// Copyright 2016 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/code-stub-assembler.h" #include "src/code-factory.h" #include "src/frames-inl.h" #include "src/frames.h" namespace v8 { namespace internal { using compiler::Node; void CodeStubAssembler::Assert(ConditionBody codition_body, const char* message, const char* file, int line) { #if defined(DEBUG) Label ok(this); Label not_ok(this, Label::kDeferred); if (message != nullptr && FLAG_code_comments) { Comment("[ Assert: %s", message); } else { Comment("[ Assert"); } Node* condition = codition_body(); DCHECK_NOT_NULL(condition); Branch(condition, &ok, ¬_ok); Bind(¬_ok); if (message != nullptr) { char chars[1024]; Vector buffer(chars); if (file != nullptr) { SNPrintF(buffer, "CSA_ASSERT failed: %s [%s:%d]\n", message, file, line); } else { SNPrintF(buffer, "CSA_ASSERT failed: %s\n", message); } CallRuntime( Runtime::kGlobalPrint, SmiConstant(Smi::kZero), HeapConstant(factory()->NewStringFromAsciiChecked(&(buffer[0])))); } DebugBreak(); Goto(&ok); Bind(&ok); Comment("] Assert"); #endif } Node* CodeStubAssembler::NoContextConstant() { return NumberConstant(0); } #define HEAP_CONSTANT_ACCESSOR(rootName, name) \ Node* CodeStubAssembler::name##Constant() { \ return LoadRoot(Heap::k##rootName##RootIndex); \ } HEAP_CONSTANT_LIST(HEAP_CONSTANT_ACCESSOR); #undef HEAP_CONSTANT_ACCESSOR #define HEAP_CONSTANT_TEST(rootName, name) \ Node* CodeStubAssembler::Is##name(Node* value) { \ return WordEqual(value, name##Constant()); \ } HEAP_CONSTANT_LIST(HEAP_CONSTANT_TEST); #undef HEAP_CONSTANT_TEST Node* CodeStubAssembler::HashSeed() { return LoadAndUntagToWord32Root(Heap::kHashSeedRootIndex); } Node* CodeStubAssembler::StaleRegisterConstant() { return LoadRoot(Heap::kStaleRegisterRootIndex); } Node* CodeStubAssembler::IntPtrOrSmiConstant(int value, ParameterMode mode) { if (mode == SMI_PARAMETERS) { return SmiConstant(Smi::FromInt(value)); } else { DCHECK(mode == INTEGER_PARAMETERS || mode == INTPTR_PARAMETERS); return IntPtrConstant(value); } } Node* CodeStubAssembler::IntPtrAddFoldConstants(Node* left, Node* right) { int32_t left_constant; bool is_left_constant = ToInt32Constant(left, left_constant); int32_t right_constant; bool is_right_constant = ToInt32Constant(right, right_constant); if (is_left_constant) { if (is_right_constant) { return IntPtrConstant(left_constant + right_constant); } if (left_constant == 0) { return right; } } else if (is_right_constant) { if (right_constant == 0) { return left; } } return IntPtrAdd(left, right); } Node* CodeStubAssembler::IntPtrSubFoldConstants(Node* left, Node* right) { int32_t left_constant; bool is_left_constant = ToInt32Constant(left, left_constant); int32_t right_constant; bool is_right_constant = ToInt32Constant(right, right_constant); if (is_left_constant) { if (is_right_constant) { return IntPtrConstant(left_constant - right_constant); } } else if (is_right_constant) { if (right_constant == 0) { return left; } } return IntPtrSub(left, right); } Node* CodeStubAssembler::IntPtrRoundUpToPowerOfTwo32(Node* value) { Comment("IntPtrRoundUpToPowerOfTwo32"); CSA_ASSERT(this, UintPtrLessThanOrEqual(value, IntPtrConstant(0x80000000u))); value = IntPtrSub(value, IntPtrConstant(1)); for (int i = 1; i <= 16; i *= 2) { value = WordOr(value, WordShr(value, IntPtrConstant(i))); } return IntPtrAdd(value, IntPtrConstant(1)); } Node* CodeStubAssembler::WordIsPowerOfTwo(Node* value) { // value && !(value & (value - 1)) return WordEqual( Select(WordEqual(value, IntPtrConstant(0)), IntPtrConstant(1), WordAnd(value, IntPtrSub(value, IntPtrConstant(1))), MachineType::PointerRepresentation()), IntPtrConstant(0)); } Node* CodeStubAssembler::Float64Round(Node* x) { Node* one = Float64Constant(1.0); Node* one_half = Float64Constant(0.5); Variable var_x(this, MachineRepresentation::kFloat64); Label return_x(this); // Round up {x} towards Infinity. var_x.Bind(Float64Ceil(x)); GotoIf(Float64LessThanOrEqual(Float64Sub(var_x.value(), one_half), x), &return_x); var_x.Bind(Float64Sub(var_x.value(), one)); Goto(&return_x); Bind(&return_x); return var_x.value(); } Node* CodeStubAssembler::Float64Ceil(Node* x) { if (IsFloat64RoundUpSupported()) { return Float64RoundUp(x); } Node* one = Float64Constant(1.0); Node* zero = Float64Constant(0.0); Node* two_52 = Float64Constant(4503599627370496.0E0); Node* minus_two_52 = Float64Constant(-4503599627370496.0E0); Variable var_x(this, MachineRepresentation::kFloat64); Label return_x(this), return_minus_x(this); var_x.Bind(x); // Check if {x} is greater than zero. Label if_xgreaterthanzero(this), if_xnotgreaterthanzero(this); Branch(Float64GreaterThan(x, zero), &if_xgreaterthanzero, &if_xnotgreaterthanzero); Bind(&if_xgreaterthanzero); { // Just return {x} unless it's in the range ]0,2^52[. GotoIf(Float64GreaterThanOrEqual(x, two_52), &return_x); // Round positive {x} towards Infinity. var_x.Bind(Float64Sub(Float64Add(two_52, x), two_52)); GotoUnless(Float64LessThan(var_x.value(), x), &return_x); var_x.Bind(Float64Add(var_x.value(), one)); Goto(&return_x); } Bind(&if_xnotgreaterthanzero); { // Just return {x} unless it's in the range ]-2^52,0[ GotoIf(Float64LessThanOrEqual(x, minus_two_52), &return_x); GotoUnless(Float64LessThan(x, zero), &return_x); // Round negated {x} towards Infinity and return the result negated. Node* minus_x = Float64Neg(x); var_x.Bind(Float64Sub(Float64Add(two_52, minus_x), two_52)); GotoUnless(Float64GreaterThan(var_x.value(), minus_x), &return_minus_x); var_x.Bind(Float64Sub(var_x.value(), one)); Goto(&return_minus_x); } Bind(&return_minus_x); var_x.Bind(Float64Neg(var_x.value())); Goto(&return_x); Bind(&return_x); return var_x.value(); } Node* CodeStubAssembler::Float64Floor(Node* x) { if (IsFloat64RoundDownSupported()) { return Float64RoundDown(x); } Node* one = Float64Constant(1.0); Node* zero = Float64Constant(0.0); Node* two_52 = Float64Constant(4503599627370496.0E0); Node* minus_two_52 = Float64Constant(-4503599627370496.0E0); Variable var_x(this, MachineRepresentation::kFloat64); Label return_x(this), return_minus_x(this); var_x.Bind(x); // Check if {x} is greater than zero. Label if_xgreaterthanzero(this), if_xnotgreaterthanzero(this); Branch(Float64GreaterThan(x, zero), &if_xgreaterthanzero, &if_xnotgreaterthanzero); Bind(&if_xgreaterthanzero); { // Just return {x} unless it's in the range ]0,2^52[. GotoIf(Float64GreaterThanOrEqual(x, two_52), &return_x); // Round positive {x} towards -Infinity. var_x.Bind(Float64Sub(Float64Add(two_52, x), two_52)); GotoUnless(Float64GreaterThan(var_x.value(), x), &return_x); var_x.Bind(Float64Sub(var_x.value(), one)); Goto(&return_x); } Bind(&if_xnotgreaterthanzero); { // Just return {x} unless it's in the range ]-2^52,0[ GotoIf(Float64LessThanOrEqual(x, minus_two_52), &return_x); GotoUnless(Float64LessThan(x, zero), &return_x); // Round negated {x} towards -Infinity and return the result negated. Node* minus_x = Float64Neg(x); var_x.Bind(Float64Sub(Float64Add(two_52, minus_x), two_52)); GotoUnless(Float64LessThan(var_x.value(), minus_x), &return_minus_x); var_x.Bind(Float64Add(var_x.value(), one)); Goto(&return_minus_x); } Bind(&return_minus_x); var_x.Bind(Float64Neg(var_x.value())); Goto(&return_x); Bind(&return_x); return var_x.value(); } Node* CodeStubAssembler::Float64Trunc(Node* x) { if (IsFloat64RoundTruncateSupported()) { return Float64RoundTruncate(x); } Node* one = Float64Constant(1.0); Node* zero = Float64Constant(0.0); Node* two_52 = Float64Constant(4503599627370496.0E0); Node* minus_two_52 = Float64Constant(-4503599627370496.0E0); Variable var_x(this, MachineRepresentation::kFloat64); Label return_x(this), return_minus_x(this); var_x.Bind(x); // Check if {x} is greater than 0. Label if_xgreaterthanzero(this), if_xnotgreaterthanzero(this); Branch(Float64GreaterThan(x, zero), &if_xgreaterthanzero, &if_xnotgreaterthanzero); Bind(&if_xgreaterthanzero); { if (IsFloat64RoundDownSupported()) { var_x.Bind(Float64RoundDown(x)); } else { // Just return {x} unless it's in the range ]0,2^52[. GotoIf(Float64GreaterThanOrEqual(x, two_52), &return_x); // Round positive {x} towards -Infinity. var_x.Bind(Float64Sub(Float64Add(two_52, x), two_52)); GotoUnless(Float64GreaterThan(var_x.value(), x), &return_x); var_x.Bind(Float64Sub(var_x.value(), one)); } Goto(&return_x); } Bind(&if_xnotgreaterthanzero); { if (IsFloat64RoundUpSupported()) { var_x.Bind(Float64RoundUp(x)); Goto(&return_x); } else { // Just return {x} unless its in the range ]-2^52,0[. GotoIf(Float64LessThanOrEqual(x, minus_two_52), &return_x); GotoUnless(Float64LessThan(x, zero), &return_x); // Round negated {x} towards -Infinity and return result negated. Node* minus_x = Float64Neg(x); var_x.Bind(Float64Sub(Float64Add(two_52, minus_x), two_52)); GotoUnless(Float64GreaterThan(var_x.value(), minus_x), &return_minus_x); var_x.Bind(Float64Sub(var_x.value(), one)); Goto(&return_minus_x); } } Bind(&return_minus_x); var_x.Bind(Float64Neg(var_x.value())); Goto(&return_x); Bind(&return_x); return var_x.value(); } Node* CodeStubAssembler::SmiShiftBitsConstant() { return IntPtrConstant(kSmiShiftSize + kSmiTagSize); } Node* CodeStubAssembler::SmiFromWord32(Node* value) { value = ChangeInt32ToIntPtr(value); return BitcastWordToTaggedSigned(WordShl(value, SmiShiftBitsConstant())); } Node* CodeStubAssembler::SmiTag(Node* value) { int32_t constant_value; if (ToInt32Constant(value, constant_value) && Smi::IsValid(constant_value)) { return SmiConstant(Smi::FromInt(constant_value)); } return BitcastWordToTaggedSigned(WordShl(value, SmiShiftBitsConstant())); } Node* CodeStubAssembler::SmiUntag(Node* value) { return WordSar(BitcastTaggedToWord(value), SmiShiftBitsConstant()); } Node* CodeStubAssembler::SmiToWord32(Node* value) { Node* result = SmiUntag(value); if (Is64()) { result = TruncateInt64ToInt32(result); } return result; } Node* CodeStubAssembler::SmiToFloat64(Node* value) { return ChangeInt32ToFloat64(SmiToWord32(value)); } Node* CodeStubAssembler::SmiAdd(Node* a, Node* b) { return BitcastWordToTaggedSigned( IntPtrAdd(BitcastTaggedToWord(a), BitcastTaggedToWord(b))); } Node* CodeStubAssembler::SmiSub(Node* a, Node* b) { return BitcastWordToTaggedSigned( IntPtrSub(BitcastTaggedToWord(a), BitcastTaggedToWord(b))); } Node* CodeStubAssembler::SmiEqual(Node* a, Node* b) { return WordEqual(BitcastTaggedToWord(a), BitcastTaggedToWord(b)); } Node* CodeStubAssembler::SmiAbove(Node* a, Node* b) { return UintPtrGreaterThan(BitcastTaggedToWord(a), BitcastTaggedToWord(b)); } Node* CodeStubAssembler::SmiAboveOrEqual(Node* a, Node* b) { return UintPtrGreaterThanOrEqual(BitcastTaggedToWord(a), BitcastTaggedToWord(b)); } Node* CodeStubAssembler::SmiBelow(Node* a, Node* b) { return UintPtrLessThan(BitcastTaggedToWord(a), BitcastTaggedToWord(b)); } Node* CodeStubAssembler::SmiLessThan(Node* a, Node* b) { return IntPtrLessThan(BitcastTaggedToWord(a), BitcastTaggedToWord(b)); } Node* CodeStubAssembler::SmiLessThanOrEqual(Node* a, Node* b) { return IntPtrLessThanOrEqual(BitcastTaggedToWord(a), BitcastTaggedToWord(b)); } Node* CodeStubAssembler::SmiMax(Node* a, Node* b) { return Select(SmiLessThan(a, b), b, a); } Node* CodeStubAssembler::SmiMin(Node* a, Node* b) { return Select(SmiLessThan(a, b), a, b); } Node* CodeStubAssembler::SmiMod(Node* a, Node* b) { Variable var_result(this, MachineRepresentation::kTagged); Label return_result(this, &var_result), return_minuszero(this, Label::kDeferred), return_nan(this, Label::kDeferred); // Untag {a} and {b}. a = SmiToWord32(a); b = SmiToWord32(b); // Return NaN if {b} is zero. GotoIf(Word32Equal(b, Int32Constant(0)), &return_nan); // Check if {a} is non-negative. Label if_aisnotnegative(this), if_aisnegative(this, Label::kDeferred); Branch(Int32LessThanOrEqual(Int32Constant(0), a), &if_aisnotnegative, &if_aisnegative); Bind(&if_aisnotnegative); { // Fast case, don't need to check any other edge cases. Node* r = Int32Mod(a, b); var_result.Bind(SmiFromWord32(r)); Goto(&return_result); } Bind(&if_aisnegative); { if (SmiValuesAre32Bits()) { // Check if {a} is kMinInt and {b} is -1 (only relevant if the // kMinInt is actually representable as a Smi). Label join(this); GotoUnless(Word32Equal(a, Int32Constant(kMinInt)), &join); GotoIf(Word32Equal(b, Int32Constant(-1)), &return_minuszero); Goto(&join); Bind(&join); } // Perform the integer modulus operation. Node* r = Int32Mod(a, b); // Check if {r} is zero, and if so return -0, because we have to // take the sign of the left hand side {a}, which is negative. GotoIf(Word32Equal(r, Int32Constant(0)), &return_minuszero); // The remainder {r} can be outside the valid Smi range on 32bit // architectures, so we cannot just say SmiFromWord32(r) here. var_result.Bind(ChangeInt32ToTagged(r)); Goto(&return_result); } Bind(&return_minuszero); var_result.Bind(MinusZeroConstant()); Goto(&return_result); Bind(&return_nan); var_result.Bind(NanConstant()); Goto(&return_result); Bind(&return_result); return var_result.value(); } Node* CodeStubAssembler::SmiMul(Node* a, Node* b) { Variable var_result(this, MachineRepresentation::kTagged); Variable var_lhs_float64(this, MachineRepresentation::kFloat64), var_rhs_float64(this, MachineRepresentation::kFloat64); Label return_result(this, &var_result); // Both {a} and {b} are Smis. Convert them to integers and multiply. Node* lhs32 = SmiToWord32(a); Node* rhs32 = SmiToWord32(b); Node* pair = Int32MulWithOverflow(lhs32, rhs32); Node* overflow = Projection(1, pair); // Check if the multiplication overflowed. Label if_overflow(this, Label::kDeferred), if_notoverflow(this); Branch(overflow, &if_overflow, &if_notoverflow); Bind(&if_notoverflow); { // If the answer is zero, we may need to return -0.0, depending on the // input. Label answer_zero(this), answer_not_zero(this); Node* answer = Projection(0, pair); Node* zero = Int32Constant(0); Branch(WordEqual(answer, zero), &answer_zero, &answer_not_zero); Bind(&answer_not_zero); { var_result.Bind(ChangeInt32ToTagged(answer)); Goto(&return_result); } Bind(&answer_zero); { Node* or_result = Word32Or(lhs32, rhs32); Label if_should_be_negative_zero(this), if_should_be_zero(this); Branch(Int32LessThan(or_result, zero), &if_should_be_negative_zero, &if_should_be_zero); Bind(&if_should_be_negative_zero); { var_result.Bind(MinusZeroConstant()); Goto(&return_result); } Bind(&if_should_be_zero); { var_result.Bind(zero); Goto(&return_result); } } } Bind(&if_overflow); { var_lhs_float64.Bind(SmiToFloat64(a)); var_rhs_float64.Bind(SmiToFloat64(b)); Node* value = Float64Mul(var_lhs_float64.value(), var_rhs_float64.value()); Node* result = AllocateHeapNumberWithValue(value); var_result.Bind(result); Goto(&return_result); } Bind(&return_result); return var_result.value(); } Node* CodeStubAssembler::TaggedIsSmi(Node* a) { return WordEqual(WordAnd(BitcastTaggedToWord(a), IntPtrConstant(kSmiTagMask)), IntPtrConstant(0)); } Node* CodeStubAssembler::WordIsPositiveSmi(Node* a) { return WordEqual(WordAnd(a, IntPtrConstant(kSmiTagMask | kSmiSignMask)), IntPtrConstant(0)); } Node* CodeStubAssembler::WordIsWordAligned(Node* word) { return WordEqual(IntPtrConstant(0), WordAnd(word, IntPtrConstant((1 << kPointerSizeLog2) - 1))); } void CodeStubAssembler::BranchIfSimd128Equal(Node* lhs, Node* lhs_map, Node* rhs, Node* rhs_map, Label* if_equal, Label* if_notequal) { Label if_mapsame(this), if_mapnotsame(this); Branch(WordEqual(lhs_map, rhs_map), &if_mapsame, &if_mapnotsame); Bind(&if_mapsame); { // Both {lhs} and {rhs} are Simd128Values with the same map, need special // handling for Float32x4 because of NaN comparisons. Label if_float32x4(this), if_notfloat32x4(this); Node* float32x4_map = HeapConstant(factory()->float32x4_map()); Branch(WordEqual(lhs_map, float32x4_map), &if_float32x4, &if_notfloat32x4); Bind(&if_float32x4); { // Both {lhs} and {rhs} are Float32x4, compare the lanes individually // using a floating point comparison. for (int offset = Float32x4::kValueOffset - kHeapObjectTag; offset < Float32x4::kSize - kHeapObjectTag; offset += sizeof(float)) { // Load the floating point values for {lhs} and {rhs}. Node* lhs_value = Load(MachineType::Float32(), lhs, IntPtrConstant(offset)); Node* rhs_value = Load(MachineType::Float32(), rhs, IntPtrConstant(offset)); // Perform a floating point comparison. Label if_valueequal(this), if_valuenotequal(this); Branch(Float32Equal(lhs_value, rhs_value), &if_valueequal, &if_valuenotequal); Bind(&if_valuenotequal); Goto(if_notequal); Bind(&if_valueequal); } // All 4 lanes match, {lhs} and {rhs} considered equal. Goto(if_equal); } Bind(&if_notfloat32x4); { // For other Simd128Values we just perform a bitwise comparison. for (int offset = Simd128Value::kValueOffset - kHeapObjectTag; offset < Simd128Value::kSize - kHeapObjectTag; offset += kPointerSize) { // Load the word values for {lhs} and {rhs}. Node* lhs_value = Load(MachineType::Pointer(), lhs, IntPtrConstant(offset)); Node* rhs_value = Load(MachineType::Pointer(), rhs, IntPtrConstant(offset)); // Perform a bitwise word-comparison. Label if_valueequal(this), if_valuenotequal(this); Branch(WordEqual(lhs_value, rhs_value), &if_valueequal, &if_valuenotequal); Bind(&if_valuenotequal); Goto(if_notequal); Bind(&if_valueequal); } // Bitwise comparison succeeded, {lhs} and {rhs} considered equal. Goto(if_equal); } } Bind(&if_mapnotsame); Goto(if_notequal); } void CodeStubAssembler::BranchIfPrototypesHaveNoElements( Node* receiver_map, Label* definitely_no_elements, Label* possibly_elements) { Variable var_map(this, MachineRepresentation::kTagged); var_map.Bind(receiver_map); Label loop_body(this, &var_map); Node* empty_elements = LoadRoot(Heap::kEmptyFixedArrayRootIndex); Goto(&loop_body); Bind(&loop_body); { Node* map = var_map.value(); Node* prototype = LoadMapPrototype(map); GotoIf(WordEqual(prototype, NullConstant()), definitely_no_elements); Node* prototype_map = LoadMap(prototype); // Pessimistically assume elements if a Proxy, Special API Object, // or JSValue wrapper is found on the prototype chain. After this // instance type check, it's not necessary to check for interceptors or // access checks. GotoIf(Int32LessThanOrEqual(LoadMapInstanceType(prototype_map), Int32Constant(LAST_CUSTOM_ELEMENTS_RECEIVER)), possibly_elements); GotoIf(WordNotEqual(LoadElements(prototype), empty_elements), possibly_elements); var_map.Bind(prototype_map); Goto(&loop_body); } } void CodeStubAssembler::BranchIfJSReceiver(Node* object, Label* if_true, Label* if_false) { GotoIf(TaggedIsSmi(object), if_false); STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); Branch(Int32GreaterThanOrEqual(LoadInstanceType(object), Int32Constant(FIRST_JS_RECEIVER_TYPE)), if_true, if_false); } void CodeStubAssembler::BranchIfJSObject(Node* object, Label* if_true, Label* if_false) { GotoIf(TaggedIsSmi(object), if_false); STATIC_ASSERT(LAST_JS_OBJECT_TYPE == LAST_TYPE); Branch(Int32GreaterThanOrEqual(LoadInstanceType(object), Int32Constant(FIRST_JS_OBJECT_TYPE)), if_true, if_false); } void CodeStubAssembler::BranchIfFastJSArray(Node* object, Node* context, Label* if_true, Label* if_false) { // Bailout if receiver is a Smi. GotoIf(TaggedIsSmi(object), if_false); Node* map = LoadMap(object); // Bailout if instance type is not JS_ARRAY_TYPE. GotoIf(WordNotEqual(LoadMapInstanceType(map), Int32Constant(JS_ARRAY_TYPE)), if_false); Node* elements_kind = LoadMapElementsKind(map); // Bailout if receiver has slow elements. GotoUnless(IsFastElementsKind(elements_kind), if_false); // Check prototype chain if receiver does not have packed elements. GotoUnless(IsHoleyFastElementsKind(elements_kind), if_true); BranchIfPrototypesHaveNoElements(map, if_true, if_false); } Node* CodeStubAssembler::AllocateRawUnaligned(Node* size_in_bytes, AllocationFlags flags, Node* top_address, Node* limit_address) { Node* top = Load(MachineType::Pointer(), top_address); Node* limit = Load(MachineType::Pointer(), limit_address); // If there's not enough space, call the runtime. Variable result(this, MachineRepresentation::kTagged); Label runtime_call(this, Label::kDeferred), no_runtime_call(this); Label merge_runtime(this, &result); Node* new_top = IntPtrAdd(top, size_in_bytes); Branch(UintPtrGreaterThanOrEqual(new_top, limit), &runtime_call, &no_runtime_call); Bind(&runtime_call); Node* runtime_result; if (flags & kPretenured) { Node* runtime_flags = SmiConstant( Smi::FromInt(AllocateDoubleAlignFlag::encode(false) | AllocateTargetSpace::encode(AllocationSpace::OLD_SPACE))); runtime_result = CallRuntime(Runtime::kAllocateInTargetSpace, NoContextConstant(), SmiTag(size_in_bytes), runtime_flags); } else { runtime_result = CallRuntime(Runtime::kAllocateInNewSpace, NoContextConstant(), SmiTag(size_in_bytes)); } result.Bind(runtime_result); Goto(&merge_runtime); // When there is enough space, return `top' and bump it up. Bind(&no_runtime_call); Node* no_runtime_result = top; StoreNoWriteBarrier(MachineType::PointerRepresentation(), top_address, new_top); no_runtime_result = BitcastWordToTagged( IntPtrAdd(no_runtime_result, IntPtrConstant(kHeapObjectTag))); result.Bind(no_runtime_result); Goto(&merge_runtime); Bind(&merge_runtime); return result.value(); } Node* CodeStubAssembler::AllocateRawAligned(Node* size_in_bytes, AllocationFlags flags, Node* top_address, Node* limit_address) { Node* top = Load(MachineType::Pointer(), top_address); Node* limit = Load(MachineType::Pointer(), limit_address); Variable adjusted_size(this, MachineType::PointerRepresentation()); adjusted_size.Bind(size_in_bytes); if (flags & kDoubleAlignment) { // TODO(epertoso): Simd128 alignment. Label aligned(this), not_aligned(this), merge(this, &adjusted_size); Branch(WordAnd(top, IntPtrConstant(kDoubleAlignmentMask)), ¬_aligned, &aligned); Bind(¬_aligned); Node* not_aligned_size = IntPtrAdd(size_in_bytes, IntPtrConstant(kPointerSize)); adjusted_size.Bind(not_aligned_size); Goto(&merge); Bind(&aligned); Goto(&merge); Bind(&merge); } Variable address(this, MachineRepresentation::kTagged); address.Bind(AllocateRawUnaligned(adjusted_size.value(), kNone, top, limit)); Label needs_filler(this), doesnt_need_filler(this), merge_address(this, &address); Branch(IntPtrEqual(adjusted_size.value(), size_in_bytes), &doesnt_need_filler, &needs_filler); Bind(&needs_filler); // Store a filler and increase the address by kPointerSize. // TODO(epertoso): this code assumes that we only align to kDoubleSize. Change // it when Simd128 alignment is supported. StoreNoWriteBarrier(MachineType::PointerRepresentation(), top, LoadRoot(Heap::kOnePointerFillerMapRootIndex)); address.Bind(BitcastWordToTagged( IntPtrAdd(address.value(), IntPtrConstant(kPointerSize)))); Goto(&merge_address); Bind(&doesnt_need_filler); Goto(&merge_address); Bind(&merge_address); // Update the top. StoreNoWriteBarrier(MachineType::PointerRepresentation(), top_address, IntPtrAdd(top, adjusted_size.value())); return address.value(); } Node* CodeStubAssembler::Allocate(Node* size_in_bytes, AllocationFlags flags) { Comment("Allocate"); bool const new_space = !(flags & kPretenured); Node* top_address = ExternalConstant( new_space ? ExternalReference::new_space_allocation_top_address(isolate()) : ExternalReference::old_space_allocation_top_address(isolate())); Node* limit_address = ExternalConstant( new_space ? ExternalReference::new_space_allocation_limit_address(isolate()) : ExternalReference::old_space_allocation_limit_address(isolate())); #ifdef V8_HOST_ARCH_32_BIT if (flags & kDoubleAlignment) { return AllocateRawAligned(size_in_bytes, flags, top_address, limit_address); } #endif return AllocateRawUnaligned(size_in_bytes, flags, top_address, limit_address); } Node* CodeStubAssembler::Allocate(int size_in_bytes, AllocationFlags flags) { return CodeStubAssembler::Allocate(IntPtrConstant(size_in_bytes), flags); } Node* CodeStubAssembler::InnerAllocate(Node* previous, Node* offset) { return BitcastWordToTagged(IntPtrAdd(previous, offset)); } Node* CodeStubAssembler::InnerAllocate(Node* previous, int offset) { return InnerAllocate(previous, IntPtrConstant(offset)); } Node* CodeStubAssembler::IsRegularHeapObjectSize(Node* size) { return UintPtrLessThanOrEqual(size, IntPtrConstant(kMaxRegularHeapObjectSize)); } void CodeStubAssembler::BranchIfToBooleanIsTrue(Node* value, Label* if_true, Label* if_false) { Label if_valueissmi(this), if_valueisnotsmi(this), if_valueisstring(this), if_valueisheapnumber(this), if_valueisother(this); // Fast check for Boolean {value}s (common case). GotoIf(WordEqual(value, BooleanConstant(true)), if_true); GotoIf(WordEqual(value, BooleanConstant(false)), if_false); // Check if {value} is a Smi or a HeapObject. Branch(TaggedIsSmi(value), &if_valueissmi, &if_valueisnotsmi); Bind(&if_valueissmi); { // The {value} is a Smi, only need to check against zero. BranchIfSmiEqual(value, SmiConstant(0), if_false, if_true); } Bind(&if_valueisnotsmi); { // The {value} is a HeapObject, load its map. Node* value_map = LoadMap(value); // Load the {value}s instance type. Node* value_instance_type = LoadMapInstanceType(value_map); // Dispatch based on the instance type; we distinguish all String instance // types, the HeapNumber type and everything else. GotoIf(Word32Equal(value_instance_type, Int32Constant(HEAP_NUMBER_TYPE)), &if_valueisheapnumber); Branch(IsStringInstanceType(value_instance_type), &if_valueisstring, &if_valueisother); Bind(&if_valueisstring); { // Load the string length field of the {value}. Node* value_length = LoadObjectField(value, String::kLengthOffset); // Check if the {value} is the empty string. BranchIfSmiEqual(value_length, SmiConstant(0), if_false, if_true); } Bind(&if_valueisheapnumber); { // Load the floating point value of {value}. Node* value_value = LoadObjectField(value, HeapNumber::kValueOffset, MachineType::Float64()); // Check if the floating point {value} is neither 0.0, -0.0 nor NaN. Branch(Float64LessThan(Float64Constant(0.0), Float64Abs(value_value)), if_true, if_false); } Bind(&if_valueisother); { // Load the bit field from the {value}s map. The {value} is now either // Null or Undefined, which have the undetectable bit set (so we always // return false for those), or a Symbol or Simd128Value, whose maps never // have the undetectable bit set (so we always return true for those), or // a JSReceiver, which may or may not have the undetectable bit set. Node* value_map_bitfield = LoadMapBitField(value_map); Node* value_map_undetectable = Word32And( value_map_bitfield, Int32Constant(1 << Map::kIsUndetectable)); // Check if the {value} is undetectable. Branch(Word32Equal(value_map_undetectable, Int32Constant(0)), if_true, if_false); } } } Node* CodeStubAssembler::LoadFromFrame(int offset, MachineType rep) { Node* frame_pointer = LoadFramePointer(); return Load(rep, frame_pointer, IntPtrConstant(offset)); } Node* CodeStubAssembler::LoadFromParentFrame(int offset, MachineType rep) { Node* frame_pointer = LoadParentFramePointer(); return Load(rep, frame_pointer, IntPtrConstant(offset)); } Node* CodeStubAssembler::LoadBufferObject(Node* buffer, int offset, MachineType rep) { return Load(rep, buffer, IntPtrConstant(offset)); } Node* CodeStubAssembler::LoadObjectField(Node* object, int offset, MachineType rep) { return Load(rep, object, IntPtrConstant(offset - kHeapObjectTag)); } Node* CodeStubAssembler::LoadObjectField(Node* object, Node* offset, MachineType rep) { return Load(rep, object, IntPtrSub(offset, IntPtrConstant(kHeapObjectTag))); } Node* CodeStubAssembler::LoadAndUntagObjectField(Node* object, int offset) { if (Is64()) { #if V8_TARGET_LITTLE_ENDIAN offset += kPointerSize / 2; #endif return ChangeInt32ToInt64( LoadObjectField(object, offset, MachineType::Int32())); } else { return SmiToWord(LoadObjectField(object, offset, MachineType::AnyTagged())); } } Node* CodeStubAssembler::LoadAndUntagToWord32ObjectField(Node* object, int offset) { if (Is64()) { #if V8_TARGET_LITTLE_ENDIAN offset += kPointerSize / 2; #endif return LoadObjectField(object, offset, MachineType::Int32()); } else { return SmiToWord32( LoadObjectField(object, offset, MachineType::AnyTagged())); } } Node* CodeStubAssembler::LoadAndUntagSmi(Node* base, int index) { if (Is64()) { #if V8_TARGET_LITTLE_ENDIAN index += kPointerSize / 2; #endif return ChangeInt32ToInt64( Load(MachineType::Int32(), base, IntPtrConstant(index))); } else { return SmiToWord( Load(MachineType::AnyTagged(), base, IntPtrConstant(index))); } } Node* CodeStubAssembler::LoadAndUntagToWord32Root( Heap::RootListIndex root_index) { Node* roots_array_start = ExternalConstant(ExternalReference::roots_array_start(isolate())); int index = root_index * kPointerSize; if (Is64()) { #if V8_TARGET_LITTLE_ENDIAN index += kPointerSize / 2; #endif return Load(MachineType::Int32(), roots_array_start, IntPtrConstant(index)); } else { return SmiToWord32(Load(MachineType::AnyTagged(), roots_array_start, IntPtrConstant(index))); } } Node* CodeStubAssembler::LoadHeapNumberValue(Node* object) { return LoadObjectField(object, HeapNumber::kValueOffset, MachineType::Float64()); } Node* CodeStubAssembler::LoadMap(Node* object) { return LoadObjectField(object, HeapObject::kMapOffset); } Node* CodeStubAssembler::LoadInstanceType(Node* object) { return LoadMapInstanceType(LoadMap(object)); } Node* CodeStubAssembler::HasInstanceType(Node* object, InstanceType instance_type) { return Word32Equal(LoadInstanceType(object), Int32Constant(instance_type)); } Node* CodeStubAssembler::LoadProperties(Node* object) { return LoadObjectField(object, JSObject::kPropertiesOffset); } Node* CodeStubAssembler::LoadElements(Node* object) { return LoadObjectField(object, JSObject::kElementsOffset); } Node* CodeStubAssembler::LoadJSArrayLength(Node* array) { CSA_ASSERT(this, IsJSArray(array)); return LoadObjectField(array, JSArray::kLengthOffset); } Node* CodeStubAssembler::LoadFixedArrayBaseLength(Node* array) { return LoadObjectField(array, FixedArrayBase::kLengthOffset); } Node* CodeStubAssembler::LoadAndUntagFixedArrayBaseLength(Node* array) { return