(m.ChangeFloat64ToInt32(m.ChangeFloat32ToFloat64(phi))); CHECK_EQ(10, m.Call()); } TEST(RunLoopIncrementFloat64) { RawMachineAssemblerTester m; // x = -3.0; while(x < 10) { x = x + 0.5; } return (int) x; MLabel header, body, end; Node* minus_3 = m.Float64Constant(-3.0); Node* ten = m.Float64Constant(10.0); m.Goto(&header); m.Bind(&header); Node* phi = m.Phi(kMachFloat64, minus_3, ten); m.Branch(m.Float64LessThan(phi, ten), &body, &end); m.Bind(&body); phi->ReplaceInput(1, m.Float64Add(phi, m.Float64Constant(0.5))); m.Goto(&header); m.Bind(&end); m.Return(m.ChangeFloat64ToInt32(phi)); CHECK_EQ(10, m.Call()); } TEST(RunSwitch1) { RawMachineAssemblerTester m; int constant = 11223344; MLabel block0, block1, def, end; MLabel* case_labels[] = {&block0, &block1}; int32_t case_values[] = {0, 1}; m.Switch(m.Int32Constant(0), &def, case_values, case_labels, arraysize(case_labels)); m.Bind(&block0); m.Goto(&end); m.Bind(&block1); m.Goto(&end); m.Bind(&def); m.Goto(&end); m.Bind(&end); m.Return(m.Int32Constant(constant)); CHECK_EQ(constant, m.Call()); } TEST(RunSwitch2) { RawMachineAssemblerTester m(kMachInt32); MLabel blocka, blockb, blockc; MLabel* case_labels[] = {&blocka, &blockb}; int32_t case_values[] = {std::numeric_limits::min(), std::numeric_limits::max()}; m.Switch(m.Parameter(0), &blockc, case_values, case_labels, arraysize(case_labels)); m.Bind(&blocka); m.Return(m.Int32Constant(-1)); m.Bind(&blockb); m.Return(m.Int32Constant(1)); m.Bind(&blockc); m.Return(m.Int32Constant(0)); CHECK_EQ(1, m.Call(std::numeric_limits::max())); CHECK_EQ(-1, m.Call(std::numeric_limits::min())); for (int i = -100; i < 100; i += 25) { CHECK_EQ(0, m.Call(i)); } } TEST(RunSwitch3) { RawMachineAssemblerTester m(kMachInt32); MLabel blocka, blockb, blockc; MLabel* case_labels[] = {&blocka, &blockb}; int32_t case_values[] = {std::numeric_limits::min() + 0, std::numeric_limits::min() + 1}; m.Switch(m.Parameter(0), &blockc, case_values, case_labels, arraysize(case_labels)); m.Bind(&blocka); m.Return(m.Int32Constant(0)); m.Bind(&blockb); m.Return(m.Int32Constant(1)); m.Bind(&blockc); m.Return(m.Int32Constant(2)); CHECK_EQ(0, m.Call(std::numeric_limits::min() + 0)); CHECK_EQ(1, m.Call(std::numeric_limits::min() + 1)); for (int i = -100; i < 100; i += 25) { CHECK_EQ(2, m.Call(i)); } } TEST(RunSwitch4) { RawMachineAssemblerTester m(kMachInt32); const size_t kNumCases = 512; const size_t kNumValues = kNumCases + 1; int32_t values[kNumValues]; m.main_isolate()->random_number_generator()->NextBytes(values, sizeof(values)); MLabel end, def; int32_t case_values[kNumCases]; MLabel* case_labels[kNumCases]; Node* results[kNumValues]; for (size_t i = 0; i < kNumCases; ++i) { case_values[i] = static_cast(i); case_labels[i] = new (m.main_zone()->New(sizeof(MLabel))) MLabel; } m.Switch(m.Parameter(0), &def, case_values, case_labels, arraysize(case_labels)); for (size_t i = 0; i < kNumCases; ++i) { m.Bind(case_labels[i]); results[i] = m.Int32Constant(values[i]); m.Goto(&end); } m.Bind(&def); results[kNumCases] = m.Int32Constant(values[kNumCases]); m.Goto(&end); m.Bind(&end); const int num_results = static_cast(arraysize(results)); Node* phi = m.AddNode(m.common()->Phi(kMachInt32, num_results), num_results, results); m.Return(phi); for (size_t i = 0; i < kNumValues; ++i) { CHECK_EQ(values[i], m.Call(static_cast(i))); } } TEST(RunLoadInt32) { RawMachineAssemblerTester m; int32_t p1 = 0; // loads directly from this location. m.Return(m.LoadFromPointer(&p1, kMachInt32)); FOR_INT32_INPUTS(i) { p1 = *i; CHECK_EQ(p1, m.Call()); } } TEST(RunLoadInt32Offset) { int32_t p1 = 0; // loads directly from this location. int32_t offsets[] = {-2000000, -100, -101, 1, 3, 7, 120, 2000, 2000000000, 0xff}; for (size_t i = 0; i < arraysize(offsets); i++) { RawMachineAssemblerTester m; int32_t offset = offsets[i]; byte* pointer = reinterpret_cast(&p1) - offset; // generate load [#base + #index] m.Return(m.LoadFromPointer(pointer, kMachInt32, offset)); FOR_INT32_INPUTS(j) { p1 = *j; CHECK_EQ(p1, m.Call()); } } } TEST(RunLoadStoreFloat32Offset) { float p1 = 0.0f; // loads directly from this location. float p2 = 0.0f; // and stores directly into this location. FOR_INT32_INPUTS(i) { int32_t magic = 0x2342aabb + *i * 3; RawMachineAssemblerTester m; int32_t offset = *i; byte* from = reinterpret_cast(&p1) - offset; byte* to = reinterpret_cast(&p2) - offset; // generate load [#base + #index] Node* load = m.Load(kMachFloat32, m.PointerConstant(from), m.IntPtrConstant(offset)); m.Store(kMachFloat32, m.PointerConstant(to), m.IntPtrConstant(offset), load, kNoWriteBarrier); m.Return(m.Int32Constant(magic)); FOR_FLOAT32_INPUTS(j) { p1 = *j; p2 = *j - 5; CHECK_EQ(magic, m.Call()); CheckDoubleEq(p1, p2); } } } TEST(RunLoadStoreFloat64Offset) { double p1 = 0; // loads directly from this location. double p2 = 0; // and stores directly into this location. FOR_INT32_INPUTS(i) { int32_t magic = 0x2342aabb + *i * 3; RawMachineAssemblerTester m; int32_t offset = *i; byte* from = reinterpret_cast(&p1) - offset; byte* to = reinterpret_cast(&p2) - offset; // generate load [#base + #index] Node* load = m.Load(kMachFloat64, m.PointerConstant(from), m.IntPtrConstant(offset)); m.Store(kMachFloat64, m.PointerConstant(to), m.IntPtrConstant(offset), load, kNoWriteBarrier); m.Return(m.Int32Constant(magic)); FOR_FLOAT64_INPUTS(j) { p1 = *j; p2 = *j - 5; CHECK_EQ(magic, m.Call()); CheckDoubleEq(p1, p2); } } } TEST(RunInt32AddP) { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn(m.Int32Add(bt.param0, bt.param1)); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { // Use uint32_t because signed overflow is UB in C. int expected = static_cast(*i + *j); CHECK_EQ(expected, bt.call(*i, *j)); } } } TEST(RunInt32AddAndWord32EqualP) { { RawMachineAssemblerTester m(kMachInt32, kMachInt32, kMachInt32); m.Return(m.Int32Add(m.Parameter(0), m.Word32Equal(m.Parameter(1), m.Parameter(2)))); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { FOR_INT32_INPUTS(k) { // Use uint32_t because signed overflow is UB in C. int32_t const expected = bit_cast(bit_cast(*i) + (*j == *k)); CHECK_EQ(expected, m.Call(*i, *j, *k)); } } } } { RawMachineAssemblerTester m(kMachInt32, kMachInt32, kMachInt32); m.Return(m.Int32Add(m.Word32Equal(m.Parameter(0), m.Parameter(1)), m.Parameter(2))); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { FOR_INT32_INPUTS(k) { // Use uint32_t because signed overflow is UB in C. int32_t const expected = bit_cast((*i == *j) + bit_cast(*k)); CHECK_EQ(expected, m.Call(*i, *j, *k)); } } } } } TEST(RunInt32AddAndWord32EqualImm) { { FOR_INT32_INPUTS(i) { RawMachineAssemblerTester m(kMachInt32, kMachInt32); m.Return(m.Int32Add(m.Int32Constant(*i), m.Word32Equal(m.Parameter(0), m.Parameter(1)))); FOR_INT32_INPUTS(j) { FOR_INT32_INPUTS(k) { // Use uint32_t because signed overflow is UB in C. int32_t const expected = bit_cast(bit_cast(*i) + (*j == *k)); CHECK_EQ(expected, m.Call(*j, *k)); } } } } { FOR_INT32_INPUTS(i) { RawMachineAssemblerTester m(kMachInt32, kMachInt32); m.Return(m.Int32Add(m.Word32Equal(m.Int32Constant(*i), m.Parameter(0)), m.Parameter(1))); FOR_INT32_INPUTS(j) { FOR_INT32_INPUTS(k) { // Use uint32_t because signed overflow is UB in C. int32_t const expected = bit_cast((*i == *j) + bit_cast(*k)); CHECK_EQ(expected, m.Call(*j, *k)); } } } } } TEST(RunInt32AddAndWord32NotEqualP) { { RawMachineAssemblerTester m(kMachInt32, kMachInt32, kMachInt32); m.Return(m.Int32Add(m.Parameter(0), m.Word32NotEqual(m.Parameter(1), m.Parameter(2)))); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { FOR_INT32_INPUTS(k) { // Use uint32_t because signed overflow is UB in C. int32_t const expected = bit_cast(bit_cast(*i) + (*j != *k)); CHECK_EQ(expected, m.Call(*i, *j, *k)); } } } } { RawMachineAssemblerTester m(kMachInt32, kMachInt32, kMachInt32); m.Return(m.Int32Add(m.Word32NotEqual(m.Parameter(0), m.Parameter(1)), m.Parameter(2))); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { FOR_INT32_INPUTS(k) { // Use uint32_t because signed overflow is UB in C. int32_t const expected = bit_cast((*i != *j) + bit_cast(*k)); CHECK_EQ(expected, m.Call(*i, *j, *k)); } } } } } TEST(RunInt32AddAndWord32NotEqualImm) { { FOR_INT32_INPUTS(i) { RawMachineAssemblerTester m(kMachInt32, kMachInt32); m.Return(m.Int32Add(m.Int32Constant(*i), m.Word32NotEqual(m.Parameter(0), m.Parameter(1)))); FOR_INT32_INPUTS(j) { FOR_INT32_INPUTS(k) { // Use uint32_t because signed overflow is UB in C. int32_t const expected = bit_cast(bit_cast(*i) + (*j != *k)); CHECK_EQ(expected, m.Call(*j, *k)); } } } } { FOR_INT32_INPUTS(i) { RawMachineAssemblerTester m(kMachInt32, kMachInt32); m.Return(m.Int32Add(m.Word32NotEqual(m.Int32Constant(*i), m.Parameter(0)), m.Parameter(1))); FOR_INT32_INPUTS(j) { FOR_INT32_INPUTS(k) { // Use uint32_t because signed overflow is UB in C. int32_t const expected = bit_cast((*i != *j) + bit_cast(*k)); CHECK_EQ(expected, m.Call(*j, *k)); } } } } } TEST(RunInt32AddAndWord32SarP) { { RawMachineAssemblerTester m(kMachUint32, kMachInt32, kMachUint32); m.Return(m.Int32Add(m.Parameter(0), m.Word32Sar(m.Parameter(1), m.Parameter(2)))); FOR_UINT32_INPUTS(i) { FOR_INT32_INPUTS(j) { FOR_UINT32_SHIFTS(shift) { // Use uint32_t because signed overflow is UB in C. int32_t expected = *i + (*j >> shift); CHECK_EQ(expected, m.Call(*i, *j, shift)); } } } } { RawMachineAssemblerTester m(kMachInt32, kMachUint32, kMachUint32); m.Return(m.Int32Add(m.Word32Sar(m.Parameter(0), m.Parameter(1)), m.Parameter(2))); FOR_INT32_INPUTS(i) { FOR_UINT32_SHIFTS(shift) { FOR_UINT32_INPUTS(k) { // Use uint32_t because signed overflow is UB in C. int32_t expected = (*i >> shift) + *k; CHECK_EQ(expected, m.Call(*i, shift, *k)); } } } } } TEST(RunInt32AddAndWord32ShlP) { { RawMachineAssemblerTester m(kMachUint32, kMachInt32, kMachUint32); m.Return(m.Int32Add(m.Parameter(0), m.Word32Shl(m.Parameter(1), m.Parameter(2)))); FOR_UINT32_INPUTS(i) { FOR_INT32_INPUTS(j) { FOR_UINT32_SHIFTS(shift) { // Use uint32_t because signed overflow is UB in C. int32_t expected = *i + (*j << shift); CHECK_EQ(expected, m.Call(*i, *j, shift)); } } } } { RawMachineAssemblerTester m(kMachInt32, kMachUint32, kMachUint32); m.Return(m.Int32Add(m.Word32Shl(m.Parameter(0), m.Parameter(1)), m.Parameter(2))); FOR_INT32_INPUTS(i) { FOR_UINT32_SHIFTS(shift) { FOR_UINT32_INPUTS(k) { // Use uint32_t because signed overflow is UB in C. int32_t expected = (*i << shift) + *k; CHECK_EQ(expected, m.Call(*i, shift, *k)); } } } } } TEST(RunInt32AddAndWord32ShrP) { { RawMachineAssemblerTester m(kMachUint32, kMachUint32, kMachUint32); m.Return(m.Int32Add(m.Parameter(0), m.Word32Shr(m.Parameter(1), m.Parameter(2)))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { FOR_UINT32_SHIFTS(shift) { // Use uint32_t because signed overflow is UB in C. int32_t expected = *i + (*j >> shift); CHECK_EQ(expected, m.Call(*i, *j, shift)); } } } } { RawMachineAssemblerTester m(kMachUint32, kMachUint32, kMachUint32); m.Return(m.Int32Add(m.Word32Shr(m.Parameter(0), m.Parameter(1)), m.Parameter(2))); FOR_UINT32_INPUTS(i) { FOR_UINT32_SHIFTS(shift) { FOR_UINT32_INPUTS(k) { // Use uint32_t because signed overflow is UB in C. int32_t expected = (*i >> shift) + *k; CHECK_EQ(expected, m.Call(*i, shift, *k)); } } } } } TEST(RunInt32AddInBranch) { static const int32_t constant = 987654321; { RawMachineAssemblerTester m; Int32BinopTester bt(&m); MLabel blocka, blockb; m.Branch( m.Word32Equal(m.Int32Add(bt.param0, bt.param1), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); bt.AddReturn(m.Int32Constant(constant)); m.Bind(&blockb); bt.AddReturn(m.Int32Constant(0 - constant)); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { int32_t expected = (*i + *j) == 0 ? constant : 0 - constant; CHECK_EQ(expected, bt.call(*i, *j)); } } } { RawMachineAssemblerTester m; Int32BinopTester bt(&m); MLabel blocka, blockb; m.Branch( m.Word32NotEqual(m.Int32Add(bt.param0, bt.param1), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); bt.AddReturn(m.Int32Constant(constant)); m.Bind(&blockb); bt.AddReturn(m.Int32Constant(0 - constant)); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { int32_t expected = (*i + *j) != 0 ? constant : 0 - constant; CHECK_EQ(expected, bt.call(*i, *j)); } } } { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(kMachUint32); MLabel blocka, blockb; m.Branch(m.Word32Equal(m.Int32Add(m.Int32Constant(*i), m.Parameter(0)), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); m.Return(m.Int32Constant(constant)); m.Bind(&blockb); m.Return(m.Int32Constant(0 - constant)); FOR_UINT32_INPUTS(j) { uint32_t expected = (*i + *j) == 0 ? constant : 0 - constant; CHECK_EQ(expected, m.Call(*j)); } } } { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(kMachUint32); MLabel blocka, blockb; m.Branch(m.Word32NotEqual(m.Int32Add(m.Int32Constant(*i), m.Parameter(0)), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); m.Return(m.Int32Constant(constant)); m.Bind(&blockb); m.Return(m.Int32Constant(0 - constant)); FOR_UINT32_INPUTS(j) { uint32_t expected = (*i + *j) != 0 ? constant : 0 - constant; CHECK_EQ(expected, m.Call(*j)); } } } { RawMachineAssemblerTester m; const Operator* shops[] = {m.machine()->Word32Sar(), m.machine()->Word32Shl(), m.machine()->Word32Shr()}; for (size_t n = 0; n < arraysize(shops); n++) { RawMachineAssemblerTester m(kMachUint32, kMachInt32, kMachUint32); MLabel blocka, blockb; m.Branch(m.Word32Equal(m.Int32Add(m.Parameter(0), m.AddNode(shops[n], m.Parameter(1), m.Parameter(2))), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); m.Return(m.Int32Constant(constant)); m.Bind(&blockb); m.Return(m.Int32Constant(0 - constant)); FOR_UINT32_INPUTS(i) { FOR_INT32_INPUTS(j) { FOR_UINT32_SHIFTS(shift) { int32_t right; switch (shops[n]->opcode()) { default: UNREACHABLE(); case IrOpcode::kWord32Sar: right = *j >> shift; break; case IrOpcode::kWord32Shl: right = *j << shift; break; case IrOpcode::kWord32Shr: right = static_cast(*j) >> shift; break; } int32_t expected = ((*i + right) == 0) ? constant : 0 - constant; CHECK_EQ(expected, m.Call(*i, *j, shift)); } } } } } } TEST(RunInt32AddInComparison) { { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn( m.Word32Equal(m.Int32Add(bt.param0, bt.param1), m.Int32Constant(0))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t expected = (*i + *j) == 0; CHECK_EQ(expected, bt.call(*i, *j)); } } } { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn( m.Word32Equal(m.Int32Constant(0), m.Int32Add(bt.param0, bt.param1))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t expected = (*i + *j) == 0; CHECK_EQ(expected, bt.call(*i, *j)); } } } { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(kMachUint32); m.Return(m.Word32Equal(m.Int32Add(m.Int32Constant(*i), m.Parameter(0)), m.Int32Constant(0))); FOR_UINT32_INPUTS(j) { uint32_t expected = (*i + *j) == 0; CHECK_EQ(expected, m.Call(*j)); } } } { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(kMachUint32); m.Return(m.Word32Equal(m.Int32Add(m.Parameter(0), m.Int32Constant(*i)), m.Int32Constant(0))); FOR_UINT32_INPUTS(j) { uint32_t expected = (*j + *i) == 0; CHECK_EQ(expected, m.Call(*j)); } } } { RawMachineAssemblerTester m; const Operator* shops[] = {m.machine()->Word32Sar(), m.machine()->Word32Shl(), m.machine()->Word32Shr()}; for (size_t n = 0; n < arraysize(shops); n++) { RawMachineAssemblerTester m(kMachUint32, kMachInt32, kMachUint32); m.Return(m.Word32Equal( m.Int32Add(m.Parameter(0), m.AddNode(shops[n], m.Parameter(1), m.Parameter(2))), m.Int32Constant(0))); FOR_UINT32_INPUTS(i) { FOR_INT32_INPUTS(j) { FOR_UINT32_SHIFTS(shift) { int32_t right; switch (shops[n]->opcode()) { default: UNREACHABLE(); case IrOpcode::kWord32Sar: right = *j >> shift; break; case IrOpcode::kWord32Shl: right = *j << shift; break; case IrOpcode::kWord32Shr: right = static_cast(*j) >> shift; break; } int32_t expected = (*i + right) == 0; CHECK_EQ(expected, m.Call(*i, *j, shift)); } } } } } } TEST(RunInt32SubP) { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); m.Return(m.Int32Sub(bt.param0, bt.param1)); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t expected = static_cast(*i - *j); CHECK_EQ(expected, bt.call(*i, *j)); } } } TEST(RunInt32SubImm) { { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(kMachUint32); m.Return(m.Int32Sub(m.Int32Constant(*i), m.Parameter(0))); FOR_UINT32_INPUTS(j) { uint32_t expected = *i - *j; CHECK_EQ(expected, m.Call(*j)); } } } { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(kMachUint32); m.Return(m.Int32Sub(m.Parameter(0), m.Int32Constant(*i))); FOR_UINT32_INPUTS(j) { uint32_t expected = *j - *i; CHECK_EQ(expected, m.Call(*j)); } } } } TEST(RunInt32SubAndWord32SarP) { { RawMachineAssemblerTester m(kMachUint32, kMachInt32, kMachUint32); m.Return(m.Int32Sub(m.Parameter(0), m.Word32Sar(m.Parameter(1), m.Parameter(2)))); FOR_UINT32_INPUTS(i) { FOR_INT32_INPUTS(j) { FOR_UINT32_SHIFTS(shift) { int32_t expected = *i - (*j >> shift); CHECK_EQ(expected, m.Call(*i, *j, shift)); } } } } { RawMachineAssemblerTester m(kMachInt32, kMachUint32, kMachUint32); m.Return(m.Int32Sub(m.Word32Sar(m.Parameter(0), m.Parameter(1)), m.Parameter(2))); FOR_INT32_INPUTS(i) { FOR_UINT32_SHIFTS(shift) { FOR_UINT32_INPUTS(k) { int32_t expected = (*i >> shift) - *k; CHECK_EQ(expected, m.Call(*i, shift, *k)); } } } } } TEST(RunInt32SubAndWord32ShlP) { { RawMachineAssemblerTester m(kMachUint32, kMachInt32, kMachUint32); m.Return(m.Int32Sub(m.Parameter(0), m.Word32Shl(m.Parameter(1), m.Parameter(2)))); FOR_UINT32_INPUTS(i) { FOR_INT32_INPUTS(j) { FOR_UINT32_SHIFTS(shift) { int32_t expected = *i - (*j << shift); CHECK_EQ(expected, m.Call(*i, *j, shift)); } } } } { RawMachineAssemblerTester m(kMachInt32, kMachUint32, kMachUint32); m.Return(m.Int32Sub(m.Word32Shl(m.Parameter(0), m.Parameter(1)), m.Parameter(2))); FOR_INT32_INPUTS(i) { FOR_UINT32_SHIFTS(shift) { FOR_UINT32_INPUTS(k) { // Use uint32_t because signed overflow is UB in C. int32_t expected = (*i << shift) - *k; CHECK_EQ(expected, m.Call(*i, shift, *k)); } } } } } TEST(RunInt32SubAndWord32ShrP) { { RawMachineAssemblerTester m(kMachUint32, kMachUint32, kMachUint32); m.Return(m.Int32Sub(m.Parameter(0), m.Word32Shr(m.Parameter(1), m.Parameter(2)))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { FOR_UINT32_SHIFTS(shift) { // Use uint32_t because signed overflow is UB in C. uint32_t expected = *i - (*j >> shift); CHECK_EQ(expected, m.Call(*i, *j, shift)); } } } } { RawMachineAssemblerTester m(kMachUint32, kMachUint32, kMachUint32); m.Return(m.Int32Sub(m.Word32Shr(m.Parameter(0), m.Parameter(1)), m.Parameter(2))); FOR_UINT32_INPUTS(i) { FOR_UINT32_SHIFTS(shift) { FOR_UINT32_INPUTS(k) { // Use uint32_t because signed overflow is UB in C. uint32_t expected = (*i >> shift) - *k; CHECK_EQ(expected, m.Call(*i, shift, *k)); } } } } } TEST(RunInt32SubInBranch) { static const int constant = 987654321; { RawMachineAssemblerTester m; Int32BinopTester bt(&m); MLabel blocka, blockb; m.Branch( m.Word32Equal(m.Int32Sub(bt.param0, bt.param1), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); bt.AddReturn(m.Int32Constant(constant)); m.Bind(&blockb); bt.AddReturn(m.Int32Constant(0 - constant)); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { int32_t expected = (*i - *j) == 0 ? constant : 0 - constant; CHECK_EQ(expected, bt.call(*i, *j)); } } } { RawMachineAssemblerTester m; Int32BinopTester bt(&m); MLabel blocka, blockb; m.Branch( m.Word32NotEqual(m.Int32Sub(bt.param0, bt.param1), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); bt.AddReturn(m.Int32Constant(constant)); m.Bind(&blockb); bt.AddReturn(m.Int32Constant(0 - constant)); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { int32_t expected = (*i - *j) != 0 ? constant : 0 - constant; CHECK_EQ(expected, bt.call(*i, *j)); } } } { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(kMachUint32); MLabel blocka, blockb; m.Branch(m.Word32Equal(m.Int32Sub(m.Int32Constant(*i), m.Parameter(0)), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); m.Return(m.Int32Constant(constant)); m.Bind(&blockb); m.Return(m.Int32Constant(0 - constant)); FOR_UINT32_INPUTS(j) { uint32_t expected = (*i - *j) == 0 ? constant : 0 - constant; CHECK_EQ(expected, m.Call(*j)); } } } { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(kMachUint32); MLabel blocka, blockb; m.Branch(m.Word32NotEqual(m.Int32Sub(m.Int32Constant(*i), m.Parameter(0)), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); m.Return(m.Int32Constant(constant)); m.Bind(&blockb); m.Return(m.Int32Constant(0 - constant)); FOR_UINT32_INPUTS(j) { int32_t expected = (*i - *j) != 0 ? constant : 0 - constant; CHECK_EQ(expected, m.Call(*j)); } } } { RawMachineAssemblerTester m; const Operator* shops[] = {m.machine()->Word32Sar(), m.machine()->Word32Shl(), m.machine()->Word32Shr()}; for (size_t n = 0; n < arraysize(shops); n++) { RawMachineAssemblerTester m(kMachUint32, kMachInt32, kMachUint32); MLabel blocka, blockb; m.Branch(m.Word32Equal(m.Int32Sub(m.Parameter(0), m.AddNode(shops[n], m.Parameter(1), m.Parameter(2))), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); m.Return(m.Int32Constant(constant)); m.Bind(&blockb); m.Return(m.Int32Constant(0 - constant)); FOR_UINT32_INPUTS(i) { FOR_INT32_INPUTS(j) { FOR_UINT32_SHIFTS(shift) { int32_t right; switch (shops[n]->opcode()) { default: UNREACHABLE(); case IrOpcode::kWord32Sar: right = *j >> shift; break; case IrOpcode::kWord32Shl: right = *j << shift; break; case IrOpcode::kWord32Shr: right = static_cast(*j) >> shift; break; } int32_t expected = ((*i - right) == 0) ? constant : 0 - constant; CHECK_EQ(expected, m.Call(*i, *j, shift)); } } } } } } TEST(RunInt32SubInComparison) { { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn( m.Word32Equal(m.Int32Sub(bt.param0, bt.param1), m.Int32Constant(0))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t expected = (*i - *j) == 0; CHECK_EQ(expected, bt.call(*i, *j)); } } } { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn( m.Word32Equal(m.Int32Constant(0), m.Int32Sub(bt.param0, bt.param1))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t expected = (*i - *j) == 0; CHECK_EQ(expected, bt.call(*i, *j)); } } } { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(kMachUint32); m.Return(m.Word32Equal(m.Int32Sub(m.Int32Constant(*i), m.Parameter(0)), m.Int32Constant(0))); FOR_UINT32_INPUTS(j) { uint32_t expected = (*i - *j) == 0; CHECK_EQ(expected, m.Call(*j)); } } } { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(kMachUint32); m.Return(m.Word32Equal(m.Int32Sub(m.Parameter(0), m.Int32Constant(*i)), m.Int32Constant(0))); FOR_UINT32_INPUTS(j) { uint32_t expected = (*j - *i) == 0; CHECK_EQ(expected, m.Call(*j)); } } } { RawMachineAssemblerTester m; const Operator* shops[] = {m.machine()->Word32Sar(), m.machine()->Word32Shl(), m.machine()->Word32Shr()}; for (size_t n = 0; n < arraysize(shops); n++) { RawMachineAssemblerTester m(kMachUint32, kMachInt32, kMachUint32); m.Return(m.Word32Equal( m.Int32Sub(m.Parameter(0), m.AddNode(shops[n], m.Parameter(1), m.Parameter(2))), m.Int32Constant(0))); FOR_UINT32_INPUTS(i) { FOR_INT32_INPUTS(j) { FOR_UINT32_SHIFTS(shift) { int32_t right; switch (shops[n]->opcode()) { default: UNREACHABLE(); case IrOpcode::kWord32Sar: right = *j >> shift; break; case IrOpcode::kWord32Shl: right = *j << shift; break; case IrOpcode::kWord32Shr: right = static_cast(*j) >> shift; break; } int32_t expected = (*i - right) == 0; CHECK_EQ(expected, m.Call(*i, *j, shift)); } } } } } } TEST(RunInt32MulP) { { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn(m.Int32Mul(bt.param0, bt.param1)); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int expected = static_cast(*i * *j); CHECK_EQ(expected, bt.call(*i, *j)); } } } { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn(m.Int32Mul(bt.param0, bt.param1)); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t expected = *i * *j; CHECK_EQ(expected, bt.call(*i, *j)); } } } } TEST(RunInt32MulHighP) { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn(m.Int32MulHigh(bt.param0, bt.param1)); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int32_t expected = static_cast( (static_cast(*i) * static_cast(*j)) >> 32); CHECK_EQ(expected, bt.call(*i, *j)); } } } TEST(RunInt32MulImm) { { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(kMachUint32); m.Return(m.Int32Mul(m.Int32Constant(*i), m.Parameter(0))); FOR_UINT32_INPUTS(j) { uint32_t expected = *i * *j; CHECK_EQ(expected, m.Call(*j)); } } } { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(kMachUint32); m.Return(m.Int32Mul(m.Parameter(0), m.Int32Constant(*i))); FOR_UINT32_INPUTS(j) { uint32_t expected = *j * *i; CHECK_EQ(expected, m.Call(*j)); } } } } TEST(RunInt32MulAndInt32AddP) { { FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { RawMachineAssemblerTester m(kMachInt32); int32_t p0 = *i; int32_t p1 = *j; m.Return(m.Int32Add(m.Int32Constant(p0), m.Int32Mul(m.Parameter(0), m.Int32Constant(p1)))); FOR_INT32_INPUTS(k) { int32_t p2 = *k; int expected = p0 + static_cast(p1 * p2); CHECK_EQ(expected, m.Call(p2)); } } } } { RawMachineAssemblerTester m(kMachInt32, kMachInt32, kMachInt32); m.Return( m.Int32Add(m.Parameter(0), m.Int32Mul(m.Parameter(1), m.Parameter(2)))); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { FOR_INT32_INPUTS(k) { int32_t p0 = *i; int32_t p1 = *j; int32_t p2 = *k; int expected = p0 + static_cast(p1 * p2); CHECK_EQ(expected, m.Call(p0, p1, p2)); } } } } { RawMachineAssemblerTester m(kMachInt32, kMachInt32, kMachInt32); m.Return( m.Int32Add(m.Int32Mul(m.Parameter(0), m.Parameter(1)), m.Parameter(2))); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { FOR_INT32_INPUTS(k) { int32_t p0 = *i; int32_t p1 = *j; int32_t p2 = *k; int expected = static_cast(p0 * p1) + p2; CHECK_EQ(expected, m.Call(p0, p1, p2)); } } } } { FOR_INT32_INPUTS(i) { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn( m.Int32Add(m.Int32Constant(*i), m.Int32Mul(bt.param0, bt.param1))); FOR_INT32_INPUTS(j) { FOR_INT32_INPUTS(k) { int32_t p0 = *j; int32_t p1 = *k; int expected = *i + static_cast(p0 * p1); CHECK_EQ(expected, bt.call(p0, p1)); } } } } } TEST(RunInt32MulAndInt32SubP) { { RawMachineAssemblerTester m(kMachUint32, kMachInt32, kMachInt32); m.Return( m.Int32Sub(m.Parameter(0), m.Int32Mul(m.Parameter(1), m.Parameter(2)))); FOR_UINT32_INPUTS(i) { FOR_INT32_INPUTS(j) { FOR_INT32_INPUTS(k) { uint32_t p0 = *i; int32_t p1 = *j; int32_t p2 = *k; // Use uint32_t because signed overflow is UB in C. int expected = p0 - static_cast(p1 * p2); CHECK_EQ(expected, m.Call(p0, p1, p2)); } } } } { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn( m.Int32Sub(m.Int32Constant(*i), m.Int32Mul(bt.param0, bt.param1))); FOR_INT32_INPUTS(j) { FOR_INT32_INPUTS(k) { int32_t p0 = *j; int32_t p1 = *k; // Use uint32_t because signed overflow is UB in C. int expected = *i - static_cast(p0 * p1); CHECK_EQ(expected, bt.call(p0, p1)); } } } } } TEST(RunUint32MulHighP) { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn(m.Uint32MulHigh(bt.param0, bt.param1)); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { int32_t expected = bit_cast(static_cast( (static_cast(*i) * static_cast(*j)) >> 32)); CHECK_EQ(expected, bt.call(bit_cast(*i), bit_cast(*j))); } } } TEST(RunInt32DivP) { { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn(m.Int32Div(bt.param0, bt.param1)); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int p0 = *i; int p1 = *j; if (p1 != 0 && (static_cast(p0) != 0x80000000 || p1 != -1)) { int expected = static_cast(p0 / p1); CHECK_EQ(expected, bt.call(p0, p1)); } } } } { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn(m.Int32Add(bt.param0, m.Int32Div(bt.param0, bt.param1))); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int p0 = *i; int p1 = *j; if (p1 != 0 && (static_cast(p0) != 0x80000000 || p1 != -1)) { int expected = static_cast(p0 + (p0 / p1)); CHECK_EQ(expected, bt.call(p0, p1)); } } } } } TEST(RunUint32DivP) { { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn(m.Uint32Div(bt.param0, bt.param1)); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t p0 = *i; uint32_t p1 = *j; if (p1 != 0) { int32_t expected = bit_cast(p0 / p1); CHECK_EQ(expected, bt.call(p0, p1)); } } } } { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn(m.Int32Add(bt.param0, m.Uint32Div(bt.param0, bt.param1))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t p0 = *i; uint32_t p1 = *j; if (p1 != 0) { int32_t expected = bit_cast(p0 + (p0 / p1)); CHECK_EQ(expected, bt.call(p0, p1)); } } } } } TEST(RunInt32ModP) { { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn(m.Int32Mod(bt.param0, bt.param1)); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int p0 = *i; int p1 = *j; if (p1 != 0 && (static_cast(p0) != 0x80000000 || p1 != -1)) { int expected = static_cast(p0 % p1); CHECK_EQ(expected, bt.call(p0, p1)); } } } } { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn(m.Int32Add(bt.param0, m.Int32Mod(bt.param0, bt.param1))); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int p0 = *i; int p1 = *j; if (p1 != 0 && (static_cast(p0) != 0x80000000 || p1 != -1)) { int expected = static_cast(p0 + (p0 % p1)); CHECK_EQ(expected, bt.call(p0, p1)); } } } } } TEST(RunUint32ModP) { { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn(m.Uint32Mod(bt.param0, bt.param1)); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t p0 = *i; uint32_t p1 = *j; if (p1 != 0) { uint32_t expected = static_cast(p0 % p1); CHECK_EQ(expected, bt.call(p0, p1)); } } } } { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn(m.Int32Add(bt.param0, m.Uint32Mod(bt.param0, bt.param1))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t p0 = *i; uint32_t p1 = *j; if (p1 != 0) { uint32_t expected = static_cast(p0 + (p0 % p1)); CHECK_EQ(expected, bt.call(p0, p1)); } } } } } TEST(RunWord32AndP) { { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn(m.Word32And(bt.param0, bt.param1)); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { int32_t expected = *i & *j; CHECK_EQ(expected, bt.call(*i, *j)); } } } { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn(m.Word32And(bt.param0, m.Word32Not(bt.param1))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { int32_t expected = *i & ~(*j); CHECK_EQ(expected, bt.call(*i, *j)); } } } { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn(m.Word32And(m.Word32Not(bt.param0), bt.param1)); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { int32_t expected = ~(*i) & *j; CHECK_EQ(expected, bt.call(*i, *j)); } } } } TEST(RunWord32AndAndWord32ShlP) { { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn( m.Word32Shl(bt.param0, m.Word32And(bt.param1, m.Int32Constant(0x1f)))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t expected = *i << (*j & 0x1f); CHECK_EQ(expected, bt.call(*i, *j)); } } } { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn( m.Word32Shl(bt.param0, m.Word32And(m.Int32Constant(0x1f), bt.param1))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t expected = *i << (0x1f & *j); CHECK_EQ(expected, bt.call(*i, *j)); } } } } TEST(RunWord32AndAndWord32ShrP) { { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn( m.Word32Shr(bt.param0, m.Word32And(bt.param1, m.Int32Constant(0x1f)))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t expected = *i >> (*j & 0x1f); CHECK_EQ(expected, bt.call(*i, *j)); } } } { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn( m.Word32Shr(bt.param0, m.Word32And(m.Int32Constant(0x1f), bt.param1))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t expected = *i >> (0x1f & *j); CHECK_EQ(expected, bt.call(*i, *j)); } } } } TEST(RunWord32AndAndWord32SarP) { { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn( m.Word32Sar(bt.param0, m.Word32And(bt.param1, m.Int32Constant(0x1f)))); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int32_t expected = *i >> (*j & 0x1f); CHECK_EQ(expected, bt.call(*i, *j)); } } } { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn( m.Word32Sar(bt.param0, m.Word32And(m.Int32Constant(0x1f), bt.param1))); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int32_t expected = *i >> (0x1f & *j); CHECK_EQ(expected, bt.call(*i, *j)); } } } } TEST(RunWord32AndImm) { { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(kMachUint32); m.Return(m.Word32And(m.Int32Constant(*i), m.Parameter(0))); FOR_UINT32_INPUTS(j) { uint32_t expected = *i & *j; CHECK_EQ(expected, m.Call(*j)); } } } { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(kMachUint32); m.Return(m.Word32And(m.Int32Constant(*i), m.Word32Not(m.Parameter(0)))); FOR_UINT32_INPUTS(j) { uint32_t expected = *i & ~(*j); CHECK_EQ(expected, m.Call(*j)); } } } } TEST(RunWord32AndInBranch) { static const int constant = 987654321; { RawMachineAssemblerTester m; Int32BinopTester bt(&m); MLabel blocka, blockb; m.Branch( m.Word32Equal(m.Word32And(bt.param0, bt.param1), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); bt.AddReturn(m.Int32Constant(constant)); m.Bind(&blockb); bt.AddReturn(m.Int32Constant(0 - constant)); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { int32_t expected = (*i & *j) == 0 ? constant : 0 - constant; CHECK_EQ(expected, bt.call(*i, *j)); } } } { RawMachineAssemblerTester m; Int32BinopTester bt(&m); MLabel blocka, blockb; m.Branch( m.Word32NotEqual(m.Word32And(bt.param0, bt.param1), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); bt.AddReturn(m.Int32Constant(constant)); m.Bind(&blockb); bt.AddReturn(m.Int32Constant(0 - constant)); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { int32_t expected = (*i & *j) != 0 ? constant : 0 - constant; CHECK_EQ(expected, bt.call(*i, *j)); } } } { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(kMachUint32); MLabel blocka, blockb; m.Branch(m.Word32Equal(m.Word32And(m.Int32Constant(*i), m.Parameter(0)), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); m.Return(m.Int32Constant(constant)); m.Bind(&blockb); m.Return(m.Int32Constant(0 - constant)); FOR_UINT32_INPUTS(j) { int32_t expected = (*i & *j) == 0 ? constant : 0 - constant; CHECK_EQ(expected, m.Call(*j)); } } } { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(kMachUint32); MLabel blocka, blockb; m.Branch( m.Word32NotEqual(m.Word32And(m.Int32Constant(*i), m.Parameter(0)), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); m.Return(m.Int32Constant(constant)); m.Bind(&blockb); m.Return(m.Int32Constant(0 - constant)); FOR_UINT32_INPUTS(j) { int32_t expected = (*i & *j) != 0 ? constant : 0 - constant; CHECK_EQ(expected, m.Call(*j)); } } } { RawMachineAssemblerTester m; const Operator* shops[] = {m.machine()->Word32Sar(), m.machine()->Word32Shl(), m.machine()->Word32Shr()}; for (size_t n = 0; n < arraysize(shops); n++) { RawMachineAssemblerTester m(kMachUint32, kMachInt32, kMachUint32); MLabel blocka, blockb; m.Branch(m.Word32Equal(m.Word32And(m.Parameter(0), m.AddNode(shops[n], m.Parameter(1), m.Parameter(2))), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); m.Return(m.Int32Constant(constant)); m.Bind(&blockb); m.Return(m.Int32Constant(0 - constant)); FOR_UINT32_INPUTS(i) { FOR_INT32_INPUTS(j) { FOR_UINT32_SHIFTS(shift) { int32_t right; switch (shops[n]->opcode()) { default: UNREACHABLE(); case IrOpcode::kWord32Sar: right = *j >> shift; break; case IrOpcode::kWord32Shl: right = *j << shift; break; case IrOpcode::kWord32Shr: right = static_cast(*j) >> shift; break; } int32_t expected = ((*i & right) == 0) ? constant : 0 - constant; CHECK_EQ(expected, m.Call(*i, *j, shift)); } } } } } } TEST(RunWord32AndInComparison) { { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn( m.Word32Equal(m.Word32And(bt.param0, bt.param1), m.Int32Constant(0))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t expected = (*i & *j) == 0; CHECK_EQ(expected, bt.call(*i, *j)); } } } { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn( m.Word32Equal(m.Int32Constant(0), m.Word32And(bt.param0, bt.param1))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t expected = (*i & *j) == 0; CHECK_EQ(expected, bt.call(*i, *j)); } } } { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(kMachUint32); m.Return(m.Word32Equal(m.Word32And(m.Int32Constant(*i), m.Parameter(0)), m.Int32Constant(0))); FOR_UINT32_INPUTS(j) { uint32_t expected = (*i & *j) == 0; CHECK_EQ(expected, m.Call(*j)); } } } { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(kMachUint32); m.Return(m.Word32Equal(m.Word32And(m.Parameter(0), m.Int32Constant(*i)), m.Int32Constant(0))); FOR_UINT32_INPUTS(j) { uint32_t expected = (*j & *i) == 0; CHECK_EQ(expected, m.Call(*j)); } } } } TEST(RunWord32OrP) { { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn(m.Word32Or(bt.param0, bt.param1)); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t expected = *i | *j; CHECK_EQ(expected, bt.call(*i, *j)); } } } { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn(m.Word32Or(bt.param0, m.Word32Not(bt.param1))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t expected = *i | ~(*j); CHECK_EQ(expected, bt.call(*i, *j)); } } } { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn(m.Word32Or(m.Word32Not(bt.param0), bt.param1)); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t expected = ~(*i) | *j; CHECK_EQ(expected, bt.call(*i, *j)); } } } } TEST(RunWord32OrImm) { { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(kMachUint32); m.Return(m.Word32Or(m.Int32Constant(*i), m.Parameter(0))); FOR_UINT32_INPUTS(j) { uint32_t expected = *i | *j; CHECK_EQ(expected, m.Call(*j)); } } } { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(kMachUint32); m.Return(m.Word32Or(m.Int32Constant(*i), m.Word32Not(m.Parameter(0)))); FOR_UINT32_INPUTS(j) { uint32_t expected = *i | ~(*j); CHECK_EQ(expected, m.Call(*j)); } } } } TEST(RunWord32OrInBranch) { static const int constant = 987654321; { RawMachineAssemblerTester m; Int32BinopTester bt(&m); MLabel blocka, blockb; m.Branch( m.Word32Equal(m.Word32Or(bt.param0, bt.param1), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); bt.AddReturn(m.Int32Constant(constant)); m.Bind(&blockb); bt.AddReturn(m.Int32Constant(0 - constant)); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int32_t expected = (*i | *j) == 0 ? constant : 0 - constant; CHECK_EQ(expected, bt.call(*i, *j)); } } } { RawMachineAssemblerTester m; Int32BinopTester bt(&m); MLabel blocka, blockb; m.Branch( m.Word32NotEqual(m.Word32Or(bt.param0, bt.param1), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); bt.AddReturn(m.Int32Constant(constant)); m.Bind(&blockb); bt.AddReturn(m.Int32Constant(0 - constant)); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int32_t expected = (*i | *j) != 0 ? constant : 0 - constant; CHECK_EQ(expected, bt.call(*i, *j)); } } } { FOR_INT32_INPUTS(i) { RawMachineAssemblerTester m(kMachInt32); MLabel blocka, blockb; m.Branch(m.Word32Equal(m.Word32Or(m.Int32Constant(*i), m.Parameter(0)), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); m.Return(m.Int32Constant(constant)); m.Bind(&blockb); m.Return(m.Int32Constant(0 - constant)); FOR_INT32_INPUTS(j) { int32_t expected = (*i | *j) == 0 ? constant : 0 - constant; CHECK_EQ(expected, m.Call(*j)); } } } { FOR_INT32_INPUTS(i) { RawMachineAssemblerTester m(kMachInt32); MLabel blocka, blockb; m.Branch(m.Word32NotEqual(m.Word32Or(m.Int32Constant(*i), m.Parameter(0)), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); m.Return(m.Int32Constant(constant)); m.Bind(&blockb); m.Return(m.Int32Constant(0 - constant)); FOR_INT32_INPUTS(j) { int32_t expected = (*i | *j) != 0 ? constant : 0 - constant; CHECK_EQ(expected, m.Call(*j)); } } } { RawMachineAssemblerTester m; const Operator* shops[] = {m.machine()->Word32Sar(), m.machine()->Word32Shl(), m.machine()->Word32Shr()}; for (size_t n = 0; n < arraysize(shops); n++) { RawMachineAssemblerTester m(kMachUint32, kMachInt32, kMachUint32); MLabel