// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include "src/base/atomic-utils.h" #include "src/base/platform/time.h" #include "src/counters-inl.h" #include "src/counters.h" #include "src/handles-inl.h" #include "src/objects-inl.h" #include "src/tracing/tracing-category-observer.h" #include "test/unittests/test-utils.h" #include "testing/gtest/include/gtest/gtest.h" namespace v8 { namespace internal { namespace { class MockHistogram : public Histogram { public: void AddSample(int value) { samples_.push_back(value); } std::vector* samples() { return &samples_; } private: std::vector samples_; }; class AggregatedMemoryHistogramTest : public ::testing::Test { public: AggregatedMemoryHistogramTest() : aggregated_(&mock_) {} virtual ~AggregatedMemoryHistogramTest() {} void AddSample(double current_ms, double current_value) { aggregated_.AddSample(current_ms, current_value); } std::vector* samples() { return mock_.samples(); } private: AggregatedMemoryHistogram aggregated_; MockHistogram mock_; }; static base::TimeTicks runtime_call_stats_test_time_ = base::TimeTicks(); // Time source used for the RuntimeCallTimer during tests. We cannot rely on // the native timer since it's too unpredictable on the build bots. static base::TimeTicks RuntimeCallStatsTestNow() { return runtime_call_stats_test_time_; } class RuntimeCallStatsTest : public TestWithNativeContext { public: RuntimeCallStatsTest() { base::AsAtomic32::Relaxed_Store( &FLAG_runtime_stats, v8::tracing::TracingCategoryObserver::ENABLED_BY_NATIVE); // We need to set {time_} to a non-zero value since it would otherwise // cause runtime call timers to think they are uninitialized. Sleep(1); stats()->Reset(); } ~RuntimeCallStatsTest() { // Disable RuntimeCallStats before tearing down the isolate to prevent // printing the tests table. Comment the following line for debugging // purposes. base::AsAtomic32::Relaxed_Store(&FLAG_runtime_stats, 0); } static void SetUpTestCase() { TestWithIsolate::SetUpTestCase(); // Use a custom time source to precisly emulate system time. RuntimeCallTimer::Now = &RuntimeCallStatsTestNow; } static void TearDownTestCase() { TestWithIsolate::TearDownTestCase(); // Restore the original time source. RuntimeCallTimer::Now = &base::TimeTicks::HighResolutionNow; } RuntimeCallStats* stats() { return isolate()->counters()->runtime_call_stats(); } // Print current RuntimeCallStats table. For debugging purposes. void PrintStats() { stats()->Print(); } RuntimeCallCounterId counter_id() { return RuntimeCallCounterId::kTestCounter1; } RuntimeCallCounterId counter_id2() { return RuntimeCallCounterId::kTestCounter2; } RuntimeCallCounterId counter_id3() { return RuntimeCallCounterId::kTestCounter3; } RuntimeCallCounter* js_counter() { return stats()->GetCounter(RuntimeCallCounterId::kJS_Execution); } RuntimeCallCounter* counter() { return stats()->GetCounter(counter_id()); } RuntimeCallCounter* counter2() { return stats()->GetCounter(counter_id2()); } RuntimeCallCounter* counter3() { return stats()->GetCounter(counter_id3()); } void Sleep(int64_t microseconds) { base::TimeDelta delta = base::TimeDelta::FromMicroseconds(microseconds); time_ += delta; runtime_call_stats_test_time_ = base::TimeTicks::FromInternalValue(time_.InMicroseconds()); } private: base::TimeDelta time_; }; // Temporarily use the native time to modify the test time. class ElapsedTimeScope { public: explicit ElapsedTimeScope(RuntimeCallStatsTest* test) : test_(test) { timer_.Start(); } ~ElapsedTimeScope() { test_->Sleep(timer_.Elapsed().InMicroseconds()); } private: base::ElapsedTimer timer_; RuntimeCallStatsTest* test_; }; // Temporarily use the default time source. class NativeTimeScope { public: NativeTimeScope() { CHECK_EQ(RuntimeCallTimer::Now, &RuntimeCallStatsTestNow); RuntimeCallTimer::Now = &base::TimeTicks::HighResolutionNow; } ~NativeTimeScope() { CHECK_EQ(RuntimeCallTimer::Now, &base::TimeTicks::HighResolutionNow); RuntimeCallTimer::Now = &RuntimeCallStatsTestNow; } }; } // namespace TEST_F(AggregatedMemoryHistogramTest, OneSample1) { FLAG_histogram_interval = 10; AddSample(10, 1000); AddSample(20, 1000); EXPECT_EQ(1U, samples()->size()); EXPECT_EQ(1000, (*samples())[0]); } TEST_F(AggregatedMemoryHistogramTest, OneSample2) { FLAG_histogram_interval = 10; AddSample(10, 500); AddSample(20, 1000); EXPECT_EQ(1U, samples()->size()); EXPECT_EQ(750, (*samples())[0]); } TEST_F(AggregatedMemoryHistogramTest, OneSample3) { FLAG_histogram_interval = 10; AddSample(10, 500); AddSample(15, 500); AddSample(15, 1000); AddSample(20, 1000); EXPECT_EQ(1U, samples()->size()); EXPECT_EQ(750, (*samples())[0]); } TEST_F(AggregatedMemoryHistogramTest, OneSample4) { FLAG_histogram_interval = 10; AddSample(10, 500); AddSample(15, 750); AddSample(20, 1000); EXPECT_EQ(1U, samples()->size()); EXPECT_EQ(750, (*samples())[0]); } TEST_F(AggregatedMemoryHistogramTest, TwoSamples1) { FLAG_histogram_interval = 10; AddSample(10, 1000); AddSample(30, 1000); EXPECT_EQ(2U, samples()->size()); EXPECT_EQ(1000, (*samples())[0]); EXPECT_EQ(1000, (*samples())[1]); } TEST_F(AggregatedMemoryHistogramTest, TwoSamples2) { FLAG_histogram_interval = 10; AddSample(10, 1000); AddSample(20, 1000); AddSample(30, 1000); EXPECT_EQ(2U, samples()->size()); EXPECT_EQ(1000, (*samples())[0]); EXPECT_EQ(1000, (*samples())[1]); } TEST_F(AggregatedMemoryHistogramTest, TwoSamples3) { FLAG_histogram_interval = 10; AddSample(10, 1000); AddSample(20, 1000); AddSample(20, 500); AddSample(30, 500); EXPECT_EQ(2U, samples()->size()); EXPECT_EQ(1000, (*samples())[0]); EXPECT_EQ(500, (*samples())[1]); } TEST_F(AggregatedMemoryHistogramTest, TwoSamples4) { FLAG_histogram_interval = 10; AddSample(10, 1000); AddSample(30, 0); EXPECT_EQ(2U, samples()->size()); EXPECT_EQ(750, (*samples())[0]); EXPECT_EQ(250, (*samples())[1]); } TEST_F(AggregatedMemoryHistogramTest, TwoSamples5) { FLAG_histogram_interval = 10; AddSample(10, 0); AddSample(30, 1000); EXPECT_EQ(2U, samples()->size()); EXPECT_EQ(250, (*samples())[0]); EXPECT_EQ(750, (*samples())[1]); } TEST_F(AggregatedMemoryHistogramTest, TwoSamples6) { FLAG_histogram_interval = 10; AddSample(10, 0); AddSample(15, 1000); AddSample(30, 1000); EXPECT_EQ(2U, samples()->size()); EXPECT_EQ((500 + 1000) / 2, (*samples())[0]); EXPECT_EQ(1000, (*samples())[1]); } TEST_F(AggregatedMemoryHistogramTest, TwoSamples7) { FLAG_histogram_interval = 10; AddSample(10, 0); AddSample(15, 1000); AddSample(25, 0); AddSample(30, 1000); EXPECT_EQ(2U, samples()->size()); EXPECT_EQ((500 + 750) / 2, (*samples())[0]); EXPECT_EQ((250 + 500) / 2, (*samples())[1]); } TEST_F(AggregatedMemoryHistogramTest, TwoSamples8) { FLAG_histogram_interval = 10; AddSample(10, 1000); AddSample(15, 0); AddSample(25, 1000); AddSample(30, 0); EXPECT_EQ(2U, samples()->size()); EXPECT_EQ((500 + 250) / 2, (*samples())[0]); EXPECT_EQ((750 + 500) / 2, (*samples())[1]); } TEST_F(AggregatedMemoryHistogramTest, ManySamples1) { FLAG_histogram_interval = 10; const int kMaxSamples = 1000; AddSample(0, 0); AddSample(10 * kMaxSamples, 10 * kMaxSamples); EXPECT_EQ(static_cast(kMaxSamples), samples()->size()); for (int i = 0; i < kMaxSamples; i++) { EXPECT_EQ(i * 10 + 5, (*samples())[i]); } } TEST_F(AggregatedMemoryHistogramTest, ManySamples2) { FLAG_histogram_interval = 10; const int kMaxSamples = 1000; AddSample(0, 0); AddSample(10 * (2 * kMaxSamples), 10 * (2 * kMaxSamples)); EXPECT_EQ(static_cast(kMaxSamples), samples()->size()); for (int i = 0; i < kMaxSamples; i++) { EXPECT_EQ(i * 10 + 5, (*samples())[i]); } } TEST_F(RuntimeCallStatsTest, RuntimeCallTimer) { RuntimeCallTimer timer; Sleep(50); stats()->Enter(&timer, counter_id()); EXPECT_EQ(counter(), timer.counter()); EXPECT_EQ(nullptr, timer.parent()); EXPECT_TRUE(timer.IsStarted()); EXPECT_EQ(&timer, stats()->current_timer()); Sleep(100); stats()->Leave(&timer); Sleep(50); EXPECT_FALSE(timer.IsStarted()); EXPECT_EQ(1, counter()->count()); EXPECT_EQ(100, counter()->time().InMicroseconds()); } TEST_F(RuntimeCallStatsTest, RuntimeCallTimerSubTimer) { RuntimeCallTimer timer; RuntimeCallTimer timer2; stats()->Enter(&timer, counter_id()); EXPECT_TRUE(timer.IsStarted()); EXPECT_FALSE(timer2.IsStarted()); EXPECT_EQ(counter(), timer.counter()); EXPECT_EQ(nullptr, timer.parent()); EXPECT_EQ(&timer, stats()->current_timer()); Sleep(50); stats()->Enter(&timer2, counter_id2()); // timer 1 is paused, while timer 2 is active. EXPECT_TRUE(timer2.IsStarted()); EXPECT_EQ(counter(), timer.counter()); EXPECT_EQ(counter2(), timer2.counter()); EXPECT_EQ(nullptr, timer.parent()); EXPECT_EQ(&timer, timer2.parent()); EXPECT_EQ(&timer2, stats()->current_timer()); Sleep(100); stats()->Leave(&timer2); // The subtimer subtracts its time from the parent timer. EXPECT_TRUE(timer.IsStarted()); EXPECT_FALSE(timer2.IsStarted()); EXPECT_EQ(0, counter()->count()); EXPECT_EQ(1, counter2()->count()); EXPECT_EQ(0, counter()->time().InMicroseconds()); EXPECT_EQ(100, counter2()->time().InMicroseconds()); EXPECT_EQ(&timer, stats()->current_timer()); Sleep(100); stats()->Leave(&timer); EXPECT_FALSE(timer.IsStarted()); EXPECT_EQ(1, counter()->count()); EXPECT_EQ(1, counter2()->count()); EXPECT_EQ(150, counter()->time().InMicroseconds()); EXPECT_EQ(100, counter2()->time().InMicroseconds()); EXPECT_EQ(nullptr, stats()->current_timer()); } TEST_F(RuntimeCallStatsTest, RuntimeCallTimerRecursive) { RuntimeCallTimer