// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include "src/heap/gc-idle-time-handler.h" #include "testing/gtest/include/gtest/gtest.h" namespace v8 { namespace internal { namespace { class GCIdleTimeHandlerTest : public ::testing::Test { public: GCIdleTimeHandlerTest() {} virtual ~GCIdleTimeHandlerTest() {} GCIdleTimeHandler* handler() { return &handler_; } GCIdleTimeHandler::HeapState DefaultHeapState() { GCIdleTimeHandler::HeapState result; result.contexts_disposed = 0; result.contexts_disposal_rate = GCIdleTimeHandler::kHighContextDisposalRate; result.size_of_objects = kSizeOfObjects; result.incremental_marking_stopped = false; result.can_start_incremental_marking = true; result.sweeping_in_progress = false; result.mark_compact_speed_in_bytes_per_ms = kMarkCompactSpeed; result.incremental_marking_speed_in_bytes_per_ms = kMarkingSpeed; result.scavenge_speed_in_bytes_per_ms = kScavengeSpeed; result.used_new_space_size = 0; result.new_space_capacity = kNewSpaceCapacity; result.new_space_allocation_throughput_in_bytes_per_ms = kNewSpaceAllocationThroughput; return result; } static const size_t kSizeOfObjects = 100 * MB; static const size_t kMarkCompactSpeed = 200 * KB; static const size_t kMarkingSpeed = 200 * KB; static const size_t kScavengeSpeed = 100 * KB; static const size_t kNewSpaceCapacity = 1 * MB; static const size_t kNewSpaceAllocationThroughput = 10 * KB; private: GCIdleTimeHandler handler_; }; } // namespace TEST(GCIdleTimeHandler, EstimateMarkingStepSizeInitial) { size_t step_size = GCIdleTimeHandler::EstimateMarkingStepSize(1, 0); EXPECT_EQ( static_cast(GCIdleTimeHandler::kInitialConservativeMarkingSpeed * GCIdleTimeHandler::kConservativeTimeRatio), step_size); } TEST(GCIdleTimeHandler, EstimateMarkingStepSizeNonZero) { size_t marking_speed_in_bytes_per_millisecond = 100; size_t step_size = GCIdleTimeHandler::EstimateMarkingStepSize( 1, marking_speed_in_bytes_per_millisecond); EXPECT_EQ(static_cast(marking_speed_in_bytes_per_millisecond * GCIdleTimeHandler::kConservativeTimeRatio), step_size); } TEST(GCIdleTimeHandler, EstimateMarkingStepSizeOverflow1) { size_t step_size = GCIdleTimeHandler::EstimateMarkingStepSize( 10, std::numeric_limits::max()); EXPECT_EQ(static_cast(GCIdleTimeHandler::kMaximumMarkingStepSize), step_size); } TEST(GCIdleTimeHandler, EstimateMarkingStepSizeOverflow2) { size_t step_size = GCIdleTimeHandler::EstimateMarkingStepSize( std::numeric_limits::max(), 10); EXPECT_EQ(static_cast(GCIdleTimeHandler::kMaximumMarkingStepSize), step_size); } TEST(GCIdleTimeHandler, EstimateMarkCompactTimeInitial) { size_t size = 100 * MB; size_t time = GCIdleTimeHandler::EstimateMarkCompactTime(size, 0); EXPECT_EQ(size / GCIdleTimeHandler::kInitialConservativeMarkCompactSpeed, time); } TEST(GCIdleTimeHandler, EstimateMarkCompactTimeNonZero) { size_t size = 100 * MB; size_t speed = 1 * MB; size_t time = GCIdleTimeHandler::EstimateMarkCompactTime(size, speed); EXPECT_EQ(size / speed, time); } TEST(GCIdleTimeHandler, EstimateMarkCompactTimeMax) { size_t size = std::numeric_limits::max(); size_t speed = 1; size_t time = GCIdleTimeHandler::EstimateMarkCompactTime(size, speed); EXPECT_EQ(GCIdleTimeHandler::kMaxMarkCompactTimeInMs, time); } TEST_F(GCIdleTimeHandlerTest, DoScavengeEmptyNewSpace) { GCIdleTimeHandler::HeapState heap_state = DefaultHeapState(); int idle_time_in_ms = 16; EXPECT_FALSE(GCIdleTimeHandler::ShouldDoScavenge( idle_time_in_ms, heap_state.new_space_capacity, heap_state.used_new_space_size, heap_state.scavenge_speed_in_bytes_per_ms, heap_state.new_space_allocation_throughput_in_bytes_per_ms)); } TEST_F(GCIdleTimeHandlerTest, DoScavengeFullNewSpace) { GCIdleTimeHandler::HeapState heap_state = DefaultHeapState(); heap_state.used_new_space_size = kNewSpaceCapacity; int idle_time_in_ms = 