blocka, blockb; m.Branch(m.Word32Equal(m.Word32Or(m.Parameter(0), m.AddNode(shops[n], m.Parameter(1), m.Parameter(2))), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); m.Return(m.Int32Constant(constant)); m.Bind(&blockb); m.Return(m.Int32Constant(0 - constant)); FOR_UINT32_INPUTS(i) { FOR_INT32_INPUTS(j) { FOR_UINT32_SHIFTS(shift) { int32_t right; switch (shops[n]->opcode()) { default: UNREACHABLE(); case IrOpcode::kWord32Sar: right = *j >> shift; break; case IrOpcode::kWord32Shl: right = *j << shift; break; case IrOpcode::kWord32Shr: right = static_cast(*j) >> shift; break; } int32_t expected = ((*i | right) == 0) ? constant : 0 - constant; CHECK_EQ(expected, m.Call(*i, *j, shift)); } } } } } } TEST(RunWord32OrInComparison) { { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn( m.Word32Equal(m.Word32Or(bt.param0, bt.param1), m.Int32Constant(0))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { int32_t expected = (*i | *j) == 0; CHECK_EQ(expected, bt.call(*i, *j)); } } } { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn( m.Word32Equal(m.Int32Constant(0), m.Word32Or(bt.param0, bt.param1))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { int32_t expected = (*i | *j) == 0; CHECK_EQ(expected, bt.call(*i, *j)); } } } { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(kMachUint32); m.Return(m.Word32Equal(m.Word32Or(m.Int32Constant(*i), m.Parameter(0)), m.Int32Constant(0))); FOR_UINT32_INPUTS(j) { uint32_t expected = (*i | *j) == 0; CHECK_EQ(expected, m.Call(*j)); } } } { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(kMachUint32); m.Return(m.Word32Equal(m.Word32Or(m.Parameter(0), m.Int32Constant(*i)), m.Int32Constant(0))); FOR_UINT32_INPUTS(j) { uint32_t expected = (*j | *i) == 0; CHECK_EQ(expected, m.Call(*j)); } } } } TEST(RunWord32XorP) { { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(kMachUint32); m.Return(m.Word32Xor(m.Int32Constant(*i), m.Parameter(0))); FOR_UINT32_INPUTS(j) { uint32_t expected = *i ^ *j; CHECK_EQ(expected, m.Call(*j)); } } } { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn(m.Word32Xor(bt.param0, bt.param1)); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t expected = *i ^ *j; CHECK_EQ(expected, bt.call(*i, *j)); } } } { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn(m.Word32Xor(bt.param0, m.Word32Not(bt.param1))); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int32_t expected = *i ^ ~(*j); CHECK_EQ(expected, bt.call(*i, *j)); } } } { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn(m.Word32Xor(m.Word32Not(bt.param0), bt.param1)); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int32_t expected = ~(*i) ^ *j; CHECK_EQ(expected, bt.call(*i, *j)); } } } { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(kMachUint32); m.Return(m.Word32Xor(m.Int32Constant(*i), m.Word32Not(m.Parameter(0)))); FOR_UINT32_INPUTS(j) { uint32_t expected = *i ^ ~(*j); CHECK_EQ(expected, m.Call(*j)); } } } } TEST(RunWord32XorInBranch) { static const uint32_t constant = 987654321; { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); MLabel blocka, blockb; m.Branch( m.Word32Equal(m.Word32Xor(bt.param0, bt.param1), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); bt.AddReturn(m.Int32Constant(constant)); m.Bind(&blockb); bt.AddReturn(m.Int32Constant(0 - constant)); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t expected = (*i ^ *j) == 0 ? constant : 0 - constant; CHECK_EQ(expected, bt.call(*i, *j)); } } } { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); MLabel blocka, blockb; m.Branch( m.Word32NotEqual(m.Word32Xor(bt.param0, bt.param1), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); bt.AddReturn(m.Int32Constant(constant)); m.Bind(&blockb); bt.AddReturn(m.Int32Constant(0 - constant)); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t expected = (*i ^ *j) != 0 ? constant : 0 - constant; CHECK_EQ(expected, bt.call(*i, *j)); } } } { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(kMachUint32); MLabel blocka, blockb; m.Branch(m.Word32Equal(m.Word32Xor(m.Int32Constant(*i), m.Parameter(0)), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); m.Return(m.Int32Constant(constant)); m.Bind(&blockb); m.Return(m.Int32Constant(0 - constant)); FOR_UINT32_INPUTS(j) { uint32_t expected = (*i ^ *j) == 0 ? constant : 0 - constant; CHECK_EQ(expected, m.Call(*j)); } } } { FOR_UINT32_INPUTS(i) { RawMachineAssemblerTester m(kMachUint32); MLabel blocka, blockb; m.Branch( m.Word32NotEqual(m.Word32Xor(m.Int32Constant(*i), m.Parameter(0)), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); m.Return(m.Int32Constant(constant)); m.Bind(&blockb); m.Return(m.Int32Constant(0 - constant)); FOR_UINT32_INPUTS(j) { uint32_t expected = (*i ^ *j) != 0 ? constant : 0 - constant; CHECK_EQ(expected, m.Call(*j)); } } } { RawMachineAssemblerTester m; const Operator* shops[] = {m.machine()->Word32Sar(), m.machine()->Word32Shl(), m.machine()->Word32Shr()}; for (size_t n = 0; n < arraysize(shops); n++) { RawMachineAssemblerTester m(kMachUint32, kMachInt32, kMachUint32); MLabel blocka, blockb; m.Branch(m.Word32Equal(m.Word32Xor(m.Parameter(0), m.AddNode(shops[n], m.Parameter(1), m.Parameter(2))), m.Int32Constant(0)), &blocka, &blockb); m.Bind(&blocka); m.Return(m.Int32Constant(constant)); m.Bind(&blockb); m.Return(m.Int32Constant(0 - constant)); FOR_UINT32_INPUTS(i) { FOR_INT32_INPUTS(j) { FOR_UINT32_SHIFTS(shift) { int32_t right; switch (shops[n]->opcode()) { default: UNREACHABLE(); case IrOpcode::kWord32Sar: right = *j >> shift; break; case IrOpcode::kWord32Shl: right = *j << shift; break; case IrOpcode::kWord32Shr: right = static_cast(*j) >> shift; break; } int32_t expected = ((*i ^ right) == 0) ? constant : 0 - constant; CHECK_EQ(expected, m.Call(*i, *j, shift)); } } } } } } TEST(RunWord32ShlP) { { FOR_UINT32_SHIFTS(shift) { RawMachineAssemblerTester m(kMachUint32); m.Return(m.Word32Shl(m.Parameter(0), m.Int32Constant(shift))); FOR_UINT32_INPUTS(j) { uint32_t expected = *j << shift; CHECK_EQ(expected, m.Call(*j)); } } } { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn(m.Word32Shl(bt.param0, bt.param1)); FOR_UINT32_INPUTS(i) { FOR_UINT32_SHIFTS(shift) { uint32_t expected = *i << shift; CHECK_EQ(expected, bt.call(*i, shift)); } } } } TEST(RunWord32ShlInComparison) { { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn( m.Word32Equal(m.Word32Shl(bt.param0, bt.param1), m.Int32Constant(0))); FOR_UINT32_INPUTS(i) { FOR_UINT32_SHIFTS(shift) { uint32_t expected = 0 == (*i << shift); CHECK_EQ(expected, bt.call(*i, shift)); } } } { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn( m.Word32Equal(m.Int32Constant(0), m.Word32Shl(bt.param0, bt.param1))); FOR_UINT32_INPUTS(i) { FOR_UINT32_SHIFTS(shift) { uint32_t expected = 0 == (*i << shift); CHECK_EQ(expected, bt.call(*i, shift)); } } } { FOR_UINT32_SHIFTS(shift) { RawMachineAssemblerTester m(kMachUint32); m.Return( m.Word32Equal(m.Int32Constant(0), m.Word32Shl(m.Parameter(0), m.Int32Constant(shift)))); FOR_UINT32_INPUTS(i) { uint32_t expected = 0 == (*i << shift); CHECK_EQ(expected, m.Call(*i)); } } } { FOR_UINT32_SHIFTS(shift) { RawMachineAssemblerTester m(kMachUint32); m.Return( m.Word32Equal(m.Word32Shl(m.Parameter(0), m.Int32Constant(shift)), m.Int32Constant(0))); FOR_UINT32_INPUTS(i) { uint32_t expected = 0 == (*i << shift); CHECK_EQ(expected, m.Call(*i)); } } } } TEST(RunWord32ShrP) { { FOR_UINT32_SHIFTS(shift) { RawMachineAssemblerTester m(kMachUint32); m.Return(m.Word32Shr(m.Parameter(0), m.Int32Constant(shift))); FOR_UINT32_INPUTS(j) { uint32_t expected = *j >> shift; CHECK_EQ(expected, m.Call(*j)); } } } { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn(m.Word32Shr(bt.param0, bt.param1)); FOR_UINT32_INPUTS(i) { FOR_UINT32_SHIFTS(shift) { uint32_t expected = *i >> shift; CHECK_EQ(expected, bt.call(*i, shift)); } } CHECK_EQ(0x00010000u, bt.call(0x80000000, 15)); } } TEST(RunWord32ShrInComparison) { { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn( m.Word32Equal(m.Word32Shr(bt.param0, bt.param1), m.Int32Constant(0))); FOR_UINT32_INPUTS(i) { FOR_UINT32_SHIFTS(shift) { uint32_t expected = 0 == (*i >> shift); CHECK_EQ(expected, bt.call(*i, shift)); } } } { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn( m.Word32Equal(m.Int32Constant(0), m.Word32Shr(bt.param0, bt.param1))); FOR_UINT32_INPUTS(i) { FOR_UINT32_SHIFTS(shift) { uint32_t expected = 0 == (*i >> shift); CHECK_EQ(expected, bt.call(*i, shift)); } } } { FOR_UINT32_SHIFTS(shift) { RawMachineAssemblerTester m(kMachUint32); m.Return( m.Word32Equal(m.Int32Constant(0), m.Word32Shr(m.Parameter(0), m.Int32Constant(shift)))); FOR_UINT32_INPUTS(i) { uint32_t expected = 0 == (*i >> shift); CHECK_EQ(expected, m.Call(*i)); } } } { FOR_UINT32_SHIFTS(shift) { RawMachineAssemblerTester m(kMachUint32); m.Return( m.Word32Equal(m.Word32Shr(m.Parameter(0), m.Int32Constant(shift)), m.Int32Constant(0))); FOR_UINT32_INPUTS(i) { uint32_t expected = 0 == (*i >> shift); CHECK_EQ(expected, m.Call(*i)); } } } } TEST(RunWord32SarP) { { FOR_INT32_SHIFTS(shift) { RawMachineAssemblerTester m(kMachInt32); m.Return(m.Word32Sar(m.Parameter(0), m.Int32Constant(shift))); FOR_INT32_INPUTS(j) { int32_t expected = *j >> shift; CHECK_EQ(expected, m.Call(*j)); } } } { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn(m.Word32Sar(bt.param0, bt.param1)); FOR_INT32_INPUTS(i) { FOR_INT32_SHIFTS(shift) { int32_t expected = *i >> shift; CHECK_EQ(expected, bt.call(*i, shift)); } } CHECK_EQ(bit_cast(0xFFFF0000), bt.call(0x80000000, 15)); } } TEST(RunWord32SarInComparison) { { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn( m.Word32Equal(m.Word32Sar(bt.param0, bt.param1), m.Int32Constant(0))); FOR_INT32_INPUTS(i) { FOR_INT32_SHIFTS(shift) { int32_t expected = 0 == (*i >> shift); CHECK_EQ(expected, bt.call(*i, shift)); } } } { RawMachineAssemblerTester m; Int32BinopTester bt(&m); bt.AddReturn( m.Word32Equal(m.Int32Constant(0), m.Word32Sar(bt.param0, bt.param1))); FOR_INT32_INPUTS(i) { FOR_INT32_SHIFTS(shift) { int32_t expected = 0 == (*i >> shift); CHECK_EQ(expected, bt.call(*i, shift)); } } } { FOR_INT32_SHIFTS(shift) { RawMachineAssemblerTester m(kMachInt32); m.Return( m.Word32Equal(m.Int32Constant(0), m.Word32Sar(m.Parameter(0), m.Int32Constant(shift)))); FOR_INT32_INPUTS(i) { int32_t expected = 0 == (*i >> shift); CHECK_EQ(expected, m.Call(*i)); } } } { FOR_INT32_SHIFTS(shift) { RawMachineAssemblerTester m(kMachInt32); m.Return( m.Word32Equal(m.Word32Sar(m.Parameter(0), m.Int32Constant(shift)), m.Int32Constant(0))); FOR_INT32_INPUTS(i) { int32_t expected = 0 == (*i >> shift); CHECK_EQ(expected, m.Call(*i)); } } } } TEST(RunWord32RorP) { { FOR_UINT32_SHIFTS(shift) { RawMachineAssemblerTester m(kMachUint32); m.Return(m.Word32Ror(m.Parameter(0), m.Int32Constant(shift))); FOR_UINT32_INPUTS(j) { int32_t expected = bits::RotateRight32(*j, shift); CHECK_EQ(expected, m.Call(*j)); } } } { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn(m.Word32Ror(bt.param0, bt.param1)); FOR_UINT32_INPUTS(i) { FOR_UINT32_SHIFTS(shift) { uint32_t expected = bits::RotateRight32(*i, shift); CHECK_EQ(expected, bt.call(*i, shift)); } } } } TEST(RunWord32RorInComparison) { { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn( m.Word32Equal(m.Word32Ror(bt.param0, bt.param1), m.Int32Constant(0))); FOR_UINT32_INPUTS(i) { FOR_UINT32_SHIFTS(shift) { uint32_t expected = 0 == bits::RotateRight32(*i, shift); CHECK_EQ(expected, bt.call(*i, shift)); } } } { RawMachineAssemblerTester m; Uint32BinopTester bt(&m); bt.AddReturn( m.Word32Equal(m.Int32Constant(0), m.Word32Ror(bt.param0, bt.param1))); FOR_UINT32_INPUTS(i) { FOR_UINT32_SHIFTS(shift) { uint32_t expected = 0 == bits::RotateRight32(*i, shift); CHECK_EQ(expected, bt.call(*i, shift)); } } } { FOR_UINT32_SHIFTS(shift) { RawMachineAssemblerTester m(kMachUint32); m.Return( m.Word32Equal(m.Int32Constant(0), m.Word32Ror(m.Parameter(0), m.Int32Constant(shift)))); FOR_UINT32_INPUTS(i) { uint32_t expected = 0 == bits::RotateRight32(*i, shift); CHECK_EQ(expected, m.Call(*i)); } } } { FOR_UINT32_SHIFTS(shift) { RawMachineAssemblerTester m(kMachUint32); m.Return( m.Word32Equal(m.Word32Ror(m.Parameter(0), m.Int32Constant(shift)), m.Int32Constant(0))); FOR_UINT32_INPUTS(i) { uint32_t expected = 0 == bits::RotateRight32(*i, shift); CHECK_EQ(expected, m.Call(*i)); } } } } TEST(RunWord32NotP) { RawMachineAssemblerTester m(kMachInt32); m.Return(m.Word32Not(m.Parameter(0))); FOR_INT32_INPUTS(i) { int expected = ~(*i); CHECK_EQ(expected, m.Call(*i)); } } TEST(RunInt32NegP) { RawMachineAssemblerTester m(kMachInt32); m.Return(m.Int32Neg(m.Parameter(0))); FOR_INT32_INPUTS(i) { int expected = -*i; CHECK_EQ(expected, m.Call(*i)); } } TEST(RunWord32EqualAndWord32SarP) { { RawMachineAssemblerTester m(kMachInt32, kMachInt32, kMachUint32); m.Return(m.Word32Equal(m.Parameter(0), m.Word32Sar(m.Parameter(1), m.Parameter(2)))); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { FOR_UINT32_SHIFTS(shift) { int32_t expected = (*i == (*j >> shift)); CHECK_EQ(expected, m.Call(*i, *j, shift)); } } } } { RawMachineAssemblerTester m(kMachInt32, kMachUint32, kMachInt32); m.Return(m.Word32Equal(m.Word32Sar(m.Parameter(0), m.Parameter(1)), m.Parameter(2))); FOR_INT32_INPUTS(i) { FOR_UINT32_SHIFTS(shift) { FOR_INT32_INPUTS(k) { int32_t expected = ((*i >> shift) == *k); CHECK_EQ(expected, m.Call(*i, shift, *k)); } } } } } TEST(RunWord32EqualAndWord32ShlP) { { RawMachineAssemblerTester m(kMachUint32, kMachUint32, kMachUint32); m.Return(m.Word32Equal(m.Parameter(0), m.Word32Shl(m.Parameter(1), m.Parameter(2)))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { FOR_UINT32_SHIFTS(shift) { int32_t expected = (*i == (*j << shift)); CHECK_EQ(expected, m.Call(*i, *j, shift)); } } } } { RawMachineAssemblerTester m(kMachUint32, kMachUint32, kMachUint32); m.Return(m.Word32Equal(m.Word32Shl(m.Parameter(0), m.Parameter(1)), m.Parameter(2))); FOR_UINT32_INPUTS(i) { FOR_UINT32_SHIFTS(shift) { FOR_UINT32_INPUTS(k) { int32_t expected = ((*i << shift) == *k); CHECK_EQ(expected, m.Call(*i, shift, *k)); } } } } } TEST(RunWord32EqualAndWord32ShrP) { { RawMachineAssemblerTester m(kMachUint32, kMachUint32, kMachUint32); m.Return(m.Word32Equal(m.Parameter(0), m.Word32Shr(m.Parameter(1), m.Parameter(2)))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { FOR_UINT32_SHIFTS(shift) { int32_t expected = (*i == (*j >> shift)); CHECK_EQ(expected, m.Call(*i, *j, shift)); } } } } { RawMachineAssemblerTester m(kMachUint32, kMachUint32, kMachUint32); m.Return(m.Word32Equal(m.Word32Shr(m.Parameter(0), m.Parameter(1)), m.Parameter(2))); FOR_UINT32_INPUTS(i) { FOR_UINT32_SHIFTS(shift) { FOR_UINT32_INPUTS(k) { int32_t expected = ((*i >> shift) == *k); CHECK_EQ(expected, m.Call(*i, shift, *k)); } } } } } TEST(RunDeadNodes) { for (int i = 0; true; i++) { RawMachineAssemblerTester m(i == 5 ? kMachInt32 : kMachNone); int constant = 0x55 + i; switch (i) { case 0: m.Int32Constant(44); break; case 1: m.StringConstant("unused"); break; case 2: m.NumberConstant(11.1); break; case 3: m.PointerConstant(&constant); break; case 4: m.LoadFromPointer(&constant, kMachInt32); break; case 5: m.Parameter(0); break; default: return; } m.Return(m.Int32Constant(constant)); if (i != 5) { CHECK_EQ(constant, m.Call()); } else { CHECK_EQ(constant, m.Call(0)); } } } TEST(RunDeadInt32Binops) { RawMachineAssemblerTester m; const Operator* kOps[] = { m.machine()->Word32And(), m.machine()->Word32Or(), m.machine()->Word32Xor(), m.machine()->Word32Shl(), m.machine()->Word32Shr(), m.machine()->Word32Sar(), m.machine()->Word32Ror(), m.machine()->Word32Equal(), m.machine()->Int32Add(), m.machine()->Int32Sub(), m.machine()->Int32Mul(), m.machine()->Int32MulHigh(), m.machine()->Int32Div(), m.machine()->Uint32Div(), m.machine()->Int32Mod(), m.machine()->Uint32Mod(), m.machine()->Uint32MulHigh(), m.machine()->Int32LessThan(), m.machine()->Int32LessThanOrEqual(), m.machine()->Uint32LessThan(), m.machine()->Uint32LessThanOrEqual()}; for (size_t i = 0; i < arraysize(kOps); ++i) { RawMachineAssemblerTester m(kMachInt32, kMachInt32); int32_t constant = static_cast(0x55555 + i); m.AddNode(kOps[i], m.Parameter(0), m.Parameter(1)); m.Return(m.Int32Constant(constant)); CHECK_EQ(constant, m.Call(1, 1)); } } template static void RunLoadImmIndex(MachineType rep) { const int kNumElems = 3; Type buffer[kNumElems]; // initialize the buffer with raw data. byte* raw = reinterpret_cast(buffer); for (size_t i = 0; i < sizeof(buffer); i++) { raw[i] = static_cast((i + sizeof(buffer)) ^ 0xAA); } // Test with various large and small offsets. for (int offset = -1; offset <= 200000; offset *= -5) { for (int i = 0; i < kNumElems; i++) { RawMachineAssemblerTester m; Node* base = m.PointerConstant(buffer - offset); Node* index = m.Int32Constant((offset + i) * sizeof(buffer[0])); m.Return(m.Load(rep, base, index)); Type expected = buffer[i]; Type actual = m.Call(); CHECK(expected == actual); } } } TEST(RunLoadImmIndex) { RunLoadImmIndex(kMachInt8); RunLoadImmIndex(kMachUint8); RunLoadImmIndex(kMachInt16); RunLoadImmIndex(kMachUint16); RunLoadImmIndex(kMachInt32); RunLoadImmIndex(kMachUint32); RunLoadImmIndex(kMachAnyTagged); // TODO(titzer): test kRepBit loads // TODO(titzer): test kMachFloat64 loads // TODO(titzer): test various indexing modes. } template static void RunLoadStore(MachineType rep) { const int kNumElems = 4; CType buffer[kNumElems]; for (int32_t x = 0; x < kNumElems; x++) { int32_t y = kNumElems - x - 1; // initialize the buffer with raw data. byte* raw = reinterpret_cast(buffer); for (size_t i = 0; i < sizeof(buffer); i++) { raw[i] = static_cast((i + sizeof(buffer)) ^ 0xAA); } RawMachineAssemblerTester m; int32_t OK = 0x29000 + x; Node* base = m.PointerConstant(buffer); Node* index0 = m.IntPtrConstant(x * sizeof(buffer[0])); Node* load = m.Load(rep, base, index0); Node* index1 = m.IntPtrConstant(y * sizeof(buffer[0])); m.Store(rep, base, index1, load, kNoWriteBarrier); m.Return(m.Int32Constant(OK)); CHECK(buffer[x] != buffer[y]); CHECK_EQ(OK, m.Call()); CHECK(buffer[x] == buffer[y]); } } TEST(RunLoadStore) { RunLoadStore(kMachInt8); RunLoadStore(kMachUint8); RunLoadStore(kMachInt16); RunLoadStore(kMachUint16); RunLoadStore(kMachInt32); RunLoadStore(kMachUint32); RunLoadStore(kMachAnyTagged); RunLoadStore(kMachFloat32); RunLoadStore(kMachFloat64); } TEST(RunFloat32Add) { BufferedRawMachineAssemblerTester m(kMachFloat32, kMachFloat32); m.Return(m.Float32Add(m.Parameter(0), m.Parameter(1))); FOR_FLOAT32_INPUTS(i) { FOR_FLOAT32_INPUTS(j) { volatile float expected = *i + *j; CheckFloatEq(expected, m.Call(*i, *j)); } } } TEST(RunFloat32Sub) { BufferedRawMachineAssemblerTester m(kMachFloat32, kMachFloat32); m.Return(m.Float32Sub(m.Parameter(0), m.Parameter(1))); FOR_FLOAT32_INPUTS(i) { FOR_FLOAT32_INPUTS(j) { volatile float expected = *i - *j; CheckFloatEq(expected, m.Call(*i, *j)); } } } TEST(RunFloat32Mul) { BufferedRawMachineAssemblerTester m(kMachFloat32, kMachFloat32); m.Return(m.Float32Mul(m.Parameter(0), m.Parameter(1))); FOR_FLOAT32_INPUTS(i) { FOR_FLOAT32_INPUTS(j) { volatile float expected = *i * *j; CheckFloatEq(expected, m.Call(*i, *j)); } } } TEST(RunFloat32Div) { BufferedRawMachineAssemblerTester m(kMachFloat32, kMachFloat32); m.Return(m.Float32Div(m.Parameter(0), m.Parameter(1))); FOR_FLOAT32_INPUTS(i) { FOR_FLOAT32_INPUTS(j) { volatile float expected = *i / *j; CheckFloatEq(expected, m.Call(*i, *j)); } } } TEST(RunFloat64Add) { BufferedRawMachineAssemblerTester m(kMachFloat64, kMachFloat64); m.Return(m.Float64Add(m.Parameter(0), m.Parameter(1))); FOR_FLOAT64_INPUTS(i) { FOR_FLOAT64_INPUTS(j) { CheckDoubleEq(*i + *j, m.Call(*i, *j)); } } } TEST(RunFloat64Sub) { BufferedRawMachineAssemblerTester m(kMachFloat64, kMachFloat64); m.Return(m.Float64Sub(m.Parameter(0), m.Parameter(1))); FOR_FLOAT64_INPUTS(i) { FOR_FLOAT64_INPUTS(j) { CheckDoubleEq(*i - *j, m.Call(*i, *j)); } } } TEST(RunFloat64Mul) { BufferedRawMachineAssemblerTester m(kMachFloat64, kMachFloat64); m.Return(m.Float64Mul(m.Parameter(0), m.Parameter(1))); FOR_FLOAT64_INPUTS(i) { FOR_FLOAT64_INPUTS(j) { volatile double expected = *i * *j; CheckDoubleEq(expected, m.Call(*i, *j)); } } } TEST(RunFloat64Div) { BufferedRawMachineAssemblerTester m(kMachFloat64, kMachFloat64); m.Return(m.Float64Div(m.Parameter(0), m.Parameter(1))); FOR_FLOAT64_INPUTS(i) { FOR_FLOAT64_INPUTS(j) { volatile double expected = *i / *j; CheckDoubleEq(expected, m.Call(*i, *j)); } } } TEST(RunFloat64Mod) { BufferedRawMachineAssemblerTester m(kMachFloat64, kMachFloat64); m.Return(m.Float64Mod(m.Parameter(0), m.Parameter(1))); FOR_FLOAT64_INPUTS(i) { FOR_FLOAT64_INPUTS(j) { CheckDoubleEq(modulo(*i, *j), m.Call(*i, *j)); } } } TEST(RunDeadFloat32Binops) { RawMachineAssemblerTester m; const Operator* ops[] = {m.machine()->Float32Add(), m.machine()->Float32Sub(), m.machine()->Float32Mul(), m.machine()->Float32Div(), NULL}; for (int i = 0; ops[i] != NULL; i++) { RawMachineAssemblerTester m; int constant = 0x53355 + i; m.AddNode(ops[i], m.Float32Constant(0.1f), m.Float32Constant(1.11f)); m.Return(m.Int32Constant(constant)); CHECK_EQ(constant, m.Call()); } } TEST(RunDeadFloat64Binops) { RawMachineAssemblerTester m; const Operator* ops[] = {m.machine()->Float64Add(), m.machine()->Float64Sub(), m.machine()->Float64Mul(), m.machine()->Float64Div(), m.machine()->Float64Mod(), NULL}; for (int i = 0; ops[i] != NULL; i++) { RawMachineAssemblerTester m; int constant = 0x53355 + i; m.AddNode(ops[i], m.Float64Constant(0.1), m.Float64Constant(1.11)); m.Return(m.Int32Constant(constant)); CHECK_EQ(constant, m.Call()); } } TEST(RunFloat32AddP) { RawMachineAssemblerTester m; Float32BinopTester bt(&m); bt.AddReturn(m.Float32Add(bt.param0, bt.param1)); FOR_FLOAT32_INPUTS(pl) { FOR_FLOAT32_INPUTS(pr) { float expected = *pl + *pr; CheckFloatEq(expected, bt.call(*pl, *pr)); } } } TEST(RunFloat64AddP) { RawMachineAssemblerTester m; Float64BinopTester bt(&m); bt.AddReturn(m.Float64Add(bt.param0, bt.param1)); FOR_FLOAT64_INPUTS(pl) { FOR_FLOAT64_INPUTS(pr) { double expected = *pl + *pr; CheckDoubleEq(expected, bt.call(*pl, *pr)); } } } TEST(RunFloa32MaxP) { RawMachineAssemblerTester m; Float32BinopTester bt(&m); if (!m.machine()->Float32Max().IsSupported()) return; bt.AddReturn(m.Float32Max(bt.param0, bt.param1)); FOR_FLOAT32_INPUTS(pl) { FOR_FLOAT32_INPUTS(pr) { double expected = *pl > *pr ? *pl : *pr; CheckDoubleEq(expected, bt.call(*pl, *pr)); } } } TEST(RunFloat64MaxP) { RawMachineAssemblerTester m; Float64BinopTester bt(&m); if (!m.machine()->Float64Max().IsSupported()) return; bt.AddReturn(m.Float64Max(bt.param0, bt.param1)); FOR_FLOAT64_INPUTS(pl) { FOR_FLOAT64_INPUTS(pr) { double expected = *pl > *pr ? *pl : *pr; CheckDoubleEq(expected, bt.call(*pl, *pr)); } } } TEST(RunFloat32MinP) { RawMachineAssemblerTester m; Float32BinopTester bt(&m); if (!m.machine()->Float32Min().IsSupported()) return; bt.AddReturn(m.Float32Min(bt.param0, bt.param1)); FOR_FLOAT32_INPUTS(pl) { FOR_FLOAT32_INPUTS(pr) { double expected = *pl < *pr ? *pl : *pr; CheckDoubleEq(expected, bt.call(*pl, *pr)); } } } TEST(RunFloat64MinP) { RawMachineAssemblerTester m; Float64BinopTester bt(&m); if (!m.machine()->Float64Min().IsSupported()) return; bt.AddReturn(m.Float64Min(bt.param0, bt.param1)); FOR_FLOAT64_INPUTS(pl) { FOR_FLOAT64_INPUTS(pr) { double expected = *pl < *pr ? *pl : *pr; CheckDoubleEq(expected, bt.call(*pl, *pr)); } } } TEST(RunFloat32SubP) { RawMachineAssemblerTester m; Float32BinopTester bt(&m); bt.AddReturn(m.Float32Sub(bt.param0, bt.param1)); FOR_FLOAT32_INPUTS(pl) { FOR_FLOAT32_INPUTS(pr) { float expected = *pl - *pr; CheckFloatEq(expected, bt.call(*pl, *pr)); } } } TEST(RunFloat32SubImm1) { FOR_FLOAT32_INPUTS(i) { BufferedRawMachineAssemblerTester m(kMachFloat32); m.Return(m.Float32Sub(m.Float32Constant(*i), m.Parameter(0))); FOR_FLOAT32_INPUTS(j) { volatile float expected = *i - *j; CheckFloatEq(expected, m.Call(*j)); } } } TEST(RunFloat32SubImm2) { FOR_FLOAT32_INPUTS(i) { BufferedRawMachineAssemblerTester m(kMachFloat32); m.Return(m.Float32Sub(m.Parameter(0), m.Float32Constant(*i))); FOR_FLOAT32_INPUTS(j) { volatile float expected = *j - *i; CheckFloatEq(expected, m.Call(*j)); } } } TEST(RunFloat64SubImm1) { FOR_FLOAT64_INPUTS(i) { BufferedRawMachineAssemblerTester m(kMachFloat64); m.Return(m.Float64Sub(m.Float64Constant(*i), m.Parameter(0))); FOR_FLOAT64_INPUTS(j) { CheckFloatEq(*i - *j, m.Call(*j)); } } } TEST(RunFloat64SubImm2) { FOR_FLOAT64_INPUTS(i) { BufferedRawMachineAssemblerTester m(kMachFloat64); m.Return(m.Float64Sub(m.Parameter(0), m.Float64Constant(*i))); FOR_FLOAT64_INPUTS(j) { CheckFloatEq(*j - *i, m.Call(*j)); } } } TEST(RunFloat64SubP) { RawMachineAssemblerTester m; Float64BinopTester bt(&m); bt.AddReturn(m.Float64Sub(bt.param0, bt.param1)); FOR_FLOAT64_INPUTS(pl) { FOR_FLOAT64_INPUTS(pr) { double expected = *pl - *pr; CheckDoubleEq(expected, bt.call(*pl, *pr)); } } } TEST(RunFloat32MulP) { RawMachineAssemblerTester m; Float32BinopTester bt(&m); bt.AddReturn(m.Float32Mul(bt.param0, bt.param1)); FOR_FLOAT32_INPUTS(pl) { FOR_FLOAT32_INPUTS(pr) { float expected = *pl * *pr; CheckFloatEq(expected, bt.call(*pl, *pr)); } } } TEST(RunFloat64MulP) { RawMachineAssemblerTester m; Float64BinopTester bt(&m); bt.AddReturn(m.Float64Mul(bt.param0, bt.param1)); FOR_FLOAT64_INPUTS(pl) { FOR_FLOAT64_INPUTS(pr) { double expected = *pl * *pr; CheckDoubleEq(expected, bt.call(*pl, *pr)); } } } TEST(RunFloat64MulAndFloat64Add1) { BufferedRawMachineAssemblerTester m(kMachFloat64, kMachFloat64, kMachFloat64); m.Return(m.Float64Add(m.Float64Mul(m.Parameter(0), m.Parameter(1)), m.Parameter(2))); FOR_FLOAT64_INPUTS(i) { FOR_FLOAT64_INPUTS(j) { FOR_FLOAT64_INPUTS(k) { CheckDoubleEq((*i * *j) + *k, m.Call(*i, *j, *k)); } } } } TEST(RunFloat64MulAndFloat64Add2) { BufferedRawMachineAssemblerTester m(kMachFloat64, kMachFloat64, kMachFloat64); m.Return(m.Float64Add(m.Parameter(0), m.Float64Mul(m.Parameter(1), m.Parameter(2)))); FOR_FLOAT64_INPUTS(i) { FOR_FLOAT64_INPUTS(j) { FOR_FLOAT64_INPUTS(k) { CheckDoubleEq(*i + (*j * *k), m.Call(*i, *j, *k)); } } } } TEST(RunFloat64MulAndFloat64Sub1) { BufferedRawMachineAssemblerTester m(kMachFloat64, kMachFloat64, kMachFloat64); m.Return(m.Float64Sub(m.Float64Mul(m.Parameter(0), m.Parameter(1)), m.Parameter(2))); FOR_FLOAT64_INPUTS(i) { FOR_FLOAT64_INPUTS(j) { FOR_FLOAT64_INPUTS(k) { CheckDoubleEq((*i * *j) - *k, m.Call(*i, *j, *k)); } } } } TEST(RunFloat64MulAndFloat64Sub2) { BufferedRawMachineAssemblerTester m(kMachFloat64, kMachFloat64, kMachFloat64); m.Return(m.Float64Sub(m.Parameter(0), m.Float64Mul(m.Parameter(1), m.Parameter(2)))); FOR_FLOAT64_INPUTS(i) { FOR_FLOAT64_INPUTS(j) { FOR_FLOAT64_INPUTS(k) { CheckDoubleEq(*i - (*j * *k), m.Call(*i, *j, *k)); } } } } TEST(RunFloat64MulImm1) { FOR_FLOAT64_INPUTS(i) { BufferedRawMachineAssemblerTester m(kMachFloat64); m.Return(m.Float64Mul(m.Float64Constant(*i), m.Parameter(0))); FOR_FLOAT64_INPUTS(j) { CheckFloatEq(*i * *j, m.Call(*j)); } } } TEST(RunFloat64MulImm2) { FOR_FLOAT64_INPUTS(i) { BufferedRawMachineAssemblerTester m(kMachFloat64); m.Return(m.Float64Mul(m.Parameter(0), m.Float64Constant(*i))); FOR_FLOAT64_INPUTS(j) { CheckFloatEq(*j * *i, m.Call(*j)); } } } TEST(RunFloat32DivP) { RawMachineAssemblerTester m; Float32BinopTester bt(&m); bt.AddReturn(m.Float32Div(bt.param0, bt.param1)); FOR_FLOAT32_INPUTS(pl) { FOR_FLOAT32_INPUTS(pr) { float expected = *pl / *pr; CheckFloatEq(expected, bt.call(*pl, *pr)); } } } TEST(RunFloat64DivP) { RawMachineAssemblerTester m; Float64BinopTester bt(&m); bt.AddReturn(m.Float64Div(bt.param0, bt.param1)); FOR_FLOAT64_INPUTS(pl) { FOR_FLOAT64_INPUTS(pr) { double expected = *pl / *pr; CheckDoubleEq(expected, bt.call(*pl, *pr)); } } } TEST(RunFloat64ModP) { RawMachineAssemblerTester m; Float64BinopTester bt(&m); bt.AddReturn(m.Float64Mod(bt.param0, bt.param1)); FOR_FLOAT64_INPUTS(i) { FOR_FLOAT64_INPUTS(j) { double expected = modulo(*i, *j); double found = bt.call(*i, *j); CheckDoubleEq(expected, found); } } } TEST(RunChangeInt32ToFloat64_A) { int32_t magic = 0x986234; BufferedRawMachineAssemblerTester m; m.Return(m.ChangeInt32ToFloat64(m.Int32Constant(magic))); CheckDoubleEq(static_cast(magic), m.Call()); } TEST(RunChangeInt32ToFloat64_B) { BufferedRawMachineAssemblerTester m(kMachInt32); m.Return(m.ChangeInt32ToFloat64(m.Parameter(0))); FOR_INT32_INPUTS(i) { CheckDoubleEq(static_cast(*i), m.Call(*i)); } } TEST(RunChangeUint32ToFloat64) { BufferedRawMachineAssemblerTester m(kMachUint32); m.Return(m.ChangeUint32ToFloat64(m.Parameter(0))); FOR_UINT32_INPUTS(i) { CheckDoubleEq(static_cast(*i), m.Call(*i)); } } TEST(RunChangeFloat64ToInt32_A) { BufferedRawMachineAssemblerTester m; double magic = 11.1; m.Return(m.ChangeFloat64ToInt32(m.Float64Constant(magic))); CHECK_EQ(static_cast(magic), m.Call()); } TEST(RunChangeFloat64ToInt32_B) { BufferedRawMachineAssemblerTester m(kMachFloat64); m.Return(m.ChangeFloat64ToInt32(m.Parameter(0))); // Note we don't check fractional inputs, or inputs outside the range of // int32, because these Convert operators really should be Change operators. FOR_INT32_INPUTS(i) { CHECK_EQ(*i, m.Call(static_cast(*i))); } for (int32_t n = 1; n < 31; ++n) { CHECK_EQ(1 << n, m.Call(static_cast(1 << n))); } for (int32_t n = 1; n < 31; ++n) { CHECK_EQ(3 << n, m.Call(static_cast(3 << n))); } } TEST(RunChangeFloat64ToUint32) { BufferedRawMachineAssemblerTester m(kMachFloat64); m.Return(m.ChangeFloat64ToUint32(m.Parameter(0))); { FOR_UINT32_INPUTS(i) { CHECK_EQ(*i, m.Call(static_cast(*i))); } } // Check various powers of 2. for (int32_t n = 1; n < 31; ++n) { { CHECK_EQ(1u << n, m.Call(static_cast(1u << n))); } { CHECK_EQ(3u << n, m.Call(static_cast(3u << n))); } } // Note we don't check fractional inputs, because these Convert operators // really should be Change operators. } TEST(RunTruncateFloat64ToFloat32) { BufferedRawMachineAssemblerTester m(kMachFloat64); m.Return(m.TruncateFloat64ToFloat32(m.Parameter(0))); FOR_FLOAT64_INPUTS(i) { CheckFloatEq(DoubleToFloat32(*i), m.Call(*i)); } } TEST(RunDeadChangeFloat64ToInt32) { RawMachineAssemblerTester m; const int magic = 0x88abcda4; m.ChangeFloat64ToInt32(m.Float64Constant(999.78)); m.Return(m.Int32Constant(magic)); CHECK_EQ(magic, m.Call()); } TEST(RunDeadChangeInt32ToFloat64) { RawMachineAssemblerTester m; const int magic = 0x8834abcd; m.ChangeInt32ToFloat64(m.Int32Constant(magic - 6888)); m.Return(m.Int32Constant(magic)); CHECK_EQ(magic, m.Call()); } TEST(RunLoopPhiInduction2) { RawMachineAssemblerTester m; int false_val = 0x10777; // x = false_val; while(false) { x++; } return x; MLabel header, body, end; Node* false_node = m.Int32Constant(false_val); m.Goto(&header); m.Bind(&header); Node* phi = m.Phi(kMachInt32, false_node, false_node); m.Branch(m.Int32Constant(0), &body, &end); m.Bind(&body); Node* add = m.Int32Add(phi, m.Int32Constant(1)); phi->ReplaceInput(1, add); m.Goto(&header); m.Bind(&end); m.Return(phi); CHECK_EQ(false_val, m.Call()); } TEST(RunFloatDiamond) { RawMachineAssemblerTester m; const int magic = 99645; float buffer = 0.1f; float constant = 99.99f; MLabel blocka, blockb, end; Node* k1 = m.Float32Constant(constant); Node* k2 = m.Float32Constant(0 - constant); m.Branch(m.Int32Constant(0), &blocka, &blockb); m.Bind(&blocka); m.Goto(&end); m.Bind(&blockb); m.Goto(&end); m.Bind(&end); Node* phi = m.Phi(kMachFloat32, k2, k1); m.Store(kMachFloat32, m.PointerConstant(&buffer), m.IntPtrConstant(0), phi, kNoWriteBarrier); m.Return(m.Int32Constant(magic)); CHECK_EQ(magic, m.Call()); CHECK(constant == buffer); } TEST(RunDoubleDiamond) { RawMachineAssemblerTester m; const int magic = 99645; double buffer = 0.1; double constant = 99.99; MLabel blocka, blockb, end; Node* k1 = m.Float64Constant(constant); Node* k2 = m.Float64Constant(0 - constant); m.Branch(m.Int32Constant(0), &blocka, &blockb); m.Bind(&blocka); m.Goto(&end); m.Bind(&blockb); m.Goto(&end); m.Bind(&end); Node* phi = m.Phi(kMachFloat64, k2, k1); m.Store(kMachFloat64, m.PointerConstant(&buffer), m.Int32Constant(0), phi, kNoWriteBarrier); m.Return(m.Int32Constant(magic)); CHECK_EQ(magic, m.Call()); CHECK_EQ(constant, buffer); } TEST(RunRefDiamond) { RawMachineAssemblerTester m; const int magic = 99644; Handle rexpected = CcTest::i_isolate()->factory()->InternalizeUtf8String("A"); String* buffer; MLabel blocka, blockb, end; Node* k1 = m.StringConstant("A"); Node* k2 = m.StringConstant("B"); m.Branch(m.Int32Constant(0), &blocka, &blockb); m.Bind(&blocka); m.Goto(&end); m.Bind(&blockb); m.Goto(&end); m.Bind(&end); Node* phi = m.Phi(kMachAnyTagged, k2, k1); m.Store(kMachAnyTagged, m.PointerConstant(&buffer), m.Int32Constant(0), phi, kNoWriteBarrier); m.Return(m.Int32Constant(magic)); CHECK_EQ(magic, m.Call()); CHECK(rexpected->SameValue(buffer)); } TEST(RunDoubleRefDiamond) { RawMachineAssemblerTester m; const int magic = 99648; double dbuffer = 0.1; double dconstant = 99.99; Handle rexpected = CcTest::i_isolate()->factory()->InternalizeUtf8String("AX"); String* rbuffer; MLabel blocka, blockb, end; Node* d1 = m.Float64Constant(dconstant); Node* d2 = m.Float64Constant(0 - dconstant); Node* r1 = m.StringConstant("AX"); Node* r2 = m.StringConstant("BX"); m.Branch(m.Int32Constant(0), &blocka, &blockb); m.Bind(&blocka); m.Goto(&end); m.Bind(&blockb); m.Goto(&end); m.Bind(&end); Node* dphi = m.Phi(kMachFloat64, d2, d1); Node* rphi = m.Phi(kMachAnyTagged, r2, r1); m.Store(kMachFloat64, m.PointerConstant(&dbuffer), m.Int32Constant(0), dphi, kNoWriteBarrier); m.Store(kMachAnyTagged, m.PointerConstant(&rbuffer), m.Int32Constant(0), rphi, kNoWriteBarrier); m.Return(m.Int32Constant(magic)); CHECK_EQ(magic, m.Call()); CHECK_EQ(dconstant, dbuffer); CHECK(rexpected->SameValue(rbuffer)); } TEST(RunDoubleRefDoubleDiamond) { RawMachineAssemblerTester m; const int magic = 99649; double dbuffer = 0.1; double dconstant = 99.997; Handle rexpected = CcTest::i_isolate()->factory()->InternalizeUtf8String("AD"); String* rbuffer; MLabel blocka, blockb, mid, blockd, blocke, end; Node* d1 = m.Float64Constant(dconstant); Node* d2 = m.Float64Constant(0 - dconstant); Node* r1 = m.StringConstant("AD"); Node* r2 = m.StringConstant("BD"); m.Branch(m.Int32Constant(0), &blocka, &blockb); m.Bind(&blocka); m.Goto(&mid); m.Bind(&blockb); m.Goto(&mid); m.Bind(&mid); Node* dphi1 = m.Phi(kMachFloat64, d2, d1); Node* rphi1 = m.Phi(kMachAnyTagged, r2, r1); m.Branch(m.Int32Constant(0), &blockd, &blocke); m.Bind(&blockd); m.Goto(&end); m.Bind(&blocke); m.Goto(&end); m.Bind(&end); Node* dphi2 = m.Phi(kMachFloat64, d1, dphi1); Node* rphi2 = m.Phi(kMachAnyTagged, r1, rphi1); m.Store(kMachFloat64, m.PointerConstant(&dbuffer), m.Int32Constant(0), dphi2, kNoWriteBarrier); m.Store(kMachAnyTagged, m.PointerConstant(&rbuffer), m.Int32Constant(0), rphi2, kNoWriteBarrier); m.Return(m.Int32Constant(magic)); CHECK_EQ(magic, m.Call()); CHECK_EQ(dconstant, dbuffer); CHECK(rexpected->SameValue(rbuffer)); } TEST(RunDoubleLoopPhi) { RawMachineAssemblerTester m; MLabel header, body, end; int magic = 99773; double buffer = 0.99; double dconstant = 777.1; Node* zero = m.Int32Constant(0); Node* dk = m.Float64Constant(dconstant); m.Goto(&header); m.Bind(&header); Node* phi = m.Phi(kMachFloat64, dk, dk); phi->ReplaceInput(1, phi); m.Branch(zero, &body, &end); m.Bind(&body); m.Goto(&header); m.Bind(&end); m.Store(kMachFloat64, m.PointerConstant(&buffer), m.Int32Constant(0), phi, kNoWriteBarrier); m.Return(m.Int32Constant(magic)); CHECK_EQ(magic, m.Call()); } TEST(RunCountToTenAccRaw) { RawMachineAssemblerTester m; Node* zero = m.Int32Constant(0); Node* ten = m.Int32Constant(10); Node* one = m.Int32Constant(1); MLabel header, body, body_cont, end; m.Goto(&header); m.Bind(&header); Node* i = m.Phi(kMachInt32, zero, zero); Node* j = m.Phi(kMachInt32, zero, zero); m.Goto(&body); m.Bind(&body); Node* next_i = m.Int32Add(i, one); Node* next_j = m.Int32Add(j, one); m.Branch(m.Word32Equal(next_i, ten), &end, &body_cont); m.Bind(&body_cont); i->ReplaceInput(1, next_i); j->ReplaceInput(1, next_j); m.Goto(&header); m.Bind(&end); m.Return(ten); CHECK_EQ(10, m.Call()); } TEST(RunCountToTenAccRaw2) { RawMachineAssemblerTester m; Node* zero = m.Int32Constant(0); Node* ten = m.Int32Constant(10); Node* one = m.Int32Constant(1); MLabel header, body, body_cont, end; m.Goto(&header); m.Bind(&header); Node* i = m.Phi(kMachInt32, zero, zero); Node* j = m.Phi(kMachInt32, zero, zero); Node* k = m.Phi(kMachInt32, zero, zero); m.Goto(&body); m.Bind(&body); Node* next_i = m.Int32Add(i, one); Node* next_j = m.Int32Add(j, one); Node* next_k = m.Int32Add(j, one); m.Branch(m.Word32Equal(next_i, ten), &end, &body_cont); m.Bind(&body_cont); i->ReplaceInput(1, next_i); j->ReplaceInput(1, next_j); k->ReplaceInput(1, next_k); m.Goto(&header); m.Bind(&end); m.Return(ten); CHECK_EQ(10, m.Call()); } TEST(RunAddTree) { RawMachineAssemblerTester m; int32_t inputs[] = {11, 12, 13, 14, 15, 16, 17, 18}; Node* base = m.PointerConstant(inputs); Node* n0 = m.Load(kMachInt32, base, m.Int32Constant(0 * sizeof(int32_t))); Node* n1 = m.Load(kMachInt32, base, m.Int32Constant(1 * sizeof(int32_t))); Node* n2 = m.Load(kMachInt32, base, m.Int32Constant(2 * sizeof(int32_t))); Node* n3 = m.Load(kMachInt32, base, m.Int32Constant(3 * sizeof(int32_t))); Node* n4 = m.Load(kMachInt32, base, m.Int32Constant(4 * sizeof(int32_t))); Node* n5 = m.Load(kMachInt32, base, m.Int32Constant(5 * sizeof(int32_t))); Node* n6 = m.Load(kMachInt32, base, m.Int32Constant(6 * sizeof(int32_t))); Node* n7 = m.Load(kMachInt32, base, m.Int32Constant(7 * sizeof(int32_t))); Node* i1 = m.Int32Add(n0, n1); Node* i2 = m.Int32Add(n2, n3); Node* i3 = m.Int32Add(n4, n5); Node* i4 = m.Int32Add(n6, n7); Node* i5 = m.Int32Add(i1, i2); Node* i6 = m.Int32Add(i3, i4); Node* i7 = m.Int32Add(i5, i6); m.Return(i7); CHECK_EQ(116, m.Call()); } static const int kFloat64CompareHelperTestCases = 15; static const int kFloat64CompareHelperNodeType = 4; static int Float64CompareHelper(RawMachineAssemblerTester* m, int test_case, int node_type, double x, double y) { static double buffer[2]; buffer[0] = x; buffer[1] = y; CHECK(0 <= test_case && test_case < kFloat64CompareHelperTestCases); CHECK(0 <= node_type && node_type < kFloat64CompareHelperNodeType); CHECK(x < y); bool load_a = node_type / 2 == 1; bool load_b = node_type % 2 == 1; Node* a = load_a ? m->Load(kMachFloat64, m->PointerConstant(&buffer[0])) : m->Float64Constant(x); Node* b = load_b ? m->Load(kMachFloat64, m->PointerConstant(&buffer[1])) : m->Float64Constant(y); Node* cmp = NULL; bool expected = false; switch (test_case) { // Equal tests. case 0: cmp = m->Float64Equal(a, b); expected = false; break; case 1: cmp = m->Float64Equal(a, a); expected = true; break; // LessThan tests. case 2: cmp = m->Float64LessThan(a, b); expected = true; break; case 3: cmp = m->Float64LessThan(b, a); expected = false; break; case 4: cmp = m->Float64LessThan(a, a); expected = false; break; // LessThanOrEqual tests. case 5: cmp = m->Float64LessThanOrEqual(a, b); expected = true; break; case 6: cmp = m->Float64LessThanOrEqual(b, a); expected = false; break; case 7: cmp = m->Float64LessThanOrEqual(a, a); expected = true; break; // NotEqual tests. case 8: cmp = m->Float64NotEqual(a, b); expected = true; break; case 9: cmp = m->Float64NotEqual(b, a); expected = true; break; case 10: cmp = m->Float64NotEqual(a, a); expected = false; break; // GreaterThan tests. case 11: cmp = m->Float64GreaterThan(a, a); expected = false; break; case 12: cmp = m->Float64GreaterThan(a, b); expected = false; break; // GreaterThanOrEqual tests. case 13: cmp = m->Float64GreaterThanOrEqual(a, a); expected = true; break; case 14: cmp = m->Float64GreaterThanOrEqual(b, a); expected = true; break; default: UNREACHABLE(); } m->Return(cmp); return expected; } TEST(RunFloat64Compare) { double inf = V8_INFINITY; // All pairs (a1, a2) are of the form a1 < a2. double inputs[] = {0.0, 1.0, -1.0, 0.22, -1.22, 0.22, -inf, 0.22, 0.22, inf, -inf, inf}; for (int test = 0; test < kFloat64CompareHelperTestCases; test++) { for (int node_type = 0; node_type < kFloat64CompareHelperNodeType; node_type++) { for (size_t input = 0; input < arraysize(inputs); input += 2) { RawMachineAssemblerTester m; int expected = Float64CompareHelper(&m, test, node_type, inputs[input], inputs[input + 1]); CHECK_EQ(expected, m.Call()); } } } } TEST(RunFloat64UnorderedCompare) { RawMachineAssemblerTester m; const Operator* operators[] = {m.machine()->Float64Equal(), m.machine()->Float64LessThan(), m.machine()->Float64LessThanOrEqual()}; double nan = std::numeric_limits::quiet_NaN(); FOR_FLOAT64_INPUTS(i) { for (size_t o = 0; o < arraysize(operators); ++o) { for (int j = 0; j < 2; j++) { RawMachineAssemblerTester m; Node* a = m.Float64Constant(*i); Node* b = m.Float64Constant(nan); if (j == 1) std::swap(a, b); m.Return(m.AddNode(operators[o], a, b)); CHECK_EQ(0, m.Call()); } } } } TEST(RunFloat64Equal) { double input_a = 0.0; double input_b = 0.0; RawMachineAssemblerTester m; Node* a = m.LoadFromPointer(&input_a, kMachFloat64); Node* b = m.LoadFromPointer(&input_b, kMachFloat64); m.Return(m.Float64Equal(a, b)); CompareWrapper cmp(IrOpcode::kFloat64Equal); FOR_FLOAT64_INPUTS(pl) { FOR_FLOAT64_INPUTS(pr) { input_a = *pl; input_b = *pr; int32_t expected = cmp.Float64Compare(input_a, input_b) ? 