// Copyright 2011 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Features shared by parsing and pre-parsing scanners. #ifndef V8_SCANNER_H_ #define V8_SCANNER_H_ #include "src/allocation.h" #include "src/base/logging.h" #include "src/char-predicates.h" #include "src/globals.h" #include "src/hashmap.h" #include "src/list.h" #include "src/token.h" #include "src/unicode-inl.h" #include "src/utils.h" namespace v8 { namespace internal { class AstRawString; class AstValueFactory; class ParserRecorder; // Returns the value (0 .. 15) of a hexadecimal character c. // If c is not a legal hexadecimal character, returns a value < 0. inline int HexValue(uc32 c) { c -= '0'; if (static_cast(c) <= 9) return c; c = (c | 0x20) - ('a' - '0'); // detect 0x11..0x16 and 0x31..0x36. if (static_cast(c) <= 5) return c + 10; return -1; } // --------------------------------------------------------------------- // Buffered stream of UTF-16 code units, using an internal UTF-16 buffer. // A code unit is a 16 bit value representing either a 16 bit code point // or one part of a surrogate pair that make a single 21 bit code point. class Utf16CharacterStream { public: Utf16CharacterStream() : pos_(0) { } virtual ~Utf16CharacterStream() { } // Returns and advances past the next UTF-16 code unit in the input // stream. If there are no more code units, it returns a negative // value. inline uc32 Advance() { if (buffer_cursor_ < buffer_end_ || ReadBlock()) { pos_++; return static_cast(*(buffer_cursor_++)); } // Note: currently the following increment is necessary to avoid a // parser problem! The scanner treats the final kEndOfInput as // a code unit with a position, and does math relative to that // position. pos_++; return kEndOfInput; } // Return the current position in the code unit stream. // Starts at zero. inline unsigned pos() const { return pos_; } // Skips forward past the next code_unit_count UTF-16 code units // in the input, or until the end of input if that comes sooner. // Returns the number of code units actually skipped. If less // than code_unit_count, inline unsigned SeekForward(unsigned code_unit_count) { unsigned buffered_chars = static_cast(buffer_end_ - buffer_cursor_); if (code_unit_count <= buffered_chars) { buffer_cursor_ += code_unit_count; pos_ += code_unit_count; return code_unit_count; } return SlowSeekForward(code_unit_count); } // Pushes back the most recently read UTF-16 code unit (or negative // value if at end of input), i.e., the value returned by the most recent // call to Advance. // Must not be used right after calling SeekForward. virtual void PushBack(int32_t code_unit) = 0; protected: static const uc32 kEndOfInput = -1; // Ensures that the buffer_cursor_ points to the code_unit at // position pos_ of the input, if possible. If the position // is at or after the end of the input, return false. If there // are more code_units available, return true. virtual bool ReadBlock() = 0; virtual unsigned SlowSeekForward(unsigned code_unit_count) = 0; const uint16_t* buffer_cursor_; const uint16_t* buffer_end_; unsigned pos_; }; // --------------------------------------------------------------------- // Caching predicates used by scanners. class UnicodeCache { public: UnicodeCache() {} typedef unibrow::Utf8Decoder<512> Utf8Decoder; StaticResource* utf8_decoder() { return &utf8_decoder_; } bool IsIdentifierStart(unibrow::uchar c) { return kIsIdentifierStart.get(c); } bool IsIdentifierPart(unibrow::uchar c) { return kIsIdentifierPart.get(c); } bool IsLineTerminator(unibrow::uchar c) { return kIsLineTerminator.get(c); } bool IsWhiteSpace(unibrow::uchar c) { return kIsWhiteSpace.get(c); } bool IsWhiteSpaceOrLineTerminator(unibrow::uchar c) { return kIsWhiteSpaceOrLineTerminator.get(c); } private: unibrow::Predicate kIsIdentifierStart; unibrow::Predicate kIsIdentifierPart; unibrow::Predicate kIsLineTerminator; unibrow::Predicate kIsWhiteSpace; unibrow::Predicate kIsWhiteSpaceOrLineTerminator; StaticResource utf8_decoder_; DISALLOW_COPY_AND_ASSIGN(UnicodeCache); }; // --------------------------------------------------------------------- // DuplicateFinder discovers duplicate symbols. class DuplicateFinder { public: explicit DuplicateFinder(UnicodeCache* constants) : unicode_constants_(constants), backing_store_(16), map_(&Match) { } int AddOneByteSymbol(Vector key, int value); int AddTwoByteSymbol(Vector key, int