16; EXPECT_TRUE(GCIdleTimeHandler::ShouldDoScavenge( idle_time_in_ms, heap_state.new_space_capacity, heap_state.used_new_space_size, heap_state.scavenge_speed_in_bytes_per_ms, heap_state.new_space_allocation_throughput_in_bytes_per_ms)); } TEST_F(GCIdleTimeHandlerTest, DoScavengeUnknownScavengeSpeed) { GCIdleTimeHandler::HeapState heap_state = DefaultHeapState(); heap_state.used_new_space_size = kNewSpaceCapacity; heap_state.scavenge_speed_in_bytes_per_ms = 0; int idle_time_in_ms = 16; EXPECT_FALSE(GCIdleTimeHandler::ShouldDoScavenge( idle_time_in_ms, heap_state.new_space_capacity, heap_state.used_new_space_size, heap_state.scavenge_speed_in_bytes_per_ms, heap_state.new_space_allocation_throughput_in_bytes_per_ms)); } TEST_F(GCIdleTimeHandlerTest, DoScavengeLowScavengeSpeed) { GCIdleTimeHandler::HeapState heap_state = DefaultHeapState(); heap_state.used_new_space_size = kNewSpaceCapacity; heap_state.scavenge_speed_in_bytes_per_ms = 1 * KB; int idle_time_in_ms = 16; EXPECT_FALSE(GCIdleTimeHandler::ShouldDoScavenge( idle_time_in_ms, heap_state.new_space_capacity, heap_state.used_new_space_size, heap_state.scavenge_speed_in_bytes_per_ms, heap_state.new_space_allocation_throughput_in_bytes_per_ms)); } TEST_F(GCIdleTimeHandlerTest, DoScavengeHighScavengeSpeed) { GCIdleTimeHandler::HeapState heap_state = DefaultHeapState(); heap_state.used_new_space_size = kNewSpaceCapacity; heap_state.scavenge_speed_in_bytes_per_ms = kNewSpaceCapacity; int idle_time_in_ms = 16; EXPECT_TRUE(GCIdleTimeHandler::ShouldDoScavenge( idle_time_in_ms, heap_state.new_space_capacity, heap_state.used_new_space_size, heap_state.scavenge_speed_in_bytes_per_ms, heap_state.new_space_allocation_throughput_in_bytes_per_ms)); } TEST_F(GCIdleTimeHandlerTest, ShouldDoMarkCompact) { size_t idle_time_in_ms = 16; EXPECT_TRUE(GCIdleTimeHandler::ShouldDoMarkCompact(idle_time_in_ms, 0, 0)); } TEST_F(GCIdleTimeHandlerTest, DontDoMarkCompact) { size_t idle_time_in_ms = 1; EXPECT_FALSE(GCIdleTimeHandler::ShouldDoMarkCompact( idle_time_in_ms, kSizeOfObjects, kMarkingSpeed)); } TEST_F(GCIdleTimeHandlerTest, ShouldDoFinalIncrementalMarkCompact) { size_t idle_time_in_ms = 16; EXPECT_TRUE(GCIdleTimeHandler::ShouldDoFinalIncrementalMarkCompact( idle_time_in_ms, 0, 0)); } TEST_F(GCIdleTimeHandlerTest, DontDoFinalIncrementalMarkCompact) { size_t idle_time_in_ms = 1; EXPECT_FALSE(GCIdleTimeHandler::ShouldDoFinalIncrementalMarkCompact( idle_time_in_ms, kSizeOfObjects, kMarkingSpeed)); } TEST_F(GCIdleTimeHandlerTest, ContextDisposeLowRate) { GCIdleTimeHandler::HeapState heap_state = DefaultHeapState(); heap_state.contexts_disposed = 1; heap_state.incremental_marking_stopped = true; double idle_time_ms = 0; GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state); EXPECT_EQ(DO_NOTHING, action.type); } TEST_F(GCIdleTimeHandlerTest, ContextDisposeHighRate) { GCIdleTimeHandler::HeapState heap_state = DefaultHeapState(); heap_state.contexts_disposed = 1; heap_state.contexts_disposal_rate = GCIdleTimeHandler::kHighContextDisposalRate - 1; heap_state.incremental_marking_stopped = true; double idle_time_ms = 0; GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state); EXPECT_EQ(DO_FULL_GC, action.type); } TEST_F(GCIdleTimeHandlerTest, AfterContextDisposeLargeIdleTime) { GCIdleTimeHandler::HeapState heap_state = DefaultHeapState(); heap_state.contexts_disposed = 1; heap_state.contexts_disposal_rate = 1.0; heap_state.incremental_marking_stopped = true; heap_state.can_start_incremental_marking = false; size_t speed = heap_state.mark_compact_speed_in_bytes_per_ms; double idle_time_ms = static_cast((heap_state.size_of_objects + speed - 1) / speed); GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state); EXPECT_EQ(DO_FULL_GC, action.type); } TEST_F(GCIdleTimeHandlerTest, AfterContextDisposeZeroIdleTime) { GCIdleTimeHandler::HeapState