timer; RuntimeCallTimer timer2; stats()->Enter(&timer, counter_id()); EXPECT_EQ(counter(), timer.counter()); EXPECT_EQ(nullptr, timer.parent()); EXPECT_TRUE(timer.IsStarted()); EXPECT_EQ(&timer, stats()->current_timer()); stats()->Enter(&timer2, counter_id()); EXPECT_EQ(counter(), timer2.counter()); EXPECT_EQ(nullptr, timer.parent()); EXPECT_EQ(&timer, timer2.parent()); EXPECT_TRUE(timer2.IsStarted()); EXPECT_EQ(&timer2, stats()->current_timer()); Sleep(50); stats()->Leave(&timer2); EXPECT_EQ(nullptr, timer.parent()); EXPECT_FALSE(timer2.IsStarted()); EXPECT_TRUE(timer.IsStarted()); EXPECT_EQ(1, counter()->count()); EXPECT_EQ(50, counter()->time().InMicroseconds()); Sleep(100); stats()->Leave(&timer); EXPECT_FALSE(timer.IsStarted()); EXPECT_EQ(2, counter()->count()); EXPECT_EQ(150, counter()->time().InMicroseconds()); } TEST_F(RuntimeCallStatsTest, RuntimeCallTimerScope) { { RuntimeCallTimerScope scope(stats(), counter_id()); Sleep(50); } Sleep(100); EXPECT_EQ(1, counter()->count()); EXPECT_EQ(50, counter()->time().InMicroseconds()); { RuntimeCallTimerScope scope(stats(), counter_id()); Sleep(50); } EXPECT_EQ(2, counter()->count()); EXPECT_EQ(100, counter()->time().InMicroseconds()); } TEST_F(RuntimeCallStatsTest, RuntimeCallTimerScopeRecursive) { { RuntimeCallTimerScope scope(stats(), counter_id()); Sleep(50); EXPECT_EQ(0, counter()->count()); EXPECT_EQ(0, counter()->time().InMicroseconds()); { RuntimeCallTimerScope scope(stats(), counter_id()); Sleep(50); } EXPECT_EQ(1, counter()->count()); EXPECT_EQ(50, counter()->time().InMicroseconds()); } EXPECT_EQ(2, counter()->count()); EXPECT_EQ(100, counter()->time().InMicroseconds()); } TEST_F(RuntimeCallStatsTest, RenameTimer) { { RuntimeCallTimerScope scope(stats(), counter_id()); Sleep(50); EXPECT_EQ(0, counter()->count()); EXPECT_EQ(0, counter2()->count()); EXPECT_EQ(0, counter()->time().InMicroseconds()); EXPECT_EQ(0, counter2()->time().InMicroseconds()); { RuntimeCallTimerScope scope(stats(), counter_id()); Sleep(100); } CHANGE_CURRENT_RUNTIME_COUNTER(stats(), RuntimeCallCounterId::kTestCounter2); EXPECT_EQ(1, counter()->count()); EXPECT_EQ(0, counter2()->count()); EXPECT_EQ(100, counter()->time().InMicroseconds()); EXPECT_EQ(0, counter2()->time().InMicroseconds()); } EXPECT_EQ(1, counter()->count()); EXPECT_EQ(1, counter2()->count()); EXPECT_EQ(100, counter()->time().InMicroseconds()); EXPECT_EQ(50, counter2()->time().InMicroseconds()); } TEST_F(RuntimeCallStatsTest, BasicPrintAndSnapshot) { std::ostringstream out; stats()->Print(out); EXPECT_EQ(0, counter()->count()); EXPECT_EQ(0, counter2()->count()); EXPECT_EQ(0, counter3()->count()); EXPECT_EQ(0, counter()->time().InMicroseconds()); EXPECT_EQ(0, counter2()->time().InMicroseconds()); EXPECT_EQ(0, counter3()->time().InMicroseconds()); { RuntimeCallTimerScope scope(stats(), counter_id()); Sleep(50); stats()->Print(out); } stats()->Print(out); EXPECT_EQ(1, counter()->count()); EXPECT_EQ(0, counter2()->count()); EXPECT_EQ(0, counter3()->count()); EXPECT_EQ(50, counter()->time().InMicroseconds()); EXPECT_EQ(0, counter2()->time().InMicroseconds()); EXPECT_EQ(0, counter3()->time().InMicroseconds()); } TEST_F(RuntimeCallStatsTest, PrintAndSnapshot) { { RuntimeCallTimerScope