// Copyright 2018 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Flags: --experimental-wasm-threads // This test might time out if the search space for a sequential // interleaving becomes to large. However, it should never fail. // Note that results of this test are flaky by design. While the test is // deterministic with a fixed seed, bugs may introduce non-determinism. load("test/mjsunit/wasm/wasm-constants.js"); load("test/mjsunit/wasm/wasm-module-builder.js"); const kDebug = false; const kSequenceLength = 256; const kNumberOfWorker = 4; const kNumberOfSteps = 10000000; const kFirstOpcodeWithInput = 3; const kFirstOpcodeWithoutOutput = 3; const kLastOpcodeWithoutOutput = 5; const opCodes = [ kExprI32AtomicLoad, kExprI32AtomicLoad8U, kExprI32AtomicLoad16U, kExprI32AtomicStore, kExprI32AtomicStore8U, kExprI32AtomicStore16U, kExprI32AtomicAdd, kExprI32AtomicAdd8U, kExprI32AtomicAdd16U, kExprI32AtomicSub, kExprI32AtomicSub8U, kExprI32AtomicSub16U, kExprI32AtomicAnd, kExprI32AtomicAnd8U, kExprI32AtomicAnd16U, kExprI32AtomicOr, kExprI32AtomicOr8U, kExprI32AtomicOr16U, kExprI32AtomicXor, kExprI32AtomicXor8U, kExprI32AtomicXor16U, kExprI32AtomicExchange, kExprI32AtomicExchange8U, kExprI32AtomicExchange16U ]; const opCodeNames = [ "kExprI32AtomicLoad", "kExprI32AtomicLoad8U", "kExprI32AtomicLoad16U", "kExprI32AtomicStore", "kExprI32AtomicStore8U", "kExprI32AtomicStore16U", "kExprI32AtomicAdd", "kExprI32AtomicAdd8U", "kExprI32AtomicAdd16U", "kExprI32AtomicSub", "kExprI32AtomicSub8U", "kExprI32AtomicSub16U", "kExprI32AtomicAnd", "kExprI32AtomicAnd8U", "kExprI32AtomicAnd16U", "kExprI32AtomicOr", "kExprI32AtomicOr8U", "kExprI32AtomicOr16U", "kExprI32AtomicXor", "kExprI32AtomicXor8U", "kExprI32AtomicXor16U", "kExprI32AtomicExchange", "kExprI32AtomicExchange8U", "kExprI32AtomicExchange16U" ]; class Operation { constructor(opcode, input, offset) { this.opcode = opcode != undefined ? opcode : Operation.nextOpcode(); this.size = Operation.opcodeToSize(this.opcode); this.input = input != undefined ? input : Operation.inputForSize( this.size); this.offset = offset != undefined ? offset : Operation.offsetForSize( this.size); } static nextOpcode() { let random = Math.random(); return Math.floor(random * opCodes.length); } static opcodeToSize(opcode) { // Instructions are ordered in 32, 8, 16 bits size return [32, 8, 16][opcode % 3]; } static opcodeToAlignment(opcode) { // Instructions are ordered in 32, 8, 16 bits size return [2, 0, 1][opcode % 3]; } static inputForSize(size) { let random = Math.random(); // Avoid 32 bit overflow for integer here :( return Math.floor(random * (1 << (size - 1)) * 2); } static offsetForSize(size) { // Pick an offset in bytes between 0 and 7. let offset = Math.floor(Math.random() * 8); // Make sure the offset matches the required alignment by masking out the lower bits. let size_in_bytes = size / 8; let mask = ~(size_in_bytes - 1); return offset & mask; } get wasmOpcode() { // [opcode, alignment, offset] return [opCodes[this.opcode], Operation.opcodeToAlignment(this.opcode), this.offset]; } get hasInput() { return this.opcode >= kFirstOpcodeWithInput; } get hasOutput() { return this.opcode < kFirstOpcodeWithoutOutput || this.opcode > kLastOpcodeWithoutOutput; } truncateResultBits(low, high) { // Shift the lower part. For offsets greater four it drops out of the visible window. let shiftedL = this.offset >= 4 ? 0 : low >>> (this.offset * 8); // The higher part is zero for offset 0, left shifted for [1..3] and right shifted // for [4..7]. let shiftedH = this.offset == 0 ? 0 : this.offset >= 4 ? high >>> (this.offset - 4) * 8 : high << ((4 - this.offset) * 8); let value = shiftedL | shiftedH; switch (this.size) { case 8: return value & 0xFF; case 16: return value & 0xFFFF; case 32: return value; default: throw "Unexpected size: " + this.size; } } static get builder() { if (!Operation.__builder) { let builder = new WasmModuleBuilder(); builder.addMemory(1, 1, 1, false); builder.exportMemoryAs("mem"); Operation.__builder = builder; } return Operation.__builder; } static get exports() { if (!Operation.__instance) { return {}; } return Operation.__instance.exports; } static get memory() { return Operation.exports.mem; } static set instance(instance) { Operation.