heap_state = DefaultHeapState(); heap_state.contexts_disposed = 1; heap_state.contexts_disposal_rate = 1.0; heap_state.incremental_marking_stopped = true; double idle_time_ms = 0; GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state); EXPECT_EQ(DO_FULL_GC, action.type); } TEST_F(GCIdleTimeHandlerTest, AfterContextDisposeSmallIdleTime1) { GCIdleTimeHandler::HeapState heap_state = DefaultHeapState(); heap_state.contexts_disposed = 1; heap_state.contexts_disposal_rate = 1.0; heap_state.incremental_marking_stopped = true; size_t speed = heap_state.mark_compact_speed_in_bytes_per_ms; double idle_time_ms = static_cast(heap_state.size_of_objects / speed - 1); GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state); EXPECT_EQ(DO_INCREMENTAL_MARKING, action.type); } TEST_F(GCIdleTimeHandlerTest, AfterContextDisposeSmallIdleTime2) { GCIdleTimeHandler::HeapState heap_state = DefaultHeapState(); heap_state.contexts_disposed = 1; heap_state.contexts_disposal_rate = 1.0; size_t speed = heap_state.mark_compact_speed_in_bytes_per_ms; double idle_time_ms = static_cast(heap_state.size_of_objects / speed - 1); GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state); EXPECT_EQ(DO_INCREMENTAL_MARKING, action.type); } TEST_F(GCIdleTimeHandlerTest, IncrementalMarking1) { GCIdleTimeHandler::HeapState heap_state = DefaultHeapState(); size_t speed = heap_state.incremental_marking_speed_in_bytes_per_ms; double idle_time_ms = 10; GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state); EXPECT_EQ(DO_INCREMENTAL_MARKING, action.type); EXPECT_GT(speed * static_cast(idle_time_ms), static_cast(action.parameter)); EXPECT_LT(0, action.parameter); } TEST_F(GCIdleTimeHandlerTest, IncrementalMarking2) { GCIdleTimeHandler::HeapState heap_state = DefaultHeapState(); heap_state.incremental_marking_stopped = true; size_t speed = heap_state.incremental_marking_speed_in_bytes_per_ms; double idle_time_ms = 10; GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state); EXPECT_EQ(DO_INCREMENTAL_MARKING, action.type); EXPECT_GT(speed * static_cast(idle_time_ms), static_cast(action.parameter)); EXPECT_LT(0, action.parameter); } TEST_F(GCIdleTimeHandlerTest, NotEnoughTime) { GCIdleTimeHandler::HeapState heap_state = DefaultHeapState(); heap_state.incremental_marking_stopped = true; heap_state.can_start_incremental_marking = false; size_t speed = heap_state.mark_compact_speed_in_bytes_per_ms; double idle_time_ms = static_cast(heap_state.size_of_objects / speed - 1); GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state); EXPECT_EQ(DO_NOTHING, action.type); } TEST_F(GCIdleTimeHandlerTest, StopEventually1) { GCIdleTimeHandler::HeapState heap_state = DefaultHeapState(); heap_state.incremental_marking_stopped = true; heap_state.can_start_incremental_marking = false; size_t speed = heap_state.mark_compact_speed_in_bytes_per_ms; double idle_time_ms = static_cast(heap_state.size_of_objects / speed + 1); for (int i = 0; i < GCIdleTimeHandler::kMaxMarkCompactsInIdleRound; i++) { GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state); EXPECT_EQ(DO_FULL_GC, action.type); handler()->NotifyIdleMarkCompact(); } GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state); EXPECT_EQ(DONE, action.type); } TEST_F(GCIdleTimeHandlerTest, StopEventually2) { GCIdleTimeHandler::HeapState heap_state = DefaultHeapState(); double idle_time_ms = 10; for (int i = 0; i < GCIdleTimeHandler::kMaxMarkCompactsInIdleRound; i++) { GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state); EXPECT_EQ(DO_INCREMENTAL_MARKING, action.type); // In this case we emulate incremental marking steps that finish with a // full gc. handler()->NotifyIdleMarkCompact(); } heap_state.can_start_incremental_marking = false; GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state); EXPECT_EQ(DONE, action.type); } TEST_F(GCIdleTimeHandlerTest, ContinueAfterStop1) { GCIdleTimeHandler::HeapState