scope(stats(), counter_id()); Sleep(100); EXPECT_EQ(0, counter()->count()); EXPECT_EQ(0, counter()->time().InMicroseconds()); { RuntimeCallTimerScope scope(stats(), counter_id2()); EXPECT_EQ(0, counter2()->count()); EXPECT_EQ(0, counter2()->time().InMicroseconds()); Sleep(50); // This calls Snapshot on the current active timer and sychronizes and // commits the whole timer stack. std::ostringstream out; stats()->Print(out); EXPECT_EQ(0, counter()->count()); EXPECT_EQ(0, counter2()->count()); EXPECT_EQ(100, counter()->time().InMicroseconds()); EXPECT_EQ(50, counter2()->time().InMicroseconds()); // Calling Print several times shouldn't have a (big) impact on the // measured times. stats()->Print(out); EXPECT_EQ(0, counter()->count()); EXPECT_EQ(0, counter2()->count()); EXPECT_EQ(100, counter()->time().InMicroseconds()); EXPECT_EQ(50, counter2()->time().InMicroseconds()); Sleep(50); stats()->Print(out); EXPECT_EQ(0, counter()->count()); EXPECT_EQ(0, counter2()->count()); EXPECT_EQ(100, counter()->time().InMicroseconds()); EXPECT_EQ(100, counter2()->time().InMicroseconds()); Sleep(50); } Sleep(50); EXPECT_EQ(0, counter()->count()); EXPECT_EQ(1, counter2()->count()); EXPECT_EQ(100, counter()->time().InMicroseconds()); EXPECT_EQ(150, counter2()->time().InMicroseconds()); Sleep(50); } EXPECT_EQ(1, counter()->count()); EXPECT_EQ(1, counter2()->count()); EXPECT_EQ(200, counter()->time().InMicroseconds()); EXPECT_EQ(150, counter2()->time().InMicroseconds()); } TEST_F(RuntimeCallStatsTest, NestedScopes) { { RuntimeCallTimerScope scope(stats(), counter_id()); Sleep(100); { RuntimeCallTimerScope scope(stats(), counter_id2()); Sleep(100); { RuntimeCallTimerScope scope(stats(), counter_id3()); Sleep(50); } Sleep(50); { RuntimeCallTimerScope scope(stats(), counter_id3()); Sleep(50); } Sleep(50); } Sleep(100); { RuntimeCallTimerScope scope(stats(), counter_id2()); Sleep(100); } Sleep(50); } EXPECT_EQ(1, counter()->count()); EXPECT_EQ(2, counter2()->count()); EXPECT_EQ(2, counter3()->count()); EXPECT_EQ(250, counter()->time().InMicroseconds()); EXPECT_EQ(300, counter2()->time().InMicroseconds()); EXPECT_EQ(100, counter3()->time().InMicroseconds()); } TEST_F(RuntimeCallStatsTest, BasicJavaScript) { RuntimeCallCounter* counter = stats()->GetCounter(RuntimeCallCounterId::kJS_Execution); EXPECT_EQ(0, counter->count()); EXPECT_EQ(0, counter->time().InMicroseconds()); { NativeTimeScope native_timer_scope; RunJS("function f() { return 1; }"); } EXPECT_EQ(1, counter->count()); int64_t time = counter->time().InMicroseconds(); EXPECT_LT(0, time); { NativeTimeScope native_timer_scope; RunJS("f()"); } EXPECT_EQ(2, counter->count()); EXPECT_LE(time, counter->time().InMicroseconds()); } TEST_F(RuntimeCallStatsTest, FunctionLengthGetter) { RuntimeCallCounter* getter_counter = stats()->GetCounter(RuntimeCallCounterId::kFunctionLengthGetter); RuntimeCallCounter* js_counter = stats()->GetCounter(RuntimeCallCounterId::kJS_Execution); EXPECT_EQ(0, getter_counter->count()); EXPECT_EQ(0, js_counter->count()); EXPECT_EQ(0, getter_counter->time().InMicroseconds()); EXPECT_EQ(0, js_counter->time().InMicroseconds()); { NativeTimeScope native_timer_scope; RunJS("function f(array) { return array.length; }"); } EXPECT_EQ(0, getter_counter->count()); EXPECT_EQ(1, js_counter->count()); EXPECT_EQ(0, getter_counter->time().InMicroseconds()); int64_t js_time = js_counter->time().InMicroseconds(); EXPECT_LT(0, js_time); { NativeTimeScope native_timer_scope; RunJS("f.length"); } EXPECT_EQ(1, getter_counter->count()); EXPECT_EQ(2, js_counter->count()); EXPECT_LE(0, getter_counter->time().InMicroseconds()); EXPECT_LT(js_time, js_counter->time().InMicroseconds()); { NativeTimeScope native_timer_scope; RunJS("for (let i = 0; i < 50; i++) { f.length }"); } EXPECT_EQ(51, getter_counter->count()); EXPECT_EQ(3, js_counter->count()); } namespace { static RuntimeCallStatsTest* current_test; static const int kCustomCallbackTime = 1234; static void CustomCallback(const v8::FunctionCallbackInfo& info) { RuntimeCallTimerScope scope(current_test->stats(), current_test->counter_id2()); current_test->Sleep(kCustomCallbackTime); } } // namespace TEST_F(RuntimeCallStatsTest, CustomCallback) { current_test = this; // Set up a function template with a custom callback. v8::Isolate* isolate = v8_isolate(); v8::HandleScope scope(isolate); v8::Local object_template = v8::ObjectTemplate::New(isolate); object_template->Set(isolate, "callback", v8::FunctionTemplate::New(isolate, CustomCallback)); v8::Local object = object_template->NewInstance(v8_context()).ToLocalChecked(); SetGlobalProperty("custom_object", object); // TODO(cbruni): Check api accessor timer (one above the custom callback). EXPECT_EQ(0, js_counter()->count()); EXPECT_EQ(0, counter()->count()); EXPECT_EQ(0, counter2()->count()); { RuntimeCallTimerScope scope(stats(), counter_id()); Sleep(100); RunJS("custom_object.callback();"); } EXPECT_EQ(1, js_counter()->count()); // Given that no native timers are used, only the two scopes explitly // mentioned above will track the time. EXPECT_EQ(0, js_counter()->time().InMicroseconds()); EXPECT_EQ(1, counter()->count()); EXPECT_EQ(100, counter()->time().InMicroseconds()); EXPECT_EQ(1, counter2()->count()); EXPECT_EQ(kCustomCallbackTime, counter2()->time().InMicroseconds()); RunJS("for (let i = 0; i < 9; i++) { custom_object.callback() };"); EXPECT_EQ(2, js_counter()->count()); EXPECT_EQ(0, js_counter()->time().InMicroseconds()); EXPECT_EQ(1, counter()->count()); EXPECT_EQ(100, counter()->time().InMicroseconds()); EXPECT_EQ(10, counter2()->count()); EXPECT_EQ(kCustomCallbackTime * 10, counter2()->time().InMicroseconds()); RunJS("for (let i = 0; i < 4000; i++) { custom_object.callback() };"); EXPECT_EQ(3, js_counter()->count()); EXPECT_EQ(0, js_counter()->time().InMicroseconds()); EXPECT_EQ(1, counter()->count()); EXPECT_EQ(100, counter()->time().InMicroseconds()); EXPECT_EQ(4010, counter2()->count()); EXPECT_EQ(kCustomCallbackTime * 4010, counter2()->time().InMicroseconds()); } } // namespace internal } // namespace v8