LoadAndUntagObjectField(array, FixedArrayBase::kLengthOffset); } Node* CodeStubAssembler::LoadMapBitField(Node* map) { CSA_SLOW_ASSERT(this, IsMap(map)); return LoadObjectField(map, Map::kBitFieldOffset, MachineType::Uint8()); } Node* CodeStubAssembler::LoadMapBitField2(Node* map) { CSA_SLOW_ASSERT(this, IsMap(map)); return LoadObjectField(map, Map::kBitField2Offset, MachineType::Uint8()); } Node* CodeStubAssembler::LoadMapBitField3(Node* map) { CSA_SLOW_ASSERT(this, IsMap(map)); return LoadObjectField(map, Map::kBitField3Offset, MachineType::Uint32()); } Node* CodeStubAssembler::LoadMapInstanceType(Node* map) { return LoadObjectField(map, Map::kInstanceTypeOffset, MachineType::Uint8()); } Node* CodeStubAssembler::LoadMapElementsKind(Node* map) { CSA_SLOW_ASSERT(this, IsMap(map)); Node* bit_field2 = LoadMapBitField2(map); return DecodeWord32(bit_field2); } Node* CodeStubAssembler::LoadMapDescriptors(Node* map) { CSA_SLOW_ASSERT(this, IsMap(map)); return LoadObjectField(map, Map::kDescriptorsOffset); } Node* CodeStubAssembler::LoadMapPrototype(Node* map) { CSA_SLOW_ASSERT(this, IsMap(map)); return LoadObjectField(map, Map::kPrototypeOffset); } Node* CodeStubAssembler::LoadMapPrototypeInfo(Node* map, Label* if_no_proto_info) { CSA_ASSERT(this, IsMap(map)); Node* prototype_info = LoadObjectField(map, Map::kTransitionsOrPrototypeInfoOffset); GotoIf(TaggedIsSmi(prototype_info), if_no_proto_info); GotoUnless(WordEqual(LoadMap(prototype_info), LoadRoot(Heap::kPrototypeInfoMapRootIndex)), if_no_proto_info); return prototype_info; } Node* CodeStubAssembler::LoadMapInstanceSize(Node* map) { CSA_SLOW_ASSERT(this, IsMap(map)); return ChangeUint32ToWord( LoadObjectField(map, Map::kInstanceSizeOffset, MachineType::Uint8())); } Node* CodeStubAssembler::LoadMapInobjectProperties(Node* map) { CSA_SLOW_ASSERT(this, IsMap(map)); // See Map::GetInObjectProperties() for details. STATIC_ASSERT(LAST_JS_OBJECT_TYPE == LAST_TYPE); CSA_ASSERT(this, Int32GreaterThanOrEqual(LoadMapInstanceType(map), Int32Constant(FIRST_JS_OBJECT_TYPE))); return ChangeUint32ToWord(LoadObjectField( map, Map::kInObjectPropertiesOrConstructorFunctionIndexOffset, MachineType::Uint8())); } Node* CodeStubAssembler::LoadMapConstructorFunctionIndex(Node* map) { CSA_SLOW_ASSERT(this, IsMap(map)); // See Map::GetConstructorFunctionIndex() for details. STATIC_ASSERT(FIRST_PRIMITIVE_TYPE == FIRST_TYPE); CSA_ASSERT(this, Int32LessThanOrEqual(LoadMapInstanceType(map), Int32Constant(LAST_PRIMITIVE_TYPE))); return ChangeUint32ToWord(LoadObjectField( map, Map::kInObjectPropertiesOrConstructorFunctionIndexOffset, MachineType::Uint8())); } Node* CodeStubAssembler::LoadMapConstructor(Node* map) { CSA_SLOW_ASSERT(this, IsMap(map)); Variable result(this, MachineRepresentation::kTagged); result.Bind(LoadObjectField(map, Map::kConstructorOrBackPointerOffset)); Label done(this), loop(this, &result); Goto(&loop); Bind(&loop); { GotoIf(TaggedIsSmi(result.value()), &done); Node* is_map_type = Word32Equal(LoadInstanceType(result.value()), Int32Constant(MAP_TYPE)); GotoUnless(is_map_type, &done); result.Bind( LoadObjectField(result.value(), Map::kConstructorOrBackPointerOffset)); Goto(&loop); } Bind(&done); return result.value(); } Node* CodeStubAssembler::LoadNameHashField(Node* name) { CSA_ASSERT(this, IsName(name)); return LoadObjectField(name, Name::kHashFieldOffset, MachineType::Uint32()); } Node* CodeStubAssembler::LoadNameHash(Node* name, Label* if_hash_not_computed) { Node* hash_field = LoadNameHashField(name); if (if_hash_not_computed != nullptr) { GotoIf(Word32Equal( Word32And(hash_field, Int32Constant(Name::kHashNotComputedMask)), Int32Constant(0)), if_hash_not_computed); } return Word32Shr(hash_field, Int32Constant(Name::kHashShift)); } Node* CodeStubAssembler::LoadStringLength(Node* object) { CSA_ASSERT(this, IsString(object)); return LoadObjectField(object, String::kLengthOffset); } Node* CodeStubAssembler::LoadJSValueValue(Node* object) { CSA_ASSERT(this, IsJSValue(object)); return LoadObjectField(object, JSValue::kValueOffset); } Node* CodeStubAssembler::LoadWeakCellValueUnchecked(Node* weak_cell) { // TODO(ishell): fix callers. return LoadObjectField(weak_cell, WeakCell::kValueOffset); } Node* CodeStubAssembler::LoadWeakCellValue(Node* weak_cell, Label* if_cleared) { CSA_ASSERT(this, IsWeakCell(weak_cell)); Node* value = LoadWeakCellValueUnchecked(weak_cell); if (if_cleared != nullptr) { GotoIf(WordEqual(value, IntPtrConstant(0)), if_cleared); } return value; } Node* CodeStubAssembler::LoadFixedArrayElement(Node* object, Node* index_node, int additional_offset, ParameterMode parameter_mode) { int32_t header_size = FixedArray::kHeaderSize + additional_offset - kHeapObjectTag; Node* offset = ElementOffsetFromIndex(index_node, FAST_HOLEY_ELEMENTS, parameter_mode, header_size); return Load(MachineType::AnyTagged(), object, offset); } Node* CodeStubAssembler::LoadFixedTypedArrayElement( Node* data_pointer, Node* index_node, ElementsKind elements_kind, ParameterMode parameter_mode) { Node* offset = ElementOffsetFromIndex(index_node, elements_kind, parameter_mode, 0); MachineType type; switch (elements_kind) { case UINT8_ELEMENTS: /* fall through */ case UINT8_CLAMPED_ELEMENTS: type = MachineType::Uint8(); break; case INT8_ELEMENTS: type = MachineType::Int8(); break; case UINT16_ELEMENTS: type = MachineType::Uint16(); break; case INT16_ELEMENTS: type = MachineType::Int16(); break; case UINT32_ELEMENTS: type = MachineType::Uint32(); break; case INT32_ELEMENTS: type = MachineType::Int32(); break; case FLOAT32_ELEMENTS: type = MachineType::Float32(); break; case FLOAT64_ELEMENTS: type = MachineType::Float64(); break; default: UNREACHABLE(); } return Load(type, data_pointer, offset); } Node* CodeStubAssembler::LoadAndUntagToWord32FixedArrayElement( Node* object, Node* index_node, int additional_offset, ParameterMode parameter_mode) { int32_t header_size = FixedArray::kHeaderSize + additional_offset - kHeapObjectTag; #if V8_TARGET_LITTLE_ENDIAN if (Is64()) { header_size += kPointerSize / 2; } #endif Node* offset = ElementOffsetFromIndex(index_node, FAST_HOLEY_ELEMENTS, parameter_mode, header_size); if (Is64()) { return Load(MachineType::Int32(), object, offset); } else { return SmiToWord32(Load(MachineType::AnyTagged(), object, offset)); } } Node* CodeStubAssembler::LoadFixedDoubleArrayElement( Node* object, Node* index_node, MachineType machine_type, int additional_offset, ParameterMode parameter_mode, Label* if_hole) { CSA_ASSERT(this, IsFixedDoubleArray(object)); int32_t header_size = FixedDoubleArray::kHeaderSize + additional_offset - kHeapObjectTag; Node* offset = ElementOffsetFromIndex(index_node, FAST_HOLEY_DOUBLE_ELEMENTS, parameter_mode, header_size); return LoadDoubleWithHoleCheck(object, offset, if_hole, machine_type); } Node* CodeStubAssembler::LoadDoubleWithHoleCheck(Node* base, Node* offset, Label* if_hole, MachineType machine_type) { if (if_hole) { // TODO(ishell): Compare only the upper part for the hole once the // compiler is able to fold addition of already complex |offset| with // |kIeeeDoubleExponentWordOffset| into one addressing mode. if (Is64()) { Node* element = Load(MachineType::Uint64(), base, offset); GotoIf(Word64Equal(element, Int64Constant(kHoleNanInt64)), if_hole); } else { Node* element_upper = Load( MachineType::Uint32(), base, IntPtrAdd(offset, IntPtrConstant(kIeeeDoubleExponentWordOffset))); GotoIf(Word32Equal(element_upper, Int32Constant(kHoleNanUpper32)), if_hole); } } if (machine_type.IsNone()) { // This means the actual value is not needed. return nullptr; } return Load(machine_type, base, offset); } Node* CodeStubAssembler::LoadContextElement(Node* context, int slot_index) { int offset = Context::SlotOffset(slot_index); return Load(MachineType::AnyTagged(), context, IntPtrConstant(offset)); } Node* CodeStubAssembler::LoadContextElement(Node* context, Node* slot_index) { Node* offset = IntPtrAdd(WordShl(slot_index, kPointerSizeLog2), IntPtrConstant(Context::kHeaderSize - kHeapObjectTag)); return Load(MachineType::AnyTagged(), context, offset); } Node* CodeStubAssembler::StoreContextElement(Node* context, int slot_index, Node* value) { int offset = Context::SlotOffset(slot_index); return Store(MachineRepresentation::kTagged, context, IntPtrConstant(offset), value); } Node* CodeStubAssembler::StoreContextElement(Node* context, Node* slot_index, Node* value) { Node* offset = IntPtrAdd(WordShl(slot_index, kPointerSizeLog2), IntPtrConstant(Context::kHeaderSize - kHeapObjectTag)); return Store(MachineRepresentation::kTagged, context, offset, value); } Node* CodeStubAssembler::LoadNativeContext(Node* context) { return LoadContextElement(context, Context::NATIVE_CONTEXT_INDEX); } Node* CodeStubAssembler::LoadJSArrayElementsMap(ElementsKind kind, Node* native_context) { CSA_ASSERT(this, IsNativeContext(native_context)); return LoadFixedArrayElement(native_context, IntPtrConstant(Context::ArrayMapIndex(kind))); } Node* CodeStubAssembler::StoreHeapNumberValue(Node* object, Node* value) { return StoreObjectFieldNoWriteBarrier(object, HeapNumber::kValueOffset, value, MachineRepresentation::kFloat64); } Node* CodeStubAssembler::StoreObjectField( Node* object, int offset, Node* value) { return Store(MachineRepresentation::kTagged, object, IntPtrConstant(offset - kHeapObjectTag), value); } Node* CodeStubAssembler::StoreObjectField(Node* object, Node* offset, Node* value) { int const_offset; if (ToInt32Constant(offset, const_offset)) { return StoreObjectField(object, const_offset, value); } return Store(MachineRepresentation::kTagged, object, IntPtrSub(offset, IntPtrConstant(kHeapObjectTag)), value); } Node* CodeStubAssembler::StoreObjectFieldNoWriteBarrier( Node* object, int offset, Node* value, MachineRepresentation rep) { return StoreNoWriteBarrier(rep, object, IntPtrConstant(offset - kHeapObjectTag), value); } Node* CodeStubAssembler::StoreObjectFieldNoWriteBarrier( Node* object, Node* offset, Node* value, MachineRepresentation rep) { int const_offset; if (ToInt32Constant(offset, const_offset)) { return StoreObjectFieldNoWriteBarrier(object, const_offset, value, rep); } return StoreNoWriteBarrier( rep, object, IntPtrSub(offset, IntPtrConstant(kHeapObjectTag)), value); } Node* CodeStubAssembler::StoreMapNoWriteBarrier(Node* object, Node* map) { return StoreNoWriteBarrier( MachineRepresentation::kTagged, object, IntPtrConstant(HeapNumber::kMapOffset - kHeapObjectTag), map); } Node* CodeStubAssembler::StoreObjectFieldRoot(Node* object, int offset, Heap::RootListIndex root_index) { if (Heap::RootIsImmortalImmovable(root_index)) { return StoreObjectFieldNoWriteBarrier(object, offset, LoadRoot(root_index)); } else { return StoreObjectField(object, offset, LoadRoot(root_index)); } } Node* CodeStubAssembler::StoreFixedArrayElement(Node* object, Node* index_node, Node* value, WriteBarrierMode barrier_mode, int additional_offset, ParameterMode parameter_mode) { DCHECK(barrier_mode == SKIP_WRITE_BARRIER || barrier_mode == UPDATE_WRITE_BARRIER); int header_size = FixedArray::kHeaderSize + additional_offset - kHeapObjectTag; Node* offset = ElementOffsetFromIndex(index_node, FAST_HOLEY_ELEMENTS, parameter_mode, header_size); MachineRepresentation rep = MachineRepresentation::kTagged; if (barrier_mode == SKIP_WRITE_BARRIER) { return StoreNoWriteBarrier(rep, object, offset, value); } else { return Store(rep, object, offset, value); } } Node* CodeStubAssembler::StoreFixedDoubleArrayElement( Node* object, Node* index_node, Node* value, ParameterMode parameter_mode) { CSA_ASSERT(this, IsFixedDoubleArray(object)); Node* offset = ElementOffsetFromIndex(index_node, FAST_DOUBLE_ELEMENTS, parameter_mode, FixedArray::kHeaderSize - kHeapObjectTag); MachineRepresentation rep = MachineRepresentation::kFloat64; return StoreNoWriteBarrier(rep, object, offset, value); } Node* CodeStubAssembler::AllocateHeapNumber(MutableMode mode) { Node* result = Allocate(HeapNumber::kSize, kNone); Heap::RootListIndex heap_map_index = mode == IMMUTABLE ? Heap::kHeapNumberMapRootIndex : Heap::kMutableHeapNumberMapRootIndex; Node* map = LoadRoot(heap_map_index); StoreMapNoWriteBarrier(result, map); return result; } Node* CodeStubAssembler::AllocateHeapNumberWithValue(Node* value, MutableMode mode) { Node* result = AllocateHeapNumber(mode); StoreHeapNumberValue(result, value); return result; } Node* CodeStubAssembler::AllocateSeqOneByteString(int length, AllocationFlags flags) { Comment("AllocateSeqOneByteString"); Node* result = Allocate(SeqOneByteString::SizeFor(length), flags); DCHECK(Heap::RootIsImmortalImmovable(Heap::kOneByteStringMapRootIndex)); StoreMapNoWriteBarrier(result, LoadRoot(Heap::kOneByteStringMapRootIndex)); StoreObjectFieldNoWriteBarrier(result, SeqOneByteString::kLengthOffset, SmiConstant(Smi::FromInt(length))); StoreObjectFieldNoWriteBarrier(result, SeqOneByteString::kHashFieldOffset, IntPtrConstant(String::kEmptyHashField), MachineRepresentation::kWord32); return result; } Node* CodeStubAssembler::AllocateSeqOneByteString(Node* context, Node* length, ParameterMode mode, AllocationFlags flags) { Comment("AllocateSeqOneByteString"); Variable var_result(this, MachineRepresentation::kTagged); // Compute the SeqOneByteString size and check if it fits into new space. Label if_sizeissmall(this), if_notsizeissmall(this, Label::kDeferred), if_join(this); Node* raw_size = GetArrayAllocationSize( length, UINT8_ELEMENTS, mode, SeqOneByteString::kHeaderSize + kObjectAlignmentMask); Node* size = WordAnd(raw_size, IntPtrConstant(~kObjectAlignmentMask)); Branch(IntPtrLessThanOrEqual(size, IntPtrConstant(kMaxRegularHeapObjectSize)), &if_sizeissmall, &if_notsizeissmall); Bind(&if_sizeissmall); { // Just allocate the SeqOneByteString in new space. Node* result = Allocate(size, flags); DCHECK(Heap::RootIsImmortalImmovable(Heap::kOneByteStringMapRootIndex)); StoreMapNoWriteBarrier(result, LoadRoot(Heap::kOneByteStringMapRootIndex)); StoreObjectFieldNoWriteBarrier( result, SeqOneByteString::kLengthOffset, mode == SMI_PARAMETERS ? length : SmiFromWord(length)); StoreObjectFieldNoWriteBarrier(result, SeqOneByteString::kHashFieldOffset, IntPtrConstant(String::kEmptyHashField), MachineRepresentation::kWord32); var_result.Bind(result); Goto(&if_join); } Bind(&if_notsizeissmall); { // We might need to allocate in large object space, go to the runtime. Node* result = CallRuntime(Runtime::kAllocateSeqOneByteString, context, mode == SMI_PARAMETERS ? length : SmiFromWord(length)); var_result.Bind(result); Goto(&if_join); } Bind(&if_join); return var_result.value(); } Node* CodeStubAssembler::AllocateSeqTwoByteString(int length, AllocationFlags flags) { Comment("AllocateSeqTwoByteString"); Node* result = Allocate(SeqTwoByteString::SizeFor(length), flags); DCHECK(Heap::RootIsImmortalImmovable(Heap::kStringMapRootIndex)); StoreMapNoWriteBarrier(result, LoadRoot(Heap::kStringMapRootIndex)); StoreObjectFieldNoWriteBarrier(result, SeqTwoByteString::kLengthOffset, SmiConstant(Smi::FromInt(length))); StoreObjectFieldNoWriteBarrier(result, SeqTwoByteString::kHashFieldOffset, IntPtrConstant(String::kEmptyHashField), MachineRepresentation::kWord32); return result; } Node* CodeStubAssembler::AllocateSeqTwoByteString(Node* context, Node* length, ParameterMode mode, AllocationFlags flags) { Comment("AllocateSeqTwoByteString"); Variable var_result(this, MachineRepresentation::kTagged); // Compute the SeqTwoByteString size and check if it fits into new space. Label if_sizeissmall(this), if_notsizeissmall(this, Label::kDeferred), if_join(this); Node* raw_size = GetArrayAllocationSize( length, UINT16_ELEMENTS, mode, SeqOneByteString::kHeaderSize + kObjectAlignmentMask); Node* size = WordAnd(raw_size, IntPtrConstant(~kObjectAlignmentMask)); Branch(IntPtrLessThanOrEqual(size, IntPtrConstant(kMaxRegularHeapObjectSize)), &if_sizeissmall, &if_notsizeissmall); Bind(&if_sizeissmall); { // Just allocate the SeqTwoByteString in new space. Node* result = Allocate(size, flags); DCHECK(Heap::RootIsImmortalImmovable(Heap::kStringMapRootIndex)); StoreMapNoWriteBarrier(result, LoadRoot(Heap::kStringMapRootIndex)); StoreObjectFieldNoWriteBarrier( result, SeqTwoByteString::kLengthOffset, mode == SMI_PARAMETERS ? length : SmiFromWord(length)); StoreObjectFieldNoWriteBarrier(result, SeqTwoByteString::kHashFieldOffset, IntPtrConstant(String::kEmptyHashField), MachineRepresentation::kWord32); var_result.Bind(result); Goto(&if_join); } Bind(&if_notsizeissmall); { // We might need to allocate in large object space, go to the runtime. Node* result = CallRuntime(Runtime::kAllocateSeqTwoByteString, context, mode == SMI_PARAMETERS ? length : SmiFromWord(length)); var_result.Bind(result); Goto(&if_join); } Bind(&if_join); return var_result.value(); } Node* CodeStubAssembler::AllocateSlicedString( Heap::RootListIndex map_root_index, Node* length, Node* parent, Node* offset) { CSA_ASSERT(this, TaggedIsSmi(length)); Node* result = Allocate(SlicedString::kSize); Node* map = LoadRoot(map_root_index); DCHECK(Heap::RootIsImmortalImmovable(map_root_index)); StoreMapNoWriteBarrier(result, map); StoreObjectFieldNoWriteBarrier(result, SlicedString::kLengthOffset, length, MachineRepresentation::kTagged); StoreObjectFieldNoWriteBarrier(result, SlicedString::kHashFieldOffset, Int32Constant(String::kEmptyHashField), MachineRepresentation::kWord32); StoreObjectFieldNoWriteBarrier(result, SlicedString::kParentOffset, parent, MachineRepresentation::kTagged); StoreObjectFieldNoWriteBarrier(result, SlicedString::kOffsetOffset, offset, MachineRepresentation::kTagged); return result; } Node* CodeStubAssembler::AllocateSlicedOneByteString(Node* length, Node* parent, Node* offset) { return AllocateSlicedString(Heap::kSlicedOneByteStringMapRootIndex, length, parent, offset); } Node* CodeStubAssembler::AllocateSlicedTwoByteString(Node* length, Node* parent, Node* offset) { return AllocateSlicedString(Heap::kSlicedStringMapRootIndex, length, parent, offset); } Node* CodeStubAssembler::AllocateConsString(Heap::RootListIndex map_root_index, Node* length, Node* first, Node* second, AllocationFlags flags) { CSA_ASSERT(this, TaggedIsSmi(length)); Node* result = Allocate(ConsString::kSize, flags); Node* map = LoadRoot(map_root_index); DCHECK(Heap::RootIsImmortalImmovable(map_root_index)); StoreMapNoWriteBarrier(result, map); StoreObjectFieldNoWriteBarrier(result, ConsString::kLengthOffset, length, MachineRepresentation::kTagged); StoreObjectFieldNoWriteBarrier(result, ConsString::kHashFieldOffset, Int32Constant(String::kEmptyHashField), MachineRepresentation::kWord32); bool const new_space = !(flags & kPretenured); if (new_space) { StoreObjectFieldNoWriteBarrier(result, ConsString::kFirstOffset, first, MachineRepresentation::kTagged); StoreObjectFieldNoWriteBarrier(result, ConsString::kSecondOffset, second, MachineRepresentation::kTagged); } else { StoreObjectField(result, ConsString::kFirstOffset, first); StoreObjectField(result, ConsString::kSecondOffset, second); } return result; } Node* CodeStubAssembler::AllocateOneByteConsString(Node* length, Node* first, Node* second, AllocationFlags flags) { return AllocateConsString(Heap::kConsOneByteStringMapRootIndex, length, first, second, flags); } Node* CodeStubAssembler::AllocateTwoByteConsString(Node* length, Node* first, Node* second, AllocationFlags flags) { return AllocateConsString(Heap::kConsStringMapRootIndex, length, first, second, flags); } Node* CodeStubAssembler::NewConsString(Node* context, Node* length, Node* left, Node* right, AllocationFlags flags) { CSA_ASSERT(this, TaggedIsSmi(length)); // Added string can be a cons string. Comment("Allocating ConsString"); Node* left_instance_type = LoadInstanceType(left); Node* right_instance_type = LoadInstanceType(right); // Compute intersection and difference of instance types. Node* anded_instance_types = WordAnd(left_instance_type, right_instance_type); Node* xored_instance_types = WordXor(left_instance_type, right_instance_type); // We create a one-byte cons string if // 1. both strings are one-byte, or // 2. at least one of the strings is two-byte, but happens to contain only // one-byte characters. // To do this, we check // 1. if both strings are one-byte, or if the one-byte data hint is set in // both strings, or // 2. if one of the strings has the one-byte data hint set and the other // string is one-byte. STATIC_ASSERT(kOneByteStringTag != 0); STATIC_ASSERT(kOneByteDataHintTag != 0); Label one_byte_map(this); Label two_byte_map(this); Variable result(this, MachineRepresentation::kTagged); Label done(this, &result); GotoIf(WordNotEqual( WordAnd(anded_instance_types, IntPtrConstant(kStringEncodingMask | kOneByteDataHintTag)), IntPtrConstant(0)), &one_byte_map); Branch(WordNotEqual(WordAnd(xored_instance_types, IntPtrConstant(kStringEncodingMask | kOneByteDataHintMask)), IntPtrConstant(kOneByteStringTag | kOneByteDataHintTag)), &two_byte_map, &one_byte_map); Bind(&one_byte_map); Comment("One-byte ConsString"); result.Bind(AllocateOneByteConsString(length, left, right, flags)); Goto(&done); Bind(&two_byte_map); Comment("Two-byte ConsString"); result.Bind(AllocateTwoByteConsString(length, left, right, flags)); Goto(&done); Bind(&done); return result.value(); } Node* CodeStubAssembler::AllocateRegExpResult(Node* context, Node* length, Node* index, Node* input) { Node* const max_length = SmiConstant(Smi::FromInt(JSArray::kInitialMaxFastElementArray)); CSA_ASSERT(this, SmiLessThanOrEqual(length, max_length)); USE(max_length); // Allocate the JSRegExpResult. // TODO(jgruber): Fold JSArray and FixedArray allocations, then remove // unneeded store of elements. Node* const result = Allocate(JSRegExpResult::kSize); // TODO(jgruber): Store map as Heap constant? Node* const native_context = LoadNativeContext(context); Node* const map = LoadContextElement(native_context, Context::REGEXP_RESULT_MAP_INDEX); StoreMapNoWriteBarrier(result, map); // Initialize the header before allocating the elements. Node* const empty_array = EmptyFixedArrayConstant(); DCHECK(Heap::RootIsImmortalImmovable(Heap::kEmptyFixedArrayRootIndex)); StoreObjectFieldNoWriteBarrier(result, JSArray::kPropertiesOffset, empty_array); StoreObjectFieldNoWriteBarrier(result, JSArray::kElementsOffset, empty_array); StoreObjectFieldNoWriteBarrier(result, JSArray::kLengthOffset, length); StoreObjectFieldNoWriteBarrier(result, JSRegExpResult::kIndexOffset, index); StoreObjectField(result, JSRegExpResult::kInputOffset, input); Node* const zero = IntPtrConstant(0); Node* const length_intptr = SmiUntag(length); const ElementsKind elements_kind = FAST_ELEMENTS; const ParameterMode parameter_mode = INTPTR_PARAMETERS; Node* const elements = AllocateFixedArray(elements_kind, length_intptr, parameter_mode); StoreObjectField(result, JSArray::kElementsOffset, elements); // Fill in the elements with undefined. FillFixedArrayWithValue(elements_kind, elements, zero, length_intptr, Heap::kUndefinedValueRootIndex, parameter_mode); return result; } Node* CodeStubAssembler::AllocateNameDictionary(int at_least_space_for) { return AllocateNameDictionary(IntPtrConstant(at_least_space_for)); } Node* CodeStubAssembler::AllocateNameDictionary(Node* at_least_space_for) { CSA_ASSERT(this, UintPtrLessThanOrEqual( at_least_space_for, IntPtrConstant(NameDictionary::kMaxCapacity))); Node* capacity = HashTableComputeCapacity(at_least_space_for); CSA_ASSERT(this, WordIsPowerOfTwo(capacity)); Node* length = EntryToIndex(capacity); Node* store_size = IntPtrAddFoldConstants(WordShl(length, IntPtrConstant(kPointerSizeLog2)), IntPtrConstant(NameDictionary::kHeaderSize)); Node* result = Allocate(store_size); Comment("Initialize NameDictionary"); // Initialize FixedArray fields. StoreObjectFieldRoot(result, FixedArray::kMapOffset, Heap::kHashTableMapRootIndex); StoreObjectFieldNoWriteBarrier(result, FixedArray::kLengthOffset, SmiFromWord(length)); // Initialized HashTable fields. Node* zero = SmiConstant(0); StoreFixedArrayElement(result, NameDictionary::kNumberOfElementsIndex, zero, SKIP_WRITE_BARRIER); StoreFixedArrayElement(result, NameDictionary::kNumberOfDeletedElementsIndex, zero, SKIP_WRITE_BARRIER); StoreFixedArrayElement(result, NameDictionary::kCapacityIndex, SmiTag(capacity), SKIP_WRITE_BARRIER); // Initialize Dictionary fields. Node* filler = LoadRoot(Heap::kUndefinedValueRootIndex); StoreFixedArrayElement(result, NameDictionary::kMaxNumberKeyIndex, filler, SKIP_WRITE_BARRIER); StoreFixedArrayElement(result, NameDictionary::kNextEnumerationIndexIndex, SmiConstant(PropertyDetails::kInitialIndex), SKIP_WRITE_BARRIER); // Initialize NameDictionary elements. result = BitcastTaggedToWord(result); Node* start_address = IntPtrAdd( result, IntPtrConstant(NameDictionary::OffsetOfElementAt( NameDictionary::kElementsStartIndex) - kHeapObjectTag)); Node* end_address = IntPtrAdd( result, IntPtrSubFoldConstants(store_size, IntPtrConstant(kHeapObjectTag))); StoreFieldsNoWriteBarrier(start_address, end_address, filler); return result; } Node* CodeStubAssembler::AllocateJSObjectFromMap(Node* map, Node* properties, Node* elements) { CSA_ASSERT(this, IsMap(map)); Node* size = IntPtrMul(LoadMapInstanceSize(map), IntPtrConstant(kPointerSize)); CSA_ASSERT(this, IsRegularHeapObjectSize(size)); Node* object = Allocate(size); StoreMapNoWriteBarrier(object, map); InitializeJSObjectFromMap(object, map, size, properties, elements); return object; } void CodeStubAssembler::InitializeJSObjectFromMap(Node* object, Node* map, Node* size, Node* properties, Node* elements) { // This helper assumes that the object is in new-space, as guarded by the // check in AllocatedJSObjectFromMap. if (properties == nullptr) { CSA_ASSERT(this, Word32BinaryNot(IsDictionaryMap((map)))); StoreObjectFieldRoot(object, JSObject::kPropertiesOffset, Heap::kEmptyFixedArrayRootIndex); } else { StoreObjectFieldNoWriteBarrier(object, JSObject::kPropertiesOffset, properties); } if (elements == nullptr) { StoreObjectFieldRoot(object, JSObject::kElementsOffset, Heap::kEmptyFixedArrayRootIndex); } else { StoreObjectFieldNoWriteBarrier(object, JSObject::kElementsOffset, elements); } InitializeJSObjectBody(object, map, size, JSObject::kHeaderSize); } void CodeStubAssembler::InitializeJSObjectBody(Node* object, Node* map, Node* size, int start_offset) { // TODO(cbruni): activate in-object slack tracking machinery. Comment("InitializeJSObjectBody"); Node* filler = LoadRoot(Heap::kUndefinedValueRootIndex); // Calculate the untagged field addresses. Node* start_address = IntPtrAdd(object, IntPtrConstant(start_offset - kHeapObjectTag)); Node* end_address = IntPtrSub(IntPtrAdd(object, size), IntPtrConstant(kHeapObjectTag)); StoreFieldsNoWriteBarrier(start_address, end_address, filler); } void CodeStubAssembler::StoreFieldsNoWriteBarrier(Node* start_address, Node* end_address, Node* value) { Comment("StoreFieldsNoWriteBarrier"); CSA_ASSERT(this, WordIsWordAligned(start_address)); CSA_ASSERT(this, WordIsWordAligned(end_address)); BuildFastLoop( MachineType::PointerRepresentation(), start_address, end_address, [value](CodeStubAssembler* a, Node* current) { a->StoreNoWriteBarrier(MachineRepresentation::kTagged, current, value); }, kPointerSize, IndexAdvanceMode::kPost); } Node* CodeStubAssembler::AllocateUninitializedJSArrayWithoutElements( ElementsKind kind, Node* array_map, Node* length, Node* allocation_site) { Comment("begin allocation of JSArray without elements"); int base_size = JSArray::kSize; if (allocation_site != nullptr) { base_size += AllocationMemento::kSize; } Node* size = IntPtrConstant(base_size); Node* array = AllocateUninitializedJSArray(kind, array_map, length, allocation_site, size); return array; } std::pair CodeStubAssembler::AllocateUninitializedJSArrayWithElements( ElementsKind kind, Node* array_map, Node* length, Node* allocation_site, Node* capacity, ParameterMode capacity_mode) { Comment("begin allocation of JSArray with elements"); int base_size = JSArray::kSize; if (allocation_site != nullptr) { base_size += AllocationMemento::kSize; } int elements_offset = base_size; // Compute space for elements base_size += FixedArray::kHeaderSize; Node* size = ElementOffsetFromIndex(capacity, kind, capacity_mode, base_size); Node* array = AllocateUninitializedJSArray(kind, array_map, length, allocation_site, size); // The bitcast here is safe because InnerAllocate doesn't actually allocate. Node* elements = InnerAllocate(BitcastTaggedToWord(array), elements_offset); StoreObjectField(array, JSObject::kElementsOffset, elements); return {array, elements}; } Node* CodeStubAssembler::AllocateUninitializedJSArray(ElementsKind kind, Node* array_map, Node* length, Node* allocation_site, Node* size_in_bytes) { Node* array = Allocate(size_in_bytes); Comment("write JSArray headers"); StoreMapNoWriteBarrier(array, array_map); StoreObjectFieldNoWriteBarrier(array, JSArray::kLengthOffset, length); StoreObjectFieldRoot(array, JSArray::kPropertiesOffset, Heap::kEmptyFixedArrayRootIndex); if (allocation_site != nullptr) { InitializeAllocationMemento(array, JSArray::kSize, allocation_site); } return array; } Node* CodeStubAssembler::AllocateJSArray(ElementsKind kind, Node* array_map, Node* capacity, Node* length, Node* allocation_site, ParameterMode capacity_mode) { bool is_double = IsFastDoubleElementsKind(kind); // Allocate both array and elements object, and initialize the JSArray. Node *array, *elements; std::tie(array, elements) = AllocateUninitializedJSArrayWithElements( kind, array_map, length, allocation_site, capacity, capacity_mode); // Setup elements object. Heap* heap = isolate()->heap(); Handle elements_map(is_double ? heap->fixed_double_array_map() : heap->fixed_array_map()); StoreMapNoWriteBarrier(elements, HeapConstant(elements_map)); StoreObjectFieldNoWriteBarrier(elements, FixedArray::kLengthOffset, TagParameter(capacity, capacity_mode)); // Fill in the elements with holes. FillFixedArrayWithValue( kind, elements, capacity_mode == SMI_PARAMETERS ? SmiConstant(Smi::kZero) : IntPtrConstant(0), capacity, Heap::kTheHoleValueRootIndex, capacity_mode); return array; } Node* CodeStubAssembler::AllocateFixedArray(ElementsKind kind, Node* capacity_node, ParameterMode mode, AllocationFlags flags) { CSA_ASSERT(this, IntPtrGreaterThan(capacity_node, IntPtrOrSmiConstant(0, mode))); Node* total_size = GetFixedArrayAllocationSize(capacity_node, kind, mode); // Allocate both array and elements object, and initialize the JSArray. Node* array = Allocate(total_size, flags); Heap* heap = isolate()->heap(); Handle map(IsFastDoubleElementsKind(kind) ? heap->fixed_double_array_map() : heap->fixed_array_map()); if (flags & kPretenured) { StoreObjectField(array, JSObject::kMapOffset, HeapConstant(map)); } else { StoreMapNoWriteBarrier(array, HeapConstant(map)); } StoreObjectFieldNoWriteBarrier(array, FixedArray::kLengthOffset, TagParameter(capacity_node, mode)); return array; } void CodeStubAssembler::FillFixedArrayWithValue( ElementsKind kind, Node* array, Node* from_node, Node* to_node, Heap::RootListIndex value_root_index, ParameterMode mode) { bool is_double = IsFastDoubleElementsKind(kind); DCHECK(value_root_index == Heap::kTheHoleValueRootIndex || value_root_index == Heap::kUndefinedValueRootIndex); DCHECK_IMPLIES(is_double, value_root_index == Heap::kTheHoleValueRootIndex); STATIC_ASSERT(kHoleNanLower32 == kHoleNanUpper32); Node* double_hole = Is64() ? Int64Constant(kHoleNanInt64) : Int32Constant(kHoleNanLower32); Node* value = LoadRoot(value_root_index); BuildFastFixedArrayForEach( array, kind, from_node, to_node, [value, is_double, double_hole](CodeStubAssembler* assembler, Node* array, Node* offset) { if (is_double) { // Don't use doubles to store the hole double, since manipulating the // signaling NaN used for the hole in C++, e.g. with bit_cast, will // change its value on ia32 (the x87 stack is used to return values // and stores to the stack silently clear the signalling bit). // // TODO(danno): When we have a Float32/Float64 wrapper class that // preserves double bits during manipulation, remove this code/change // this to an indexed Float64 store. if (assembler->Is64()) { assembler->StoreNoWriteBarrier(MachineRepresentation::kWord64, array, offset, double_hole); } else { assembler->StoreNoWriteBarrier(MachineRepresentation::kWord32, array, offset, double_hole); assembler->StoreNoWriteBarrier( MachineRepresentation::kWord32, array, assembler->IntPtrAdd(offset, assembler->IntPtrConstant(kPointerSize)), double_hole); } } else { assembler->StoreNoWriteBarrier(MachineRepresentation::kTagged, array, offset, value); } }, mode); } void CodeStubAssembler::CopyFixedArrayElements( ElementsKind from_kind, Node* from_array, ElementsKind to_kind, Node* to_array, Node* element_count, Node* capacity, WriteBarrierMode barrier_mode, ParameterMode mode) { STATIC_ASSERT(FixedArray::kHeaderSize == FixedDoubleArray::kHeaderSize); const int first_element_offset = FixedArray::kHeaderSize - kHeapObjectTag; Comment("[ CopyFixedArrayElements"); // Typed array elements are not supported. DCHECK(!IsFixedTypedArrayElementsKind(from_kind)); DCHECK(!IsFixedTypedArrayElementsKind(to_kind)); Label done(this); bool from_double_elements = IsFastDoubleElementsKind(from_kind); bool to_double_elements = IsFastDoubleElementsKind(to_kind); bool element_size_matches = Is64() || IsFastDoubleElementsKind(from_kind) == IsFastDoubleElementsKind(to_kind); bool doubles_to_objects_conversion = IsFastDoubleElementsKind(from_kind) && IsFastObjectElementsKind(to_kind); bool needs_write_barrier = doubles_to_objects_conversion || (barrier_mode == UPDATE_WRITE_BARRIER && IsFastObjectElementsKind(to_kind)); Node* double_hole = Is64() ? Int64Constant(kHoleNanInt64) : Int32Constant(kHoleNanLower32); if (doubles_to_objects_conversion) { // If the copy might trigger a GC, make sure that the FixedArray is // pre-initialized with holes to make sure that it's always in a // consistent state. FillFixedArrayWithValue(to_kind, to_array, IntPtrOrSmiConstant(0, mode), capacity, Heap::kTheHoleValueRootIndex, mode); } else if (element_count != capacity) { FillFixedArrayWithValue(to_kind, to_array, element_count, capacity, Heap::kTheHoleValueRootIndex, mode); } Node* limit_offset = ElementOffsetFromIndex( IntPtrOrSmiConstant(0, mode), from_kind, mode, first_element_offset); Variable var_from_offset(this, MachineType::PointerRepresentation()); var_from_offset.Bind(ElementOffsetFromIndex(element_count, from_kind, mode, first_element_offset)); // This second variable is used only when the element sizes of source and // destination arrays do not match. Variable var_to_offset(this, MachineType::PointerRepresentation()); if (element_size_matches) { var_to_offset.Bind(var_from_offset.value()); } else { var_to_offset.Bind(ElementOffsetFromIndex(element_count, to_kind, mode, first_element_offset)); } Variable* vars[] = {&var_from_offset, &var_to_offset}; Label decrement(this, 2, vars); Branch(WordEqual(var_from_offset.value(), limit_offset), &done, &decrement); Bind(&decrement); { Node* from_offset = IntPtrSub( var_from_offset.value(), IntPtrConstant(from_double_elements ? kDoubleSize : kPointerSize)); var_from_offset.Bind(from_offset); Node* to_offset; if (element_size_matches) { to_offset = from_offset; } else { to_offset = IntPtrSub( var_to_offset.value(), IntPtrConstant(to_double_elements ? kDoubleSize : kPointerSize)); var_to_offset.Bind(to_offset); } Label next_iter(this), store_double_hole(this); Label* if_hole; if (doubles_to_objects_conversion) { // The target elements array is already preinitialized with holes, so we // can just proceed with the next iteration. if_hole = &next_iter; } else if (IsFastDoubleElementsKind(to_kind)) { if_hole = &store_double_hole; } else { // In all the other cases don't check for holes and copy the data as is. if_hole = nullptr; } Node* value = LoadElementAndPrepareForStore( from_array, var_from_offset.value(), from_kind, to_kind, if_hole); if (needs_write_barrier) { Store(MachineRepresentation::kTagged, to_array, to_offset, value); } else if (to_double_elements) { StoreNoWriteBarrier(MachineRepresentation::kFloat64, to_array, to_offset, value); } else { StoreNoWriteBarrier(MachineRepresentation::kTagged, to_array, to_offset, value); } Goto(&next_iter); if (if_hole == &store_double_hole) { Bind(&store_double_hole); // Don't use doubles to store the hole double, since manipulating the // signaling NaN used for the hole in C++, e.g. with bit_cast, will // change its value on ia32 (the x87 stack is used to return values // and stores to the stack silently clear the signalling bit). // // TODO(danno): When we have a Float32/Float64 wrapper class that // preserves double bits during manipulation, remove this code/change // this to an indexed Float64 store. if (Is64()) { StoreNoWriteBarrier(MachineRepresentation::kWord64, to_array, to_offset, double_hole); } else { StoreNoWriteBarrier(MachineRepresentation::kWord32, to_array, to_offset, double_hole); StoreNoWriteBarrier(MachineRepresentation::kWord32, to_array, IntPtrAdd(to_offset, IntPtrConstant(kPointerSize)), double_hole); } Goto(&next_iter); } Bind(&next_iter); Node* compare = WordNotEqual(from_offset, limit_offset); Branch(compare, &decrement, &done); } Bind(&done); IncrementCounter(isolate()->counters()->inlined_copied_elements(), 1); Comment("] CopyFixedArrayElements"); } void CodeStubAssembler::CopyStringCharacters(Node* from_string, Node* to_string, Node* from_index, Node* to_index, Node* character_count, String::Encoding from_encoding, String::Encoding to_encoding, ParameterMode mode) { bool from_one_byte = from_encoding == String::ONE_BYTE_ENCODING; bool to_one_byte = to_encoding == String::ONE_BYTE_ENCODING; DCHECK_IMPLIES(to_one_byte, from_one_byte); Comment("CopyStringCharacters %s -> %s", from_one_byte ? "ONE_BYTE_ENCODING" : "TWO_BYTE_ENCODING", to_one_byte ? "ONE_BYTE_ENCODING" : "TWO_BYTE_ENCODING"); ElementsKind from_kind = from_one_byte ? UINT8_ELEMENTS : UINT16_ELEMENTS; ElementsKind to_kind = to_one_byte ? UINT8_ELEMENTS : UINT16_ELEMENTS; STATIC_ASSERT(SeqOneByteString::kHeaderSize == SeqTwoByteString::kHeaderSize); int header_size = SeqOneByteString::kHeaderSize - kHeapObjectTag; Node* from_offset = ElementOffsetFromIndex(from_index, from_kind, mode, header_size); Node* to_offset = ElementOffsetFromIndex(to_index, to_kind, mode, header_size); Node* byte_count = ElementOffsetFromIndex(character_count, from_kind, mode); Node* limit_offset = IntPtrAddFoldConstants(from_offset, byte_count); // Prepare the fast loop MachineType type = from_one_byte ? MachineType::Uint8() : MachineType::Uint16(); MachineRepresentation rep = to_one_byte ? MachineRepresentation::kWord8 : MachineRepresentation::kWord16; int from_increment = 1 << ElementsKindToShiftSize(from_kind); int to_increment = 1 << ElementsKindToShiftSize(to_kind); Variable current_to_offset(this, MachineType::PointerRepresentation()); VariableList vars({¤t_to_offset}, zone()); current_to_offset.Bind(to_offset); int to_index_constant = 0, from_index_constant = 0; Smi* to_index_smi = nullptr; Smi* from_index_smi = nullptr; bool index_same = (from_encoding == to_encoding) && (from_index == to_index || (ToInt32Constant(from_index, from_index_constant) && ToInt32Constant(to_index, to_index_constant) && from_index_constant == to_index_constant) || (ToSmiConstant(from_index, from_index_smi) && ToSmiConstant(to_index, to_index_smi) && to_index_smi == from_index_smi)); BuildFastLoop(vars, MachineType::PointerRepresentation(), from_offset, limit_offset, [from_string, to_string, ¤t_to_offset, to_increment, type, rep, index_same](CodeStubAssembler* assembler, Node* offset) { Node* value = assembler->Load(type, from_string, offset); assembler->StoreNoWriteBarrier( rep, to_string, index_same ? offset : current_to_offset.value(), value); if (!index_same) { current_to_offset.Bind(assembler->IntPtrAdd( current_to_offset.value(), assembler->IntPtrConstant(to_increment))); } }, from_increment, IndexAdvanceMode::kPost); } Node* CodeStubAssembler::LoadElementAndPrepareForStore(Node* array, Node* offset, ElementsKind from_kind, ElementsKind to_kind, Label* if_hole) { if (IsFastDoubleElementsKind(from_kind)) { Node* value = LoadDoubleWithHoleCheck(array, offset, if_hole, MachineType::Float64()); if (!IsFastDoubleElementsKind(to_kind)) { value = AllocateHeapNumberWithValue(value); } return value; } else { Node* value = Load(MachineType::AnyTagged(), array, offset); if (if_hole) { GotoIf(WordEqual(value, TheHoleConstant()), if_hole); } if (IsFastDoubleElementsKind(to_kind)) { if (IsFastSmiElementsKind(from_kind)) { value = SmiToFloat64(value); } else { value = LoadHeapNumberValue(value); } } return value; } } Node* CodeStubAssembler::CalculateNewElementsCapacity(Node* old_capacity, ParameterMode mode) { Node* half_old_capacity = WordShr(old_capacity, IntPtrConstant(1)); Node* new_capacity = IntPtrAdd(half_old_capacity, old_capacity); Node* unconditioned_result = IntPtrAdd(new_capacity, IntPtrOrSmiConstant(16, mode)); if (mode == INTEGER_PARAMETERS || mode == INTPTR_PARAMETERS) { return unconditioned_result; } else { int const kSmiShiftBits = kSmiShiftSize + kSmiTagSize; return WordAnd(unconditioned_result, IntPtrConstant(static_cast(-1) << kSmiShiftBits)); } } Node* CodeStubAssembler::TryGrowElementsCapacity(Node* object, Node* elements, ElementsKind kind, Node* key, Label* bailout) { Node* capacity = LoadFixedArrayBaseLength(elements); ParameterMode mode = OptimalParameterMode(); capacity = UntagParameter(capacity, mode); key = UntagParameter(key, mode); return TryGrowElementsCapacity(object, elements, kind, key, capacity, mode, bailout); } Node* CodeStubAssembler::TryGrowElementsCapacity(Node* object, Node* elements, ElementsKind kind, Node* key, Node* capacity, ParameterMode mode, Label* bailout) { Comment("TryGrowElementsCapacity"); // If the gap growth is too big, fall back to the runtime. Node* max_gap = IntPtrOrSmiConstant(JSObject::kMaxGap, mode); Node* max_capacity = IntPtrAdd(capacity, max_gap); GotoIf(UintPtrGreaterThanOrEqual(key, max_capacity), bailout); // Calculate the capacity of the new backing store. Node* new_capacity = CalculateNewElementsCapacity( IntPtrAdd(key, IntPtrOrSmiConstant(1, mode)), mode); return GrowElementsCapacity(object, elements, kind, kind, capacity, new_capacity, mode, bailout); } Node* CodeStubAssembler::GrowElementsCapacity( Node* object, Node* elements, ElementsKind from_kind, ElementsKind to_kind, Node* capacity, Node* new_capacity, ParameterMode mode, Label* bailout) { Comment("[ GrowElementsCapacity"); // If size of the allocation for the new capacity doesn't fit in a page // that we can bump-pointer allocate from, fall back to the runtime. int max_size = FixedArrayBase::GetMaxLengthForNewSpaceAllocation(to_kind); GotoIf(UintPtrGreaterThanOrEqual(new_capacity, IntPtrOrSmiConstant(max_size, mode)), bailout); // Allocate the new backing store. Node* new_elements = AllocateFixedArray(to_kind, new_capacity, mode); // Copy the elements from the old elements store to the new. // The size-check above guarantees that the |new_elements| is allocated // in new space so we can skip the write barrier. CopyFixedArrayElements(from_kind, elements, to_kind, new_elements, capacity, new_capacity, SKIP_WRITE_BARRIER, mode); StoreObjectField(object, JSObject::kElementsOffset, new_elements); Comment("] GrowElementsCapacity"); return new_elements; } void CodeStubAssembler::InitializeAllocationMemento(Node* base_allocation, int base_allocation_size, Node* allocation_site) { StoreObjectFieldNoWriteBarrier( base_allocation, AllocationMemento::kMapOffset + base_allocation_size, HeapConstant(Handle(isolate()->heap()->allocation_memento_map()))); StoreObjectFieldNoWriteBarrier( base_allocation, AllocationMemento::kAllocationSiteOffset + base_allocation_size, allocation_site); if (FLAG_allocation_site_pretenuring) { Node* count = LoadObjectField(allocation_site, AllocationSite::kPretenureCreateCountOffset); Node* incremented_count = SmiAdd(count, SmiConstant(Smi::FromInt(1))); StoreObjectFieldNoWriteBarrier(allocation_site, AllocationSite::kPretenureCreateCountOffset, incremented_count); } } Node* CodeStubAssembler::TryTaggedToFloat64(Node* value, Label* if_valueisnotnumber) { Label out(this); Variable var_result(this, MachineRepresentation::kFloat64); // Check if the {value} is a Smi or a HeapObject. Label if_valueissmi(this), if_valueisnotsmi(this); Branch(TaggedIsSmi(value), &if_valueissmi, &if_valueisnotsmi); Bind(&if_valueissmi); { // Convert the Smi {value}. var_result.Bind(SmiToFloat64(value)); Goto(&out); } Bind(&if_valueisnotsmi); { // Check if {value} is a HeapNumber. Label if_valueisheapnumber(this); Branch(IsHeapNumberMap(LoadMap(value)), &if_valueisheapnumber, if_valueisnotnumber); Bind(&if_valueisheapnumber); { // Load the floating point value. var_result.Bind(LoadHeapNumberValue(value)); Goto(&out); } } Bind(&out); return var_result.value(); } Node* CodeStubAssembler::TruncateTaggedToFloat64(Node* context, Node* value) { // We might need to loop once due to ToNumber conversion. Variable var_value(this, MachineRepresentation::kTagged), var_result(this, MachineRepresentation::kFloat64); Label loop(this, &var_value), done_loop(this, &var_result); var_value.Bind(value); Goto(&loop); Bind(&loop); { Label if_valueisnotnumber(this, Label::kDeferred); // Load the current {value}. value = var_value.value(); // Convert {value} to Float64 if it is a number and convert it to a number // otherwise. Node* const result = TryTaggedToFloat64(value, &if_valueisnotnumber); var_result.Bind(result); Goto(&done_loop); Bind(&if_valueisnotnumber); { // Convert the {value} to a Number first. Callable callable = CodeFactory::NonNumberToNumber(isolate()); var_value.Bind(CallStub(callable, context, value)); Goto(&loop); } } Bind(&done_loop); return var_result.value(); } Node* CodeStubAssembler::TruncateTaggedToWord32(Node* context, Node* value) { // We might need to loop once due to ToNumber conversion. Variable var_value(this, MachineRepresentation::kTagged), var_result(this, MachineRepresentation::kWord32); Label loop(this, &var_value), done_loop(this, &var_result); var_value.Bind(value); Goto(&loop); Bind(&loop); { // Load the current {value}. value = var_value.value(); // Check if the {value} is a Smi or a HeapObject. Label if_valueissmi(this), if_valueisnotsmi(this); Branch(TaggedIsSmi(value), &if_valueissmi, &if_valueisnotsmi); Bind(&if_valueissmi); { // Convert the Smi {value}. var_result.Bind(SmiToWord32(value)); Goto(&done_loop); } Bind(&if_valueisnotsmi); { // Check if {value} is a HeapNumber. Label if_valueisheapnumber(this), if_valueisnotheapnumber(this, Label::kDeferred); Branch(WordEqual(LoadMap(value), HeapNumberMapConstant()), &if_valueisheapnumber, &if_valueisnotheapnumber); Bind(&if_valueisheapnumber); { // Truncate the floating point value. var_result.Bind(TruncateHeapNumberValueToWord32(value)); Goto(&done_loop); } Bind(&if_valueisnotheapnumber); { // Convert the {value} to a Number first. Callable callable = CodeFactory::NonNumberToNumber(isolate()); var_value.Bind(CallStub(callable, context, value)); Goto(&loop); } } } Bind(&done_loop); return var_result.value(); } Node* CodeStubAssembler::TruncateHeapNumberValueToWord32(Node* object) { Node* value = LoadHeapNumberValue(object); return TruncateFloat64ToWord32(value); } Node* CodeStubAssembler::ChangeFloat64ToTagged(Node* value) { Node* value32 = RoundFloat64ToInt32(value); Node* value64 = ChangeInt32ToFloat64(value32); Label if_valueisint32(this), if_valueisheapnumber(this), if_join(this); Label if_valueisequal(this), if_valueisnotequal(this); Branch(Float64Equal(value, value64), &if_valueisequal, &if_valueisnotequal); Bind(&if_valueisequal); { GotoUnless(Word32Equal(value32, Int32Constant(0)), &if_valueisint32); Branch(Int32LessThan(Float64ExtractHighWord32(value), Int32Constant(0)), &if_valueisheapnumber, &if_valueisint32); } Bind(&if_valueisnotequal); Goto(&if_valueisheapnumber); Variable var_result(this, MachineRepresentation::kTagged); Bind(&if_valueisint32); { if (Is64()) { Node* result = SmiTag(ChangeInt32ToInt64(value32)); var_result.Bind(result); Goto(&if_join); } else { Node* pair = Int32AddWithOverflow(value32, value32); Node* overflow = Projection(1, pair); Label if_overflow(this, Label::kDeferred), if_notoverflow(this); Branch(overflow, &if_overflow, &if_notoverflow); Bind(&if_overflow); Goto(&if_valueisheapnumber); Bind(&if_notoverflow); { Node* result = Projection(0, pair); var_result.Bind(result); Goto(&if_join); } } } Bind(&if_valueisheapnumber); { Node* result = AllocateHeapNumberWithValue(value); var_result.Bind(result); Goto(&if_join); } Bind(&if_join); return var_result.value(); } Node* CodeStubAssembler::ChangeInt32ToTagged(Node* value) { if (Is64()) { return SmiTag(ChangeInt32ToInt64(value)); } Variable var_result(this, MachineRepresentation::kTagged); Node* pair = Int32AddWithOverflow(value, value); Node* overflow = Projection(1, pair); Label if_overflow(this, Label::kDeferred), if_notoverflow(this), if_join(this); Branch(overflow, &if_overflow, &if_notoverflow); Bind(&if_overflow); { Node* value64 = ChangeInt32ToFloat64(value); Node* result = AllocateHeapNumberWithValue(value64); var_result.Bind(result); } Goto(&if_join); Bind(&if_notoverflow); { Node* result = Projection(0, pair); var_result.Bind(result); } Goto(&if_join); Bind(&if_join); return var_result.value(); } Node* CodeStubAssembler::ChangeUint32ToTagged(Node* value) { Label if_overflow(this, Label::kDeferred), if_not_overflow(this), if_join(this); Variable var_result(this, MachineRepresentation::kTagged); // If {value} > 2^31 - 1, we need to store it in a HeapNumber. Branch(Uint32LessThan(Int32Constant(Smi::kMaxValue), value), &if_overflow, &if_not_overflow); Bind(&if_not_overflow); { if (Is64()) { var_result.Bind(SmiTag(ChangeUint32ToUint64(value))); } else { // If tagging {value} results in an overflow, we need to use a HeapNumber // to represent it. Node* pair = Int32AddWithOverflow(value, value); Node* overflow = Projection(1, pair); GotoIf(overflow, &if_overflow); Node* result = Projection(0, pair); var_result.Bind(result); } } Goto(&if_join); Bind(&if_overflow); { Node* float64_value = ChangeUint32ToFloat64(value); var_result.Bind(AllocateHeapNumberWithValue(float64_value)); } Goto(&if_join); Bind(&if_join); return var_result.value(); } Node* CodeStubAssembler::ToThisString(Node* context, Node* value, char const* method_name) { Variable var_value(this, MachineRepresentation::kTagged); var_value.Bind(value); // Check if the {value} is a Smi or a HeapObject. Label if_valueissmi(this, Label::kDeferred), if_valueisnotsmi(this), if_valueisstring(this); Branch(TaggedIsSmi(value), &if_valueissmi, &if_valueisnotsmi); Bind(&if_valueisnotsmi); { // Load the instance type of the {value}. Node* value_instance_type = LoadInstanceType(value); // Check if the {value} is already String. Label if_valueisnotstring(this, Label::kDeferred); Branch(IsStringInstanceType(value_instance_type), &if_valueisstring, &if_valueisnotstring); Bind(&if_valueisnotstring); { // Check if the {value} is null. Label if_valueisnullorundefined(this, Label::kDeferred), if_valueisnotnullorundefined(this, Label::kDeferred), if_valueisnotnull(this, Label::kDeferred); Branch(WordEqual(value, NullConstant()), &if_valueisnullorundefined, &if_valueisnotnull); Bind(&if_valueisnotnull); { // Check if the {value} is undefined. Branch(WordEqual(value, UndefinedConstant()), &if_valueisnullorundefined, &if_valueisnotnullorundefined); Bind(&if_valueisnotnullorundefined); { // Convert the {value} to a String. Callable callable = CodeFactory::ToString(isolate()); var_value.Bind(CallStub(callable, context, value)); Goto(&if_valueisstring); } } Bind(&if_valueisnullorundefined); { // The {value} is either null or undefined. CallRuntime(Runtime::kThrowCalledOnNullOrUndefined, context, HeapConstant(factory()->NewStringFromAsciiChecked( method_name, TENURED))); Goto(&if_valueisstring); // Never reached. } } } Bind(&if_valueissmi); { // The {value} is a Smi, convert it to a String. Callable callable = CodeFactory::NumberToString(isolate()); var_value.Bind(CallStub(callable, context, value)); Goto(&if_valueisstring); } Bind(&if_valueisstring); return var_value.value(); } Node* CodeStubAssembler::ToThisValue(Node* context, Node* value, PrimitiveType primitive_type, char const* method_name) { // We might need to loop once due to JSValue unboxing. Variable var_value(this, MachineRepresentation::kTagged); Label loop(this, &var_value), done_loop(this), done_throw(this, Label::kDeferred); var_value.Bind(value); Goto(&loop); Bind(&loop); { // Load the current {value}. value = var_value.value(); // Check if the {value} is a Smi or a HeapObject. GotoIf(TaggedIsSmi(value), (primitive_type == PrimitiveType::kNumber) ? &done_loop : &done_throw); // Load the mape of the {value}. Node* value_map = LoadMap(value); // Load the instance type of the {value}. Node* value_instance_type = LoadMapInstanceType(value_map); // Check if {value} is a JSValue. Label if_valueisvalue(this, Label::kDeferred), if_valueisnotvalue(this); Branch(Word32Equal(value_instance_type, Int32Constant(JS_VALUE_TYPE)), &if_valueisvalue, &if_valueisnotvalue); Bind(&if_valueisvalue); { // Load the actual value from the {value}. var_value.Bind(LoadObjectField(value, JSValue::kValueOffset)); Goto(&loop); } Bind(&if_valueisnotvalue); { switch (primitive_type) { case PrimitiveType::kBoolean: GotoIf(WordEqual(value_map, BooleanMapConstant()), &done_loop); break; case PrimitiveType::kNumber: GotoIf( Word32Equal(value_instance_type, Int32Constant(HEAP_NUMBER_TYPE)), &done_loop); break; case PrimitiveType::kString: GotoIf(IsStringInstanceType(value_instance_type), &done_loop); break; case PrimitiveType::kSymbol: GotoIf(Word32Equal(value_instance_type, Int32Constant(SYMBOL_TYPE)), &done_loop); break; } Goto(&done_throw); } } Bind(&done_throw); { // The {value} is not a compatible receiver for this method. CallRuntime(Runtime::kThrowNotGeneric, context, HeapConstant(factory()->NewStringFromAsciiChecked(method_name, TENURED))); Goto(&done_loop); // Never reached. } Bind(&done_loop); return var_value.value(); } Node* CodeStubAssembler::ThrowIfNotInstanceType(Node* context, Node* value, InstanceType instance_type, char const* method_name) { Label out(this), throw_exception(this, Label::kDeferred); Variable var_value_map(this, MachineRepresentation::kTagged); GotoIf(TaggedIsSmi(value), &throw_exception); // Load the instance type of the {value}. var_value_map.Bind(LoadMap(value)); Node* const value_instance_type = LoadMapInstanceType(var_value_map.value()); Branch(Word32Equal(value_instance_type, Int32Constant(instance_type)), &out, &throw_exception); // The {value} is not a compatible receiver for this method. Bind(&throw_exception); CallRuntime( Runtime::kThrowIncompatibleMethodReceiver, context, HeapConstant(factory()->NewStringFromAsciiChecked(method_name, TENURED)), value); var_value_map.Bind(UndefinedConstant()); Goto(&out); // Never reached. Bind(&out); return var_value_map.value(); } Node* CodeStubAssembler::IsSpecialReceiverMap(Node* map) { Node* is_special = IsSpecialReceiverInstanceType(LoadMapInstanceType(map)); uint32_t mask = 1 << Map::kHasNamedInterceptor | 1 << Map::kIsAccessCheckNeeded; USE(mask); // Interceptors or access checks imply special receiver. CSA_ASSERT(this, Select(IsSetWord32(LoadMapBitField(map), mask), is_special, Int32Constant(1), MachineRepresentation::kWord32)); return is_special; } Node* CodeStubAssembler::IsDictionaryMap(Node* map) { CSA_SLOW_ASSERT(this, IsMap(map)); Node* bit_field3 = LoadMapBitField3(map); return Word32NotEqual(IsSetWord32(bit_field3), Int32Constant(0)); } Node* CodeStubAssembler::IsCallableMap(Node* map) { CSA_ASSERT(this, IsMap(map)); return Word32NotEqual( Word32And(LoadMapBitField(map), Int32Constant(1 << Map::kIsCallable)), Int32Constant(0)); } Node* CodeStubAssembler::IsSpecialReceiverInstanceType(Node* instance_type) { STATIC_ASSERT(JS_GLOBAL_OBJECT_TYPE <= LAST_SPECIAL_RECEIVER_TYPE); return Int32LessThanOrEqual(instance_type, Int32Constant(LAST_SPECIAL_RECEIVER_TYPE)); } Node* CodeStubAssembler::IsStringInstanceType(Node* instance_type) { STATIC_ASSERT(INTERNALIZED_STRING_TYPE == FIRST_TYPE); return Int32LessThan(instance_type, Int32Constant(FIRST_NONSTRING_TYPE)); } Node* CodeStubAssembler::IsJSReceiverInstanceType(Node* instance_type) { STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); return Int32GreaterThanOrEqual(instance_type, Int32Constant(FIRST_JS_RECEIVER_TYPE)); } Node* CodeStubAssembler::IsJSReceiver(Node* object) { STATIC_ASSERT(LAST_JS_OBJECT_TYPE == LAST_TYPE); return IsJSReceiverInstanceType(LoadInstanceType(object)); } Node* CodeStubAssembler::IsJSObject(Node* object) { STATIC_ASSERT(LAST_JS_OBJECT_TYPE == LAST_TYPE); return Int32GreaterThanOrEqual(LoadInstanceType(object), Int32Constant(FIRST_JS_RECEIVER_TYPE)); } Node* CodeStubAssembler::IsJSGlobalProxy(Node* object) { return Word32Equal(LoadInstanceType(object), Int32Constant(JS_GLOBAL_PROXY_TYPE)); } Node* CodeStubAssembler::IsMap(Node* map) { return HasInstanceType(map, MAP_TYPE); } Node* CodeStubAssembler::IsJSValue(Node* map) { return HasInstanceType(map, JS_VALUE_TYPE); } Node* CodeStubAssembler::IsJSArray(Node* object) { return HasInstanceType(object, JS_ARRAY_TYPE); } Node* CodeStubAssembler::IsWeakCell(Node* object) { return HasInstanceType(object, WEAK_CELL_TYPE); } Node* CodeStubAssembler::IsName(Node* object) { return Int32LessThanOrEqual(LoadInstanceType(object), Int32Constant(LAST_NAME_TYPE)); } Node* CodeStubAssembler::IsString(Node* object) { return Int32LessThanOrEqual(LoadInstanceType(object), Int32Constant(FIRST_NONSTRING_TYPE)); } Node* CodeStubAssembler::IsNativeContext(Node* object) { return WordEqual(LoadMap(object), LoadRoot(Heap::kNativeContextMapRootIndex)); } Node* CodeStubAssembler::IsFixedDoubleArray(Node* object) { return WordEqual(LoadMap(object), FixedDoubleArrayMapConstant()); } Node* CodeStubAssembler::IsHashTable(Node* object) { return WordEqual(LoadMap(object), LoadRoot(Heap::kHashTableMapRootIndex)); } Node* CodeStubAssembler::IsDictionary(Node* object) { return WordOr(IsHashTable(object), IsUnseededNumberDictionary(object)); } Node* CodeStubAssembler::IsUnseededNumberDictionary(Node* object) { return WordEqual(LoadMap(object), LoadRoot(Heap::kUnseededNumberDictionaryMapRootIndex)); } Node* CodeStubAssembler::StringCharCodeAt(Node* string, Node* index) { CSA_ASSERT(this, IsString(string)); // Translate the {index} into a Word. index = SmiToWord(index); // We may need to loop in case of cons or sliced strings. Variable var_index(this, MachineType::PointerRepresentation()); Variable var_result(this, MachineRepresentation::kWord32); Variable var_string(this, MachineRepresentation::kTagged); Variable* loop_vars[] = {&var_index, &var_string}; Label done_loop(this, &var_result), loop(this, 2, loop_vars); var_string.Bind(string); var_index.Bind(index); Goto(&loop); Bind(&loop); { // Load the current {index}. index = var_index.value(); // Load the current {string}. string = var_string.value(); // Load the instance type of the {string}. Node* string_instance_type = LoadInstanceType(string); // Check if the {string} is a SeqString. Label if_stringissequential(this), if_stringisnotsequential(this); Branch(Word32Equal(Word32And(string_instance_type, Int32Constant(kStringRepresentationMask)), Int32Constant(kSeqStringTag)), &if_stringissequential, &if_stringisnotsequential); Bind(&if_stringissequential); { // Check if the {string} is a TwoByteSeqString or a OneByteSeqString. Label if_stringistwobyte(this), if_stringisonebyte(this); Branch(Word32Equal(Word32And(string_instance_type, Int32Constant(kStringEncodingMask)), Int32Constant(kTwoByteStringTag)), &if_stringistwobyte, &if_stringisonebyte); Bind(&if_stringisonebyte); { var_result.Bind( Load(MachineType::Uint8(), string, IntPtrAdd(index, IntPtrConstant(SeqOneByteString::kHeaderSize - kHeapObjectTag)))); Goto(&done_loop); } Bind(&if_stringistwobyte); { var_result.Bind( Load(MachineType::Uint16(), string, IntPtrAdd(WordShl(index, IntPtrConstant(1)), IntPtrConstant(SeqTwoByteString::kHeaderSize - kHeapObjectTag)))); Goto(&done_loop); } } Bind(&if_stringisnotsequential); { // Check if the {string} is a ConsString. Label if_stringiscons(this), if_stringisnotcons(this); Branch(Word32Equal(Word32And(string_instance_type, Int32Constant(kStringRepresentationMask)), Int32Constant(kConsStringTag)), &if_stringiscons, &if_stringisnotcons); Bind(&if_stringiscons); { // Check whether the right hand side is the empty string (i.e. if // this is really a flat string in a cons string). If that is not // the case we flatten the string first. Label if_rhsisempty(this), if_rhsisnotempty(this, Label::kDeferred); Node* rhs = LoadObjectField(string, ConsString::kSecondOffset); Branch(WordEqual(rhs, EmptyStringConstant()), &if_rhsisempty, &if_rhsisnotempty); Bind(&if_rhsisempty); { // Just operate on the left hand side of the {string}. var_string.Bind(LoadObjectField(string, ConsString::kFirstOffset)); Goto(&loop); } Bind(&if_rhsisnotempty); { // Flatten the {string} and lookup in the resulting string. var_string.Bind(CallRuntime(Runtime::kFlattenString, NoContextConstant(), string)); Goto(&loop); } } Bind(&if_stringisnotcons); { // Check if the {string} is an ExternalString. Label if_stringisexternal(this), if_stringisnotexternal(this); Branch(Word32Equal(Word32And(string_instance_type, Int32Constant(kStringRepresentationMask)), Int32Constant(kExternalStringTag)), &if_stringisexternal, &if_stringisnotexternal); Bind(&if_stringisexternal); { // Check if the {string} is a short external string. Label if_stringisnotshort(this), if_stringisshort(this, Label::kDeferred); Branch(Word32Equal(Word32And(string_instance_type, Int32Constant(kShortExternalStringMask)), Int32Constant(0)), &if_stringisnotshort, &if_stringisshort); Bind(&if_stringisnotshort); { // Load the actual resource data from the {string}. Node* string_resource_data = LoadObjectField(string, ExternalString::kResourceDataOffset, MachineType::Pointer()); // Check if the {string} is a TwoByteExternalString or a // OneByteExternalString. Label if_stringistwobyte(this), if_stringisonebyte(this); Branch(Word32Equal(Word32And(string_instance_type, Int32Constant(kStringEncodingMask)), Int32Constant(kTwoByteStringTag)), &if_stringistwobyte, &if_stringisonebyte); Bind(&if_stringisonebyte); { var_result.Bind( Load(MachineType::Uint8(), string_resource_data, index)); Goto(&done_loop); } Bind(&if_stringistwobyte); { var_result.Bind(Load(MachineType::Uint16(), string_resource_data, WordShl(index, IntPtrConstant(1)))); Goto(&done_loop); } } Bind(&if_stringisshort); { // The {string} might be compressed, call the runtime. var_result.Bind(SmiToWord32( CallRuntime(Runtime::kExternalStringGetChar, NoContextConstant(), string, SmiTag(index)))); Goto(&done_loop); } } Bind(&if_stringisnotexternal); { // The {string} is a SlicedString, continue with its parent. Node* string_offset = LoadAndUntagObjectField(string, SlicedString::kOffsetOffset); Node* string_parent = LoadObjectField(string, SlicedString::kParentOffset); var_index.Bind(IntPtrAdd(index, string_offset)); var_string.Bind(string_parent); Goto(&loop); } } } } Bind(&done_loop); return var_result.value(); } Node* CodeStubAssembler::StringFromCharCode(Node* code) { Variable var_result(this, MachineRepresentation::kTagged); // Check if the {code} is a one-byte char code. Label if_codeisonebyte(this), if_codeistwobyte(this, Label::kDeferred), if_done(this); Branch(Int32LessThanOrEqual(code, Int32Constant(String::kMaxOneByteCharCode)), &if_codeisonebyte, &if_codeistwobyte); Bind(&if_codeisonebyte); { // Load the isolate wide single character string cache. Node* cache = LoadRoot(Heap::kSingleCharacterStringCacheRootIndex); // Check if we have an entry for the {code} in the single character string // cache already. Label if_entryisundefined(this, Label::kDeferred), if_entryisnotundefined(this); Node* entry = LoadFixedArrayElement(cache, code); Branch(WordEqual(entry, UndefinedConstant()), &if_entryisundefined, &if_entryisnotundefined); Bind(&if_entryisundefined); { // Allocate a new SeqOneByteString for {code} and store it in the {cache}. Node* result = AllocateSeqOneByteString(1); StoreNoWriteBarrier( MachineRepresentation::kWord8, result, IntPtrConstant(SeqOneByteString::kHeaderSize - kHeapObjectTag), code); StoreFixedArrayElement(cache, code, result); var_result.Bind(result); Goto(&if_done); } Bind(&if_entryisnotundefined); { // Return the entry from the {cache}. var_result.Bind(entry); Goto(&if_done); } } Bind(&if_codeistwobyte); { // Allocate a new SeqTwoByteString for {code}. Node* result = AllocateSeqTwoByteString(1); StoreNoWriteBarrier( MachineRepresentation::kWord16, result, IntPtrConstant(SeqTwoByteString::kHeaderSize - kHeapObjectTag), code); var_result.Bind(result); Goto(&if_done); } Bind(&if_done); return var_result.value(); } namespace { // A wrapper around CopyStringCharacters which determines the correct string // encoding, allocates a corresponding sequential string, and then copies the // given character range using CopyStringCharacters. // |from_string| must be a sequential string. |from_index| and // |character_count| must be Smis s.t. // 0 <= |from_index| <= |from_index| + |character_count| < from_string.length. Node* AllocAndCopyStringCharacters(CodeStubAssembler* a, Node* context, Node* from, Node* from_instance_type, Node* from_index, Node* character_count) { typedef CodeStubAssembler::Label Label; typedef CodeStubAssembler::Variable Variable; Label end(a), two_byte_sequential(a); Variable var_result(a, MachineRepresentation::kTagged); Node* const smi_zero = a->SmiConstant(Smi::kZero); STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0); a->GotoIf(a->Word32Equal(a->Word32And(from_instance_type, a->Int32Constant(kStringEncodingMask)), a->Int32Constant(0)), &two_byte_sequential); // The subject string is a sequential one-byte string. { Node* result = a->AllocateSeqOneByteString(context, a->SmiToWord(character_count)); a->CopyStringCharacters(from, result, from_index, smi_zero, character_count, String::ONE_BYTE_ENCODING, String::ONE_BYTE_ENCODING, CodeStubAssembler::SMI_PARAMETERS); var_result.Bind(result); a->Goto(&end); } // The subject string is a sequential two-byte string. a->Bind(&two_byte_sequential); { Node* result = a->AllocateSeqTwoByteString(context, a->SmiToWord(character_count)); a->CopyStringCharacters(from, result, from_index, smi_zero, character_count, String::TWO_BYTE_ENCODING, String::TWO_BYTE_ENCODING, CodeStubAssembler::SMI_PARAMETERS); var_result.Bind(result); a->Goto(&end); } a->Bind(&end); return var_result.value(); } } // namespace Node* CodeStubAssembler::SubString(Node* context, Node* string, Node* from, Node* to) { Label end(this); Label runtime(this); Variable var_instance_type(this, MachineRepresentation::kWord8); // Int32. Variable var_result(this, MachineRepresentation::kTagged); // String. Variable var_from(this, MachineRepresentation::kTagged); // Smi. Variable var_string(this, MachineRepresentation::kTagged); // String. var_instance_type.Bind(Int32Constant(0)); var_string.Bind(string); var_from.Bind(from); // Make sure first argument is a string. // Bailout if receiver is a Smi. GotoIf(TaggedIsSmi(string), &runtime); // Load the instance type of the {string}. Node* const instance_type = LoadInstanceType(string); var_instance_type.Bind(instance_type); // Check if {string} is a String. GotoUnless(IsStringInstanceType(instance_type), &runtime); // Make sure that both from and to are non-negative smis. GotoUnless(WordIsPositiveSmi(from), &runtime); GotoUnless(WordIsPositiveSmi(to), &runtime); Node* const substr_length = SmiSub(to, from); Node* const string_length = LoadStringLength(string); // Begin dispatching based on substring length. Label original_string_or_invalid_length(this); GotoIf(SmiAboveOrEqual(substr_length, string_length), &original_string_or_invalid_length); // A real substring (substr_length < string_length). Label single_char(this); GotoIf(SmiEqual(substr_length, SmiConstant(Smi::FromInt(1))), &single_char); // TODO(jgruber): Add an additional case for substring of length == 0? // Deal with different string types: update the index if necessary // and put the underlying string into var_string. // If the string is not indirect, it can only be sequential or external. STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag)); STATIC_ASSERT(kIsIndirectStringMask != 0); Label underlying_unpacked(this); GotoIf(Word32Equal( Word32And(instance_type, Int32Constant(kIsIndirectStringMask)), Int32Constant(0)), &underlying_unpacked); // The subject string is either a sliced or cons string. Label sliced_string(this); GotoIf(Word32NotEqual( Word32And(instance_type, Int32Constant(kSlicedNotConsMask)), Int32Constant(0)), &sliced_string); // Cons string. Check whether it is flat, then fetch first part. // Flat cons strings have an empty second part. { GotoIf(WordNotEqual(LoadObjectField(string, ConsString::kSecondOffset), EmptyStringConstant()), &runtime); Node* first_string_part = LoadObjectField(string, ConsString::kFirstOffset); var_string.Bind(first_string_part); var_instance_type.Bind(LoadInstanceType(first_string_part)); Goto(&underlying_unpacked); } Bind(&sliced_string); { // Fetch parent and correct start index by offset. Node* sliced_offset = LoadObjectField(string, SlicedString::kOffsetOffset); var_from.Bind(SmiAdd(from, sliced_offset)); Node* slice_parent = LoadObjectField(string, SlicedString::kParentOffset); var_string.Bind(slice_parent); Node* slice_parent_instance_type = LoadInstanceType(slice_parent); var_instance_type.Bind(slice_parent_instance_type); Goto(&underlying_unpacked); } // The subject string can only be external or sequential string of either // encoding at this point. Label external_string(this); Bind(&underlying_unpacked); { if (FLAG_string_slices) { Label copy_routine(this); // Short slice. Copy instead of slicing. GotoIf(SmiLessThan(substr_length, SmiConstant(Smi::FromInt(SlicedString::kMinLength))), ©_routine); // Allocate new sliced string. Label two_byte_slice(this); STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0); STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0); Counters* counters = isolate()->counters(); IncrementCounter(counters->sub_string_native(), 1); GotoIf(Word32Equal(Word32And(var_instance_type.value(), Int32Constant(kStringEncodingMask)), Int32Constant(0)), &two_byte_slice); var_result.Bind(AllocateSlicedOneByteString( substr_length, var_string.value(), var_from.value())); Goto(&end); Bind(&two_byte_slice); var_result.Bind(AllocateSlicedTwoByteString( substr_length, var_string.value(), var_from.value())); Goto(&end); Bind(©_routine); } // The subject string can only be external or sequential string of either // encoding at this point. STATIC_ASSERT(kExternalStringTag != 0); STATIC_ASSERT(kSeqStringTag == 0); GotoUnless(Word32Equal(Word32And(var_instance_type.value(), Int32Constant(kExternalStringTag)), Int32Constant(0)), &external_string); var_result.Bind(AllocAndCopyStringCharacters( this, context, var_string.value(), var_instance_type.value(), var_from.value(), substr_length)); Counters* counters = isolate()->counters(); IncrementCounter(counters->sub_string_native(), 1); Goto(&end); } // Handle external string. Bind(&external_string); { // Rule out short external strings. STATIC_ASSERT(kShortExternalStringTag != 0); GotoIf(Word32NotEqual(Word32And(var_instance_type.value(), Int32Constant(kShortExternalStringMask)), Int32Constant(0)), &runtime); // Move the pointer so that offset-wise, it looks like a sequential string. STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); Node* resource_data = LoadObjectField(var_string.value(), ExternalString::kResourceDataOffset); Node* const fake_sequential_string = IntPtrSub( resource_data, IntPtrConstant(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); var_result.Bind(AllocAndCopyStringCharacters( this, context, fake_sequential_string, var_instance_type.value(), var_from.value(), substr_length)); Counters* counters = isolate()->counters(); IncrementCounter(counters->sub_string_native(), 1); Goto(&end); } // Substrings of length 1 are generated through CharCodeAt and FromCharCode. Bind(&single_char); { Node* char_code = StringCharCodeAt(var_string.value(), var_from.value()); var_result.Bind(StringFromCharCode(char_code)); Goto(&end); } Bind(&original_string_or_invalid_length); { // Longer than original string's length or negative: unsafe arguments. GotoIf(SmiAbove(substr_length, string_length), &runtime); // Equal length - check if {from, to} == {0, str.length}. GotoIf(SmiAbove(from, SmiConstant(Smi::kZero)), &runtime); // Return the original string (substr_length == string_length). Counters* counters = isolate()->counters(); IncrementCounter(counters->sub_string_native(), 1); var_result.Bind(string); Goto(&end); } // Fall back to a runtime call. Bind(&runtime); { var_result.Bind( CallRuntime(Runtime::kSubString, context, string, from, to)); Goto(&end); } Bind(&end); return var_result.value(); } Node* CodeStubAssembler::StringAdd(Node* context, Node* left, Node* right, AllocationFlags flags) { Label check_right(this); Label runtime(this, Label::kDeferred); Label cons(this); Label non_cons(this); Variable result(this, MachineRepresentation::kTagged); Label done(this, &result); Label done_native(this, &result); Counters* counters = isolate()->counters(); Node* left_length = LoadStringLength(left); GotoIf(WordNotEqual(IntPtrConstant(0), left_length), &check_right); result.Bind(right); Goto(&done_native); Bind(&check_right); Node* right_length = LoadStringLength(right); GotoIf(WordNotEqual(IntPtrConstant(0), right_length), &cons); result.Bind(left); Goto(&done_native); Bind(&cons); CSA_ASSERT(this, TaggedIsSmi(left_length)); CSA_ASSERT(this, TaggedIsSmi(right_length)); Node* new_length = SmiAdd(left_length, right_length); GotoIf(UintPtrGreaterThanOrEqual( new_length, SmiConstant(Smi::FromInt(String::kMaxLength))), &runtime); GotoIf(IntPtrLessThan(new_length, SmiConstant(Smi::FromInt(ConsString::kMinLength))), &non_cons); result.Bind(NewConsString(context, new_length, left, right, flags)); Goto(&done_native); Bind(&non_cons); Comment("Full string concatenate"); Node* left_instance_type = LoadInstanceType(left); Node* right_instance_type = LoadInstanceType(right); // Compute intersection and difference of instance types. Node* ored_instance_types = WordOr(left_instance_type, right_instance_type); Node* xored_instance_types = WordXor(left_instance_type, right_instance_type); // Check if both strings have the same encoding and both are sequential. GotoIf(WordNotEqual( WordAnd(xored_instance_types, IntPtrConstant(kStringEncodingMask)), IntPtrConstant(0)), &runtime); GotoIf(WordNotEqual(WordAnd(ored_instance_types, IntPtrConstant(kStringRepresentationMask)), IntPtrConstant(0)), &runtime); Label two_byte(this); GotoIf(WordEqual( WordAnd(ored_instance_types, IntPtrConstant(kStringEncodingMask)), IntPtrConstant(kTwoByteStringTag)), &two_byte); // One-byte sequential string case Node* new_string = AllocateSeqOneByteString(context, new_length, SMI_PARAMETERS); CopyStringCharacters(left, new_string, SmiConstant(Smi::kZero), SmiConstant(Smi::kZero), left_length, String::ONE_BYTE_ENCODING, String::ONE_BYTE_ENCODING, SMI_PARAMETERS); CopyStringCharacters(right, new_string, SmiConstant(Smi::kZero), left_length, right_length, String::ONE_BYTE_ENCODING, String::ONE_BYTE_ENCODING, SMI_PARAMETERS); result.Bind(new_string); Goto(&done_native); Bind(&two_byte); { // Two-byte sequential string case new_string = AllocateSeqTwoByteString(context, new_length, SMI_PARAMETERS); CopyStringCharacters(left, new_string, SmiConstant(Smi::kZero), SmiConstant(Smi::kZero), left_length, String::TWO_BYTE_ENCODING, String::TWO_BYTE_ENCODING, SMI_PARAMETERS); CopyStringCharacters(right, new_string, SmiConstant(Smi::kZero), left_length, right_length, String::TWO_BYTE_ENCODING, String::TWO_BYTE_ENCODING, SMI_PARAMETERS); result.Bind(new_string); Goto(&done_native); } Bind(&runtime); { result.Bind(CallRuntime(Runtime::kStringAdd, context, left, right)); Goto(&done); } Bind(&done_native); { IncrementCounter(counters->string_add_native(), 1); Goto(&done); } Bind(&done); return result.value(); } Node* CodeStubAssembler::StringIndexOfChar(Node* context, Node* string, Node* needle_char, Node* from) { CSA_ASSERT(this, IsString(string)); Variable var_result(this, MachineRepresentation::kTagged); Label out(this), runtime(this, Label::kDeferred); // Let runtime handle non-one-byte {needle_char}. Node* const one_byte_char_mask = IntPtrConstant(0xFF); GotoUnless(WordEqual(WordAnd(needle_char, one_byte_char_mask), needle_char), &runtime); // TODO(jgruber): Handle external and two-byte strings. Node* const one_byte_seq_mask = Int32Constant( kIsIndirectStringMask | kExternalStringTag | kStringEncodingMask); Node* const expected_masked = Int32Constant(kOneByteStringTag); Node* const string_instance_type = LoadInstanceType(string); GotoUnless(Word32Equal(Word32And(string_instance_type, one_byte_seq_mask), expected_masked), &runtime); // If we reach this, {string} is a non-indirect, non-external one-byte string. Node* const length = LoadStringLength(string); Node* const search_range_length = SmiUntag(SmiSub(length, from)); const int offset = SeqOneByteString::kHeaderSize - kHeapObjectTag; Node* const begin = IntPtrConstant(offset); Node* const cursor = IntPtrAdd(begin, SmiUntag(from)); Node* const end = IntPtrAdd(cursor, search_range_length); var_result.Bind(SmiConstant(Smi::FromInt(-1))); BuildFastLoop(MachineType::PointerRepresentation(), cursor, end, [string, needle_char, begin, &var_result, &out]( CodeStubAssembler* csa, Node* cursor) { Label next(csa); Node* value = csa->Load(MachineType::Uint8(), string, cursor); csa->GotoUnless(csa->WordEqual(value, needle_char), &next); // Found a match. Node* index = csa->SmiTag(csa->IntPtrSub(cursor, begin)); var_result.Bind(index); csa->Goto(&out); csa->Bind(&next); }, 1, IndexAdvanceMode::kPost); Goto(&out); Bind(&runtime); { Node* const pattern = StringFromCharCode(needle_char); Node* const result = CallRuntime(Runtime::kStringIndexOf, context, string, pattern, from); var_result.Bind(result); Goto(&out); } Bind(&out); return var_result.value(); } Node* CodeStubAssembler::StringFromCodePoint(Node* codepoint, UnicodeEncoding encoding) { Variable var_result(this, MachineRepresentation::kTagged); var_result.Bind(EmptyStringConstant()); Label if_isword16(this), if_isword32(this), return_result(this); Branch(Uint32LessThan(codepoint, Int32Constant(0x10000)), &if_isword16, &if_isword32); Bind(&if_isword16); { var_result.Bind(StringFromCharCode(codepoint)); Goto(&return_result); } Bind(&if_isword32); { switch (encoding) { case UnicodeEncoding::UTF16: break; case UnicodeEncoding::UTF32: { // Convert UTF32 to UTF16 code units, and store as a 32 bit word. Node* lead_offset = Int32Constant(0xD800 - (0x10000 >> 10)); // lead = (codepoint >> 10) + LEAD_OFFSET Node* lead = Int32Add(WordShr(codepoint, Int32Constant(10)), lead_offset); // trail = (codepoint & 0x3FF) + 0xDC00; Node* trail = Int32Add(Word32And(codepoint, Int32Constant(0x3FF)), Int32Constant(0xDC00)); // codpoint = (trail << 16) | lead; codepoint = Word32Or(WordShl(trail, Int32Constant(16)), lead); break; } } Node* value = AllocateSeqTwoByteString(2); StoreNoWriteBarrier( MachineRepresentation::kWord32, value, IntPtrConstant(SeqTwoByteString::kHeaderSize - kHeapObjectTag), codepoint); var_result.Bind(value); Goto(&return_result); } Bind(&return_result); return var_result.value(); } Node* CodeStubAssembler::StringToNumber(Node* context, Node* input) { Label runtime(this, Label::kDeferred); Label end(this); Variable var_result(this, MachineRepresentation::kTagged); // Check if string has a cached array index. Node* hash = LoadNameHashField(input); Node* bit = Word32And(hash, Int32Constant(String::kContainsCachedArrayIndexMask)); GotoIf(Word32NotEqual(bit, Int32Constant(0)), &runtime); var_result.Bind( SmiTag(DecodeWordFromWord32(hash))); Goto(&end); Bind(&runtime); { var_result.Bind(CallRuntime(Runtime::kStringToNumber, context, input)); Goto(&end); } Bind(&end); return var_result.value(); } Node* CodeStubAssembler::NumberToString(Node* context, Node* argument) { Variable result(this, MachineRepresentation::kTagged); Label runtime(this, Label::kDeferred); Label smi(this); Label done(this, &result); // Load the number string cache. Node* number_string_cache = LoadRoot(Heap::kNumberStringCacheRootIndex); // Make the hash mask from the length of the number string cache. It // contains two elements (number and string) for each cache entry. Node* mask = LoadFixedArrayBaseLength(number_string_cache); Node* one = IntPtrConstant(1); mask = IntPtrSub(mask, one); GotoIf(TaggedIsSmi(argument), &smi); // Argument isn't smi, check to see if it's a heap-number. Node* map = LoadMap(argument); GotoUnless(WordEqual(map, HeapNumberMapConstant()), &runtime); // Make a hash from the two 32-bit values of the double. Node* low = LoadObjectField(argument, HeapNumber::kValueOffset, MachineType::Int32()); Node* high = LoadObjectField(argument, HeapNumber::kValueOffset + kIntSize, MachineType::Int32()); Node* hash = Word32Xor(low, high); if (Is64()) hash = ChangeInt32ToInt64(hash); hash = WordShl(hash, one); Node* index = WordAnd(hash, SmiToWord(mask)); // Cache entry's key must be a heap number Node* number_key = LoadFixedArrayElement(number_string_cache, index, 0, INTPTR_PARAMETERS); GotoIf(TaggedIsSmi(number_key), &runtime); map = LoadMap(number_key); GotoUnless(WordEqual(map, HeapNumberMapConstant()), &runtime); // Cache entry's key must match the heap number value we're looking for. Node* low_compare = LoadObjectField(number_key, HeapNumber::kValueOffset, MachineType::Int32()); Node* high_compare = LoadObjectField( number_key, HeapNumber::kValueOffset + kIntSize, MachineType::Int32()); GotoUnless(WordEqual(low, low_compare), &runtime); GotoUnless(WordEqual(high, high_compare), &runtime); // Heap number match, return value fro cache entry. IncrementCounter(isolate()->counters()->number_to_string_native(), 1); result.Bind(LoadFixedArrayElement(number_string_cache, index, kPointerSize, INTPTR_PARAMETERS)); Goto(&done); Bind(&runtime); { // No cache entry, go to the runtime. result.Bind(CallRuntime(Runtime::kNumberToString, context, argument)); } Goto(&done); Bind(&smi); { // Load the smi key, make sure it matches the smi we're looking for. Node* smi_index = WordAnd(WordShl(argument, one), mask); Node* smi_key = LoadFixedArrayElement(number_string_cache, smi_index, 0, SMI_PARAMETERS); GotoIf(WordNotEqual(smi_key, argument), &runtime); // Smi match, return value from cache entry. IncrementCounter(isolate()->counters()->number_to_string_native(), 1); result.Bind(LoadFixedArrayElement(number_string_cache, smi_index, kPointerSize, SMI_PARAMETERS)); Goto(&done); } Bind(&done); return result.value(); } Node* CodeStubAssembler::ToName(Node* context, Node* value) { Label end(this); Variable var_result(this, MachineRepresentation::kTagged); Label is_number(this); GotoIf(TaggedIsSmi(value), &is_number); Label not_name(this); Node* value_instance_type = LoadInstanceType(value); STATIC_ASSERT(FIRST_NAME_TYPE == FIRST_TYPE); GotoIf(Int32GreaterThan(value_instance_type, Int32Constant(LAST_NAME_TYPE)), ¬_name); var_result.Bind(value); Goto(&end); Bind(&is_number); { Callable callable = CodeFactory::NumberToString(isolate()); var_result.Bind(CallStub(callable, context, value)); Goto(&end); } Bind(¬_name); { GotoIf(Word32Equal(value_instance_type, Int32Constant(HEAP_NUMBER_TYPE)), &is_number); Label not_oddball(this); GotoIf(Word32NotEqual(value_instance_type, Int32Constant(ODDBALL_TYPE)), ¬_oddball); var_result.Bind(LoadObjectField(value, Oddball::kToStringOffset)); Goto(&end); Bind(¬_oddball); { var_result.Bind(CallRuntime(Runtime::kToName, context, value)); Goto(&end); } } Bind(&end); return var_result.value(); } Node* CodeStubAssembler::NonNumberToNumber(Node* context, Node* input) { // Assert input is a HeapObject (not smi or heap number) CSA_ASSERT(this, Word32BinaryNot(TaggedIsSmi(input))); CSA_ASSERT(this, Word32NotEqual(LoadMap(input), HeapNumberMapConstant())); // We might need to loop once here due to ToPrimitive conversions. Variable var_input(this, MachineRepresentation::kTagged); Variable var_result(this, MachineRepresentation::kTagged); Label loop(this, &var_input); Label end(this); var_input.Bind(input); Goto(&loop); Bind(&loop); { // Load the current {input} value (known to be a HeapObject). Node* input = var_input.value(); // Dispatch on the {input} instance type. Node* input_instance_type = LoadInstanceType(input); Label if_inputisstring(this), if_inputisoddball(this), if_inputisreceiver(this, Label::kDeferred), if_inputisother(this, Label::kDeferred); GotoIf(IsStringInstanceType(input_instance_type), &if_inputisstring); GotoIf(Word32Equal(input_instance_type, Int32Constant(ODDBALL_TYPE)), &if_inputisoddball); Branch(IsJSReceiverInstanceType(input_instance_type), &if_inputisreceiver, &if_inputisother); Bind(&if_inputisstring); { // The {input} is a String, use the fast stub to convert it to a Number. var_result.Bind(StringToNumber(context, input)); Goto(&end); } Bind(&if_inputisoddball); { // The {input} is an Oddball, we just need to load the Number value of it. var_result.Bind(LoadObjectField(input, Oddball::kToNumberOffset)); Goto(&end); } Bind(&if_inputisreceiver); { // The {input} is a JSReceiver, we need to convert it to a Primitive first // using the ToPrimitive type conversion, preferably yielding a Number. Callable callable = CodeFactory::NonPrimitiveToPrimitive( isolate(), ToPrimitiveHint::kNumber); Node* result = CallStub(callable, context, input); // Check if the {result} is already a Number. Label if_resultisnumber(this), if_resultisnotnumber(this); GotoIf(TaggedIsSmi(result), &if_resultisnumber); Node* result_map = LoadMap(result); Branch(WordEqual(result_map, HeapNumberMapConstant()), &if_resultisnumber, &if_resultisnotnumber); Bind(&if_resultisnumber); { // The ToPrimitive conversion already gave us a Number, so we're done. var_result.Bind(result); Goto(&end); } Bind(&if_resultisnotnumber); { // We now have a Primitive {result}, but it's not yet a Number. var_input.Bind(result); Goto(&loop); } } Bind(&if_inputisother); { // The {input} is something else (i.e. Symbol or Simd128Value), let the // runtime figure out the correct exception. // Note: We cannot tail call to the runtime here, as js-to-wasm // trampolines also use this code currently, and they declare all // outgoing parameters as untagged, while we would push a tagged // object here. var_result.Bind(CallRuntime(Runtime::kToNumber, context, input)); Goto(&end); } } Bind(&end); return var_result.value(); } Node* CodeStubAssembler::ToNumber(Node* context, Node* input) { Variable var_result(this, MachineRepresentation::kTagged); Label end(this); Label not_smi(this, Label::kDeferred); GotoUnless(TaggedIsSmi(input), ¬_smi); var_result.Bind(input); Goto(&end); Bind(¬_smi); { Label not_heap_number(this, Label::kDeferred); Node* input_map = LoadMap(input); GotoIf(Word32NotEqual(input_map, HeapNumberMapConstant()), ¬_heap_number); var_result.Bind(input); Goto(&end); Bind(¬_heap_number); { var_result.Bind(NonNumberToNumber(context, input)); Goto(&end); } } Bind(&end); return var_result.value(); } Node* CodeStubAssembler::ToString(Node* context, Node* input) { Label is_number(this); Label runtime(this, Label::kDeferred); Variable result(this, MachineRepresentation::kTagged); Label done(this, &result); GotoIf(TaggedIsSmi(input), &is_number); Node* input_map = LoadMap(input); Node* input_instance_type = LoadMapInstanceType(input_map); result.Bind(input); GotoIf(IsStringInstanceType(input_instance_type), &done); Label not_heap_number(this); Branch(WordNotEqual(input_map, HeapNumberMapConstant()), ¬_heap_number, &is_number); Bind(&is_number); result.Bind(NumberToString(context, input)); Goto(&done); Bind(¬_heap_number); { GotoIf(Word32NotEqual(input_instance_type, Int32Constant(ODDBALL_TYPE)), &runtime); result.Bind(LoadObjectField(input, Oddball::kToStringOffset)); Goto(&done); } Bind(&runtime); { result.Bind(CallRuntime(Runtime::kToString, context, input)); Goto(&done); } Bind(&done); return result.value(); } Node* CodeStubAssembler::FlattenString(Node* string) { CSA_ASSERT(this, IsString(string)); Variable var_result(this, MachineRepresentation::kTagged); var_result.Bind(string); Node* instance_type = LoadInstanceType(string); // Check if the {string} is not a ConsString (i.e. already flat). Label is_cons(this, Label::kDeferred), is_flat_in_cons(this), end(this); { GotoUnless(Word32Equal(Word32And(instance_type, Int32Constant(kStringRepresentationMask)), Int32Constant(kConsStringTag)), &end); // Check whether the right hand side is the empty string (i.e. if // this is really a flat string in a cons string). Node* rhs = LoadObjectField(string, ConsString::kSecondOffset); Branch(WordEqual(rhs, EmptyStringConstant()), &is_flat_in_cons, &is_cons); } // Bail out to the runtime. Bind(&is_cons); { var_result.Bind( CallRuntime(Runtime::kFlattenString, NoContextConstant(), string)); Goto(&end); } Bind(&is_flat_in_cons); { var_result.Bind(LoadObjectField(string, ConsString::kFirstOffset)); Goto(&end); } Bind(&end); return var_result.value(); } Node* CodeStubAssembler::JSReceiverToPrimitive(Node* context, Node* input) { Label if_isreceiver(this, Label::kDeferred), if_isnotreceiver(this); Variable result(this, MachineRepresentation::kTagged); Label