1 : 0; CHECK_EQ(expected, m.Call()); } } } TEST(RunFloat64LessThan) { double input_a = 0.0; double input_b = 0.0; RawMachineAssemblerTester m; Node* a = m.LoadFromPointer(&input_a, kMachFloat64); Node* b = m.LoadFromPointer(&input_b, kMachFloat64); m.Return(m.Float64LessThan(a, b)); CompareWrapper cmp(IrOpcode::kFloat64LessThan); FOR_FLOAT64_INPUTS(pl) { FOR_FLOAT64_INPUTS(pr) { input_a = *pl; input_b = *pr; int32_t expected = cmp.Float64Compare(input_a, input_b) ? 1 : 0; CHECK_EQ(expected, m.Call()); } } } template static void LoadStoreTruncation() { IntType input; RawMachineAssemblerTester m; Node* a = m.LoadFromPointer(&input, kRepresentation); Node* ap1 = m.Int32Add(a, m.Int32Constant(1)); m.StoreToPointer(&input, kRepresentation, ap1); m.Return(ap1); const IntType max = std::numeric_limits::max(); const IntType min = std::numeric_limits::min(); // Test upper bound. input = max; CHECK_EQ(max + 1, m.Call()); CHECK_EQ(min, input); // Test lower bound. input = min; CHECK_EQ(static_cast(max + 2), m.Call()); CHECK_EQ(min + 1, input); // Test all one byte values that are not one byte bounds. for (int i = -127; i < 127; i++) { input = i; int expected = i >= 0 ? i + 1 : max + (i - min) + 2; CHECK_EQ(static_cast(expected), m.Call()); CHECK_EQ(static_cast(i + 1), input); } } TEST(RunLoadStoreTruncation) { LoadStoreTruncation(); LoadStoreTruncation(); } static void IntPtrCompare(intptr_t left, intptr_t right) { for (int test = 0; test < 7; test++) { RawMachineAssemblerTester m(kMachPtr, kMachPtr); Node* p0 = m.Parameter(0); Node* p1 = m.Parameter(1); Node* res = NULL; bool expected = false; switch (test) { case 0: res = m.IntPtrLessThan(p0, p1); expected = true; break; case 1: res = m.IntPtrLessThanOrEqual(p0, p1); expected = true; break; case 2: res = m.IntPtrEqual(p0, p1); expected = false; break; case 3: res = m.IntPtrGreaterThanOrEqual(p0, p1); expected = false; break; case 4: res = m.IntPtrGreaterThan(p0, p1); expected = false; break; case 5: res = m.IntPtrEqual(p0, p0); expected = true; break; case 6: res = m.IntPtrNotEqual(p0, p1); expected = true; break; default: UNREACHABLE(); break; } m.Return(res); CHECK_EQ(expected, m.Call(reinterpret_cast(left), reinterpret_cast(right))); } } TEST(RunIntPtrCompare) { intptr_t min = std::numeric_limits::min(); intptr_t max = std::numeric_limits::max(); // An ascending chain of intptr_t intptr_t inputs[] = {min, min / 2, -1, 0, 1, max / 2, max}; for (size_t i = 0; i < arraysize(inputs) - 1; i++) { IntPtrCompare(inputs[i], inputs[i + 1]); } } TEST(RunTestIntPtrArithmetic) { static const int kInputSize = 10; int32_t inputs[kInputSize]; int32_t outputs[kInputSize]; for (int i = 0; i < kInputSize; i++) { inputs[i] = i; outputs[i] = -1; } RawMachineAssemblerTester m; Node* input = m.PointerConstant(&inputs[0]); Node* output = m.PointerConstant(&outputs[kInputSize - 1]); Node* elem_size = m.IntPtrConstant(sizeof(inputs[0])); for (int i = 0; i < kInputSize; i++) { m.Store(kMachInt32, output, m.Load(kMachInt32, input), kNoWriteBarrier); input = m.IntPtrAdd(input, elem_size); output = m.IntPtrSub(output, elem_size); } m.Return(input); CHECK_EQ(&inputs[kInputSize], m.Call()); for (int i = 0; i < kInputSize; i++) { CHECK_EQ(i, inputs[i]); CHECK_EQ(kInputSize - i - 1, outputs[i]); } } TEST(RunSpillLotsOfThings) { static const int kInputSize = 1000; RawMachineAssemblerTester m; Node* accs[kInputSize]; int32_t outputs[kInputSize]; Node* one = m.Int32Constant(1); Node* acc = one; for (int i = 0; i < kInputSize; i++) { acc = m.Int32Add(acc, one); accs[i] = acc; } for (int i = 0; i < kInputSize; i++) { m.StoreToPointer(&outputs[i], kMachInt32, accs[i]); } m.Return(one); m.Call(); for (int i = 0; i < kInputSize; i++) { CHECK_EQ(outputs[i], i + 2); } } TEST(RunSpillConstantsAndParameters) { static const int kInputSize = 1000; static const int32_t kBase = 987; RawMachineAssemblerTester m(kMachInt32, kMachInt32); int32_t outputs[kInputSize]; Node* csts[kInputSize]; Node* accs[kInputSize]; Node* acc = m.Int32Constant(0); for (int i = 0; i < kInputSize; i++) { csts[i] = m.Int32Constant(static_cast(kBase + i)); } for (int i = 0; i < kInputSize; i++) { acc = m.Int32Add(acc, csts[i]); accs[i] = acc; } for (int i = 0; i < kInputSize; i++) { m.StoreToPointer(&outputs[i], kMachInt32, accs[i]); } m.Return(m.Int32Add(acc, m.Int32Add(m.Parameter(0), m.Parameter(1)))); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int32_t expected = *i + *j; for (int k = 0; k < kInputSize; k++) { expected += kBase + k; } CHECK_EQ(expected, m.Call(*i, *j)); expected = 0; for (int k = 0; k < kInputSize; k++) { expected += kBase + k; CHECK_EQ(expected, outputs[k]); } } } } TEST(RunNewSpaceConstantsInPhi) { RawMachineAssemblerTester m(kMachInt32); Isolate* isolate = CcTest::i_isolate(); Handle true_val = isolate->factory()->NewHeapNumber(11.2); Handle false_val = isolate->factory()->NewHeapNumber(11.3); Node* true_node = m.HeapConstant(true_val); Node* false_node = m.HeapConstant(false_val); MLabel blocka, blockb, end; m.Branch(m.Parameter(0), &blocka, &blockb); m.Bind(&blocka); m.Goto(&end); m.Bind(&blockb); m.Goto(&end); m.Bind(&end); Node* phi = m.Phi(kMachAnyTagged, true_node, false_node); m.Return(phi); CHECK_EQ(*false_val, m.Call(0)); CHECK_EQ(*true_val, m.Call(1)); } TEST(RunInt32AddWithOverflowP) { int32_t actual_val = -1; RawMachineAssemblerTester m; Int32BinopTester bt(&m); Node* add = m.Int32AddWithOverflow(bt.param0, bt.param1); Node* val = m.Projection(0, add); Node* ovf = m.Projection(1, add); m.StoreToPointer(&actual_val, kMachInt32, val); bt.AddReturn(ovf); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int32_t expected_val; int expected_ovf = bits::SignedAddOverflow32(*i, *j, &expected_val); CHECK_EQ(expected_ovf, bt.call(*i, *j)); CHECK_EQ(expected_val, actual_val); } } } TEST(RunInt32AddWithOverflowImm) { int32_t actual_val = -1, expected_val = 0; FOR_INT32_INPUTS(i) { { RawMachineAssemblerTester m(kMachInt32); Node* add = m.Int32AddWithOverflow(m.Int32Constant(*i), m.Parameter(0)); Node* val = m.Projection(0, add); Node* ovf = m.Projection(1, add); m.StoreToPointer(&actual_val, kMachInt32, val); m.Return(ovf); FOR_INT32_INPUTS(j) { int expected_ovf = bits::SignedAddOverflow32(*i, *j, &expected_val); CHECK_EQ(expected_ovf, m.Call(*j)); CHECK_EQ(expected_val, actual_val); } } { RawMachineAssemblerTester m(kMachInt32); Node* add = m.Int32AddWithOverflow(m.Parameter(0), m.Int32Constant(*i)); Node* val = m.Projection(0, add); Node* ovf = m.Projection(1, add); m.StoreToPointer(&actual_val, kMachInt32, val); m.Return(ovf); FOR_INT32_INPUTS(j) { int expected_ovf = bits::SignedAddOverflow32(*i, *j, &expected_val); CHECK_EQ(expected_ovf, m.Call(*j)); CHECK_EQ(expected_val, actual_val); } } FOR_INT32_INPUTS(j) { RawMachineAssemblerTester m; Node* add = m.Int32AddWithOverflow(m.Int32Constant(*i), m.Int32Constant(*j)); Node* val = m.Projection(0, add); Node* ovf = m.Projection(1, add); m.StoreToPointer(&actual_val, kMachInt32, val); m.Return(ovf); int expected_ovf = bits::SignedAddOverflow32(*i, *j, &expected_val); CHECK_EQ(expected_ovf, m.Call()); CHECK_EQ(expected_val, actual_val); } } } TEST(RunInt32AddWithOverflowInBranchP) { int constant = 911777; MLabel blocka, blockb; RawMachineAssemblerTester m; Int32BinopTester bt(&m); Node* add = m.Int32AddWithOverflow(bt.param0, bt.param1); Node* ovf = m.Projection(1, add); m.Branch(ovf, &blocka, &blockb); m.Bind(&blocka); bt.AddReturn(m.Int32Constant(constant)); m.Bind(&blockb); Node* val = m.Projection(0, add); bt.AddReturn(val); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int32_t expected; if (bits::SignedAddOverflow32(*i, *j, &expected)) expected = constant; CHECK_EQ(expected, bt.call(*i, *j)); } } } TEST(RunInt32SubWithOverflowP) { int32_t actual_val = -1; RawMachineAssemblerTester m; Int32BinopTester bt(&m); Node* add = m.Int32SubWithOverflow(bt.param0, bt.param1); Node* val = m.Projection(0, add); Node* ovf = m.Projection(1, add); m.StoreToPointer(&actual_val, kMachInt32, val); bt.AddReturn(ovf); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int32_t expected_val; int expected_ovf = bits::SignedSubOverflow32(*i, *j, &expected_val); CHECK_EQ(expected_ovf, bt.call(*i, *j)); CHECK_EQ(expected_val, actual_val); } } } TEST(RunInt32SubWithOverflowImm) { int32_t actual_val = -1, expected_val = 0; FOR_INT32_INPUTS(i) { { RawMachineAssemblerTester m(kMachInt32); Node* add = m.Int32SubWithOverflow(m.Int32Constant(*i), m.Parameter(0)); Node* val = m.Projection(0, add); Node* ovf = m.Projection(1, add); m.StoreToPointer(&actual_val, kMachInt32, val); m.Return(ovf); FOR_INT32_INPUTS(j) { int expected_ovf = bits::SignedSubOverflow32(*i, *j, &expected_val); CHECK_EQ(expected_ovf, m.Call(*j)); CHECK_EQ(expected_val, actual_val); } } { RawMachineAssemblerTester m(kMachInt32); Node* add = m.Int32SubWithOverflow(m.Parameter(0), m.Int32Constant(*i)); Node* val = m.Projection(0, add); Node* ovf = m.Projection(1, add); m.StoreToPointer(&actual_val, kMachInt32, val); m.Return(ovf); FOR_INT32_INPUTS(j) { int expected_ovf = bits::SignedSubOverflow32(*j, *i, &expected_val); CHECK_EQ(expected_ovf, m.Call(*j)); CHECK_EQ(expected_val, actual_val); } } FOR_INT32_INPUTS(j) { RawMachineAssemblerTester m; Node* add = m.Int32SubWithOverflow(m.Int32Constant(*i), m.Int32Constant(*j)); Node* val = m.Projection(0, add); Node* ovf = m.Projection(1, add); m.StoreToPointer(&actual_val, kMachInt32, val); m.Return(ovf); int expected_ovf = bits::SignedSubOverflow32(*i, *j, &expected_val); CHECK_EQ(expected_ovf, m.Call()); CHECK_EQ(expected_val, actual_val); } } } TEST(RunInt32SubWithOverflowInBranchP) { int constant = 911999; MLabel blocka, blockb; RawMachineAssemblerTester m; Int32BinopTester bt(&m); Node* sub = m.Int32SubWithOverflow(bt.param0, bt.param1); Node* ovf = m.Projection(1, sub); m.Branch(ovf, &blocka, &blockb); m.Bind(&blocka); bt.AddReturn(m.Int32Constant(constant)); m.Bind(&blockb); Node* val = m.Projection(0, sub); bt.AddReturn(val); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int32_t expected; if (bits::SignedSubOverflow32(*i, *j, &expected)) expected = constant; CHECK_EQ(expected, bt.call(*i, *j)); } } } TEST(RunWord64EqualInBranchP) { int64_t input; MLabel blocka, blockb; RawMachineAssemblerTester m; if (!m.machine()->Is64()) return; Node* value = m.LoadFromPointer(&input, kMachInt64); m.Branch(m.Word64Equal(value, m.Int64Constant(0)), &blocka, &blockb); m.Bind(&blocka); m.Return(m.Int32Constant(1)); m.Bind(&blockb); m.Return(m.Int32Constant(2)); input = V8_INT64_C(0); CHECK_EQ(1, m.Call()); input = V8_INT64_C(1); CHECK_EQ(2, m.Call()); input = V8_INT64_C(0x100000000); CHECK_EQ(2, m.Call()); } TEST(RunChangeInt32ToInt64P) { if (kPointerSize < 8) return; int64_t actual = -1; RawMachineAssemblerTester m(kMachInt32); m.StoreToPointer(&actual, kMachInt64, m.ChangeInt32ToInt64(m.Parameter(0))); m.Return(m.Int32Constant(0)); FOR_INT32_INPUTS(i) { int64_t expected = *i; CHECK_EQ(0, m.Call(*i)); CHECK_EQ(expected, actual); } } TEST(RunChangeUint32ToUint64P) { if (kPointerSize < 8) return; int64_t actual = -1; RawMachineAssemblerTester m(kMachUint32); m.StoreToPointer(&actual, kMachUint64, m.ChangeUint32ToUint64(m.Parameter(0))); m.Return(m.Int32Constant(0)); FOR_UINT32_INPUTS(i) { int64_t expected = static_cast(*i); CHECK_EQ(0, m.Call(*i)); CHECK_EQ(expected, actual); } } TEST(RunTruncateInt64ToInt32P) { if (kPointerSize < 8) return; int64_t expected = -1; RawMachineAssemblerTester m; m.Return(m.TruncateInt64ToInt32(m.LoadFromPointer(&expected, kMachInt64))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { expected = (static_cast(*j) << 32) | *i; CHECK_EQ(static_cast(expected), m.Call()); } } } TEST(RunTruncateFloat64ToInt32P) { struct { double from; double raw; } kValues[] = {{0, 0}, {0.5, 0}, {-0.5, 0}, {1.5, 1}, {-1.5, -1}, {5.5, 5}, {-5.0, -5}, {std::numeric_limits::quiet_NaN(), 