heap_state = DefaultHeapState(); heap_state.incremental_marking_stopped = true; heap_state.can_start_incremental_marking = false; size_t speed = heap_state.mark_compact_speed_in_bytes_per_ms; double idle_time_ms = static_cast(heap_state.size_of_objects / speed + 1); for (int i = 0; i < GCIdleTimeHandler::kMaxMarkCompactsInIdleRound; i++) { GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state); EXPECT_EQ(DO_FULL_GC, action.type); handler()->NotifyIdleMarkCompact(); } GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state); EXPECT_EQ(DONE, action.type); // Emulate mutator work. for (int i = 0; i < GCIdleTimeHandler::kIdleScavengeThreshold; i++) { handler()->NotifyScavenge(); } action = handler()->Compute(idle_time_ms, heap_state); EXPECT_EQ(DO_FULL_GC, action.type); } TEST_F(GCIdleTimeHandlerTest, ContinueAfterStop2) { GCIdleTimeHandler::HeapState heap_state = DefaultHeapState(); double idle_time_ms = 10; for (int i = 0; i < GCIdleTimeHandler::kMaxMarkCompactsInIdleRound; i++) { GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state); if (action.type == DONE) break; EXPECT_EQ(DO_INCREMENTAL_MARKING, action.type); // In this case we try to emulate incremental marking steps the finish with // a full gc. handler()->NotifyIdleMarkCompact(); } heap_state.can_start_incremental_marking = false; GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state); EXPECT_EQ(DONE, action.type); // Emulate mutator work. for (int i = 0; i < GCIdleTimeHandler::kIdleScavengeThreshold; i++) { handler()->NotifyScavenge(); } heap_state.can_start_incremental_marking = true; action = handler()->Compute(idle_time_ms, heap_state); EXPECT_EQ(DO_INCREMENTAL_MARKING, action.type); } TEST_F(GCIdleTimeHandlerTest, Scavenge) { GCIdleTimeHandler::HeapState heap_state = DefaultHeapState(); int idle_time_ms = 10; heap_state.used_new_space_size = heap_state.new_space_capacity - (kNewSpaceAllocationThroughput * idle_time_ms); GCIdleTimeAction action = handler()->Compute(static_cast(idle_time_ms), heap_state); EXPECT_EQ(DO_SCAVENGE, action.type); } TEST_F(GCIdleTimeHandlerTest, ScavengeAndDone) { GCIdleTimeHandler::HeapState heap_state = DefaultHeapState(); int idle_time_ms = 10; heap_state.can_start_incremental_marking = false; heap_state.incremental_marking_stopped = true; heap_state.used_new_space_size = heap_state.new_space_capacity - (kNewSpaceAllocationThroughput * idle_time_ms); GCIdleTimeAction action = handler()->Compute(static_cast(idle_time_ms), heap_state); EXPECT_EQ(DO_SCAVENGE, action.type); heap_state.used_new_space_size = 0; action = handler()->Compute(static_cast(idle_time_ms), heap_state); EXPECT_EQ(DO_NOTHING, action.type); } TEST_F(GCIdleTimeHandlerTest, ZeroIdleTimeNothingToDo) { GCIdleTimeHandler::HeapState heap_state = DefaultHeapState(); double idle_time_ms = 0; GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state); EXPECT_EQ(DO_NOTHING, action.type); } TEST_F(GCIdleTimeHandlerTest, ZeroIdleTimeDoNothingButStartIdleRound) { GCIdleTimeHandler::HeapState heap_state = DefaultHeapState(); double idle_time_ms = 10; for (int i = 0; i < GCIdleTimeHandler::kMaxMarkCompactsInIdleRound; i++) { GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state); if (action.type == DONE) break; EXPECT_EQ(DO_INCREMENTAL_MARKING, action.type); // In this case we try to emulate incremental marking steps the finish with // a full gc. handler()->NotifyIdleMarkCompact(); } GCIdleTimeAction action = handler()->Compute(idle_time_ms, heap_state); // Emulate mutator work. for (int i = 0; i < GCIdleTimeHandler::kIdleScavengeThreshold; i++) { handler()->NotifyScavenge(); } action = handler()->Compute(0, heap_state); EXPECT_EQ(DO_NOTHING, action.type); } } // namespace internal } // namespace v8