value); // Add a a number literal by converting it (if necessary) // to the string that ToString(ToNumber(literal)) would generate. // and then adding that string with AddAsciiSymbol. // This string is the actual value used as key in an object literal, // and the one that must be different from the other keys. int AddNumber(Vector key, int value); private: int AddSymbol(Vector key, bool is_one_byte, int value); // Backs up the key and its length in the backing store. // The backup is stored with a base 127 encoding of the // length (plus a bit saying whether the string is one byte), // followed by the bytes of the key. uint8_t* BackupKey(Vector key, bool is_one_byte); // Compare two encoded keys (both pointing into the backing store) // for having the same base-127 encoded lengths and ASCII-ness, // and then having the same 'length' bytes following. static bool Match(void* first, void* second); // Creates a hash from a sequence of bytes. static uint32_t Hash(Vector key, bool is_one_byte); // Checks whether a string containing a JS number is its canonical // form. static bool IsNumberCanonical(Vector key); // Size of buffer. Sufficient for using it to call DoubleToCString in // from conversions.h. static const int kBufferSize = 100; UnicodeCache* unicode_constants_; // Backing store used to store strings used as hashmap keys. SequenceCollector backing_store_; HashMap map_; // Buffer used for string->number->canonical string conversions. char number_buffer_[kBufferSize]; }; // ---------------------------------------------------------------------------- // LiteralBuffer - Collector of chars of literals. class LiteralBuffer { public: LiteralBuffer() : is_one_byte_(true), position_(0), backing_store_() { } ~LiteralBuffer() { if (backing_store_.length() > 0) { backing_store_.Dispose(); } } INLINE(void AddChar(uint32_t code_unit)) { if (position_ >= backing_store_.length()) ExpandBuffer(); if (is_one_byte_) { if (code_unit <= unibrow::Latin1::kMaxChar) { backing_store_[position_] = static_cast(code_unit); position_ += kOneByteSize; return; } ConvertToTwoByte(); } ASSERT(code_unit < 0x10000u); *reinterpret_cast(&backing_store_[position_]) = code_unit; position_ += kUC16Size; } bool is_one_byte() { return is_one_byte_; } bool is_contextual_keyword(Vector keyword) { return is_one_byte() && keyword.length() == position_ && (memcmp(keyword.start(), backing_store_.start(), position_) == 0); } Vector two_byte_literal() { ASSERT(!is_one_byte_); ASSERT((position_ & 0x1) == 0); return Vector( reinterpret_cast(backing_store_.start()), position_ >> 1); } Vector one_byte_literal() { ASSERT(is_one_byte_); return Vector( reinterpret_cast(backing_store_.start()), position_); } int length() { return is_one_byte_ ? position_ : (position_ >> 1); } void Reset() { position_ = 0; is_one_byte_ = true; } private: static const int kInitialCapacity = 16; static const int kGrowthFactory = 4; static const int kMinConversionSlack = 256; static const int kMaxGrowth = 1 * MB; inline int NewCapacity(int min_capacity) { int capacity = Max(min_capacity, backing_store_.length()); int new_capacity = Min(capacity * kGrowthFactory, capacity + kMaxGrowth); return new_capacity; } void ExpandBuffer() { Vector new_store = Vector::New(NewCapacity(kInitialCapacity)); MemCopy(new_store.start(), backing_store_.start(), position_); backing_store_.Dispose(); backing_store_ = new_store; } void ConvertToTwoByte() { ASSERT(is_one_byte_); Vector new_store; int new_content_size = position_ * kUC16Size; if (new_content_size >= backing_store_.length()) { // Ensure room for all currently read code units as UC16 as well // as the code unit about to be stored. new_store = Vector::New(NewCapacity(new_content_size)); } else { new_store = backing_store_; } uint8_t* src = backing_store_.start(); uint16_t* dst = reinterpret_cast(new_store.start()); for (int i = position_ - 1; i >= 0; i--) { dst[i] = src[i]; } if (new_store.start() != backing_store_.start()) { backing_store_.Dispose(); backing_store_ = new_store; } position_ = new_content_size; is_one_byte_ = false; } bool is_one_byte_; int position_; Vector backing_store_; DISALLOW_COPY_AND_ASSIGN(LiteralBuffer); }; // ---------------------------------------------------------------------------- // JavaScript Scanner. class Scanner { public: // Scoped helper for literal recording. Automatically drops the literal // if aborting