done(this, &result); BranchIfJSReceiver(input, &if_isreceiver, &if_isnotreceiver); Bind(&if_isreceiver); { // Convert {input} to a primitive first passing Number hint. Callable callable = CodeFactory::NonPrimitiveToPrimitive(isolate()); result.Bind(CallStub(callable, context, input)); Goto(&done); } Bind(&if_isnotreceiver); { result.Bind(input); Goto(&done); } Bind(&done); return result.value(); } Node* CodeStubAssembler::ToInteger(Node* context, Node* input, ToIntegerTruncationMode mode) { // We might need to loop once for ToNumber conversion. Variable var_arg(this, MachineRepresentation::kTagged); Label loop(this, &var_arg), out(this); var_arg.Bind(input); Goto(&loop); Bind(&loop); { // Shared entry points. Label return_zero(this, Label::kDeferred); // Load the current {arg} value. Node* arg = var_arg.value(); // Check if {arg} is a Smi. GotoIf(TaggedIsSmi(arg), &out); // Check if {arg} is a HeapNumber. Label if_argisheapnumber(this), if_argisnotheapnumber(this, Label::kDeferred); Branch(WordEqual(LoadMap(arg), HeapNumberMapConstant()), &if_argisheapnumber, &if_argisnotheapnumber); Bind(&if_argisheapnumber); { // Load the floating-point value of {arg}. Node* arg_value = LoadHeapNumberValue(arg); // Check if {arg} is NaN. GotoUnless(Float64Equal(arg_value, arg_value), &return_zero); // Truncate {arg} towards zero. Node* value = Float64Trunc(arg_value); if (mode == kTruncateMinusZero) { // Truncate -0.0 to 0. GotoIf(Float64Equal(value, Float64Constant(0.0)), &return_zero); } var_arg.Bind(ChangeFloat64ToTagged(value)); Goto(&out); } Bind(&if_argisnotheapnumber); { // Need to convert {arg} to a Number first. Callable callable = CodeFactory::NonNumberToNumber(isolate()); var_arg.Bind(CallStub(callable, context, arg)); Goto(&loop); } Bind(&return_zero); var_arg.Bind(SmiConstant(Smi::kZero)); Goto(&out); } Bind(&out); return var_arg.value(); } Node* CodeStubAssembler::DecodeWord32(Node* word32, uint32_t shift, uint32_t mask) { return Word32Shr(Word32And(word32, Int32Constant(mask)), static_cast(shift)); } Node* CodeStubAssembler::DecodeWord(Node* word, uint32_t shift, uint32_t mask) { return WordShr(WordAnd(word, IntPtrConstant(mask)), static_cast(shift)); } void CodeStubAssembler::SetCounter(StatsCounter* counter, int value) { if (FLAG_native_code_counters && counter->Enabled()) { Node* counter_address = ExternalConstant(ExternalReference(counter)); StoreNoWriteBarrier(MachineRepresentation::kWord32, counter_address, Int32Constant(value)); } } void CodeStubAssembler::IncrementCounter(StatsCounter* counter, int delta) { DCHECK(delta > 0); if (FLAG_native_code_counters && counter->Enabled()) { Node* counter_address = ExternalConstant(ExternalReference(counter)); Node* value = Load(MachineType::Int32(), counter_address); value = Int32Add(value, Int32Constant(delta)); StoreNoWriteBarrier(MachineRepresentation::kWord32, counter_address, value); } } void CodeStubAssembler::DecrementCounter(StatsCounter* counter, int delta) { DCHECK(delta > 0); if (FLAG_native_code_counters && counter->Enabled()) { Node* counter_address = ExternalConstant(ExternalReference(counter)); Node* value = Load(MachineType::Int32(), counter_address); value = Int32Sub(value, Int32Constant(delta)); StoreNoWriteBarrier(MachineRepresentation::kWord32, counter_address, value); } } void CodeStubAssembler::Use(Label* label) { GotoIf(Word32Equal(Int32Constant(0), Int32Constant(1)), label); } void CodeStubAssembler::TryToName(Node* key, Label* if_keyisindex, Variable* var_index, Label* if_keyisunique, Label* if_bailout) { DCHECK_EQ(MachineType::PointerRepresentation(), var_index->rep()); Comment("TryToName"); Label if_hascachedindex(this), if_keyisnotindex(this); // Handle Smi and HeapNumber keys. var_index->Bind(TryToIntptr(key, &if_keyisnotindex)); Goto(if_keyisindex); Bind(&if_keyisnotindex); Node* key_instance_type = LoadInstanceType(key); // Symbols are unique. GotoIf(Word32Equal(key_instance_type, Int32Constant(SYMBOL_TYPE)), if_keyisunique); // Miss if |key| is not a String. STATIC_ASSERT(FIRST_NAME_TYPE == FIRST_TYPE); GotoUnless(IsStringInstanceType(key_instance_type), if_bailout); // |key| is a String. Check if it has a cached array index. Node* hash = LoadNameHashField(key); Node* contains_index = Word32And(hash, Int32Constant(Name::kContainsCachedArrayIndexMask)); GotoIf(Word32Equal(contains_index, Int32Constant(0)), &if_hascachedindex); // No cached array index. If the string knows that it contains an index, // then it must be an uncacheable index. Handle this case in the runtime. Node* not_an_index = Word32And(hash, Int32Constant(Name::kIsNotArrayIndexMask)); GotoIf(Word32Equal(not_an_index, Int32Constant(0)), if_bailout); // Finally, check if |key| is internalized. STATIC_ASSERT(kNotInternalizedTag != 0); Node* not_internalized = Word32And(key_instance_type, Int32Constant(kIsNotInternalizedMask)); GotoIf(Word32NotEqual(not_internalized, Int32Constant(0)), if_bailout); Goto(if_keyisunique); Bind(&if_hascachedindex); var_index->Bind(DecodeWordFromWord32(hash)); Goto(if_keyisindex); } template Node* CodeStubAssembler::EntryToIndex(Node* entry, int field_index) { Node* entry_index = IntPtrMul(entry, IntPtrConstant(Dictionary::kEntrySize)); return IntPtrAdd(entry_index, IntPtrConstant(Dictionary::kElementsStartIndex + field_index)); } template Node* CodeStubAssembler::EntryToIndex(Node*, int); template Node* CodeStubAssembler::EntryToIndex(Node*, int); template Node* CodeStubAssembler::EntryToIndex(Node*, int); Node* CodeStubAssembler::HashTableComputeCapacity(Node* at_least_space_for) { Node* capacity = IntPtrRoundUpToPowerOfTwo32( WordShl(at_least_space_for, IntPtrConstant(1))); return IntPtrMax(capacity, IntPtrConstant(HashTableBase::kMinCapacity)); } Node* CodeStubAssembler::IntPtrMax(Node* left, Node* right) { return Select(IntPtrGreaterThanOrEqual(left, right), left, right, MachineType::PointerRepresentation()); } template Node* CodeStubAssembler::GetNumberOfElements(Node* dictionary) { return LoadFixedArrayElement( dictionary, IntPtrConstant(Dictionary::kNumberOfElementsIndex), 0, INTPTR_PARAMETERS); } template void CodeStubAssembler::SetNumberOfElements(Node* dictionary, Node* num_elements_smi) { StoreFixedArrayElement(dictionary, Dictionary::kNumberOfElementsIndex, num_elements_smi, SKIP_WRITE_BARRIER); } template Node* CodeStubAssembler::GetCapacity(Node* dictionary) { return LoadFixedArrayElement(dictionary, IntPtrConstant(Dictionary::kCapacityIndex), 0, INTPTR_PARAMETERS); } template Node* CodeStubAssembler::GetNextEnumerationIndex(Node* dictionary) { return LoadFixedArrayElement( dictionary, IntPtrConstant(Dictionary::kNextEnumerationIndexIndex), 0, INTPTR_PARAMETERS); } template void CodeStubAssembler::SetNextEnumerationIndex(Node* dictionary, Node* next_enum_index_smi) { StoreFixedArrayElement(dictionary, Dictionary::kNextEnumerationIndexIndex, next_enum_index_smi, SKIP_WRITE_BARRIER); } template void CodeStubAssembler::NameDictionaryLookup(Node* dictionary, Node* unique_name, Label* if_found, Variable* var_name_index, Label* if_not_found, int inlined_probes, LookupMode mode) { CSA_ASSERT(this, IsDictionary(dictionary)); DCHECK_EQ(MachineType::PointerRepresentation(), var_name_index->rep()); DCHECK_IMPLIES(mode == kFindInsertionIndex, inlined_probes == 0 && if_found == nullptr); Comment("NameDictionaryLookup"); Node* capacity = SmiUntag(GetCapacity(dictionary)); Node* mask = IntPtrSub(capacity, IntPtrConstant(1)); Node* hash = ChangeUint32ToWord(LoadNameHash(unique_name)); // See Dictionary::FirstProbe(). Node* count = IntPtrConstant(0); Node* entry = WordAnd(hash, mask); for (int i = 0; i < inlined_probes; i++) { Node* index = EntryToIndex(entry); var_name_index->Bind(index); Node* current = LoadFixedArrayElement(dictionary, index, 0, INTPTR_PARAMETERS); GotoIf(WordEqual(current, unique_name), if_found); // See Dictionary::NextProbe(). count = IntPtrConstant(i + 1); entry = WordAnd(IntPtrAdd(entry, count), mask); } if (mode == kFindInsertionIndex) { // Appease the variable merging algorithm for "Goto(&loop)" below. var_name_index->Bind(IntPtrConstant(0)); } Node* undefined = UndefinedConstant(); Node* the_hole = mode == kFindExisting ? nullptr : TheHoleConstant(); Variable var_count(this, MachineType::PointerRepresentation()); Variable var_entry(this, MachineType::PointerRepresentation()); Variable* loop_vars[] = {&var_count, &var_entry, var_name_index}; Label loop(this, 3, loop_vars); var_count.Bind(count); var_entry.Bind(entry); Goto(&loop); Bind(&loop); { Node* count = var_count.value(); Node* entry = var_entry.value(); Node* index = EntryToIndex(entry); var_name_index->Bind(index); Node* current = LoadFixedArrayElement(dictionary, index, 0, INTPTR_PARAMETERS); GotoIf(WordEqual(current, undefined), if_not_found); if (mode == kFindExisting) { GotoIf(WordEqual(current, unique_name), if_found); } else { DCHECK_EQ(kFindInsertionIndex, mode); GotoIf(WordEqual(current, the_hole), if_not_found); } // See Dictionary::NextProbe(). count = IntPtrAdd(count, IntPtrConstant(1)); entry = WordAnd(IntPtrAdd(entry, count), mask); var_count.Bind(count); var_entry.Bind(entry); Goto(&loop); } } // Instantiate template methods to workaround GCC compilation issue. template void CodeStubAssembler::NameDictionaryLookup( Node*, Node*, Label*, Variable*, Label*, int, LookupMode); template void CodeStubAssembler::NameDictionaryLookup( Node*, Node*, Label*, Variable*, Label*, int, LookupMode); Node* CodeStubAssembler::ComputeIntegerHash(Node* key, Node* seed) { // See v8::internal::ComputeIntegerHash() Node* hash = key; hash = Word32Xor(hash, seed); hash = Int32Add(Word32Xor(hash, Int32Constant(0xffffffff)), Word32Shl(hash, Int32Constant(15))); hash = Word32Xor(hash, Word32Shr(hash, Int32Constant(12))); hash = Int32Add(hash, Word32Shl(hash, Int32Constant(2))); hash = Word32Xor(hash, Word32Shr(hash, Int32Constant(4))); hash = Int32Mul(hash, Int32Constant(2057)); hash = Word32Xor(hash, Word32Shr(hash, Int32Constant(16))); return Word32And(hash, Int32Constant(0x3fffffff)); } template void CodeStubAssembler::NumberDictionaryLookup(Node* dictionary, Node* intptr_index, Label* if_found, Variable* var_entry, Label* if_not_found) { CSA_ASSERT(this, IsDictionary(dictionary)); DCHECK_EQ(MachineType::PointerRepresentation(), var_entry->rep()); Comment("NumberDictionaryLookup"); Node* capacity = SmiUntag(GetCapacity(dictionary)); Node* mask = IntPtrSub(capacity, IntPtrConstant(1)); Node* int32_seed; if (Dictionary::ShapeT::UsesSeed) { int32_seed = HashSeed(); } else { int32_seed = Int32Constant(kZeroHashSeed); } Node* hash = ChangeUint32ToWord(ComputeIntegerHash(intptr_index, int32_seed)); Node* key_as_float64 = RoundIntPtrToFloat64(intptr_index); // See Dictionary::FirstProbe(). Node* count = IntPtrConstant(0); Node* entry = WordAnd(hash, mask); Node* undefined = UndefinedConstant(); Node* the_hole = TheHoleConstant(); Variable var_count(this, MachineType::PointerRepresentation()); Variable* loop_vars[] = {&var_count, var_entry}; Label loop(this, 2, loop_vars); var_count.Bind(count); var_entry->Bind(entry); Goto(&loop); Bind(&loop); { Node* count = var_count.value(); Node* entry = var_entry->value(); Node* index = EntryToIndex(entry); Node* current = LoadFixedArrayElement(dictionary, index, 0, INTPTR_PARAMETERS); GotoIf(WordEqual(current, undefined), if_not_found); Label next_probe(this); { Label if_currentissmi(this), if_currentisnotsmi(this); Branch(TaggedIsSmi(current), &if_currentissmi, &if_currentisnotsmi); Bind(&if_currentissmi); { Node* current_value = SmiUntag(current); Branch(WordEqual(current_value, intptr_index), if_found, &next_probe); } Bind(&if_currentisnotsmi); { GotoIf(WordEqual(current, the_hole), &next_probe); // Current must be the Number. Node* current_value = LoadHeapNumberValue(current); Branch(Float64Equal(current_value, key_as_float64), if_found, &next_probe); } } Bind(&next_probe); // See Dictionary::NextProbe(). count = IntPtrAdd(count, IntPtrConstant(1)); entry = WordAnd(IntPtrAdd(entry, count), mask); var_count.Bind(count); var_entry->Bind(entry); Goto(&loop); } } template void CodeStubAssembler::FindInsertionEntry(Node* dictionary, Node* key, Variable* var_key_index) { UNREACHABLE(); } template <> void CodeStubAssembler::FindInsertionEntry( Node* dictionary, Node* key, Variable* var_key_index) { Label done(this); NameDictionaryLookup(dictionary, key, nullptr, var_key_index, &done, 0, kFindInsertionIndex); Bind(&done); } template void CodeStubAssembler::InsertEntry(Node* dictionary, Node* key, Node* value, Node* index, Node* enum_index) { // This implementation works for dictionaries with details. STATIC_ASSERT(Dictionary::kEntrySize == 3); StoreFixedArrayElement(dictionary, index, key, UPDATE_WRITE_BARRIER, 0, INTPTR_PARAMETERS); const int kNameToValueOffset = (Dictionary::kEntryValueIndex - Dictionary::kEntryKeyIndex) * kPointerSize; StoreFixedArrayElement(dictionary, index, value, UPDATE_WRITE_BARRIER, kNameToValueOffset, INTPTR_PARAMETERS); const int kInitialIndex = 0; PropertyDetails d(NONE, DATA, kInitialIndex, PropertyCellType::kNoCell); Node* details = SmiConstant(d.AsSmi()); if (Dictionary::kIsEnumerable) { enum_index = WordShl(enum_index, PropertyDetails::DictionaryStorageField::kShift); STATIC_ASSERT(kInitialIndex == 0); details = WordOr(details, enum_index); } const int kNameToDetailsOffset = (Dictionary::kEntryDetailsIndex - Dictionary::kEntryKeyIndex) * kPointerSize; StoreFixedArrayElement(dictionary, index, details, SKIP_WRITE_BARRIER, kNameToDetailsOffset, INTPTR_PARAMETERS); } template <> void CodeStubAssembler::InsertEntry(Node* dictionary, Node* key, Node* value, Node* index, Node* enum_index) { UNIMPLEMENTED(); } template void CodeStubAssembler::Add(Node* dictionary, Node* key, Node* value, Label* bailout) { Node* capacity = GetCapacity(dictionary); Node* nof = GetNumberOfElements(dictionary); Node* new_nof = SmiAdd(nof, SmiConstant(1)); // Require 33% to still be free after adding additional_elements. // This is a simplification of the C++ implementation's behavior, which // also rehashes the dictionary when there are too many deleted elements. // Computing "x + (x >> 1)" on a Smi x does not return a valid Smi! // But that's OK here because it's only used for a comparison. Node* required_capacity_pseudo_smi = SmiAdd(new_nof, WordShr(new_nof, 1)); GotoIf(UintPtrLessThan(capacity, required_capacity_pseudo_smi), bailout); Node* enum_index = nullptr; if (Dictionary::kIsEnumerable) { enum_index = GetNextEnumerationIndex(dictionary); Node* new_enum_index = SmiAdd(enum_index, SmiConstant(1)); Node* max_enum_index = SmiConstant(PropertyDetails::DictionaryStorageField::kMax); GotoIf(UintPtrGreaterThan(new_enum_index, max_enum_index), bailout); // No more bailouts after this point. // Operations from here on can have side effects. SetNextEnumerationIndex(dictionary, new_enum_index); } else { USE(enum_index); } SetNumberOfElements(dictionary, new_nof); Variable var_key_index(this, MachineType::PointerRepresentation()); FindInsertionEntry(dictionary, key, &var_key_index); InsertEntry(dictionary, key, value, var_key_index.value(), enum_index); } template void CodeStubAssembler::Add(Node*, Node*, Node*, Label*); void CodeStubAssembler::DescriptorLookupLinear(Node* unique_name, Node* descriptors, Node* nof, Label* if_found, Variable* var_name_index, Label* if_not_found) { Node* first_inclusive = IntPtrConstant(DescriptorArray::ToKeyIndex(0)); Node* factor = IntPtrConstant(DescriptorArray::kDescriptorSize); Node* last_exclusive = IntPtrAdd(first_inclusive, IntPtrMul(nof, factor)); BuildFastLoop( MachineType::PointerRepresentation(), last_exclusive, first_inclusive, [descriptors, unique_name, if_found, var_name_index]( CodeStubAssembler* assembler, Node* name_index) { Node* candidate_name = assembler->LoadFixedArrayElement( descriptors, name_index, 0, INTPTR_PARAMETERS); var_name_index->Bind(name_index); assembler->GotoIf(assembler->WordEqual(candidate_name, unique_name), if_found); }, -DescriptorArray::kDescriptorSize, IndexAdvanceMode::kPre); Goto(if_not_found); } void CodeStubAssembler::TryLookupProperty( Node* object, Node* map, Node* instance_type, Node* unique_name, Label* if_found_fast, Label* if_found_dict, Label* if_found_global, Variable* var_meta_storage, Variable* var_name_index, Label* if_not_found, Label* if_bailout) { DCHECK_EQ(MachineRepresentation::kTagged, var_meta_storage->rep()); DCHECK_EQ(MachineType::PointerRepresentation(), var_name_index->rep()); Label if_objectisspecial(this); STATIC_ASSERT(JS_GLOBAL_OBJECT_TYPE <= LAST_SPECIAL_RECEIVER_TYPE); GotoIf(Int32LessThanOrEqual(instance_type, Int32Constant(LAST_SPECIAL_RECEIVER_TYPE)), &if_objectisspecial); uint32_t mask = 1 << Map::kHasNamedInterceptor | 1 << Map::kIsAccessCheckNeeded; CSA_ASSERT(this, Word32BinaryNot(IsSetWord32(LoadMapBitField(map), mask))); USE(mask); Node* bit_field3 = LoadMapBitField3(map); Label if_isfastmap(this), if_isslowmap(this); Branch(IsSetWord32(bit_field3), &if_isslowmap, &if_isfastmap); Bind(&if_isfastmap); { Comment("DescriptorArrayLookup"); Node* nof = DecodeWordFromWord32(bit_field3); // Bail out to the runtime for large numbers of own descriptors. The stub // only does linear search, which becomes too expensive in that case. { static const int32_t kMaxLinear = 210; GotoIf(UintPtrGreaterThan(nof, IntPtrConstant(kMaxLinear)), if_bailout); } Node* descriptors = LoadMapDescriptors(map); var_meta_storage->Bind(descriptors); DescriptorLookupLinear(unique_name, descriptors, nof, if_found_fast, var_name_index, if_not_found); } Bind(&if_isslowmap); { Node* dictionary = LoadProperties(object); var_meta_storage->Bind(dictionary); NameDictionaryLookup(dictionary, unique_name, if_found_dict, var_name_index, if_not_found); } Bind(&if_objectisspecial); { // Handle global object here and other special objects in runtime. GotoUnless(Word32Equal(instance_type, Int32Constant(JS_GLOBAL_OBJECT_TYPE)), if_bailout); // Handle interceptors and access checks in runtime. Node* bit_field = LoadMapBitField(map); Node* mask = Int32Constant(1 << Map::kHasNamedInterceptor | 1 << Map::kIsAccessCheckNeeded); GotoIf(Word32NotEqual(Word32And(bit_field, mask), Int32Constant(0)), if_bailout); Node* dictionary = LoadProperties(object); var_meta_storage->Bind(dictionary); NameDictionaryLookup( dictionary, unique_name, if_found_global, var_name_index, if_not_found); } } void CodeStubAssembler::TryHasOwnProperty(Node* object, Node* map, Node* instance_type, Node* unique_name, Label* if_found, Label* if_not_found, Label* if_bailout) { Comment("TryHasOwnProperty"); Variable var_meta_storage(this, MachineRepresentation::kTagged); Variable var_name_index(this, MachineType::PointerRepresentation()); Label if_found_global(this); TryLookupProperty(object, map, instance_type, unique_name, if_found, if_found, &if_found_global, &var_meta_storage, &var_name_index, if_not_found, if_bailout); Bind(&if_found_global); { Variable var_value(this, MachineRepresentation::kTagged); Variable var_details(this, MachineRepresentation::kWord32); // Check if the property cell is not deleted. LoadPropertyFromGlobalDictionary(var_meta_storage.value(), var_name_index.value(), &var_value, &var_details, if_not_found); Goto(if_found); } } void CodeStubAssembler::LoadPropertyFromFastObject(Node* object, Node* map, Node* descriptors, Node* name_index, Variable* var_details, Variable* var_value) { DCHECK_EQ(MachineRepresentation::kWord32, var_details->rep()); DCHECK_EQ(MachineRepresentation::kTagged, var_value->rep()); Comment("[ LoadPropertyFromFastObject"); const int name_to_details_offset = (DescriptorArray::kDescriptorDetails - DescriptorArray::kDescriptorKey) * kPointerSize; const int name_to_value_offset = (DescriptorArray::kDescriptorValue - DescriptorArray::kDescriptorKey) * kPointerSize; Node* details = LoadAndUntagToWord32FixedArrayElement(descriptors, name_index, name_to_details_offset); var_details->Bind(details); Node* location = DecodeWord32(details); Label if_in_field(this), if_in_descriptor(this), done(this); Branch(Word32Equal(location, Int32Constant(kField)), &if_in_field, &if_in_descriptor); Bind(&if_in_field); { Node* field_index = DecodeWordFromWord32(details); Node* representation = DecodeWord32(details); Node* inobject_properties = LoadMapInobjectProperties(map); Label if_inobject(this), if_backing_store(this); Variable var_double_value(this, MachineRepresentation::kFloat64); Label rebox_double(this, &var_double_value); Branch(UintPtrLessThan(field_index, inobject_properties), &if_inobject, &if_backing_store); Bind(&if_inobject); { Comment("if_inobject"); Node* field_offset = IntPtrMul(IntPtrSub(LoadMapInstanceSize(map), IntPtrSub(inobject_properties, field_index)), IntPtrConstant(kPointerSize)); Label if_double(this), if_tagged(this); Branch(Word32NotEqual(representation, Int32Constant(Representation::kDouble)), &if_tagged, &if_double); Bind(&if_tagged); { var_value->Bind(LoadObjectField(object, field_offset)); Goto(&done); } Bind(&if_double); { if (FLAG_unbox_double_fields) { var_double_value.Bind( LoadObjectField(object, field_offset, MachineType::Float64())); } else { Node* mutable_heap_number = LoadObjectField(object, field_offset); var_double_value.Bind(LoadHeapNumberValue(mutable_heap_number)); } Goto(&rebox_double); } } Bind(&if_backing_store); { Comment("if_backing_store"); Node* properties = LoadProperties(object); field_index = IntPtrSub(field_index, inobject_properties); Node* value = LoadFixedArrayElement(properties, field_index); Label if_double(this), if_tagged(this); Branch(Word32NotEqual(representation, Int32Constant(Representation::kDouble)), &if_tagged, &if_double); Bind(&if_tagged); { var_value->Bind(value); Goto(&done); } Bind(&if_double); { var_double_value.Bind(LoadHeapNumberValue(value)); Goto(&rebox_double); } } Bind(&rebox_double); { Comment("rebox_double"); Node* heap_number = AllocateHeapNumberWithValue(var_double_value.value()); var_value->Bind(heap_number); Goto(&done); } } Bind(&if_in_descriptor); { Node* value = LoadFixedArrayElement(descriptors, name_index, name_to_value_offset); var_value->Bind(value); Goto(&done); } Bind(&done); Comment("] LoadPropertyFromFastObject"); } void CodeStubAssembler::LoadPropertyFromNameDictionary(Node* dictionary, Node* name_index, Variable* var_details, Variable* var_value) { Comment("LoadPropertyFromNameDictionary"); CSA_ASSERT(this, IsDictionary(dictionary)); const int name_to_details_offset = (NameDictionary::kEntryDetailsIndex - NameDictionary::kEntryKeyIndex) * kPointerSize; const int name_to_value_offset = (NameDictionary::kEntryValueIndex - NameDictionary::kEntryKeyIndex) * kPointerSize; Node* details = LoadAndUntagToWord32FixedArrayElement(dictionary, name_index, name_to_details_offset); var_details->Bind(details); var_value->Bind( LoadFixedArrayElement(dictionary, name_index, name_to_value_offset)); Comment("] LoadPropertyFromNameDictionary"); } void CodeStubAssembler::LoadPropertyFromGlobalDictionary(Node* dictionary, Node* name_index, Variable* var_details, Variable* var_value, Label* if_deleted) { Comment("[ LoadPropertyFromGlobalDictionary"); CSA_ASSERT(this, IsDictionary(dictionary)); const int name_to_value_offset = (GlobalDictionary::kEntryValueIndex - GlobalDictionary::kEntryKeyIndex) * kPointerSize; Node* property_cell = LoadFixedArrayElement(dictionary, name_index, name_to_value_offset); Node* value = LoadObjectField(property_cell, PropertyCell::kValueOffset); GotoIf(WordEqual(value, TheHoleConstant()), if_deleted); var_value->Bind(value); Node* details = LoadAndUntagToWord32ObjectField(property_cell, PropertyCell::kDetailsOffset); var_details->Bind(details); Comment("] LoadPropertyFromGlobalDictionary"); } // |value| is the property backing store's contents, which is either a value // or an accessor pair, as specified by |details|. // Returns either the original value, or the result of the getter call. Node* CodeStubAssembler::CallGetterIfAccessor(Node* value, Node* details, Node* context, Node* receiver, Label* if_bailout) { Variable var_value(this, MachineRepresentation::kTagged); var_value.Bind(value); Label done(this); Node* kind = DecodeWord32(details); GotoIf(Word32Equal(kind, Int32Constant(kData)), &done); // Accessor case. { Node* accessor_pair = value; GotoIf(Word32Equal(LoadInstanceType(accessor_pair), Int32Constant(ACCESSOR_INFO_TYPE)), if_bailout); CSA_ASSERT(this, HasInstanceType(accessor_pair, ACCESSOR_PAIR_TYPE)); Node* getter = LoadObjectField(accessor_pair, AccessorPair::kGetterOffset); Node* getter_map = LoadMap(getter); Node* instance_type = LoadMapInstanceType(getter_map); // FunctionTemplateInfo getters are not supported yet. GotoIf( Word32Equal(instance_type, Int32Constant(FUNCTION_TEMPLATE_INFO_TYPE)), if_bailout); // Return undefined if the {getter} is not callable. var_value.Bind(UndefinedConstant()); GotoUnless(IsCallableMap(getter_map), &done); // Call the accessor. Callable callable = CodeFactory::Call(isolate()); Node* result = CallJS(callable, context, getter, receiver); var_value.Bind(result); Goto(&done); } Bind(&done); return var_value.value(); } void CodeStubAssembler::TryGetOwnProperty( Node* context, Node* receiver, Node* object, Node* map, Node* instance_type, Node* unique_name, Label* if_found_value, Variable* var_value, Label* if_not_found, Label* if_bailout) { DCHECK_EQ(MachineRepresentation::kTagged, var_value->rep()); Comment("TryGetOwnProperty"); Variable var_meta_storage(this, MachineRepresentation::kTagged); Variable var_entry(this, MachineType::PointerRepresentation()); Label if_found_fast(this), if_found_dict(this), if_found_global(this); Variable var_details(this, MachineRepresentation::kWord32); Variable* vars[] = {var_value, &var_details}; Label if_found(this, 2, vars); TryLookupProperty(object, map, instance_type, unique_name, &if_found_fast, &if_found_dict, &if_found_global, &var_meta_storage, &var_entry, if_not_found, if_bailout); Bind(&if_found_fast); { Node* descriptors = var_meta_storage.value(); Node* name_index = var_entry.value(); LoadPropertyFromFastObject(object, map, descriptors, name_index, &var_details, var_value); Goto(&if_found); } Bind(&if_found_dict); { Node* dictionary = var_meta_storage.value(); Node* entry = var_entry.value(); LoadPropertyFromNameDictionary(dictionary, entry, &var_details, var_value); Goto(&if_found); } Bind(&if_found_global); { Node* dictionary = var_meta_storage.value(); Node* entry = var_entry.value(); LoadPropertyFromGlobalDictionary(dictionary, entry, &var_details, var_value, if_not_found); Goto(&if_found); } // Here we have details and value which could be an accessor. Bind(&if_found); { Node* value = CallGetterIfAccessor(var_value->value(), var_details.value(), context, receiver, if_bailout); var_value->Bind(value); Goto(if_found_value); } } void CodeStubAssembler::TryLookupElement(Node* object, Node* map, Node* instance_type, Node* intptr_index, Label* if_found, Label* if_not_found, Label* if_bailout) { // Handle special objects in runtime. GotoIf(Int32LessThanOrEqual(instance_type, Int32Constant(LAST_SPECIAL_RECEIVER_TYPE)), if_bailout); Node* elements_kind = LoadMapElementsKind(map); // TODO(verwaest): Support other elements kinds as well. Label if_isobjectorsmi(this), if_isdouble(this), if_isdictionary(this), if_isfaststringwrapper(this), if_isslowstringwrapper(this), if_oob(this); // clang-format off int32_t values[] = { // Handled by {if_isobjectorsmi}. FAST_SMI_ELEMENTS, FAST_HOLEY_SMI_ELEMENTS, FAST_ELEMENTS, FAST_HOLEY_ELEMENTS, // Handled by {if_isdouble}. FAST_DOUBLE_ELEMENTS, FAST_HOLEY_DOUBLE_ELEMENTS, // Handled by {if_isdictionary}. DICTIONARY_ELEMENTS, // Handled by {if_isfaststringwrapper}. FAST_STRING_WRAPPER_ELEMENTS, // Handled by {if_isslowstringwrapper}. SLOW_STRING_WRAPPER_ELEMENTS, // Handled by {if_not_found}. NO_ELEMENTS, }; Label* labels[] = { &if_isobjectorsmi, &if_isobjectorsmi, &if_isobjectorsmi, &if_isobjectorsmi, &if_isdouble, &if_isdouble, &if_isdictionary, &if_isfaststringwrapper, &if_isslowstringwrapper, if_not_found, }; // clang-format on STATIC_ASSERT(arraysize(values) == arraysize(labels)); Switch(elements_kind, if_bailout, values, labels, arraysize(values)); Bind(&if_isobjectorsmi); { Node* elements = LoadElements(object); Node* length = LoadAndUntagFixedArrayBaseLength(elements); GotoUnless(UintPtrLessThan(intptr_index, length), &if_oob); Node* element = LoadFixedArrayElement(elements, intptr_index, 0, INTPTR_PARAMETERS); Node* the_hole = TheHoleConstant(); Branch(WordEqual(element, the_hole), if_not_found, if_found); } Bind(&if_isdouble); { Node* elements = LoadElements(object); Node* length = LoadAndUntagFixedArrayBaseLength(elements); GotoUnless(UintPtrLessThan(intptr_index, length), &if_oob); // Check if the element is a double hole, but don't load it. LoadFixedDoubleArrayElement(elements, intptr_index, MachineType::None(), 0, INTPTR_PARAMETERS, if_not_found); Goto(if_found); } Bind(&if_isdictionary); { Variable var_entry(this, MachineType::PointerRepresentation()); Node* elements = LoadElements(object); NumberDictionaryLookup( elements, intptr_index, if_found, &var_entry, if_not_found); } Bind(&if_isfaststringwrapper); { CSA_ASSERT(this, HasInstanceType(object, JS_VALUE_TYPE)); Node* string = LoadJSValueValue(object); CSA_ASSERT(this, IsStringInstanceType(LoadInstanceType(string))); Node* length = LoadStringLength(string); GotoIf(UintPtrLessThan(intptr_index, SmiUntag(length)), if_found); Goto(&if_isobjectorsmi); } Bind(&if_isslowstringwrapper); { CSA_ASSERT(this, HasInstanceType(object, JS_VALUE_TYPE)); Node* string = LoadJSValueValue(object); CSA_ASSERT(this, IsStringInstanceType(LoadInstanceType(string))); Node* length = LoadStringLength(string); GotoIf(UintPtrLessThan(intptr_index, SmiUntag(length)), if_found); Goto(&if_isdictionary); } Bind(&if_oob); { // Positive OOB indices mean "not found", negative indices must be // converted to property