0}, {std::numeric_limits::infinity(), 0}, {-std::numeric_limits::quiet_NaN(), 0}, {-std::numeric_limits::infinity(), 0}, {4.94065645841e-324, 0}, {-4.94065645841e-324, 0}, {0.9999999999999999, 0}, {-0.9999999999999999, 0}, {4294967296.0, 0}, {-4294967296.0, 0}, {9223372036854775000.0, 4294966272.0}, {-9223372036854775000.0, -4294966272.0}, {4.5036e+15, 372629504}, {-4.5036e+15, -372629504}, {287524199.5377777, 0x11234567}, {-287524199.5377777, -0x11234567}, {2300193596.302222, 2300193596.0}, {-2300193596.302222, -2300193596.0}, {4600387192.604444, 305419896}, {-4600387192.604444, -305419896}, {4823855600872397.0, 1737075661}, {-4823855600872397.0, -1737075661}, {4503603922337791.0, -1}, {-4503603922337791.0, 1}, {4503601774854143.0, 2147483647}, {-4503601774854143.0, -2147483647}, {9007207844675582.0, -2}, {-9007207844675582.0, 2}, {2.4178527921507624e+24, -536870912}, {-2.4178527921507624e+24, 536870912}, {2.417853945072267e+24, -536870912}, {-2.417853945072267e+24, 536870912}, {4.8357055843015248e+24, -1073741824}, {-4.8357055843015248e+24, 1073741824}, {4.8357078901445341e+24, -1073741824}, {-4.8357078901445341e+24, 1073741824}, {2147483647.0, 2147483647.0}, {-2147483648.0, -2147483648.0}, {9.6714111686030497e+24, -2147483648.0}, {-9.6714111686030497e+24, -2147483648.0}, {9.6714157802890681e+24, -2147483648.0}, {-9.6714157802890681e+24, -2147483648.0}, {1.9342813113834065e+25, 2147483648.0}, {-1.9342813113834065e+25, 2147483648.0}, {3.868562622766813e+25, 0}, {-3.868562622766813e+25, 0}, {1.7976931348623157e+308, 0}, {-1.7976931348623157e+308, 0}}; double input = -1.0; RawMachineAssemblerTester m; m.Return(m.TruncateFloat64ToInt32(TruncationMode::kJavaScript, m.LoadFromPointer(&input, kMachFloat64))); for (size_t i = 0; i < arraysize(kValues); ++i) { input = kValues[i].from; uint64_t expected = static_cast(kValues[i].raw); CHECK_EQ(static_cast(expected), m.Call()); } } TEST(RunChangeFloat32ToFloat64) { BufferedRawMachineAssemblerTester m(kMachFloat32); m.Return(m.ChangeFloat32ToFloat64(m.Parameter(0))); FOR_FLOAT32_INPUTS(i) { CheckDoubleEq(static_cast(*i), m.Call(*i)); } } TEST(RunFloat32Constant) { FOR_FLOAT32_INPUTS(i) { BufferedRawMachineAssemblerTester m; m.Return(m.Float32Constant(*i)); CheckFloatEq(*i, m.Call()); } } TEST(RunFloat64ExtractLowWord32) { BufferedRawMachineAssemblerTester m(kMachFloat64); m.Return(m.Float64ExtractLowWord32(m.Parameter(0))); FOR_FLOAT64_INPUTS(i) { uint32_t expected = static_cast(bit_cast(*i)); CHECK_EQ(expected, m.Call(*i)); } } TEST(RunFloat64ExtractHighWord32) { BufferedRawMachineAssemblerTester m(kMachFloat64); m.Return(m.Float64ExtractHighWord32(m.Parameter(0))); FOR_FLOAT64_INPUTS(i) { uint32_t expected = static_cast(bit_cast(*i) >> 32); CHECK_EQ(expected, m.Call(*i)); } } TEST(RunFloat64InsertLowWord32) { BufferedRawMachineAssemblerTester m(kMachFloat64, kMachInt32); m.Return(m.Float64InsertLowWord32(m.Parameter(0), m.Parameter(1))); FOR_FLOAT64_INPUTS(i) { FOR_INT32_INPUTS(j) { double expected = bit_cast( (bit_cast(*i) & ~(V8_UINT64_C(0xFFFFFFFF))) | (static_cast(bit_cast(*j)))); CheckDoubleEq(expected, m.Call(*i, *j)); } } } TEST(RunFloat64InsertHighWord32) { BufferedRawMachineAssemblerTester m(kMachFloat64, kMachUint32); m.Return(m.Float64InsertHighWord32(m.Parameter(0), m.Parameter(1))); FOR_FLOAT64_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint64_t expected = (bit_cast(*i) & 0xFFFFFFFF) | (static_cast(*j) << 32); CheckDoubleEq(bit_cast(expected), m.Call(*i, *j)); } } } TEST(RunFloat32Abs) { BufferedRawMachineAssemblerTester m(kMachFloat32); m.Return(m.Float32Abs(m.Parameter(0))); FOR_FLOAT32_INPUTS(i) { CheckFloatEq(std::abs(*i), m.Call(*i)); } } TEST(RunFloat64Abs) { BufferedRawMachineAssemblerTester m(kMachFloat64); m.Return(m.Float64Abs(m.Parameter(0))); FOR_FLOAT64_INPUTS(i) { CheckDoubleEq(std::abs(*i), m.Call(*i)); } } static double two_30 = 1 << 30; // 2^30 is a smi boundary. static double two_52 = two_30 * (1 << 22); // 2^52 is a precision boundary. static double kValues[] = {0.1, 0.2, 0.49999999999999994, 0.5, 0.7, 1.0 - std::numeric_limits::epsilon(), -0.1, -0.49999999999999994, -0.5, -0.7, 1.1, 1.0 + std::numeric_limits::epsilon(), 1.5, 1.7, -1, -1 + std::numeric_limits::epsilon(), -1 - std::numeric_limits::epsilon(), -1.1, -1.5, -1.7, std::numeric_limits::min(), -std::numeric_limits::min(), std::numeric_limits::max(), -std::numeric_limits::max(), std::numeric_limits::infinity(), -std::numeric_limits::infinity(), two_30, two_30 + 0.1, two_30 + 0.5, two_30 + 0.7, two_30 - 1, two_30 - 1 + 0.1, two_30 - 1 + 0.5, two_30 - 1 + 0.7, -two_30, -two_30 + 0.1, -two_30 + 0.5, -two_30 + 0.7, -two_30 + 1, -two_30 + 1 + 0.1, -two_30 + 1 + 0.5, -two_30 + 1 + 0.7, two_52, two_52 + 0.1, two_52 + 0.5, two_52 + 0.5, two_52 + 0.7, two_52 + 0.7, two_52 - 1, two_52 - 1 + 0.1, two_52 - 1 + 0.5, two_52 - 1 + 0.7, -two_52, -two_52 + 0.1, -two_52 + 0.5, -two_52 + 0.7, -two_52 + 1, -two_52 + 1 + 0.1, -two_52 + 1 + 0.5, -two_52 + 1 + 0.7, two_30, two_30 - 0.1, two_30 - 0.5, two_30 - 0.7, two_30 - 1, two_30 - 1 - 0.1, two_30 - 1 - 0.5, two_30 - 1 - 0.7, -two_30, -two_30 - 0.1, -two_30 - 0.5, -two_30 - 0.7, -two_30 + 1, -two_30 + 1 - 0.1, -two_30 + 1 - 0.5, -two_30 + 1 - 0.7, two_52, two_52 - 0.1, two_52 - 0.5, two_52 - 0.5, two_52 - 0.7, two_52 - 0.7, two_52 - 1, two_52 - 1 - 0.1, two_52 - 1 - 0.5, two_52 - 1 - 0.7, -two_52, -two_52 - 0.1, -two_52 - 0.5, -two_52 - 0.7, -two_52 + 1, -two_52 + 1 - 0.1, -two_52 + 1 - 0.5, -two_52 + 1 - 0.7}; TEST(RunFloat64RoundDown1) { BufferedRawMachineAssemblerTester m(kMachFloat64); if (!m.machine()->Float64RoundDown().IsSupported()) return; m.Return(m.Float64RoundDown(m.Parameter(0))); FOR_FLOAT64_INPUTS(i) { CheckDoubleEq(std::floor(*i), m.Call(*i)); } } TEST(RunFloat64RoundDown2) { double input = -1.0; double result = 0.0; RawMachineAssemblerTester m; if (!m.machine()->Float64RoundDown().IsSupported()) return; m.StoreToPointer(&result, kMachFloat64, m.Float64Sub(m.Float64Constant(-0.0), m.Float64RoundDown(m.Float64Sub( m.Float64Constant(-0.0), m.LoadFromPointer(&input, kMachFloat64))))); m.Return(m.Int32Constant(0)); for (size_t i = 0; i < arraysize(kValues); ++i) { input = kValues[i]; CHECK_EQ(0, m.Call()); double expected = std::ceil(kValues[i]); CHECK_EQ(expected, result); } } TEST(RunFloat64RoundTruncate) { double input = -1.0; double result = 0.0; RawMachineAssemblerTester m; if (!m.machine()->Float64RoundTruncate().IsSupported()) return; m.StoreToPointer( &result, kMachFloat64, m.Float64RoundTruncate(m.LoadFromPointer(&input, kMachFloat64))); m.Return(m.Int32Constant(0)); for (size_t i = 0; i < arraysize(kValues); ++i) { input = kValues[i]; CHECK_EQ(0, m.Call()); double expected = trunc(kValues[i]); CHECK_EQ(expected, result); } } TEST(RunFloat64RoundTiesAway) { double input = -1.0; double result = 0.0; RawMachineAssemblerTester m; if (!m.machine()->Float64RoundTiesAway().IsSupported()) return; m.StoreToPointer( &result, kMachFloat64, m.Float64RoundTiesAway(m.LoadFromPointer(&input, kMachFloat64))); m.Return(m.Int32Constant(0)); for (size_t i = 0; i < arraysize(kValues); ++i) { input = kValues[i]; CHECK_EQ(0, m.Call()); double expected = round(kValues[i]); CHECK_EQ(expected, result); } } #if !USE_SIMULATOR namespace { int32_t const kMagicFoo0 = 0xdeadbeef; int32_t foo0() { return kMagicFoo0; } int32_t foo1(int32_t x) { return x; } int32_t foo2(int32_t x, int32_t y) { return x - y; } int32_t foo8(int32_t a, int32_t b, int32_t c, int32_t d, int32_t e, int32_t f, int32_t g, int32_t h) { return a + b + c + d + e + f + g + h; } } // namespace TEST(RunCallCFunction0) { auto* foo0_ptr = &foo0; RawMachineAssemblerTester m; Node* function = m.LoadFromPointer(&foo0_ptr, kMachPtr); m.Return(m.CallCFunction0(kMachInt32, function)); CHECK_EQ(kMagicFoo0, m.Call()); } TEST(RunCallCFunction1) { auto* foo1_ptr = &foo1; RawMachineAssemblerTester m(kMachInt32); Node* function = m.LoadFromPointer(&foo1_ptr, kMachPtr); m.Return(m.CallCFunction1(kMachInt32, kMachInt32, function, m.Parameter(0))); FOR_INT32_INPUTS(i) { int32_t const expected = *i; CHECK_EQ(expected, m.Call(expected)); } } TEST(RunCallCFunction2) { auto* foo2_ptr = &foo2; RawMachineAssemblerTester m(kMachInt32, kMachInt32); Node* function = m.LoadFromPointer(&foo2_ptr, kMachPtr); m.Return(m.CallCFunction2(kMachInt32, kMachInt32, kMachInt32, function, m.Parameter(0), m.Parameter(1))); FOR_INT32_INPUTS(i) { int32_t const x = *i; FOR_INT32_INPUTS(j) { int32_t const y = *j; CHECK_EQ(x - y, m.Call(x, y)); } } } TEST(RunCallCFunction8) { auto* foo8_ptr = &foo8; RawMachineAssemblerTester m(kMachInt32); Node* function = m.LoadFromPointer(&foo8_ptr, kMachPtr); Node* param = m.Parameter(0); m.Return(m.CallCFunction8(kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32, function, param, param, param, param, param, param, param, param)); FOR_INT32_INPUTS(i) { int32_t const x = *i; CHECK_EQ(x * 8, m.Call(x)); } } #endif // USE_SIMULATOR #if V8_TARGET_ARCH_64_BIT // TODO(titzer): run int64 tests on all platforms when supported. TEST(RunCheckedLoadInt64) { int64_t buffer[] = {0x66bbccddeeff0011LL, 0x1122334455667788LL}; RawMachineAssemblerTester m(kMachInt32); Node* base = m.PointerConstant(buffer); Node* index = m.Parameter(0); Node* length = m.Int32Constant(16); Node* load = m.AddNode(m.machine()->CheckedLoad(kMachInt64), base, index, length); m.Return(load); CHECK_EQ(buffer[0], m.Call(0)); CHECK_EQ(buffer[1], m.Call(8)); CHECK_EQ(0, m.Call(16)); } TEST(RunCheckedStoreInt64) { const int64_t write = 0x5566778899aabbLL; const int64_t before = 0x33bbccddeeff0011LL; int64_t buffer[] = {before, before}; RawMachineAssemblerTester m(kMachInt32); Node* base = m.PointerConstant(buffer); Node* index = m.Parameter(0); Node* length = m.Int32Constant(16); Node* value = m.Int64Constant(write); Node* store = m.AddNode(m.machine()->CheckedStore(kMachInt64), base, index, length, value); USE(store); m.Return(m.Int32Constant(11)); CHECK_EQ(11, m.Call(16)); CHECK_EQ(before, buffer[0]); CHECK_EQ(before, buffer[1]); CHECK_EQ(11, m.Call(0)); CHECK_EQ(write, buffer[0]); CHECK_EQ(before, buffer[1]); CHECK_EQ(11, m.Call(8)); CHECK_EQ(write, buffer[0]); CHECK_EQ(write, buffer[1]); } TEST(RunBitcastInt64ToFloat64) { int64_t input = 1; double output = 0.0; RawMachineAssemblerTester m; m.StoreToPointer( &output, kMachFloat64, m.BitcastInt64ToFloat64(m.LoadFromPointer(&input, kMachInt64))); m.Return(m.Int32Constant(11)); FOR_INT64_INPUTS(i) { input = *i; CHECK_EQ(11, m.Call()); double expected = bit_cast(input); CHECK_EQ(bit_cast(expected), bit_cast(output)); } } TEST(RunBitcastFloat64ToInt64) { double input = 0; int64_t output = 0; RawMachineAssemblerTester m; m.StoreToPointer( &output, kMachInt64, m.BitcastFloat64ToInt64(m.LoadFromPointer(&input, kMachFloat64))); m.Return(m.Int32Constant(11)); FOR_FLOAT64_INPUTS(i) { input = *i; CHECK_EQ(11, m.Call()); double expected = bit_cast(input); CHECK_EQ(expected, output); } } TEST(RunRoundInt64ToFloat64) { BufferedRawMachineAssemblerTester m(kMachInt64); m.Return(m.RoundInt64ToFloat64(m.Parameter(0))); FOR_INT64_INPUTS(i) { CHECK_EQ(static_cast(*i), m.Call(*i)); } } #endif TEST(RunBitcastFloat32ToInt32) { float input = 32.25; RawMachineAssemblerTester m; m.Return(m.BitcastFloat32ToInt32(m.LoadFromPointer(&input, kMachFloat32))); FOR_FLOAT32_INPUTS(i) { input = *i; int32_t expected = bit_cast(input); CHECK_EQ(expected, m.Call()); } } TEST(RunBitcastInt32ToFloat32) { int32_t input = 1; float output = 0.0; RawMachineAssemblerTester m; m.StoreToPointer( &output, kMachFloat32, m.BitcastInt32ToFloat32(m.LoadFromPointer(&input, kMachInt32))); m.Return(m.Int32Constant(11)); FOR_INT32_INPUTS(i) { input = *i; CHECK_EQ(11, m.Call()); float expected = bit_cast(input); CHECK_EQ(bit_cast(expected), bit_cast(output)); } } TEST(RunComputedCodeObject) { GraphBuilderTester a; a.Return(a.Int32Constant(33)); a.End(); Handle code_a = a.GetCode(); GraphBuilderTester b; b.Return(b.Int32Constant(44)); b.End(); Handle code_b = b.GetCode(); RawMachineAssemblerTester r(kMachInt32); RawMachineAssembler::Label tlabel; RawMachineAssembler::Label flabel; RawMachineAssembler::Label merge; r.Branch(r.Parameter(0), &tlabel, &flabel); r.Bind(&tlabel); Node* fa = r.HeapConstant(code_a); r.Goto(&merge); r.Bind(&flabel); Node* fb = r.HeapConstant(code_b); r.Goto(&merge); r.Bind(&merge); Node* phi = r.Phi(kMachInt32, fa, fb); // TODO(titzer): all this descriptor hackery is just to call the above // functions as code objects instead of direct addresses. CSignature0 sig; CallDescriptor* c = Linkage::GetSimplifiedCDescriptor(r.zone(), &sig); LinkageLocation ret[] = {c->GetReturnLocation(0)}; Signature loc(1, 0, ret); CallDescriptor* desc = new (r.zone()) CallDescriptor( // -- CallDescriptor::kCallCodeObject, // kind kMachAnyTagged, // target_type c->GetInputLocation(0), // target_loc &sig, // machine_sig &loc, // location_sig 0, // stack count Operator::kNoProperties, // properties c->CalleeSavedRegisters(), // callee saved c->CalleeSavedFPRegisters(), // callee saved FP CallDescriptor::kNoFlags, // flags "c-call-as-code"); Node* call = r.AddNode(r.common()->Call(desc), phi); r.Return(call); CHECK_EQ(33, r.Call(1)); CHECK_EQ(44, r.Call(0)); } } // namespace compiler } // namespace internal } // namespace v8