the scanning before it's complete. class LiteralScope { public: explicit LiteralScope(Scanner* self) : scanner_(self), complete_(false) { scanner_->StartLiteral(); } ~LiteralScope() { if (!complete_) scanner_->DropLiteral(); } void Complete() { scanner_->TerminateLiteral(); complete_ = true; } private: Scanner* scanner_; bool complete_; }; // Representation of an interval of source positions. struct Location { Location(int b, int e) : beg_pos(b), end_pos(e) { } Location() : beg_pos(0), end_pos(0) { } bool IsValid() const { return beg_pos >= 0 && end_pos >= beg_pos; } static Location invalid() { return Location(-1, -1); } int beg_pos; int end_pos; }; // -1 is outside of the range of any real source code. static const int kNoOctalLocation = -1; explicit Scanner(UnicodeCache* scanner_contants); void Initialize(Utf16CharacterStream* source); // Returns the next token and advances input. Token::Value Next(); // Returns the current token again. Token::Value current_token() { return current_.token; } // Returns the location information for the current token // (the token last returned by Next()). Location location() const { return current_.location; } // Similar functions for the upcoming token. // One token look-ahead (past the token returned by Next()). Token::Value peek() const { return next_.token; } Location peek_location() const { return next_.location; } bool literal_contains_escapes() const { Location location = current_.location; int source_length = (location.end_pos - location.beg_pos); if (current_.token == Token::STRING) { // Subtract delimiters. source_length -= 2; } return current_.literal_chars->length() != source_length; } bool is_literal_contextual_keyword(Vector keyword) { ASSERT_NOT_NULL(current_.literal_chars); return current_.literal_chars->is_contextual_keyword(keyword); } bool is_next_contextual_keyword(Vector keyword) { ASSERT_NOT_NULL(next_.literal_chars); return next_.literal_chars->is_contextual_keyword(keyword); } const AstRawString* CurrentSymbol(AstValueFactory* ast_value_factory); const AstRawString* NextSymbol(AstValueFactory* ast_value_factory); double DoubleValue(); bool UnescapedLiteralMatches(const char* data, int length) { if (is_literal_one_byte() && literal_length() == length && !literal_contains_escapes()) { const char* token = reinterpret_cast(literal_one_byte_string().start()); return !strncmp(token, data, length); } return false; } void IsGetOrSet(bool* is_get, bool* is_set) { if (is_literal_one_byte() && literal_length() == 3 && !literal_contains_escapes()) { const char* token = reinterpret_cast(literal_one_byte_string().start()); *is_get = strncmp(token, "get", 3) == 0; *is_set = !*is_get && strncmp(token, "set", 3) == 0; } } int FindNumber(DuplicateFinder* finder, int value); int FindSymbol(DuplicateFinder* finder, int value); UnicodeCache* unicode_cache() { return unicode_cache_; } // Returns the location of the last seen octal literal. Location octal_position() const { return octal_pos_; } void clear_octal_position() { octal_pos_ = Location::invalid(); } // Seek forward to the given position. This operation does not // work in general, for instance when there are pushed back // characters, but works for seeking forward until simple delimiter // tokens, which is what it is used for. void SeekForward(int pos); bool HarmonyScoping() const { return harmony_scoping_; } void SetHarmonyScoping(bool scoping) { harmony_scoping_ = scoping; } bool HarmonyModules() const { return harmony_modules_; } void SetHarmonyModules(bool modules) { harmony_modules_ = modules; } bool HarmonyNumericLiterals() const { return harmony_numeric_literals_; } void SetHarmonyNumericLiterals(bool numeric_literals) { harmony_numeric_literals_ = numeric_literals; } // Returns true if there was a line terminator before the peek'ed token, // possibly inside a multi-line comment. bool HasAnyLineTerminatorBeforeNext() const { return has_line_terminator_before_next_ || has_multiline_comment_before_next_; } // Scans the input as a regular expression pattern, previous // character(s) must be /(=). Returns true if a pattern is scanned. bool ScanRegExpPattern(bool seen_equal); // Returns true if regexp flags are scanned (always since flags can // be empty). bool ScanRegExpFlags(); private: // The current and look-ahead token. struct TokenDesc { Token::Value token; Location location; LiteralBuffer* literal_chars; }; static