names. GotoIf(IntPtrLessThan(intptr_index, IntPtrConstant(0)), if_bailout); Goto(if_not_found); } } // Instantiate template methods to workaround GCC compilation issue. template void CodeStubAssembler::NumberDictionaryLookup( Node*, Node*, Label*, Variable*, Label*); template void CodeStubAssembler::NumberDictionaryLookup< UnseededNumberDictionary>(Node*, Node*, Label*, Variable*, Label*); void CodeStubAssembler::TryPrototypeChainLookup( Node* receiver, Node* key, LookupInHolder& lookup_property_in_holder, LookupInHolder& lookup_element_in_holder, Label* if_end, Label* if_bailout) { // Ensure receiver is JSReceiver, otherwise bailout. Label if_objectisnotsmi(this); Branch(TaggedIsSmi(receiver), if_bailout, &if_objectisnotsmi); Bind(&if_objectisnotsmi); Node* map = LoadMap(receiver); Node* instance_type = LoadMapInstanceType(map); { Label if_objectisreceiver(this); STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); STATIC_ASSERT(FIRST_JS_RECEIVER_TYPE == JS_PROXY_TYPE); Branch( Int32GreaterThan(instance_type, Int32Constant(FIRST_JS_RECEIVER_TYPE)), &if_objectisreceiver, if_bailout); Bind(&if_objectisreceiver); } Variable var_index(this, MachineType::PointerRepresentation()); Label if_keyisindex(this), if_iskeyunique(this); TryToName(key, &if_keyisindex, &var_index, &if_iskeyunique, if_bailout); Bind(&if_iskeyunique); { Variable var_holder(this, MachineRepresentation::kTagged); Variable var_holder_map(this, MachineRepresentation::kTagged); Variable var_holder_instance_type(this, MachineRepresentation::kWord8); Variable* merged_variables[] = {&var_holder, &var_holder_map, &var_holder_instance_type}; Label loop(this, arraysize(merged_variables), merged_variables); var_holder.Bind(receiver); var_holder_map.Bind(map); var_holder_instance_type.Bind(instance_type); Goto(&loop); Bind(&loop); { Node* holder_map = var_holder_map.value(); Node* holder_instance_type = var_holder_instance_type.value(); Label next_proto(this); lookup_property_in_holder(receiver, var_holder.value(), holder_map, holder_instance_type, key, &next_proto, if_bailout); Bind(&next_proto); // Bailout if it can be an integer indexed exotic case. GotoIf( Word32Equal(holder_instance_type, Int32Constant(JS_TYPED_ARRAY_TYPE)), if_bailout); Node* proto = LoadMapPrototype(holder_map); Label if_not_null(this); Branch(WordEqual(proto, NullConstant()), if_end, &if_not_null); Bind(&if_not_null); Node* map = LoadMap(proto); Node* instance_type = LoadMapInstanceType(map); var_holder.Bind(proto); var_holder_map.Bind(map); var_holder_instance_type.Bind(instance_type); Goto(&loop); } } Bind(&if_keyisindex); { Variable var_holder(this, MachineRepresentation::kTagged); Variable var_holder_map(this, MachineRepresentation::kTagged); Variable var_holder_instance_type(this, MachineRepresentation::kWord8); Variable* merged_variables[] = {&var_holder, &var_holder_map, &var_holder_instance_type}; Label loop(this, arraysize(merged_variables), merged_variables); var_holder.Bind(receiver); var_holder_map.Bind(map); var_holder_instance_type.Bind(instance_type); Goto(&loop); Bind(&loop); { Label next_proto(this); lookup_element_in_holder(receiver, var_holder.value(), var_holder_map.value(), var_holder_instance_type.value(), var_index.value(), &next_proto, if_bailout); Bind(&next_proto); Node* proto = LoadMapPrototype(var_holder_map.value()); Label if_not_null(this); Branch(WordEqual(proto, NullConstant()), if_end, &if_not_null); Bind(&if_not_null); Node* map = LoadMap(proto); Node* instance_type = LoadMapInstanceType(map); var_holder.Bind(proto); var_holder_map.Bind(map); var_holder_instance_type.Bind(instance_type); Goto(&loop); } } } Node* CodeStubAssembler::OrdinaryHasInstance(Node* context, Node* callable, Node* object) { Variable var_result(this, MachineRepresentation::kTagged); Label return_false(this), return_true(this), return_runtime(this, Label::kDeferred), return_result(this); // Goto runtime if {object} is a Smi. GotoIf(TaggedIsSmi(object), &return_runtime); // Load map of {object}. Node* object_map = LoadMap(object); // Lookup the {callable} and {object} map in the global instanceof cache. // Note: This is safe because we clear the global instanceof cache whenever // we change the prototype of any object. Node* instanceof_cache_function = LoadRoot(Heap::kInstanceofCacheFunctionRootIndex); Node* instanceof_cache_map = LoadRoot(Heap::kInstanceofCacheMapRootIndex); { Label instanceof_cache_miss(this); GotoUnless(WordEqual(instanceof_cache_function, callable), &instanceof_cache_miss); GotoUnless(WordEqual(instanceof_cache_map, object_map), &instanceof_cache_miss); var_result.Bind(LoadRoot(Heap::kInstanceofCacheAnswerRootIndex)); Goto(&return_result); Bind(&instanceof_cache_miss); } // Goto runtime if {callable} is a Smi. GotoIf(TaggedIsSmi(callable), &return_runtime); // Load map of {callable}. Node* callable_map = LoadMap(callable); // Goto runtime if {callable} is not a JSFunction. Node* callable_instance_type = LoadMapInstanceType(callable_map); GotoUnless( Word32Equal(callable_instance_type, Int32Constant(JS_FUNCTION_TYPE)), &return_runtime); // Goto runtime if {callable} is not a constructor or has // a non-instance "prototype". Node* callable_bitfield = LoadMapBitField(callable_map); GotoUnless( Word32Equal(Word32And(callable_bitfield, Int32Constant((1 << Map::kHasNonInstancePrototype) | (1 << Map::kIsConstructor))), Int32Constant(1 << Map::kIsConstructor)), &return_runtime); // Get the "prototype" (or initial map) of the {callable}. Node* callable_prototype = LoadObjectField(callable, JSFunction::kPrototypeOrInitialMapOffset); { Variable var_callable_prototype(this, MachineRepresentation::kTagged); Label callable_prototype_valid(this); var_callable_prototype.Bind(callable_prototype); // Resolve the "prototype" if the {callable} has an initial map. Afterwards // the {callable_prototype} will be either the JSReceiver prototype object // or the hole value, which means that no instances of the {callable} were // created so far and hence we should return false. Node* callable_prototype_instance_type = LoadInstanceType(callable_prototype); GotoUnless( Word32Equal(callable_prototype_instance_type, Int32Constant(MAP_TYPE)), &callable_prototype_valid); var_callable_prototype.Bind( LoadObjectField(callable_prototype, Map::kPrototypeOffset)); Goto(&callable_prototype_valid); Bind(&callable_prototype_valid); callable_prototype = var_callable_prototype.value(); } // Update the global instanceof cache with the current {object} map and // {callable}. The cached answer will be set when it is known below. StoreRoot(Heap::kInstanceofCacheFunctionRootIndex, callable); StoreRoot(Heap::kInstanceofCacheMapRootIndex, object_map); // Loop through the prototype chain looking for the {callable} prototype. Variable var_object_map(this, MachineRepresentation::kTagged); var_object_map.Bind(object_map); Label loop(this, &var_object_map); Goto(&loop); Bind(&loop); { Node* object_map = var_object_map.value(); // Check if the current {object} needs to be access checked. Node* object_bitfield = LoadMapBitField(object_map); GotoUnless( Word32Equal(Word32And(object_bitfield, Int32Constant(1 << Map::kIsAccessCheckNeeded)), Int32Constant(0)), &return_runtime); // Check if the current {object} is a proxy. Node* object_instance_type = LoadMapInstanceType(object_map); GotoIf(Word32Equal(object_instance_type, Int32Constant(JS_PROXY_TYPE)), &return_runtime); // Check the current {object} prototype. Node* object_prototype = LoadMapPrototype(object_map); GotoIf(WordEqual(object_prototype, NullConstant()), &return_false); GotoIf(WordEqual(object_prototype, callable_prototype), &return_true); // Continue with the prototype. var_object_map.Bind(LoadMap(object_prototype)); Goto(&loop); } Bind(&return_true); StoreRoot(Heap::kInstanceofCacheAnswerRootIndex, BooleanConstant(true)); var_result.Bind(BooleanConstant(true)); Goto(&return_result); Bind(&return_false); StoreRoot(Heap::kInstanceofCacheAnswerRootIndex, BooleanConstant(false)); var_result.Bind(BooleanConstant(false)); Goto(&return_result); Bind(&return_runtime); { // Invalidate the global instanceof cache. StoreRoot(Heap::kInstanceofCacheFunctionRootIndex, SmiConstant(0)); // Fallback to the runtime implementation. var_result.Bind( CallRuntime(Runtime::kOrdinaryHasInstance, context, callable, object)); } Goto(&return_result); Bind(&return_result); return var_result.value(); } Node* CodeStubAssembler::ElementOffsetFromIndex(Node* index_node, ElementsKind kind, ParameterMode mode, int base_size) { int element_size_shift = ElementsKindToShiftSize(kind); int element_size = 1 << element_size_shift; int const kSmiShiftBits = kSmiShiftSize + kSmiTagSize; intptr_t index = 0; bool constant_index = false; if (mode == SMI_PARAMETERS) { element_size_shift -= kSmiShiftBits; Smi* smi_index; constant_index = ToSmiConstant(index_node, smi_index); if (constant_index) index = smi_index->value(); index_node = BitcastTaggedToWord(index_node); } else if (mode == INTEGER_PARAMETERS) { int32_t temp = 0; constant_index = ToInt32Constant(index_node, temp); index = static_cast(temp); } else { DCHECK(mode == INTPTR_PARAMETERS); constant_index = ToIntPtrConstant(index_node, index); } if (constant_index) { return IntPtrConstant(base_size + element_size * index); } if (Is64() && mode == INTEGER_PARAMETERS) { index_node = ChangeInt32ToInt64(index_node); } Node* shifted_index = (element_size_shift == 0) ? index_node : ((element_size_shift > 0) ? WordShl(index_node, IntPtrConstant(element_size_shift)) : WordShr(index_node, IntPtrConstant(-element_size_shift))); return IntPtrAddFoldConstants(IntPtrConstant(base_size), shifted_index); } Node* CodeStubAssembler::LoadTypeFeedbackVectorForStub() { Node* function = LoadFromParentFrame(JavaScriptFrameConstants::kFunctionOffset); Node* literals = LoadObjectField(function, JSFunction::kLiteralsOffset); return LoadObjectField(literals, LiteralsArray::kFeedbackVectorOffset); } void CodeStubAssembler::UpdateFeedback(Node* feedback, Node* type_feedback_vector, Node* slot_id) { // This method is used for binary op and compare feedback. These // vector nodes are initialized with a smi 0, so we can simply OR // our new feedback in place. // TODO(interpreter): Consider passing the feedback as Smi already to avoid // the tagging completely. Node* previous_feedback = LoadFixedArrayElement(type_feedback_vector, slot_id); Node* combined_feedback = SmiOr(previous_feedback, SmiFromWord32(feedback)); StoreFixedArrayElement(type_feedback_vector, slot_id, combined_feedback, SKIP_WRITE_BARRIER); } Node* CodeStubAssembler::LoadReceiverMap(Node* receiver) { Variable var_receiver_map(this, MachineRepresentation::kTagged); Label load_smi_map(this, Label::kDeferred), load_receiver_map(this), if_result(this); Branch(TaggedIsSmi(receiver), &load_smi_map, &load_receiver_map); Bind(&load_smi_map); { var_receiver_map.Bind(LoadRoot(Heap::kHeapNumberMapRootIndex)); Goto(&if_result); } Bind(&load_receiver_map); { var_receiver_map.Bind(LoadMap(receiver)); Goto(&if_result); } Bind(&if_result); return var_receiver_map.value(); } Node* CodeStubAssembler::TryToIntptr(Node* key, Label* miss) { Variable var_intptr_key(this, MachineType::PointerRepresentation()); Label done(this, &var_intptr_key), key_is_smi(this); GotoIf(TaggedIsSmi(key), &key_is_smi); // Try to convert a heap number to a Smi. GotoUnless(WordEqual(LoadMap(key), HeapNumberMapConstant()), miss); { Node* value = LoadHeapNumberValue(key); Node* int_value = RoundFloat64ToInt32(value); GotoUnless(Float64Equal(value, ChangeInt32ToFloat64(int_value)), miss); var_intptr_key.Bind(ChangeInt32ToIntPtr(int_value)); Goto(&done); } Bind(&key_is_smi); { var_intptr_key.Bind(SmiUntag(key)); Goto(&done); } Bind(&done); return var_intptr_key.value(); } void CodeStubAssembler::ExtendPropertiesBackingStore(Node* object) { Node* properties = LoadProperties(object); Node* length = LoadFixedArrayBaseLength(properties); ParameterMode mode = OptimalParameterMode(); length = UntagParameter(length, mode); Node* delta = IntPtrOrSmiConstant(JSObject::kFieldsAdded, mode); Node* new_capacity = IntPtrAdd(length, delta); // Grow properties array. ElementsKind kind = FAST_ELEMENTS; DCHECK(kMaxNumberOfDescriptors + JSObject::kFieldsAdded < FixedArrayBase::GetMaxLengthForNewSpaceAllocation(kind)); // The size of a new properties backing store is guaranteed to be small // enough that the new backing store will be allocated in new space. CSA_ASSERT(this, UintPtrLessThan(new_capacity, IntPtrConstant(kMaxNumberOfDescriptors + JSObject::kFieldsAdded))); Node* new_properties = AllocateFixedArray(kind, new_capacity, mode); FillFixedArrayWithValue(kind, new_properties, length, new_capacity, Heap::kUndefinedValueRootIndex, mode); // |new_properties| is guaranteed to be in new space, so we can skip // the write barrier. CopyFixedArrayElements(kind, properties, new_properties, length, SKIP_WRITE_BARRIER, mode); StoreObjectField(object, JSObject::kPropertiesOffset, new_properties); } Node* CodeStubAssembler::PrepareValueForWrite(Node* value, Representation representation, Label* bailout) { if (representation.IsDouble()) { value = TryTaggedToFloat64(value, bailout); } else if (representation.IsHeapObject()) { // Field type is checked by the handler, here we only check if the value // is a heap object. GotoIf(TaggedIsSmi(value), bailout); } else if (representation.IsSmi()) { GotoUnless(TaggedIsSmi(value), bailout); } else { DCHECK(representation.IsTagged()); } return value; } void CodeStubAssembler::StoreNamedField(Node* object, FieldIndex index, Representation representation, Node* value, bool transition_to_field) { DCHECK_EQ(index.is_double(), representation.IsDouble()); StoreNamedField(object, IntPtrConstant(index.offset()), index.is_inobject(), representation, value, transition_to_field); } void CodeStubAssembler::StoreNamedField(Node* object, Node* offset, bool is_inobject, Representation representation, Node* value, bool transition_to_field) { bool store_value_as_double = representation.IsDouble(); Node* property_storage = object; if (!is_inobject) { property_storage = LoadProperties(object); } if (representation.IsDouble()) { if (!FLAG_unbox_double_fields || !is_inobject) { if (transition_to_field) { Node* heap_number = AllocateHeapNumberWithValue(value, MUTABLE); // Store the new mutable heap number into the object. value = heap_number; store_value_as_double = false; } else { // Load the heap number. property_storage = LoadObjectField(property_storage, offset); // Store the double value into it. offset = IntPtrConstant(HeapNumber::kValueOffset); } } } if (store_value_as_double) { StoreObjectFieldNoWriteBarrier(property_storage, offset, value, MachineRepresentation::kFloat64); } else if (representation.IsSmi()) { StoreObjectFieldNoWriteBarrier(property_storage, offset, value); } else { StoreObjectField(property_storage, offset, value); } } Node* CodeStubAssembler::EmitKeyedSloppyArguments(Node* receiver, Node* key, Node* value, Label* bailout) { // Mapped arguments are actual arguments. Unmapped arguments are values added // to the arguments object after it was created for the call. Mapped arguments // are stored in the context at indexes given by elements[key + 2]. Unmapped // arguments are stored as regular indexed properties in the arguments array, // held at elements[1]. See NewSloppyArguments() in runtime.cc for a detailed // look at argument object construction. // // The sloppy arguments elements array has a special format: // // 0: context // 1: unmapped arguments array // 2: mapped_index0, // 3: mapped_index1, // ... // // length is 2 + min(number_of_actual_arguments, number_of_formal_arguments). // If key + 2 >= elements.length then attempt to look in the unmapped // arguments array (given by elements[1]) and return the value at key, missing // to the runtime if the unmapped arguments array is not a fixed array or if // key >= unmapped_arguments_array.length. // // Otherwise, t = elements[key + 2]. If t is the hole, then look up the value // in the unmapped arguments array, as described above. Otherwise, t is a Smi // index into the context array given at elements[0]. Return the value at // context[t]. bool is_load = value == nullptr; GotoUnless(TaggedIsSmi(key), bailout); key = SmiUntag(key); GotoIf(IntPtrLessThan(key, IntPtrConstant(0)), bailout); Node* elements = LoadElements(receiver); Node* elements_length = LoadAndUntagFixedArrayBaseLength(elements); Variable var_result(this, MachineRepresentation::kTagged); if (!is_load) { var_result.Bind(value); } Label if_mapped(this), if_unmapped(this), end(this, &var_result); Node* intptr_two = IntPtrConstant(2); Node* adjusted_length = IntPtrSub(elements_length, intptr_two); GotoIf(UintPtrGreaterThanOrEqual(key, adjusted_length), &if_unmapped); Node* mapped_index = LoadFixedArrayElement( elements, IntPtrAdd(key, intptr_two), 0, INTPTR_PARAMETERS); Branch(WordEqual(mapped_index, TheHoleConstant()), &if_unmapped, &if_mapped); Bind(&if_mapped); { CSA_ASSERT(this, TaggedIsSmi(mapped_index)); mapped_index = SmiUntag(mapped_index); Node* the_context = LoadFixedArrayElement(elements, IntPtrConstant(0), 0, INTPTR_PARAMETERS); // Assert that we can use LoadFixedArrayElement/StoreFixedArrayElement // methods for accessing Context. STATIC_ASSERT(Context::kHeaderSize == FixedArray::kHeaderSize); DCHECK_EQ(Context::SlotOffset(0) + kHeapObjectTag, FixedArray::OffsetOfElementAt(0)); if (is_load) { Node* result = LoadFixedArrayElement(the_context, mapped_index, 0, INTPTR_PARAMETERS); CSA_ASSERT(this, WordNotEqual(result, TheHoleConstant())); var_result.Bind(result); } else { StoreFixedArrayElement(the_context, mapped_index, value, UPDATE_WRITE_BARRIER, 0, INTPTR_PARAMETERS); } Goto(&end); } Bind(&if_unmapped); { Node* backing_store = LoadFixedArrayElement(elements, IntPtrConstant(1), 0, INTPTR_PARAMETERS); GotoIf(WordNotEqual(LoadMap(backing_store), FixedArrayMapConstant()), bailout); Node* backing_store_length = LoadAndUntagFixedArrayBaseLength(backing_store); GotoIf(UintPtrGreaterThanOrEqual(key, backing_store_length), bailout); // The key falls into unmapped range. if (is_load) { Node* result = LoadFixedArrayElement(backing_store, key, 0, INTPTR_PARAMETERS); GotoIf(WordEqual(result, TheHoleConstant()), bailout); var_result.Bind(result); } else { StoreFixedArrayElement(backing_store, key, value, UPDATE_WRITE_BARRIER, 0, INTPTR_PARAMETERS); } Goto(&end); } Bind(&end); return var_result.value(); } Node* CodeStubAssembler::LoadScriptContext(Node* context, int context_index) { Node* native_context = LoadNativeContext(context); Node* script_context_table = LoadContextElement(native_context, Context::SCRIPT_CONTEXT_TABLE_INDEX); int offset = ScriptContextTable::GetContextOffset(context_index) - kHeapObjectTag; return Load(MachineType::AnyTagged(), script_context_table, IntPtrConstant(offset)); } Node* CodeStubAssembler::ClampedToUint8(Node* int32_value) { Label done(this); Node* int32_zero = Int32Constant(0); Node* int32_255 = Int32Constant(255); Variable var_value(this, MachineRepresentation::kWord32); var_value.Bind(int32_value); GotoIf(Uint32LessThanOrEqual(int32_value, int32_255), &done); var_value.Bind(int32_zero); GotoIf(Int32LessThan(int32_value, int32_zero), &done); var_value.Bind(int32_255); Goto(&done); Bind(&done); return var_value.value(); } namespace { // Converts typed array elements kind to a machine representations. MachineRepresentation ElementsKindToMachineRepresentation(ElementsKind kind) { switch (kind) { case UINT8_CLAMPED_ELEMENTS: case UINT8_ELEMENTS: case INT8_ELEMENTS: return MachineRepresentation::kWord8; case UINT16_ELEMENTS: case INT16_ELEMENTS: return MachineRepresentation::kWord16; case UINT32_ELEMENTS: case INT32_ELEMENTS: return MachineRepresentation::kWord32; case FLOAT32_ELEMENTS: return MachineRepresentation::kFloat32; case FLOAT64_ELEMENTS: return MachineRepresentation::kFloat64; default: UNREACHABLE(); return MachineRepresentation::kNone; } } } // namespace void CodeStubAssembler::StoreElement(Node* elements, ElementsKind kind, Node* index, Node* value, ParameterMode mode) { if (IsFixedTypedArrayElementsKind(kind)) { if (kind == UINT8_CLAMPED_ELEMENTS) { value = ClampedToUint8(value); } Node* offset = ElementOffsetFromIndex(index, kind, mode, 0); MachineRepresentation rep = ElementsKindToMachineRepresentation(kind); StoreNoWriteBarrier(rep, elements, offset, value); return; } WriteBarrierMode barrier_mode = IsFastSmiElementsKind(kind) ? SKIP_WRITE_BARRIER : UPDATE_WRITE_BARRIER; if (IsFastDoubleElementsKind(kind)) { // Make sure we do not store signalling NaNs into double arrays. value = Float64SilenceNaN(value); StoreFixedDoubleArrayElement(elements, index, value, mode); } else { StoreFixedArrayElement(elements, index, value, barrier_mode, 0, mode); } } void CodeStubAssembler::EmitElementStore(Node* object, Node* key, Node* value, bool is_jsarray, ElementsKind elements_kind, KeyedAccessStoreMode store_mode, Label* bailout) { Node* elements = LoadElements(object); if (IsFastSmiOrObjectElementsKind(elements_kind) && store_mode != STORE_NO_TRANSITION_HANDLE_COW) { // Bailout in case of COW elements. GotoIf(WordNotEqual(LoadMap(elements), LoadRoot(Heap::kFixedArrayMapRootIndex)), bailout); } // TODO(ishell): introduce TryToIntPtrOrSmi() and use OptimalParameterMode(). ParameterMode parameter_mode = INTPTR_PARAMETERS; key = TryToIntptr(key, bailout); if (IsFixedTypedArrayElementsKind(elements_kind)) { Label done(this); // TODO(ishell): call ToNumber() on value and don't bailout but be careful // to call it only once if we decide to bailout because of bounds checks. if (IsFixedFloatElementsKind(elements_kind)) { // TODO(ishell): move float32 truncation into PrepareValueForWrite. value = PrepareValueForWrite(value, Representation::Double(), bailout); if (elements_kind == FLOAT32_ELEMENTS) { value = TruncateFloat64ToFloat32(value); } } else { // TODO(ishell): It's fine for word8/16/32 to truncate the result. value = TryToIntptr(value, bailout); } // There must be no allocations between the buffer load and // and the actual store to backing store, because GC may decide that // the buffer is not alive or move the elements. // TODO(ishell): introduce DisallowHeapAllocationCode scope here. // Check if buffer has been neutered. Node* buffer = LoadObjectField(object, JSArrayBufferView::kBufferOffset); Node* bitfield = LoadObjectField(buffer, JSArrayBuffer::kBitFieldOffset, MachineType::Uint32()); Node* neutered_bit = Word32And(bitfield, Int32Constant(JSArrayBuffer::WasNeutered::kMask)); GotoUnless(Word32Equal(neutered_bit, Int32Constant(0)), bailout); // Bounds check. Node* length = UntagParameter( LoadObjectField(object, JSTypedArray::kLengthOffset), parameter_mode); if (store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) { // Skip the store if we write beyond the length. GotoUnless(IntPtrLessThan(key, length), &done); // ... but bailout if the key is negative. } else { DCHECK_EQ(STANDARD_STORE, store_mode); } GotoUnless(UintPtrLessThan(key, length), bailout); // Backing store = external_pointer + base_pointer. Node* external_pointer = LoadObjectField(elements, FixedTypedArrayBase::kExternalPointerOffset, MachineType::Pointer()); Node* base_pointer = LoadObjectField(elements, FixedTypedArrayBase::kBasePointerOffset); Node* backing_store = IntPtrAdd(external_pointer, base_pointer); StoreElement(backing_store, elements_kind, key, value, parameter_mode); Goto(&done); Bind(&done); return; } DCHECK(IsFastSmiOrObjectElementsKind(elements_kind) || IsFastDoubleElementsKind(elements_kind)); Node* length = is_jsarray ? LoadObjectField(object, JSArray::kLengthOffset) : LoadFixedArrayBaseLength(elements); length = UntagParameter(length, parameter_mode); // In case value is stored into a fast smi array, assure that the value is // a smi before manipulating the backing store. Otherwise the backing store // may be left in an invalid state. if (IsFastSmiElementsKind(elements_kind)) { GotoUnless(TaggedIsSmi(value), bailout); } else if (IsFastDoubleElementsKind(elements_kind)) { value = PrepareValueForWrite(value, Representation::Double(), bailout); } if (IsGrowStoreMode(store_mode)) { elements = CheckForCapacityGrow(object, elements, elements_kind, length, key, parameter_mode, is_jsarray, bailout); } else { GotoUnless(UintPtrLessThan(key, length), bailout); if ((store_mode == STORE_NO_TRANSITION_HANDLE_COW) && IsFastSmiOrObjectElementsKind(elements_kind)) { elements = CopyElementsOnWrite(object, elements, elements_kind, length, parameter_mode, bailout); } } StoreElement(elements, elements_kind, key, value, parameter_mode); } Node* CodeStubAssembler::CheckForCapacityGrow(Node* object, Node* elements, ElementsKind kind, Node* length, Node* key, ParameterMode mode, bool is_js_array, Label* bailout) { Variable checked_elements(this, MachineRepresentation::kTagged); Label grow_case(this), no_grow_case(this), done(this); Node* condition; if (IsHoleyElementsKind(kind)) { condition = UintPtrGreaterThanOrEqual(key, length); } else { condition = WordEqual(key, length); } Branch(condition, &grow_case, &no_grow_case); Bind(&grow_case); { Node* current_capacity = UntagParameter(LoadFixedArrayBaseLength(elements), mode); checked_elements.Bind(elements); Label fits_capacity(this); GotoIf(UintPtrLessThan(key, current_capacity), &fits_capacity); { Node* new_elements = TryGrowElementsCapacity( object, elements, kind, key, current_capacity, mode, bailout); checked_elements.Bind(new_elements); Goto(&fits_capacity); } Bind(&fits_capacity); if (is_js_array) { Node* new_length = IntPtrAdd(key, IntPtrOrSmiConstant(1, mode)); StoreObjectFieldNoWriteBarrier(object, JSArray::kLengthOffset, TagParameter(new_length, mode)); } Goto(&done); } Bind(&no_grow_case); { GotoUnless(UintPtrLessThan(key, length), bailout); checked_elements.Bind(elements); Goto(&done); } Bind(&done); return checked_elements.value(); } Node* CodeStubAssembler::CopyElementsOnWrite(Node* object, Node* elements, ElementsKind kind, Node* length, ParameterMode mode, Label* bailout) { Variable new_elements_var(this, MachineRepresentation::kTagged); Label done(this); new_elements_var.Bind(elements); GotoUnless( WordEqual(LoadMap(elements), LoadRoot(Heap::kFixedCOWArrayMapRootIndex)), &done); { Node* capacity = UntagParameter(LoadFixedArrayBaseLength(elements), mode); Node* new_elements = GrowElementsCapacity(object, elements, kind, kind, length, capacity, mode, bailout); new_elements_var.Bind(new_elements); Goto(&done); } Bind(&done); return new_elements_var.value(); } void CodeStubAssembler::TransitionElementsKind(Node* object, Node* map, ElementsKind from_kind, ElementsKind to_kind, bool is_jsarray, Label* bailout) { DCHECK(!IsFastHoleyElementsKind(from_kind) || IsFastHoleyElementsKind(to_kind)); if (AllocationSite::GetMode(from_kind, to_kind) == TRACK_ALLOCATION_SITE) { TrapAllocationMemento(object, bailout); } if (!IsSimpleMapChangeTransition(from_kind, to_kind)) { Comment("Non-simple map transition"); Node* elements = LoadElements(object); Node* empty_fixed_array = HeapConstant(isolate()->factory()->empty_fixed_array()); Label done(this); GotoIf(WordEqual(elements, empty_fixed_array), &done); // TODO(ishell): Use OptimalParameterMode(). ParameterMode mode = INTPTR_PARAMETERS; Node* elements_length = SmiUntag(LoadFixedArrayBaseLength(elements)); Node* array_length = is_jsarray ? SmiUntag(LoadObjectField(object, JSArray::kLengthOffset)) : elements_length; GrowElementsCapacity(object, elements, from_kind, to_kind, array_length, elements_length, mode, bailout); Goto(&done); Bind(&done); } StoreObjectField(object, JSObject::kMapOffset, map); } void CodeStubAssembler::TrapAllocationMemento(Node* object, Label* memento_found) { Comment("[ TrapAllocationMemento"); Label no_memento_found(this); Label top_check(this), map_check(this); Node* new_space_top_address = ExternalConstant( ExternalReference::new_space_allocation_top_address(isolate())); const int kMementoMapOffset = JSArray::kSize; const int kMementoLastWordOffset = kMementoMapOffset + AllocationMemento::kSize - kPointerSize; // Bail out if the object is not in new space. Node* object_page = PageFromAddress(object); { Node* page_flags = Load(MachineType::IntPtr(), object_page, IntPtrConstant(Page::kFlagsOffset)); GotoIf(WordEqual(WordAnd(page_flags, IntPtrConstant(MemoryChunk::kIsInNewSpaceMask)), IntPtrConstant(0)), &no_memento_found); } Node* memento_last_word = IntPtrAdd( object, IntPtrConstant(kMementoLastWordOffset - kHeapObjectTag)); Node* memento_last_word_page = PageFromAddress(memento_last_word); Node* new_space_top = Load(MachineType::Pointer(), new_space_top_address); Node* new_space_top_page = PageFromAddress(new_space_top); // If the object is in new space, we need to check whether respective // potential memento object is on the same page as the current top. GotoIf(WordEqual(memento_last_word_page, new_space_top_page), &top_check); // The object is on a different page than allocation top. Bail out if the // object sits on the page boundary as no memento can follow and we cannot // touch the memory following it. Branch(WordEqual(object_page, memento_last_word_page), &map_check, &no_memento_found); // If top is on the same page as the current object, we need to check whether // we are below top. Bind(&top_check); { Branch(UintPtrGreaterThanOrEqual(memento_last_word, new_space_top), &no_memento_found, &map_check); } // Memento map check. Bind(&map_check); { Node* memento_map = LoadObjectField(object, kMementoMapOffset); Branch( WordEqual(memento_map, LoadRoot(Heap::kAllocationMementoMapRootIndex)), memento_found, &no_memento_found); } Bind(&no_memento_found); Comment("] TrapAllocationMemento"); } Node* CodeStubAssembler::PageFromAddress(Node* address) { return WordAnd(address, IntPtrConstant(~Page::kPageAlignmentMask)); } Node* CodeStubAssembler::EnumLength(Node* map) { CSA_ASSERT(this, IsMap(map)); Node* bitfield_3 = LoadMapBitField3(map); Node* enum_length = DecodeWordFromWord32(bitfield_3); return SmiTag(enum_length); } void CodeStubAssembler::CheckEnumCache(Node* receiver, Label* use_cache, Label* use_runtime) { Variable current_js_object(this, MachineRepresentation::kTagged); current_js_object.Bind(receiver); Variable current_map(this, MachineRepresentation::kTagged); current_map.Bind(LoadMap(current_js_object.value())); // These variables are updated in the loop below. Variable* loop_vars[2] = {¤t_js_object, ¤t_map}; Label loop(this, 2, loop_vars), next(this); // Check if the enum length field is properly initialized, indicating that // there is an enum cache. { Node* invalid_enum_cache_sentinel = SmiConstant(Smi::FromInt(kInvalidEnumCacheSentinel)); Node* enum_length = EnumLength(current_map.value()); Branch(WordEqual(enum_length, invalid_enum_cache_sentinel), use_runtime, &loop); } // Check that there are no elements. |current_js_object| contains // the current JS object we've reached through the prototype chain. Bind(&loop); { Label if_elements(this), if_no_elements(this); Node* elements = LoadElements(current_js_object.value()); Node* empty_fixed_array = LoadRoot(Heap::kEmptyFixedArrayRootIndex); // Check that there are no elements. Branch(WordEqual(elements, empty_fixed_array), &if_no_elements, &if_elements); Bind(&if_elements); { // Second chance, the object may be using the empty slow element // dictionary. Node* slow_empty_dictionary = LoadRoot(Heap::kEmptySlowElementDictionaryRootIndex); Branch(WordNotEqual(elements, slow_empty_dictionary), use_runtime, &if_no_elements); } Bind(&if_no_elements); { // Update map prototype. current_js_object.Bind(LoadMapPrototype(current_map.value())); Branch(WordEqual(current_js_object.value(), NullConstant()), use_cache, &next); } } Bind(&next); { // For all objects but the receiver, check that the cache is empty. current_map.Bind(LoadMap(current_js_object.value())); Node* enum_length = EnumLength(current_map.value()); Node* zero_constant = SmiConstant(Smi::kZero); Branch(WordEqual(enum_length, zero_constant), &loop, use_runtime); } } Node* CodeStubAssembler::CreateAllocationSiteInFeedbackVector( Node* feedback_vector, Node* slot) { Node* size = IntPtrConstant(AllocationSite::kSize); Node* site = Allocate(size, CodeStubAssembler::kPretenured); // Store the map StoreObjectFieldRoot(site, AllocationSite::kMapOffset, Heap::kAllocationSiteMapRootIndex); Node* kind = SmiConstant(Smi::FromInt(GetInitialFastElementsKind())); StoreObjectFieldNoWriteBarrier(site, AllocationSite::kTransitionInfoOffset, kind); // Unlike literals, constructed arrays don't have nested sites Node* zero = IntPtrConstant(0); StoreObjectFieldNoWriteBarrier(site, AllocationSite::kNestedSiteOffset, zero); // Pretenuring calculation field. StoreObjectFieldNoWriteBarrier(site, AllocationSite::kPretenureDataOffset, zero); // Pretenuring memento creation count field. StoreObjectFieldNoWriteBarrier( site, AllocationSite::kPretenureCreateCountOffset, zero); // Store an empty fixed array for the code dependency. StoreObjectFieldRoot(site, AllocationSite::kDependentCodeOffset, Heap::kEmptyFixedArrayRootIndex); // Link the object to the allocation site list Node* site_list = ExternalConstant( ExternalReference::allocation_sites_list_address(isolate())); Node* next_site = LoadBufferObject(site_list, 0); // TODO(mvstanton): This is a store to a weak pointer, which we may want to // mark as such in order to skip the write barrier, once we have a unified // system for weakness. For now we decided to keep it like this because having // an initial write barrier backed store makes this pointer strong until the // next GC, and allocation sites are designed to survive several GCs anyway. StoreObjectField(site, AllocationSite::kWeakNextOffset, next_site); StoreNoWriteBarrier(MachineRepresentation::kTagged, site_list, site); StoreFixedArrayElement(feedback_vector, slot, site, UPDATE_WRITE_BARRIER, 0, CodeStubAssembler::SMI_PARAMETERS); return site; } Node* CodeStubAssembler::CreateWeakCellInFeedbackVector(Node* feedback_vector, Node* slot, Node* value) { Node* size = IntPtrConstant(WeakCell::kSize); Node* cell = Allocate(size, CodeStubAssembler::kPretenured); // Initialize the WeakCell. StoreObjectFieldRoot(cell, WeakCell::kMapOffset, Heap::kWeakCellMapRootIndex); StoreObjectField(cell, WeakCell::kValueOffset, value); StoreObjectFieldRoot(cell, WeakCell::kNextOffset, Heap::kTheHoleValueRootIndex); // Store the WeakCell in the feedback vector. StoreFixedArrayElement(feedback_vector, slot, cell, UPDATE_WRITE_BARRIER, 0, CodeStubAssembler::SMI_PARAMETERS); return cell; } void CodeStubAssembler::BuildFastLoop( const CodeStubAssembler::VariableList& vars, MachineRepresentation index_rep, Node* start_index, Node* end_index, std::function body, int increment, IndexAdvanceMode mode) { Variable var(this, index_rep); VariableList vars_copy(vars, zone()); vars_copy.Add(&var, zone()); var.Bind(start_index); Label loop(this, vars_copy); Label after_loop(this); // Introduce an explicit second check of the termination condition before the // loop that helps turbofan generate better code. If there's only a single // check, then the CodeStubAssembler forces it to be at the beginning of the // loop requiring a backwards branch at the end of the loop (it's not possible // to force the loop header check at the end of the loop and branch forward to // it from the pre-header). The extra branch is slower in the case that the // loop actually iterates. Branch(WordEqual(var.value(), end_index), &after_loop, &loop); Bind(&loop); { if (mode == IndexAdvanceMode::kPre) { var.Bind(IntPtrAdd(var.value(), IntPtrConstant(increment))); } body(this, var.value()); if (mode == IndexAdvanceMode::kPost) { var.Bind(IntPtrAdd(var.value(), IntPtrConstant(increment))); } Branch(WordNotEqual(var.value(), end_index), &loop, &after_loop); } Bind(&after_loop); } void CodeStubAssembler::BuildFastFixedArrayForEach( Node* fixed_array, ElementsKind kind, Node* first_element_inclusive, Node* last_element_exclusive, std::function body, ParameterMode mode, ForEachDirection direction) { STATIC_ASSERT(FixedArray::kHeaderSize == FixedDoubleArray::kHeaderSize); int32_t first_val; bool constant_first = ToInt32Constant(first_element_inclusive, first_val); int32_t last_val; bool constent_last = ToInt32Constant(last_element_exclusive, last_val); if (constant_first && constent_last) { int delta = last_val - first_val; DCHECK(delta >= 0); if (delta <= kElementLoopUnrollThreshold) { if (direction == ForEachDirection::kForward) { for (int i = first_val; i < last_val; ++i) { Node* index = IntPtrConstant(i); Node* offset = ElementOffsetFromIndex(index, kind, INTPTR_PARAMETERS, FixedArray::kHeaderSize - kHeapObjectTag); body(this, fixed_array, offset); } } else { for (int i = last_val - 1; i >= first_val; --i) { Node* index = IntPtrConstant(i); Node* offset = ElementOffsetFromIndex(index, kind, INTPTR_PARAMETERS, FixedArray::kHeaderSize - kHeapObjectTag); body(this, fixed_array, offset); } } return; } } Node* start = ElementOffsetFromIndex(first_element_inclusive, kind, mode, FixedArray::kHeaderSize - kHeapObjectTag); Node* limit = ElementOffsetFromIndex(last_element_exclusive, kind, mode, FixedArray::kHeaderSize - kHeapObjectTag); if (direction == ForEachDirection::kReverse) std::swap(start, limit); int increment = IsFastDoubleElementsKind(kind) ? kDoubleSize : kPointerSize; BuildFastLoop( MachineType::PointerRepresentation(), start, limit, [fixed_array, body](CodeStubAssembler* assembler, Node* offset) { body(assembler, fixed_array, offset); }, direction == ForEachDirection::kReverse ? -increment : increment, direction == ForEachDirection::kReverse ? IndexAdvanceMode::kPre : IndexAdvanceMode::kPost); } void CodeStubAssembler::BranchIfNumericRelationalComparison( RelationalComparisonMode mode, Node* lhs, Node* rhs, Label* if_true, Label* if_false) { Label end(this); Variable result(this, MachineRepresentation::kTagged); // Shared entry for floating point comparison. Label do_fcmp(this); Variable var_fcmp_lhs(this, MachineRepresentation::kFloat64), var_fcmp_rhs(this, MachineRepresentation::kFloat64); // Check if the {lhs} is a Smi or a HeapObject. Label if_lhsissmi(this), if_lhsisnotsmi(this); Branch(TaggedIsSmi(lhs), &if_lhsissmi, &if_lhsisnotsmi); Bind(&if_lhsissmi); { // Check if {rhs} is a Smi or a HeapObject. Label if_rhsissmi(this), if_rhsisnotsmi(this); Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi); Bind(&if_rhsissmi); { // Both {lhs} and {rhs} are Smi, so just perform a fast Smi comparison. switch (mode) { case kLessThan: BranchIfSmiLessThan(lhs, rhs, if_true, if_false); break; case kLessThanOrEqual: BranchIfSmiLessThanOrEqual(lhs, rhs, if_true, if_false); break; case kGreaterThan: BranchIfSmiLessThan(rhs, lhs, if_true, if_false); break; case kGreaterThanOrEqual: BranchIfSmiLessThanOrEqual(rhs, lhs, if_true, if_false); break; } } Bind(&if_rhsisnotsmi); { CSA_ASSERT(this, WordEqual(LoadMap(rhs), HeapNumberMapConstant())); // Convert the {lhs} and {rhs} to floating point values, and // perform a floating point comparison. var_fcmp_lhs.Bind(SmiToFloat64(lhs)); var_fcmp_rhs.Bind(LoadHeapNumberValue(rhs)); Goto(&do_fcmp); } } Bind(&if_lhsisnotsmi); { CSA_ASSERT(this, WordEqual(LoadMap(lhs), HeapNumberMapConstant())); // Check if {rhs} is a Smi or a HeapObject. Label if_rhsissmi(this), if_rhsisnotsmi(this); Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi); Bind(&if_rhsissmi); { // Convert the {lhs} and {rhs} to floating point values, and // perform a floating point comparison. var_fcmp_lhs.Bind(LoadHeapNumberValue(lhs)); var_fcmp_rhs.Bind(SmiToFloat64(rhs)); Goto(&do_fcmp); } Bind(&if_rhsisnotsmi); { CSA_ASSERT(this, WordEqual(LoadMap(rhs), HeapNumberMapConstant())); // Convert the {lhs} and {rhs} to floating point values, and // perform a floating point comparison. var_fcmp_lhs.Bind(LoadHeapNumberValue(lhs)); var_fcmp_rhs.Bind(LoadHeapNumberValue(rhs)); Goto(&do_fcmp); } } Bind(&do_fcmp); { // Load the {lhs} and {rhs} floating point values. Node* lhs = var_fcmp_lhs.value(); Node* rhs = var_fcmp_rhs.value(); // Perform a fast floating point comparison. switch (mode) { case kLessThan: Branch(Float64LessThan(lhs, rhs), if_true, if_false); break; case kLessThanOrEqual: Branch(Float64LessThanOrEqual(lhs, rhs), if_true, if_false); break; case kGreaterThan: Branch(Float64GreaterThan(lhs, rhs), if_true, if_false); break; case kGreaterThanOrEqual: Branch(Float64GreaterThanOrEqual(lhs, rhs), if_true, if_false); break; } } } void CodeStubAssembler::GotoUnlessNumberLessThan(Node* lhs, Node* rhs, Label* if_false) { Label if_true(this); BranchIfNumericRelationalComparison(kLessThan, lhs, rhs, &if_true, if_false); Bind(&if_true); } Node* CodeStubAssembler::RelationalComparison(RelationalComparisonMode mode, Node* lhs, Node* rhs, Node* context) { Label return_true(this), return_false(this), end(this); Variable result(this, MachineRepresentation::kTagged); // Shared entry for floating point comparison. Label do_fcmp(this); Variable var_fcmp_lhs(this, MachineRepresentation::kFloat64), var_fcmp_rhs(this, MachineRepresentation::kFloat64); // We might need to loop several times due to ToPrimitive and/or ToNumber // conversions. Variable var_lhs(this, MachineRepresentation::kTagged), var_rhs(this, MachineRepresentation::kTagged); Variable* loop_vars[2] = {&var_lhs, &var_rhs}; Label loop(this, 2, loop_vars); var_lhs.Bind(lhs); var_rhs.Bind(rhs); Goto(&loop); Bind(&loop); { // Load the current {lhs} and {rhs} values. lhs = var_lhs.value(); rhs = var_rhs.value(); // Check if the {lhs} is a Smi or a HeapObject. Label if_lhsissmi(this), if_lhsisnotsmi(this); Branch(TaggedIsSmi(lhs), &if_lhsissmi, &if_lhsisnotsmi); Bind(&if_lhsissmi); { // Check if {rhs} is a Smi or a HeapObject. Label if_rhsissmi(this), if_rhsisnotsmi(this); Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi); Bind(&if_rhsissmi); { // Both {lhs} and {rhs} are Smi, so just perform a fast Smi comparison. switch (mode) { case kLessThan: BranchIfSmiLessThan(lhs, rhs, &return_true, &return_false); break; case kLessThanOrEqual: BranchIfSmiLessThanOrEqual(lhs, rhs, &return_true, &return_false); break; case kGreaterThan: BranchIfSmiLessThan(rhs, lhs, &return_true, &return_false); break; case kGreaterThanOrEqual: BranchIfSmiLessThanOrEqual(rhs, lhs, &return_true, &return_false); break; } } Bind(&if_rhsisnotsmi); { // Load the map of {rhs}. Node* rhs_map = LoadMap(rhs); // Check if the {rhs} is a HeapNumber. Label if_rhsisnumber(this), if_rhsisnotnumber(this, Label::kDeferred); Branch(IsHeapNumberMap(rhs_map), &if_rhsisnumber, &if_rhsisnotnumber); Bind(&if_rhsisnumber); { // Convert the {lhs} and {rhs} to floating point values, and // perform a floating point comparison. var_fcmp_lhs.Bind(SmiToFloat64(lhs)); var_fcmp_rhs.Bind(LoadHeapNumberValue(rhs)); Goto(&do_fcmp); } Bind(&if_rhsisnotnumber); { // Convert the {rhs} to a Number; we don't need to perform the // dedicated ToPrimitive(rhs, hint Number) operation, as the // ToNumber(rhs) will by itself already invoke ToPrimitive with // a Number hint. Callable callable = CodeFactory::NonNumberToNumber(isolate()); var_rhs.Bind(CallStub(callable, context, rhs)); Goto(&loop); } } } Bind(&if_lhsisnotsmi); { // Load the HeapNumber map for later comparisons. Node* number_map = HeapNumberMapConstant(); // Load the map of {lhs}. Node* lhs_map = LoadMap(lhs); // Check if {rhs} is a Smi or a HeapObject. Label if_rhsissmi(this), if_rhsisnotsmi(this); Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi); Bind(&if_rhsissmi); { // Check if the {lhs} is a HeapNumber. Label if_lhsisnumber(this), if_lhsisnotnumber(this, Label::kDeferred); Branch(WordEqual(lhs_map, number_map), &if_lhsisnumber, &if_lhsisnotnumber); Bind(&if_lhsisnumber); { // Convert the {lhs} and {rhs} to floating point values, and // perform a floating point comparison. var_fcmp_lhs.Bind(LoadHeapNumberValue(lhs)); var_fcmp_rhs.Bind(SmiToFloat64(rhs)); Goto(&do_fcmp); } Bind(&if_lhsisnotnumber); { // Convert the {lhs} to a Number; we don't need to perform the // dedicated ToPrimitive(lhs, hint Number) operation, as the // ToNumber(lhs) will by itself already invoke ToPrimitive with // a Number hint. Callable callable = CodeFactory::NonNumberToNumber(isolate()); var_lhs.Bind(CallStub(callable, context, lhs)); Goto(&loop); } } Bind(&if_rhsisnotsmi); { // Load the map of {rhs}. Node* rhs_map = LoadMap(rhs); // Check if {lhs} is a HeapNumber. Label if_lhsisnumber(this), if_lhsisnotnumber(this); Branch(WordEqual(lhs_map, number_map), &if_lhsisnumber, &if_lhsisnotnumber); Bind(&if_lhsisnumber); { // Check if {rhs} is also a HeapNumber. Label if_rhsisnumber(this), if_rhsisnotnumber(this, Label::kDeferred); Branch(WordEqual(lhs_map, rhs_map), &if_rhsisnumber, &if_rhsisnotnumber); Bind(&if_rhsisnumber); { // Convert the {lhs} and {rhs} to floating point values, and // perform a floating point comparison. var_fcmp_lhs.Bind(LoadHeapNumberValue(lhs)); var_fcmp_rhs.Bind(LoadHeapNumberValue(rhs)); Goto(&do_fcmp); } Bind(&if_rhsisnotnumber); { // Convert the {rhs} to a Number; we don't need to perform // dedicated ToPrimitive(rhs, hint Number) operation, as the // ToNumber(rhs) will by itself already invoke ToPrimitive with // a Number hint. Callable callable = CodeFactory::NonNumberToNumber(isolate()); var_rhs.Bind(CallStub(callable, context, rhs)); Goto(&loop); } } Bind(&if_lhsisnotnumber); { // Load the instance type of {lhs}. Node* lhs_instance_type = LoadMapInstanceType(lhs_map); // Check if {lhs} is a String. Label if_lhsisstring(this), if_lhsisnotstring(this, Label::kDeferred); Branch(IsStringInstanceType(lhs_instance_type), &if_lhsisstring, &if_lhsisnotstring); Bind(&if_lhsisstring); { // Load the instance type of {rhs}. Node* rhs_instance_type = LoadMapInstanceType(rhs_map); // Check if {rhs} is also a String. Label if_rhsisstring(this, Label::kDeferred), if_rhsisnotstring(this, Label::kDeferred); Branch(IsStringInstanceType(rhs_instance_type), &if_rhsisstring, &if_rhsisnotstring); Bind(&if_rhsisstring); { // Both {lhs} and {rhs} are strings. switch (mode) { case kLessThan: result.Bind(CallStub(CodeFactory::StringLessThan(isolate()), context, lhs, rhs)); Goto(&end); break; case kLessThanOrEqual: result.Bind( CallStub(CodeFactory::StringLessThanOrEqual(isolate()), context, lhs, rhs)); Goto(&end); break; case kGreaterThan: result.Bind( CallStub(CodeFactory::StringGreaterThan(isolate()), context, lhs, rhs)); Goto(&end); break; case kGreaterThanOrEqual: result.Bind( CallStub(CodeFactory::StringGreaterThanOrEqual(isolate()), context, lhs, rhs)); Goto(&end); break; } } Bind(&if_rhsisnotstring); { // The {lhs} is a String, while {rhs} is neither a Number nor a // String, so we need to call ToPrimitive(rhs, hint Number) if // {rhs} is a receiver or ToNumber(lhs) and ToNumber(rhs) in the // other cases. STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); Label if_rhsisreceiver(this, Label::kDeferred), if_rhsisnotreceiver(this, Label::kDeferred); Branch(IsJSReceiverInstanceType(rhs_instance_type), &if_rhsisreceiver, &if_rhsisnotreceiver); Bind(&if_rhsisreceiver); { // Convert {rhs} to a primitive first passing Number hint. Callable callable = CodeFactory::NonPrimitiveToPrimitive( isolate(), ToPrimitiveHint::kNumber); var_rhs.Bind(CallStub(callable, context, rhs)); Goto(&loop); } Bind(&if_rhsisnotreceiver); { // Convert both {lhs} and {rhs} to Number. Callable callable = CodeFactory::ToNumber(isolate()); var_lhs.Bind(CallStub(callable, context, lhs)); var_rhs.Bind(CallStub(callable, context, rhs)); Goto(&loop); } } } Bind(&if_lhsisnotstring); { // The {lhs} is neither a Number nor a String, so we need to call // ToPrimitive(lhs, hint Number) if {lhs} is a receiver or // ToNumber(lhs) and ToNumber(rhs) in the other cases. STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); Label if_lhsisreceiver(this, Label::kDeferred), if_lhsisnotreceiver(this, Label::kDeferred); Branch(IsJSReceiverInstanceType(lhs_instance_type), &if_lhsisreceiver, &if_lhsisnotreceiver); Bind(&if_lhsisreceiver); { // Convert {lhs} to a primitive first passing Number hint. Callable callable = CodeFactory::NonPrimitiveToPrimitive( isolate(), ToPrimitiveHint::kNumber); var_lhs.Bind(CallStub(callable, context, lhs)); Goto(&loop); } Bind(&if_lhsisnotreceiver); { // Convert both {lhs} and {rhs} to Number. Callable callable = CodeFactory::ToNumber(isolate()); var_lhs.Bind(CallStub(callable, context, lhs)); var_rhs.Bind(CallStub(callable, context, rhs)); Goto(&loop); } } } } } } Bind(&do_fcmp); { // Load the {lhs} and {rhs} floating point values. Node* lhs = var_fcmp_lhs.value(); Node* rhs = var_fcmp_rhs.value(); // Perform a fast floating point comparison. switch (mode) { case kLessThan: Branch(Float64LessThan(lhs, rhs), &return_true, &return_false); break; case kLessThanOrEqual: Branch(Float64LessThanOrEqual(lhs, rhs), &return_true, &return_false); break; case kGreaterThan: Branch(Float64GreaterThan(lhs, rhs), &return_true, &return_false); break; case kGreaterThanOrEqual: Branch(Float64GreaterThanOrEqual(lhs, rhs), &return_true, &return_false); break; } } Bind(&return_true); { result.Bind(BooleanConstant(true)); Goto(&end); } Bind(&return_false); { result.Bind(BooleanConstant(false)); Goto(&end); } Bind(&end); return result.value(); } namespace { void GenerateEqual_Same(CodeStubAssembler* assembler, Node* value, CodeStubAssembler::Label* if_equal, CodeStubAssembler::Label* if_notequal) { // In case of abstract or strict equality checks, we need additional checks // for NaN values because they are not considered equal, even if both the // left and the right hand side reference exactly the same value. // TODO(bmeurer): This seems to violate the SIMD.js specification, but it // seems to be what is tested in the current SIMD.js testsuite. typedef CodeStubAssembler::Label Label; // Check if {value} is a Smi or a HeapObject. Label if_valueissmi(assembler), if_valueisnotsmi(assembler); assembler->Branch(assembler->TaggedIsSmi(value), &if_valueissmi, &if_valueisnotsmi); assembler->Bind(&if_valueisnotsmi); { // Load the map of {value}. Node* value_map = assembler->LoadMap(value); // Check if {value} (and therefore {rhs}) is a HeapNumber. Label if_valueisnumber(assembler), if_valueisnotnumber(assembler); assembler->Branch(assembler->IsHeapNumberMap(value_map), &if_valueisnumber, &if_valueisnotnumber); assembler->Bind(&if_valueisnumber); { // Convert {value} (and therefore {rhs}) to floating point value. Node* value_value = assembler->LoadHeapNumberValue(value); // Check if the HeapNumber value is a NaN. assembler->BranchIfFloat64IsNaN(value_value, if_notequal, if_equal); } assembler->Bind(&if_valueisnotnumber); assembler->Goto(if_equal); } assembler->Bind(&if_valueissmi); assembler->Goto(if_equal); } void GenerateEqual_Simd128Value_HeapObject( CodeStubAssembler* assembler, Node* lhs, Node* lhs_map, Node* rhs, Node* rhs_map, CodeStubAssembler::Label* if_equal, CodeStubAssembler::Label* if_notequal) { assembler->BranchIfSimd128Equal(lhs, lhs_map, rhs, rhs_map, if_equal, if_notequal); } } // namespace // ES6 section 7.2.12 Abstract Equality Comparison Node* CodeStubAssembler::Equal(ResultMode mode, Node* lhs, Node* rhs, Node* context) { // This is a slightly optimized version of Object::Equals represented as // scheduled TurboFan graph utilizing the CodeStubAssembler. Whenever you // change something functionality wise in here, remember to update the // Object::Equals method as well. Label if_equal(this), if_notequal(this), do_rhsstringtonumber(this, Label::kDeferred), end(this); Variable result(this, MachineRepresentation::kTagged); // Shared entry for floating point comparison. Label do_fcmp(this); Variable var_fcmp_lhs(this, MachineRepresentation::kFloat64), var_fcmp_rhs(this, MachineRepresentation::kFloat64); // We might need to loop several times due to ToPrimitive and/or ToNumber // conversions. Variable var_lhs(this, MachineRepresentation::kTagged), var_rhs(this, MachineRepresentation::kTagged); Variable* loop_vars[2] = {&var_lhs, &var_rhs}; Label loop(this, 2, loop_vars); var_lhs.Bind(lhs); var_rhs.Bind(rhs); Goto(&loop); Bind(&loop); { // Load the current {lhs} and {rhs} values. lhs = var_lhs.value(); rhs = var_rhs.value(); // Check if {lhs} and {rhs} refer to the same object. Label if_same(this), if_notsame(this); Branch(WordEqual(lhs, rhs), &if_same, &if_notsame); Bind(&if_same); { // The {lhs} and {rhs} reference the exact same value, yet we need special // treatment for HeapNumber, as NaN is not equal to NaN. GenerateEqual_Same(this, lhs, &if_equal, &if_notequal); } Bind(&if_notsame); { // Check if {lhs} is a Smi or a HeapObject. Label if_lhsissmi(this), if_lhsisnotsmi(this); Branch(TaggedIsSmi(lhs), &if_lhsissmi, &if_lhsisnotsmi); Bind(&if_lhsissmi); { // Check if {rhs} is a Smi or a HeapObject. Label if_rhsissmi(this), if_rhsisnotsmi(this); Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi); Bind(&if_rhsissmi); // We have already checked for {lhs} and {rhs} being the same value, so // if both are Smis when we get here they must not be equal. Goto(&if_notequal); Bind(&if_rhsisnotsmi); { // Load the map of {rhs}. Node* rhs_map = LoadMap(rhs); // Check if {rhs} is a HeapNumber. Node* number_map = HeapNumberMapConstant(); Label if_rhsisnumber(this), if_rhsisnotnumber(this); Branch(WordEqual(rhs_map, number_map), &if_rhsisnumber, &if_rhsisnotnumber); Bind(&if_rhsisnumber); { // Convert {lhs} and {rhs} to floating point values, and // perform a floating point comparison. var_fcmp_lhs.Bind(SmiToFloat64(lhs)); var_fcmp_rhs.Bind(LoadHeapNumberValue(rhs)); Goto(&do_fcmp); } Bind(&if_rhsisnotnumber); { // Load the instance type of the {rhs}. Node* rhs_instance_type = LoadMapInstanceType(rhs_map); // Check if the {rhs} is a String. Label if_rhsisstring(this, Label::kDeferred), if_rhsisnotstring(this); Branch(IsStringInstanceType(rhs_instance_type), &if_rhsisstring, &if_rhsisnotstring); Bind(&if_rhsisstring); { // The {rhs} is a String and the {lhs} is a Smi; we need // to convert the {rhs} to a Number and compare the output to // the Number on the {lhs}. Goto(&do_rhsstringtonumber); } Bind(&if_rhsisnotstring); { // Check if the {rhs} is a Boolean. Label if_rhsisboolean(this), if_rhsisnotboolean(this); Branch(IsBooleanMap(rhs_map), &if_rhsisboolean, &if_rhsisnotboolean); Bind(&if_rhsisboolean); { // The {rhs} is a Boolean, load its number value. var_rhs.Bind(LoadObjectField(rhs, Oddball::kToNumberOffset)); Goto(&loop); } Bind(&if_rhsisnotboolean); { // Check if the {rhs} is a Receiver. STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); Label if_rhsisreceiver(this, Label::kDeferred), if_rhsisnotreceiver(this); Branch(IsJSReceiverInstanceType(rhs_instance_type), &if_rhsisreceiver, &if_rhsisnotreceiver); Bind(&if_rhsisreceiver); { // Convert {rhs} to a primitive first (passing no hint). Callable callable = CodeFactory::NonPrimitiveToPrimitive(isolate()); var_rhs.Bind(CallStub(callable, context, rhs)); Goto(&loop); } Bind(&if_rhsisnotreceiver); Goto(&if_notequal); } } } } } Bind(&if_lhsisnotsmi); { // Check if {rhs} is a Smi or a HeapObject. Label if_rhsissmi(this), if_rhsisnotsmi(this); Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi); Bind(&if_rhsissmi); { // The {lhs} is a HeapObject and the {rhs} is a Smi; swapping {lhs} // and {rhs} is not observable and doesn't matter for the result, so // we can just swap them and use the Smi handling above (for {lhs} // being a Smi). var_lhs.Bind(rhs); var_rhs.Bind(lhs); Goto(&loop); } Bind(&if_rhsisnotsmi); { Label if_lhsisstring(this), if_lhsisnumber(this), if_lhsissymbol(this), if_lhsissimd128value(this), if_lhsisoddball(this), if_lhsisreceiver(this); // Both {lhs} and {rhs} are HeapObjects, load their maps // and their instance types. Node* lhs_map = LoadMap(lhs); Node* rhs_map = LoadMap(rhs); // Load the instance types of {lhs} and {rhs}. Node* lhs_instance_type = LoadMapInstanceType(lhs_map); Node* rhs_instance_type = LoadMapInstanceType(rhs_map); // Dispatch based on the instance type of {lhs}. size_t const kNumCases = FIRST_NONSTRING_TYPE + 4; Label* case_labels[kNumCases]; int32_t case_values[kNumCases]; for (int32_t i = 0; i < FIRST_NONSTRING_TYPE; ++i) { case_labels[i] = new Label(this); case_values[i] = i; } case_labels[FIRST_NONSTRING_TYPE + 0] = &if_lhsisnumber; case_values[FIRST_NONSTRING_TYPE + 0] = HEAP_NUMBER_TYPE; case_labels[FIRST_NONSTRING_TYPE + 1] = &if_lhsissymbol; case_values[FIRST_NONSTRING_TYPE + 1] = SYMBOL_TYPE; case_labels[FIRST_NONSTRING_TYPE + 2] = &if_lhsissimd128value; case_values[FIRST_NONSTRING_TYPE + 2] = SIMD128_VALUE_TYPE; case_labels[FIRST_NONSTRING_TYPE + 3] = &if_lhsisoddball; case_values[FIRST_NONSTRING_TYPE + 3] = ODDBALL_TYPE; Switch(lhs_instance_type, &if_lhsisreceiver, case_values, case_labels, arraysize(case_values)); for (int32_t i = 0; i < FIRST_NONSTRING_TYPE; ++i) { Bind(case_labels[i]); Goto(&if_lhsisstring); delete case_labels[i]; } Bind(&if_lhsisstring); { // Check if {rhs} is also a String. Label if_rhsisstring(this, Label::kDeferred), if_rhsisnotstring(this); Branch(IsStringInstanceType(rhs_instance_type), &if_rhsisstring, &if_rhsisnotstring); Bind(&if_rhsisstring); { // Both {lhs} and {rhs} are of type String, just do the // string comparison then. Callable callable = (mode == kDontNegateResult) ? CodeFactory::StringEqual(isolate()) : CodeFactory::StringNotEqual(isolate()); result.Bind(CallStub(callable, context, lhs, rhs)); Goto(&end); } Bind(&if_rhsisnotstring); { // The {lhs} is a String and the {rhs} is some other HeapObject. // Swapping {lhs} and {rhs} is not observable and doesn't matter // for the result, so we can just swap them and use the String // handling below (for {rhs} being a String). var_lhs.Bind(rhs); var_rhs.Bind(lhs); Goto(&loop); } } Bind(&if_lhsisnumber); { // Check if {rhs} is also a HeapNumber. Label if_rhsisnumber(this), if_rhsisnotnumber(this); Branch(Word32Equal(lhs_instance_type, rhs_instance_type), &if_rhsisnumber, &if_rhsisnotnumber); Bind(&if_rhsisnumber); { // Convert {lhs} and {rhs} to floating point values, and // perform a floating point comparison. var_fcmp_lhs.Bind(LoadHeapNumberValue(lhs)); var_fcmp_rhs.Bind(LoadHeapNumberValue(rhs)); Goto(&do_fcmp); } Bind(&if_rhsisnotnumber); { // The {lhs} is a Number, the {rhs} is some other HeapObject. Label if_rhsisstring(this, Label::kDeferred), if_rhsisnotstring(this); Branch(IsStringInstanceType(rhs_instance_type), &if_rhsisstring, &if_rhsisnotstring); Bind(&if_rhsisstring); { // The {rhs} is a String and the {lhs} is a HeapNumber; we need // to convert the {rhs} to a Number and compare the output to // the Number on the {lhs}. Goto(&do_rhsstringtonumber); } Bind(&if_rhsisnotstring); { // Check if the {rhs} is a JSReceiver. Label if_rhsisreceiver(this), if_rhsisnotreceiver(this); STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE); Branch(IsJSReceiverInstanceType(rhs_instance_type), &if_rhsisreceiver, &if_rhsisnotreceiver); Bind(&if_rhsisreceiver); { // The {lhs} is a Primitive and the {rhs} is a JSReceiver. // Swapping {lhs} and {rhs} is not observable and doesn't // matter for the result, so we can just swap them and use // the JSReceiver handling below (for {lhs} being a // JSReceiver). var_lhs.Bind(rhs); var_rhs.Bind(lhs); Goto(&loop); } Bind(&if_rhsisnotreceiver); { // Check if {rhs} is a Boolean. Label if_rhsisboolean(this), if_rhsisnotboolean(this); Branch(IsBooleanMap(rhs_map), &if_rhsisboolean, &if_rhsisnotboolean); Bind(&if_rhsisboolean); { // The {rhs} is a Boolean, convert it to a Smi first. var_rhs.Bind( LoadObjectField(rhs, Oddball::kToNumberOffset)); Goto(&loop); } Bind(&if_rhsisnotboolean); Goto(&if_notequal); } } } } Bind(&if_lhsisoddball); { // The {lhs} is an Oddball and {rhs} is some other HeapObject. Label if_lhsisboolean(this), if_lhsisnotboolean(this); Node* boolean_map = BooleanMapConstant(); Branch(WordEqual(lhs_map, boolean_map), &if_lhsisboolean, &if_lhsisnotboolean); Bind(&if_lhsisboolean); { // The {lhs} is a Boolean, check if {rhs} is also a Boolean. Label if_rhsisboolean(this), if_rhsisnotboolean(this); Branch(WordEqual(rhs_map, boolean_map), &if_rhsisboolean, &if_rhsisnotboolean); Bind(&if_rhsisboolean); { // Both {lhs} and {rhs} are distinct Boolean values. Goto(&if_notequal); } Bind(&if_rhsisnotboolean); { // Convert the {lhs} to a Number first. var_lhs.Bind(LoadObjectField(lhs, Oddball::kToNumberOffset)); Goto(&loop); } } Bind(&if_lhsisnotboolean); { // The {lhs} is either Null or Undefined; check if the {rhs} is // undetectable (i.e. either also Null or Undefined or some // undetectable JSReceiver). Node* rhs_bitfield = LoadMapBitField(rhs_map); Branch(Word32Equal( Word32And(rhs_bitfield, Int32Constant(1 << Map::kIsUndetectable)), Int32Constant(0)), &if_notequal, &if_equal); } } Bind(&if_lhsissymbol); { // Check if the {rhs} is a JSReceiver. Label if_rhsisreceiver(this), if_rhsisnotreceiver(this); STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE); Branch(IsJSReceiverInstanceType(rhs_instance_type), &if_rhsisreceiver, &if_rhsisnotreceiver); Bind(&if_rhsisreceiver); { // The {lhs} is a Primitive and the {rhs} is a JSReceiver. // Swapping {lhs} and {rhs} is not observable and doesn't // matter for the result, so we can just swap them and use // the JSReceiver handling below (for {lhs} being a JSReceiver). var_lhs.Bind(rhs); var_rhs.Bind(lhs); Goto(&loop); } Bind(&if_rhsisnotreceiver); { // The {rhs} is not a JSReceiver and also not the same Symbol // as the {lhs}, so this is equality check is considered false. Goto(&if_notequal); } } Bind(&if_lhsissimd128value); { // Check if the {rhs} is also a Simd128Value. Label if_rhsissimd128value(this), if_rhsisnotsimd128value(this); Branch(Word32Equal(lhs_instance_type, rhs_instance_type), &if_rhsissimd128value, &if_rhsisnotsimd128value); Bind(&if_rhsissimd128value); { // Both {lhs} and {rhs} is a Simd128Value. GenerateEqual_Simd128Value_HeapObject( this, lhs, lhs_map, rhs, rhs_map, &if_equal, &if_notequal); } Bind(&if_rhsisnotsimd128value); { // Check if the {rhs} is a JSReceiver. Label if_rhsisreceiver(this), if_rhsisnotreceiver(this); STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE); Branch(IsJSReceiverInstanceType(rhs_instance_type), &if_rhsisreceiver, &if_rhsisnotreceiver); Bind(&if_rhsisreceiver); { // The {lhs} is a Primitive and the {rhs} is a JSReceiver. // Swapping {lhs} and {rhs} is not observable and doesn't // matter for the result, so we can just swap them and use // the JSReceiver handling below (for {lhs} being a JSReceiver). var_lhs.Bind(rhs); var_rhs.Bind(lhs); Goto(&loop); } Bind(&if_rhsisnotreceiver); { // The {rhs} is some other Primitive. Goto(&if_notequal); } } } Bind(&if_lhsisreceiver); { // Check if the {rhs} is also a JSReceiver. Label if_rhsisreceiver(this), if_rhsisnotreceiver(this); STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE); Branch(IsJSReceiverInstanceType(rhs_instance_type), &if_rhsisreceiver, &if_rhsisnotreceiver); Bind(&if_rhsisreceiver); { // Both {lhs} and {rhs} are different JSReceiver references, so // this cannot be considered equal. Goto(&if_notequal); } Bind(&if_rhsisnotreceiver); { // Check if {rhs} is Null or Undefined (an undetectable check // is sufficient here, since we already know that {rhs} is not // a JSReceiver). Label if_rhsisundetectable(this), if_rhsisnotundetectable(this, Label::kDeferred); Node* rhs_bitfield = LoadMapBitField(rhs_map); Branch(Word32Equal( Word32And(rhs_bitfield, Int32Constant(1 << Map::kIsUndetectable)), Int32Constant(0)), &if_rhsisnotundetectable, &if_rhsisundetectable); Bind(&if_rhsisundetectable); { // Check if {lhs} is an undetectable JSReceiver. Node* lhs_bitfield = LoadMapBitField(lhs_map); Branch(Word32Equal( Word32And(lhs_bitfield, Int32Constant(1 << Map::kIsUndetectable)), Int32Constant(0)), &if_notequal, &if_equal); } Bind(&if_rhsisnotundetectable); { // The {rhs} is some Primitive different from Null and // Undefined, need to convert {lhs} to Primitive first. Callable callable = CodeFactory::NonPrimitiveToPrimitive(isolate()); var_lhs.Bind(CallStub(callable, context, lhs)); Goto(&loop); } } } } } } Bind(&do_rhsstringtonumber); { Callable callable = CodeFactory::StringToNumber(isolate()); var_rhs.Bind(CallStub(callable, context, rhs)); Goto(&loop); } } Bind(&do_fcmp); { // Load the {lhs} and {rhs} floating point values. Node* lhs = var_fcmp_lhs.value(); Node* rhs = var_fcmp_rhs.value(); // Perform a fast floating point comparison. Branch(Float64Equal(lhs, rhs), &if_equal, &if_notequal); } Bind(&if_equal); { result.Bind(BooleanConstant(mode == kDontNegateResult)); Goto(&end); } Bind(&if_notequal); { result.Bind(BooleanConstant(mode == kNegateResult)); Goto(&end); } Bind(&end); return result.value(); } Node* CodeStubAssembler::StrictEqual(ResultMode mode, Node* lhs, Node* rhs, Node* context) { // Here's pseudo-code for the algorithm below in case of kDontNegateResult // mode; for kNegateResult mode we properly negate the result. // // if (lhs == rhs) { // if (lhs->IsHeapNumber()) return HeapNumber::cast(lhs)->value() != NaN; // return true; // } // if (!lhs->IsSmi()) { // if (lhs->IsHeapNumber()) { // if (rhs->IsSmi()) { // return Smi::cast(rhs)->value() == HeapNumber::cast(lhs)->value(); // } else if (rhs->IsHeapNumber()) { // return HeapNumber::cast(rhs)->value() == // HeapNumber::cast(lhs)->value(); // } else { // return false; // } // } else { // if (rhs->IsSmi()) { // return false; // } else { // if (lhs->IsString()) { // if (rhs->IsString()) { // return %StringEqual(lhs, rhs); // } else { // return false; // } // } else if (lhs->IsSimd128()) { // if (rhs->IsSimd128()) { // return %StrictEqual(lhs, rhs); // } // } else { // return false; // } // } // } // } else { // if (rhs->IsSmi()) { // return false; // } else { // if (rhs->IsHeapNumber()) { // return Smi::cast(lhs)->value() == HeapNumber::cast(rhs)->value(); // } else { // return false; // } // } // } Label if_equal(this), if_notequal(this), end(this); Variable result(this, MachineRepresentation::kTagged); // Check if {lhs} and {rhs} refer to the same object. Label if_same(this), if_notsame(this); Branch(WordEqual(lhs, rhs), &if_same, &if_notsame); Bind(&if_same); { // The {lhs} and {rhs} reference the exact same value, yet we need special // treatment for HeapNumber, as NaN is not equal to NaN. GenerateEqual_Same(this, lhs, &if_equal, &if_notequal); } Bind(&if_notsame); { // The {lhs} and {rhs} reference different objects, yet for Smi, HeapNumber, // String and Simd128Value they can still be considered equal. Node* number_map = HeapNumberMapConstant(); // Check if {lhs} is a Smi or a HeapObject. Label if_lhsissmi(this), if_lhsisnotsmi(this); Branch(TaggedIsSmi(lhs), &if_lhsissmi, &if_lhsisnotsmi); Bind(&if_lhsisnotsmi); { // Load the map of {lhs}. Node* lhs_map = LoadMap(lhs); // Check if {lhs} is a HeapNumber. Label if_lhsisnumber(this), if_lhsisnotnumber(this); Branch(WordEqual(lhs_map, number_map), &if_lhsisnumber, &if_lhsisnotnumber); Bind(&if_lhsisnumber); { // Check if {rhs} is a Smi or a HeapObject. Label if_rhsissmi(this), if_rhsisnotsmi(this); Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi); Bind(&if_rhsissmi); { // Convert {lhs} and {rhs} to floating point values. Node* lhs_value = LoadHeapNumberValue(lhs); Node* rhs_value = SmiToFloat64(rhs); // Perform a floating point comparison of {lhs} and {rhs}. Branch(Float64Equal(lhs_value, rhs_value), &if_equal, &if_notequal); } Bind(&if_rhsisnotsmi); { // Load the map of {rhs}. Node* rhs_map = LoadMap(rhs); // Check if {rhs} is also a HeapNumber. Label if_rhsisnumber(this), if_rhsisnotnumber(this); Branch(WordEqual(rhs_map, number_map), &if_rhsisnumber, &if_rhsisnotnumber); Bind(&if_rhsisnumber); { // Convert {lhs} and {rhs} to floating point values. Node* lhs_value = LoadHeapNumberValue(lhs); Node* rhs_value = LoadHeapNumberValue(rhs); // Perform a floating point comparison of {lhs} and {rhs}. Branch(Float64Equal(lhs_value, rhs_value), &if_equal, &if_notequal); } Bind(&if_rhsisnotnumber); Goto(&if_notequal); } } Bind(&if_lhsisnotnumber); { // Check if {rhs} is a Smi or a HeapObject. Label if_rhsissmi(this), if_rhsisnotsmi(this); Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi); Bind(&if_rhsissmi); Goto(&if_notequal); Bind(&if_rhsisnotsmi); { // Load the instance type of {lhs}. Node* lhs_instance_type = LoadMapInstanceType(lhs_map); // Check if {lhs} is a String. Label if_lhsisstring(this), if_lhsisnotstring(this); Branch(IsStringInstanceType(lhs_instance_type), &if_lhsisstring, &if_lhsisnotstring); Bind(&if_lhsisstring); { // Load the instance type of {rhs}. Node* rhs_instance_type = LoadInstanceType(rhs); // Check if {rhs} is also a String. Label if_rhsisstring(this, Label::kDeferred), if_rhsisnotstring(this); Branch(IsStringInstanceType(rhs_instance_type), &if_rhsisstring, &if_rhsisnotstring); Bind(&if_rhsisstring); { Callable callable = (mode == kDontNegateResult) ? CodeFactory::StringEqual(isolate()) : CodeFactory::StringNotEqual(isolate()); result.Bind(CallStub(callable, context, lhs, rhs)); Goto(&end); } Bind(&if_rhsisnotstring); Goto(&if_notequal); } Bind(&if_lhsisnotstring); { // Check if {lhs} is a Simd128Value. Label if_lhsissimd128value(this), if_lhsisnotsimd128value(this); Branch(Word32Equal(lhs_instance_type, Int32Constant(SIMD128_VALUE_TYPE)), &if_lhsissimd128value, &if_lhsisnotsimd128value); Bind(&if_lhsissimd128value); { // Load the map of {rhs}. Node* rhs_map = LoadMap(rhs); // Check if {rhs} is also a Simd128Value that is equal to {lhs}. GenerateEqual_Simd128Value_HeapObject( this, lhs, lhs_map, rhs, rhs_map, &if_equal, &if_notequal); } Bind(&if_lhsisnotsimd128value); Goto(&if_notequal); } } } } Bind(&if_lhsissmi); { // We already know that {lhs} and {rhs} are not reference equal, and {lhs} // is a Smi; so {lhs} and {rhs} can only be strictly equal if {rhs} is a // HeapNumber with an equal floating point value. // Check if {rhs} is a Smi or a HeapObject. Label if_rhsissmi(this), if_rhsisnotsmi(this); Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi); Bind(&if_rhsissmi); Goto(&if_notequal); Bind(&if_rhsisnotsmi); { // Load the map of the {rhs}. Node* rhs_map = LoadMap(rhs); // The {rhs} could be a HeapNumber with the same value as {lhs}. Label if_rhsisnumber(this), if_rhsisnotnumber(this); Branch(WordEqual(rhs_map, number_map), &if_rhsisnumber, &if_rhsisnotnumber); Bind(&if_rhsisnumber); { // Convert {lhs} and {rhs} to floating point values. Node* lhs_value = SmiToFloat64(lhs); Node* rhs_value = LoadHeapNumberValue(rhs); // Perform a floating point comparison of {lhs} and {rhs}. Branch(Float64Equal(lhs_value, rhs_value), &if_equal, &if_notequal); } Bind(&if_rhsisnotnumber); Goto(&if_notequal); } } } Bind(&if_equal); { result.Bind(BooleanConstant(mode == kDontNegateResult)); Goto(&end); } Bind(&if_notequal); { result.Bind(BooleanConstant(mode == kNegateResult)); Goto(&end); } Bind(&end); return result.value(); } // ECMA#sec-samevalue // This algorithm differs from the Strict Equality Comparison Algorithm in its // treatment of signed zeroes and NaNs. Node* CodeStubAssembler::SameValue(Node* lhs, Node* rhs, Node* context) { Variable var_result(this, MachineType::PointerRepresentation()); Label strict_equal(this), out(this); Node* const int_false = IntPtrConstant(0); Node* const int_true = IntPtrConstant(1); Label if_equal(this), if_notequal(this); Branch(WordEqual(lhs, rhs), &if_equal, &if_notequal); Bind(&if_equal); { // This covers the case when {lhs} == {rhs}. We can simply return true // because SameValue considers two NaNs to be equal. var_result.Bind(int_true); Goto(&out); } Bind(&if_notequal); { // This covers the case when {lhs} != {rhs}. We only handle numbers here // and defer to StrictEqual for the rest. Node* const lhs_float = TryTaggedToFloat64(lhs, &strict_equal); Node* const rhs_float = TryTaggedToFloat64(rhs, &strict_equal); Label if_lhsisnan(this), if_lhsnotnan(this); BranchIfFloat64IsNaN(lhs_float, &if_lhsisnan, &if_lhsnotnan); Bind(&if_lhsisnan); { // Return true iff {rhs} is NaN. Node* const result = Select(Float64Equal(rhs_float, rhs_float), int_false, int_true, MachineType::PointerRepresentation()); var_result.Bind(result); Goto(&out); } Bind(&if_lhsnotnan); { Label if_floatisequal(this), if_floatnotequal(this); Branch(Float64Equal(lhs_float, rhs_float), &if_floatisequal, &if_floatnotequal); Bind(&if_floatisequal); { // We still need to handle the case when {lhs} and {rhs} are -0.0 and // 0.0 (or vice versa). Compare the high word to // distinguish between the two. Node* const lhs_hi_word = Float64ExtractHighWord32(lhs_float); Node* const rhs_hi_word = Float64ExtractHighWord32(rhs_float); // If x is +0 and y is -0, return false. // If x is -0 and y is +0, return false. Node* const result = Word32Equal(lhs_hi_word, rhs_hi_word); var_result.Bind(result); Goto(&out); } Bind(&if_floatnotequal); { var_result.Bind(int_false); Goto(&out); } } } Bind(&strict_equal); { Node* const is_equal = StrictEqual(kDontNegateResult, lhs, rhs, context); Node* const result = WordEqual(is_equal, TrueConstant()); var_result.Bind(result); Goto(&out); } Bind(&out); return var_result.value(); } Node* CodeStubAssembler::ForInFilter(Node* key, Node* object, Node* context) { Label return_undefined(this, Label::kDeferred), return_to_name(this), end(this); Variable var_result(this, MachineRepresentation::kTagged); Node* has_property = HasProperty(object, key, context, Runtime::kForInHasProperty); Branch(WordEqual(has_property, BooleanConstant(true)), &return_to_name, &return_undefined); Bind(&return_to_name); { var_result.Bind(ToName(context, key)); Goto(&end); } Bind(&return_undefined); { var_result.Bind(UndefinedConstant()); Goto(&end); } Bind(&end); return var_result.value(); } Node* CodeStubAssembler::HasProperty( Node* object, Node* key, Node* context, Runtime::FunctionId fallback_runtime_function_id) { Label call_runtime(this, Label::kDeferred), return_true(this), return_false(this), end(this); CodeStubAssembler::LookupInHolder lookup_property_in_holder = [this, &return_true](Node* receiver, Node* holder, Node* holder_map, Node* holder_instance_type, Node* unique_name, Label* next_holder, Label* if_bailout) { TryHasOwnProperty(holder, holder_map, holder_instance_type, unique_name, &return_true, next_holder, if_bailout); }; CodeStubAssembler::LookupInHolder lookup_element_in_holder = [this, &return_true](Node* receiver, Node* holder, Node* holder_map, Node* holder_instance_type, Node* index, Label* next_holder, Label* if_bailout) { TryLookupElement(holder, holder_map, holder_instance_type, index, &return_true, next_holder, if_bailout); }; TryPrototypeChainLookup(object, key, lookup_property_in_holder, lookup_element_in_holder, &return_false, &call_runtime); Variable result(this, MachineRepresentation::kTagged); Bind(&return_true); { result.Bind(BooleanConstant(true)); Goto(&end); } Bind(&return_false); { result.Bind(BooleanConstant(false)); Goto(&end); } Bind(&call_runtime); { result.Bind( CallRuntime(fallback_runtime_function_id, context, object, key)); Goto(&end); } Bind(&end); return result.value(); } Node* CodeStubAssembler::Typeof(Node* value, Node* context) { Variable result_var(this, MachineRepresentation::kTagged); Label return_number(this, Label::kDeferred), if_oddball(this), return_function(this), return_undefined(this), return_object(this), return_string(this), return_result(this); GotoIf(TaggedIsSmi(value), &return_number); Node* map = LoadMap(value); GotoIf(IsHeapNumberMap(map), &return_number); Node* instance_type = LoadMapInstanceType(map); GotoIf(Word32Equal(instance_type, Int32Constant(ODDBALL_TYPE)), &if_oddball); Node* callable_or_undetectable_mask = Word32And( LoadMapBitField(map), Int32Constant(1 << Map::kIsCallable | 1 << Map::kIsUndetectable)); GotoIf(Word32Equal(callable_or_undetectable_mask, Int32Constant(1 << Map::kIsCallable)), &return_function); GotoUnless(Word32Equal(callable_or_undetectable_mask, Int32Constant(0)), &return_undefined); GotoIf(IsJSReceiverInstanceType(instance_type), &return_object); GotoIf(IsStringInstanceType(instance_type), &return_string); #define SIMD128_BRANCH(TYPE, Type, type, lane_count, lane_type) \ Label return_##type(this); \ Node* type##_map = HeapConstant(factory()->type##_map()); \ GotoIf(WordEqual(map, type##_map), &return_##type); SIMD128_TYPES(SIMD128_BRANCH) #undef SIMD128_BRANCH CSA_ASSERT(this, Word32Equal(instance_type, Int32Constant(SYMBOL_TYPE))); result_var.Bind(HeapConstant(isolate()->factory()->symbol_string())); Goto(&return_result); Bind(&return_number); { result_var.Bind(HeapConstant(isolate()->factory()->number_string())); Goto(&return_result); } Bind(&if_oddball); { Node* type = LoadObjectField(value, Oddball::kTypeOfOffset); result_var.Bind(type); Goto(&return_result); } Bind(&return_function); { result_var.Bind(HeapConstant(isolate()->factory()->function_string())); Goto(&return_result); } Bind(&return_undefined); { result_var.Bind(HeapConstant(isolate()->factory()->undefined_string())); Goto(&return_result); } Bind(&return_object); { result_var.Bind(HeapConstant(isolate()->factory()->object_string())); Goto(&return_result); } Bind(&return_string); { result_var.Bind(HeapConstant(isolate()->factory()->string_string())); Goto(&return_result); } #define SIMD128_BIND_RETURN(TYPE, Type, type, lane_count, lane_type) \ Bind(&return_##type); \ { \ result_var.Bind(HeapConstant(isolate()->factory()->type##_string())); \ Goto(&return_result); \ } SIMD128_TYPES(SIMD128_BIND_RETURN) #undef SIMD128_BIND_RETURN Bind(&return_result); return result_var.value(); } Node* CodeStubAssembler::InstanceOf(Node* object, Node* callable, Node* context) { Label return_runtime(this, Label::kDeferred), end(this); Variable result(this, MachineRepresentation::kTagged); // Check if no one installed @@hasInstance somewhere. GotoUnless( WordEqual(LoadObjectField(LoadRoot(Heap::kHasInstanceProtectorRootIndex), PropertyCell::kValueOffset), SmiConstant(Smi::FromInt(Isolate::kProtectorValid))), &return_runtime); // Check if {callable} is a valid receiver. GotoIf(TaggedIsSmi(callable), &return_runtime); GotoUnless(IsCallableMap(LoadMap(callable)), &return_runtime); // Use the inline OrdinaryHasInstance directly. result.Bind(OrdinaryHasInstance(context, callable, object)); Goto(&end); // TODO(bmeurer): Use GetPropertyStub here once available. Bind(&return_runtime); { result.Bind(CallRuntime(Runtime::kInstanceOf, context, object, callable)); Goto(&end); } Bind(&end); return result.value(); } Node* CodeStubAssembler::NumberInc(Node* value) { Variable var_result(this, MachineRepresentation::kTagged), var_finc_value(this, MachineRepresentation::kFloat64); Label if_issmi(this), if_isnotsmi(this), do_finc(this), end(this); Branch(TaggedIsSmi(value), &if_issmi, &if_isnotsmi); Bind(&if_issmi); { // Try fast Smi addition first. Node* one = SmiConstant(Smi::FromInt(1)); Node* pair = IntPtrAddWithOverflow(BitcastTaggedToWord(value), BitcastTaggedToWord(one)); Node* overflow = Projection(1, pair); // Check if the Smi addition overflowed. Label if_overflow(this), if_notoverflow(this); Branch(overflow, &if_overflow, &if_notoverflow); Bind(&if_notoverflow); var_result.Bind(Projection(0, pair)); Goto(&end); Bind(&if_overflow); { var_finc_value.Bind(SmiToFloat64(value)); Goto(&do_finc); } } Bind(&if_isnotsmi); { // Check if the value is a HeapNumber. CSA_ASSERT(this, IsHeapNumberMap(LoadMap(value))); // Load the HeapNumber value. var_finc_value.Bind(LoadHeapNumberValue(value)); Goto(&do_finc); } Bind(&do_finc); { Node* finc_value = var_finc_value.value(); Node* one = Float64Constant(1.0); Node* finc_result = Float64Add(finc_value, one); var_result.Bind(AllocateHeapNumberWithValue(finc_result)); Goto(&end); } Bind(&end); return var_result.value(); } Node* CodeStubAssembler::CreateArrayIterator(Node* array, Node* array_map, Node* array_type, Node* context, IterationKind mode) { int kBaseMapIndex = 0; switch (mode) { case IterationKind::kKeys: kBaseMapIndex = Context::TYPED_ARRAY_KEY_ITERATOR_MAP_INDEX; break; case IterationKind::kValues: kBaseMapIndex = Context::UINT8_ARRAY_VALUE_ITERATOR_MAP_INDEX; break; case IterationKind::kEntries: kBaseMapIndex = Context::UINT8_ARRAY_KEY_VALUE_ITERATOR_MAP_INDEX; break; } // Fast Array iterator map index: // (kBaseIndex + kFastIteratorOffset) + ElementsKind (for JSArrays) // kBaseIndex + (ElementsKind - UINT8_ELEMENTS) (for JSTypedArrays) const int kFastIteratorOffset = Context::FAST_SMI_ARRAY_VALUE_ITERATOR_MAP_INDEX - Context::UINT8_ARRAY_VALUE_ITERATOR_MAP_INDEX; STATIC_ASSERT(kFastIteratorOffset == (Context::FAST_SMI_ARRAY_KEY_VALUE_ITERATOR_MAP_INDEX - Context::UINT8_ARRAY_KEY_VALUE_ITERATOR_MAP_INDEX)); // Slow Array iterator map index: (kBaseIndex + kSlowIteratorOffset) const int kSlowIteratorOffset = Context::GENERIC_ARRAY_VALUE_ITERATOR_MAP_INDEX - Context::UINT8_ARRAY_VALUE_ITERATOR_MAP_INDEX; STATIC_ASSERT(kSlowIteratorOffset == (Context::GENERIC_ARRAY_KEY_VALUE_ITERATOR_MAP_INDEX - Context::UINT8_ARRAY_KEY_VALUE_ITERATOR_MAP_INDEX)); // Assert: Type(array) is Object CSA_ASSERT(this, IsJSReceiverInstanceType(array_type)); Variable var_result(this, MachineRepresentation::kTagged); Variable var_map_index(this, MachineType::PointerRepresentation()); Variable var_array_map(this, MachineRepresentation::kTagged); Label return_result(this); Label allocate_iterator(this); if (mode == IterationKind::kKeys) { // There are only two key iterator maps, branch depending on whether or not // the receiver is a TypedArray or not. Label if_istypedarray(this), if_isgeneric(this); Branch(Word32Equal(array_type, Int32Constant(JS_TYPED_ARRAY_TYPE)), &if_istypedarray, &if_isgeneric); Bind(&if_isgeneric); { Label if_isfast(this), if_isslow(this); BranchIfFastJSArray(array, context, &if_isfast, &if_isslow); Bind(&if_isfast); { var_map_index.Bind( IntPtrConstant(Context::FAST_ARRAY_KEY_ITERATOR_MAP_INDEX)); var_array_map.Bind(array_map); Goto(&allocate_iterator); } Bind(&if_isslow); { var_map_index.Bind( IntPtrConstant(Context::GENERIC_ARRAY_KEY_ITERATOR_MAP_INDEX)); var_array_map.Bind(UndefinedConstant()); Goto(&allocate_iterator); } } Bind(&if_istypedarray); { var_map_index.Bind( IntPtrConstant(Context::TYPED_ARRAY_KEY_ITERATOR_MAP_INDEX)); var_array_map.Bind(UndefinedConstant()); Goto(&allocate_iterator); } } else { Label if_istypedarray(this), if_isgeneric(this); Branch(Word32Equal(array_type, Int32Constant(JS_TYPED_ARRAY_TYPE)), &if_istypedarray, &if_isgeneric); Bind(&if_isgeneric); { Label if_isfast(this), if_isslow(this); BranchIfFastJSArray(array, context, &if_isfast, &if_isslow); Bind(&if_isfast); { Label if_ispacked(this), if_isholey(this); Node* elements_kind = LoadMapElementsKind(array_map); Branch(IsHoleyFastElementsKind(elements_kind), &if_isholey, &if_ispacked); Bind(&if_isholey); { // Fast holey JSArrays can treat the hole as undefined if the // protector cell is valid, and the prototype chain is unchanged from // its initial state (because the protector cell is only tracked for // initial the Array and Object prototypes). Check these conditions // here, and take the slow path if any fail. Node* protector_cell = LoadRoot(Heap::kArrayProtectorRootIndex); DCHECK(isolate()->heap()->array_protector()->IsPropertyCell()); GotoUnless( WordEqual( LoadObjectField(protector_cell, PropertyCell::kValueOffset), SmiConstant(Smi::FromInt(Isolate::kProtectorValid))), &if_isslow); Node* native_context = LoadNativeContext(context); Node* prototype = LoadMapPrototype(array_map); Node* array_prototype = LoadContextElement( native_context, Context::INITIAL_ARRAY_PROTOTYPE_INDEX); GotoUnless(WordEqual(prototype, array_prototype), &if_isslow); Node* map = LoadMap(prototype); prototype = LoadMapPrototype(map); Node* object_prototype = LoadContextElement( native_context, Context::INITIAL_OBJECT_PROTOTYPE_INDEX); GotoUnless(WordEqual(prototype, object_prototype), &if_isslow); map = LoadMap(prototype); prototype = LoadMapPrototype(map); Branch(IsNull(prototype), &if_ispacked, &if_isslow); } Bind(&if_ispacked); { Node* map_index = IntPtrAdd(IntPtrConstant(kBaseMapIndex + kFastIteratorOffset), LoadMapElementsKind(array_map)); CSA_ASSERT(this, IntPtrGreaterThanOrEqual( map_index, IntPtrConstant(kBaseMapIndex + kFastIteratorOffset))); CSA_ASSERT(this, IntPtrLessThan(map_index, IntPtrConstant(kBaseMapIndex + kSlowIteratorOffset))); var_map_index.Bind(map_index); var_array_map.Bind(array_map); Goto(&allocate_iterator); } } Bind(&if_isslow); { Node* map_index = IntPtrAdd(IntPtrConstant(kBaseMapIndex), IntPtrConstant(kSlowIteratorOffset)); var_map_index.Bind(map_index); var_array_map.Bind(UndefinedConstant()); Goto(&allocate_iterator); } } Bind(&if_istypedarray); { Node* map_index = IntPtrAdd(IntPtrConstant(kBaseMapIndex - UINT8_ELEMENTS), LoadMapElementsKind(array_map)); CSA_ASSERT( this, IntPtrLessThan(map_index, IntPtrConstant(kBaseMapIndex + kFastIteratorOffset))); CSA_ASSERT(this, IntPtrGreaterThanOrEqual(map_index, IntPtrConstant(kBaseMapIndex))); var_map_index.Bind(map_index); var_array_map.Bind(UndefinedConstant()); Goto(&allocate_iterator); } } Bind(&allocate_iterator); { Node* map = LoadFixedArrayElement(LoadNativeContext(context), var_map_index.value(), 0, CodeStubAssembler::INTPTR_PARAMETERS); var_result.Bind(AllocateJSArrayIterator(array, var_array_map.value(), map)); Goto(&return_result); } Bind(&return_result); return var_result.value(); } Node* CodeStubAssembler::AllocateJSArrayIterator(Node* array, Node* array_map, Node* map) { Node* iterator = Allocate(JSArrayIterator::kSize); StoreMapNoWriteBarrier(iterator, map); StoreObjectFieldRoot(iterator, JSArrayIterator::kPropertiesOffset, Heap::kEmptyFixedArrayRootIndex); StoreObjectFieldRoot(iterator, JSArrayIterator::kElementsOffset, Heap::kEmptyFixedArrayRootIndex); StoreObjectFieldNoWriteBarrier(iterator, JSArrayIterator::kIteratedObjectOffset, array); StoreObjectFieldNoWriteBarrier(iterator, JSArrayIterator::kNextIndexOffset, SmiConstant(Smi::FromInt(0))); StoreObjectFieldNoWriteBarrier( iterator, JSArrayIterator::kIteratedObjectMapOffset, array_map); return iterator; } Node* CodeStubAssembler::IsDetachedBuffer(Node* buffer) { CSA_ASSERT(this, HasInstanceType(buffer, JS_ARRAY_BUFFER_TYPE)); Node* buffer_bit_field = LoadObjectField( buffer, JSArrayBuffer::kBitFieldOffset, MachineType::Uint32()); Node* was_neutered_mask = Int32Constant(JSArrayBuffer::WasNeutered::kMask); return Word32NotEqual(Word32And(buffer_bit_field, was_neutered_mask), Int32Constant(0)); } CodeStubArguments::CodeStubArguments(CodeStubAssembler* assembler, Node* argc, CodeStubAssembler::ParameterMode mode) : assembler_(assembler), argc_(argc), arguments_(nullptr), fp_(assembler->LoadFramePointer()) { Node* offset = assembler->ElementOffsetFromIndex( argc_, FAST_ELEMENTS, mode, (StandardFrameConstants::kFixedSlotCountAboveFp - 1) * kPointerSize); arguments_ = assembler_->IntPtrAddFoldConstants(fp_, offset); if (mode == CodeStubAssembler::INTEGER_PARAMETERS) { argc_ = assembler->ChangeInt32ToIntPtr(argc_); } else if (mode == CodeStubAssembler::SMI_PARAMETERS) { argc_ = assembler->SmiUntag(argc_); } } Node* CodeStubArguments::GetReceiver() { return assembler_->Load(MachineType::AnyTagged(), arguments_, assembler_->IntPtrConstant(kPointerSize)); } Node* CodeStubArguments::AtIndex(Node* index, CodeStubAssembler::ParameterMode mode) { Node* negated_index = assembler_->IntPtrSubFoldConstants( assembler_->IntPtrOrSmiConstant(0, mode), index); Node* offset = assembler_->ElementOffsetFromIndex(negated_index, FAST_ELEMENTS, mode, 0); return assembler_->Load(MachineType::AnyTagged(), arguments_, offset); } Node* CodeStubArguments::AtIndex(int index) { return AtIndex(assembler_->IntPtrConstant(index)); } void CodeStubArguments::ForEach(const CodeStubAssembler::VariableList& vars, CodeStubArguments::ForEachBodyFunction body, Node* first, Node* last, CodeStubAssembler::ParameterMode mode) { assembler_->Comment("CodeStubArguments::ForEach"); DCHECK_IMPLIES(first == nullptr || last == nullptr, mode == CodeStubAssembler::INTPTR_PARAMETERS); if (first == nullptr) { first = assembler_->IntPtrOrSmiConstant(0, mode); } if (last == nullptr) { last = argc_; } Node* start = assembler_->IntPtrSubFoldConstants( arguments_, assembler_->ElementOffsetFromIndex(first, FAST_ELEMENTS, mode)); Node* end = assembler_->IntPtrSubFoldConstants( arguments_, assembler_->ElementOffsetFromIndex(last, FAST_ELEMENTS, mode)); assembler_->BuildFastLoop( vars, MachineType::PointerRepresentation(), start, end, [body](CodeStubAssembler* assembler, Node* current) { Node* arg = assembler->Load(MachineType::AnyTagged(), current); body(assembler, arg); }, -kPointerSize, CodeStubAssembler::IndexAdvanceMode::kPost); } void CodeStubArguments::PopAndReturn(Node* value) { assembler_->PopAndReturn( assembler_->IntPtrAddFoldConstants(argc_, assembler_->IntPtrConstant(1)), value); } Node* CodeStubAssembler::IsFastElementsKind(Node* elements_kind) { return Uint32LessThanOrEqual(elements_kind, Int32Constant(LAST_FAST_ELEMENTS_KIND)); } Node* CodeStubAssembler::IsHoleyFastElementsKind(Node* elements_kind) { CSA_ASSERT(this, IsFastElementsKind(elements_kind)); STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == (FAST_SMI_ELEMENTS | 1)); STATIC_ASSERT(FAST_HOLEY_ELEMENTS == (FAST_ELEMENTS | 1)); STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == (FAST_DOUBLE_ELEMENTS | 1)); // Check prototype chain if receiver does not have packed elements. Node* holey_elements = Word32And(elements_kind, Int32Constant(1)); return Word32Equal(holey_elements, Int32Constant(1)); } compiler::Node* CodeStubAssembler::IsDebugActive() { Node* is_debug_active = Load( MachineType::Uint8(), ExternalConstant(ExternalReference::debug_is_active_address(isolate()))); return WordNotEqual(is_debug_active, Int32Constant(0)); } } // namespace internal } // namespace v8