__instance = instance; } compute(state) { let evalFun = Operation.exports[this.key]; if (!evalFun) { let builder = Operation.builder; let body = [ // Load address of low 32 bits. kExprI32Const, 0, // Load expected value. kExprGetLocal, 0, kExprI32StoreMem, 2, 0, // Load address of high 32 bits. kExprI32Const, 4, // Load expected value. kExprGetLocal, 1, kExprI32StoreMem, 2, 0, // Load address of where our window starts. kExprI32Const, 0, // Load input if there is one. ...(this.hasInput ? [kExprGetLocal, 2] : []), // Perform operation. kAtomicPrefix, ...this.wasmOpcode, // Drop output if it had any. ...(this.hasOutput ? [kExprDrop] : []), // Load resulting value. kExprI32Const, 0, kExprI32LoadMem, 2, 0, // Return. kExprReturn ] builder.addFunction(this.key, kSig_i_iii) .addBody(body) .exportAs(this.key); // Instantiate module, get function exports. let module = new WebAssembly.Module(builder.toBuffer()); Operation.instance = new WebAssembly.Instance(module); evalFun = Operation.exports[this.key]; } let result = evalFun(state.low, state.high, this.input); let ta = new Int32Array(Operation.memory.buffer); if (kDebug) { print(state.high + ":" + state.low + " " + this.toString() + " -> " + ta[1] + ":" + ta[0]); } if (result != ta[0]) throw "!"; return { low: ta[0], high: ta[1] }; } toString() { return opCodeNames[this.opcode] + "[+" + this.offset + "] " + this.input; } get key() { return this.opcode + "-" + this.offset; } } class State { constructor(low, high, indices, count) { this.low = low; this.high = high; this.indices = indices; this.count = count; } isFinal() { return (this.count == kNumberOfWorker * kSequenceLength); } toString() { return this.high + ":" + this.low + " @ " + this.indices; } } function makeSequenceOfOperations(size) { let result = new Array(size); for (let i = 0; i < size; i++) { result[i] = new Operation(); } return result; } function toSLeb128(val) { let result = []; while (true) { let v = val & 0x7f; val = val >> 7; let msbIsSet = (v & 0x40) || false; if (((val == 0) && !msbIsSet) || ((val == -1) && msbIsSet)) { result.push(v); break; } result.push(v | 0x80); } return result; } function generateFunctionBodyForSequence(sequence) { // We expect the int32* to perform ops on as arg 0 and // the int32* for our value log as arg1. Argument 2 gives // an int32* we use to count down spinning workers. let body = []; // Initially, we spin until all workers start running. if (!kDebug) { body.push( // Decrement the wait count. kExprGetLocal, 2, kExprI32Const, 1, kAtomicPrefix, kExprI32AtomicSub, 2, 0, // Spin until zero. kExprLoop, kWasmStmt, kExprGetLocal, 2, kAtomicPrefix, kExprI32AtomicLoad, 2, 0, kExprI32Const, 0, kExprI32GtU, kExprBrIf, 0, kExprEnd ); } for (let operation of sequence) { body.push( // Pre-load address of results sequence pointer for later. kExprGetLocal, 1, // Load address where atomic pointers are stored. kExprGetLocal, 0, // Load the second argument if it had any. ...(operation.hasInput ? [kExprI32Const, ...toSLeb128(operation .input)] : []), // Perform operation kAtomicPrefix, ...operation.wasmOpcode, // Generate fake output in needed. ...(operation.hasOutput ? [] : [kExprI32Const, 0]), // Store read intermediate to sequence. kExprI32StoreMem, 2, 0, // Increment result sequence pointer. kExprGetLocal, 1, kExprI32Const, 4, kExprI32Add, kExprSetLocal, 1 ); } // Return end of sequence index. body.push( kExprGetLocal, 1, kExprReturn); return body; } function getSequence(start, end) { return new Int32Array(memory.buffer, start, (end - start) / Int32Array.BYTES_PER_ELEMENT); } function spawnWorkers() { let workers = []; for (let i = 0; i < kNumberOfWorker; i++) { let worker = new Worker( `onmessage = function(msg) { if (msg.module) { let module = msg.module; let mem = msg.mem; this.instance = new WebAssembly.Instance(module, {m: {imported_mem: mem}}); postMessage({instantiated: true}); } else { let address = msg.address; let sequence = msg.sequence; let index = msg.index; let spin = msg.spin; let result = instance.exports["worker" + index](address, sequence, spin); postMessage({index: index, sequence: sequence, result: result}); } }`, {type: 'string'} ); workers.push(worker); } return workers; } function instantiateModuleInWorkers(workers) { for (let worker of workers) { worker.postMessage({ module: module, mem: memory }); let msg = worker.getMessage(); if (!msg.instantiated) throw "Worker failed to instantiate"; } } function executeSequenceInWorkers(workers) { for (i = 0; i < workers.length; i++) { let worker = workers[i]; worker.postMessage({ index: i, address: 0, spin: 16, sequence: 32 + ((kSequenceLength * 4) + 32) * i }); // In debug mode, keep execution sequential. if (kDebug) { let msg = worker.getMessage(); results[msg.index] = getSequence(msg.sequence, msg.result); } } } function selectMatchingWorkers(state) { let matching = []; let indices = state.indices; for (let i = 0; i < indices.length; i++) { let index = indices[i]; if (index >= kSequenceLength) continue; // We need to project the expected value to the number of bits this // operation will read at runtime. let expected = sequences[i][index].truncateResultBits(state.low, state.high); let hasOutput = sequences[i][index].hasOutput; if (!hasOutput || (results[i][index] == expected)) { matching.push(i); } } return matching; } function computeNextState(state, advanceIdx) { let newIndices = state.indices.slice(); let sequence = sequences[advanceIdx]; let operation = sequence[state.indices[advanceIdx]]; newIndices[advanceIdx]++; let { low, high } = operation.compute(state); return new State(low, high, newIndices, state.count + 1); } function findSequentialOrdering() { let startIndices = new Array(results.length); let steps = 0; startIndices.fill(0); let matchingStates = [new State(0, 0, startIndices, 0)]; while (matchingStates.length > 0) { let current = matchingStates.pop(); if (kDebug) { print(current); } let matchingResults = selectMatchingWorkers(current); if (matchingResults.length == 0) { continue; } for (let match of matchingResults) { let newState = computeNextState(current, match); if (newState.isFinal()) { return true; } matchingStates.push(newState); } if (steps++ > kNumberOfSteps) { print("Search timed out, aborting..."); return true; } } // We have no options left. return false; } // Helpful for debugging failed tests. function loadSequencesFromStrings(inputs) { let reverseOpcodes = {}; for (let i = 0; i < opCodeNames.length; i++) { reverseOpcodes[opCodeNames[i]] = i; } let sequences = []; let parseRE = /([a-zA-Z0-9]*)\[\+([0-9])\] ([\-0-9]*)/; for (let input of inputs) { let parts = input.split(","); let sequence = []; for (let part of parts) { let parsed = parseRE.exec(part); sequence.push(new Operation(reverseOpcodes[parsed[1]], parsed[3], parsed[2] | 0)); } sequences.push(sequence); } return sequences; } // Helpful for debugging failed tests. function loadResultsFromStrings(inputs) { let results = []; for (let input of inputs) { let parts = input.split(","); let result = []; for (let number of parts) { result.push(number | 0); } results.push(result); } return results; } let maxSize = 10; let memory = new WebAssembly.Memory({ initial: 1, maximum: maxSize, shared: true }); let memory_view = new Int32Array(memory.buffer); let sequences = []; let results = []; let builder = new WasmModuleBuilder(); builder.addImportedMemory("m", "imported_mem", 0, maxSize, "shared"); for (let i = 0; i < kNumberOfWorker; i++) { sequences[i] = makeSequenceOfOperations(kSequenceLength); builder.addFunction("worker" + i, kSig_i_iii) .addBody(generateFunctionBodyForSequence(sequences[i])) .exportAs("worker" + i); } // Instantiate module, get function exports. let module = new WebAssembly.Module(builder.toBuffer()); let instance = new WebAssembly.Instance(module, { m: { imported_mem: memory } }); // Spawn off the workers and run the sequences. let workers = spawnWorkers(); // Set spin count. memory_view[4] = kNumberOfWorker; instantiateModuleInWorkers(workers); executeSequenceInWorkers(workers); if (!kDebug) { // Collect results, d8 style. for (let worker of workers) { let msg = worker.getMessage(); results[msg.index] = getSequence(msg.sequence, msg.result); } } // Terminate all workers. for (let worker of workers) { worker.terminate(); } // In debug mode, print sequences and results. if (kDebug) { for (let result of results) { print(result); } for (let sequence of sequences) { print(sequence); } } // Try to reconstruct a sequential ordering. let passed = findSequentialOrdering(); if (passed) { print("PASS"); } else { for (let i = 0; i < kNumberOfWorker; i++) { print("Worker " + i); print(sequences[i]); print(results[i]); } print("FAIL"); quit(-1); }