const int kCharacterLookaheadBufferSize = 1; // Scans octal escape sequence. Also accepts "\0" decimal escape sequence. uc32 ScanOctalEscape(uc32 c, int length); // Call this after setting source_ to the input. void Init() { // Set c0_ (one character ahead) STATIC_ASSERT(kCharacterLookaheadBufferSize == 1); Advance(); // Initialize current_ to not refer to a literal. current_.literal_chars = NULL; } // Literal buffer support inline void StartLiteral() { LiteralBuffer* free_buffer = (current_.literal_chars == &literal_buffer1_) ? &literal_buffer2_ : &literal_buffer1_; free_buffer->Reset(); next_.literal_chars = free_buffer; } INLINE(void AddLiteralChar(uc32 c)) { ASSERT_NOT_NULL(next_.literal_chars); next_.literal_chars->AddChar(c); } // Complete scanning of a literal. inline void TerminateLiteral() { // Does nothing in the current implementation. } // Stops scanning of a literal and drop the collected characters, // e.g., due to an encountered error. inline void DropLiteral() { next_.literal_chars = NULL; } inline void AddLiteralCharAdvance() { AddLiteralChar(c0_); Advance(); } // Low-level scanning support. void Advance() { c0_ = source_->Advance(); } void PushBack(uc32 ch) { source_->PushBack(c0_); c0_ = ch; } inline Token::Value Select(Token::Value tok) { Advance(); return tok; } inline Token::Value Select(uc32 next, Token::Value then, Token::Value else_) { Advance(); if (c0_ == next) { Advance(); return then; } else { return else_; } } // Returns the literal string, if any, for the current token (the // token last returned by Next()). The string is 0-terminated. // Literal strings are collected for identifiers, strings, and // numbers. // These functions only give the correct result if the literal // was scanned between calls to StartLiteral() and TerminateLiteral(). Vector literal_one_byte_string() { ASSERT_NOT_NULL(current_.literal_chars); return current_.literal_chars->one_byte_literal(); } Vector literal_two_byte_string() { ASSERT_NOT_NULL(current_.literal_chars); return current_.literal_chars->two_byte_literal(); } bool is_literal_one_byte() { ASSERT_NOT_NULL(current_.literal_chars); return current_.literal_chars->is_one_byte(); } int literal_length() const { ASSERT_NOT_NULL(current_.literal_chars); return current_.literal_chars->length(); } // Returns the literal string for the next token (the token that // would be returned if Next() were called). Vector next_literal_one_byte_string() { ASSERT_NOT_NULL(next_.literal_chars); return next_.literal_chars->one_byte_literal(); } Vector next_literal_two_byte_string() { ASSERT_NOT_NULL(next_.literal_chars); return next_.literal_chars->two_byte_literal(); } bool is_next_literal_one_byte() { ASSERT_NOT_NULL(next_.literal_chars); return next_.literal_chars->is_one_byte(); } int next_literal_length() const { ASSERT_NOT_NULL(next_.literal_chars); return next_.literal_chars->length(); } uc32 ScanHexNumber(int expected_length); // Scans a single JavaScript token. void Scan(); bool SkipWhiteSpace(); Token::Value SkipSingleLineComment(); Token::Value SkipMultiLineComment(); // Scans a possible HTML comment -- begins with 'pos() - kCharacterLookaheadBufferSize; } UnicodeCache* unicode_cache_; // Buffers collecting literal strings, numbers, etc. LiteralBuffer literal_buffer1_; LiteralBuffer literal_buffer2_; TokenDesc current_; // desc for current token (as returned by Next()) TokenDesc next_; // desc for next token (one token look-ahead) // Input stream. Must be initialized to an Utf16CharacterStream. Utf16CharacterStream* source_; // Start position of the octal literal last scanned. Location octal_pos_; // One Unicode character look-ahead; c0_ < 0 at the end of the input. uc32 c0_; // Whether there is a line terminator whitespace character after // the current token, and before the next. Does not count newlines // inside multiline comments. bool has_line_terminator_before_next_; // Whether there is a multi-line comment that contains a // line-terminator after the current token, and before the next. bool has_multiline_comment_before_next_; // Whether we scan 'let' as a keyword for harmony block-scoped let bindings. bool harmony_scoping_; // Whether we scan 'module', 'import', 'export' as keywords. bool harmony_modules_; // Whether we scan 0o777 and 0b111 as numbers. bool harmony_numeric_literals_; }; } } // namespace v8::internal #endif // V8_SCANNER_H_