// Copyright 2006-2008 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "bootstrapper.h" #include "codegen-inl.h" #include "debug.h" #include "runtime.h" #include "serialize.h" namespace v8 { namespace internal { MacroAssembler::MacroAssembler(void* buffer, int size) : Assembler(buffer, size), unresolved_(0), generating_stub_(false), allow_stub_calls_(true) { } static void RecordWriteHelper(MacroAssembler* masm, Register object, Register addr, Register scratch) { Label fast; // Compute the page address from the heap object pointer, leave it // in 'object'. masm->and_(object, ~Page::kPageAlignmentMask); // Compute the bit addr in the remembered set, leave it in "addr". masm->sub(addr, Operand(object)); masm->shr(addr, kObjectAlignmentBits); // If the bit offset lies beyond the normal remembered set range, it is in // the extra remembered set area of a large object. masm->cmp(addr, Page::kPageSize / kPointerSize); masm->j(less, &fast); // Adjust 'addr' to be relative to the start of the extra remembered set // and the page address in 'object' to be the address of the extra // remembered set. masm->sub(Operand(addr), Immediate(Page::kPageSize / kPointerSize)); // Load the array length into 'scratch' and multiply by four to get the // size in bytes of the elements. masm->mov(scratch, Operand(object, Page::kObjectStartOffset + FixedArray::kLengthOffset)); masm->shl(scratch, kObjectAlignmentBits); // Add the page header, array header, and array body size to the page // address. masm->add(Operand(object), Immediate(Page::kObjectStartOffset + Array::kHeaderSize)); masm->add(object, Operand(scratch)); // NOTE: For now, we use the bit-test-and-set (bts) x86 instruction // to limit code size. We should probably evaluate this decision by // measuring the performance of an equivalent implementation using // "simpler" instructions masm->bind(&fast); masm->bts(Operand(object, 0), addr); } class RecordWriteStub : public CodeStub { public: RecordWriteStub(Register object, Register addr, Register scratch) : object_(object), addr_(addr), scratch_(scratch) { } void Generate(MacroAssembler* masm); private: Register object_; Register addr_; Register scratch_; const char* GetName() { return "RecordWriteStub"; } #ifdef DEBUG void Print() { PrintF("RecordWriteStub (object reg %d), (addr reg %d), (scratch reg %d)\n", object_.code(), addr_.code(), scratch_.code()); } #endif // Minor key encoding in 12 bits of three registers (object, address and // scratch) OOOOAAAASSSS. class ScratchBits: public BitField {}; class AddressBits: public BitField {}; class ObjectBits: public BitField { }; Major MajorKey() { return RecordWrite; } int MinorKey() { // Encode the registers. return ObjectBits::encode(object_.code()) | AddressBits::encode(addr_.code()) | ScratchBits::encode(scratch_.code()); } }; void RecordWriteStub::Generate(MacroAssembler* masm) { RecordWriteHelper(masm, object_, addr_, scratch_); masm->ret(0); } // Set the remembered set bit for [object+offset]. // object is the object being stored into, value is the object being stored. // If offset is zero, then the scratch register contains the array index into // the elements array represented as a Smi. // All registers are clobbered by the operation. void MacroAssembler::RecordWrite(Register object, int offset, Register value, Register scratch) { // First, check if a remembered set write is even needed. The tests below // catch stores of Smis and stores into young gen (which does not have space // for the remembered set bits. Label done; // This optimization cannot survive serialization and deserialization, // so we disable as long as serialization can take place. int32_t new_space_start = reinterpret_cast(ExternalReference::new_space_start().address()); if (Serializer::enabled() || new_space_start < 0) { // Cannot do smart bit-twiddling. Need to do two consecutive checks. // Check for Smi first. test(value, Immediate(kSmiTagMask)); j(zero, &done); // Test that the object address is not in the new space. We cannot // set remembered set bits in the new space. mov(value, Operand(object)); and_(value, Heap::NewSpaceMask()); cmp(Operand(value), Immediate(ExternalReference::new_space_start())); j(equal, &done); } else { // move the value SmiTag into the sign bit shl(value, 31); // combine the object with value SmiTag or_(value, Operand(object)); // remove the uninteresing bits inside the page and_(value, Heap::NewSpaceMask() | (1 << 31)); // xor has two effects: // - if the value was a smi, then the result will be negative // - if the object is pointing into new space area the page bits will // all be zero xor_(value, new_space_start | (1 << 31)); // Check for both conditions in one branch j(less_equal, &done); } if ((offset > 0) && (offset < Page::kMaxHeapObjectSize)) { // Compute the bit offset in the remembered set, leave it in 'value'. mov(value, Operand(object)); and_(value, Page::kPageAlignmentMask); add(Operand(value), Immediate(offset)); shr(value, kObjectAlignmentBits); // Compute the page address from the heap object pointer, leave it in // 'object'. and_(object, ~Page::kPageAlignmentMask); // NOTE: For now, we use the bit-test-and-set (bts) x86 instruction // to limit code size. We should probably evaluate this decision by // measuring the performance of an equivalent implementation using // "simpler" instructions bts(Operand(object, 0), value); } else { Register dst = scratch; if (offset != 0) { lea(dst, Operand(object, offset)); } else { // array access: calculate the destination address in the same manner as // KeyedStoreIC::GenerateGeneric lea(dst, Operand(object, dst, times_2, Array::kHeaderSize - kHeapObjectTag)); } // If we are already generating a shared stub, not inlining the // record write code isn't going to save us any memory. if (generating_stub()) { RecordWriteHelper(this, object, dst, value); } else { RecordWriteStub stub(object, dst, value); CallStub(&stub); } } bind(&done); } void MacroAssembler::SaveRegistersToMemory(RegList regs) { ASSERT((regs & ~kJSCallerSaved) == 0); // Copy the content of registers to memory location. for (int i = 0; i < kNumJSCallerSaved; i++) { int r = JSCallerSavedCode(i); if ((regs & (1 << r)) != 0) { Register reg = { r }; ExternalReference reg_addr = ExternalReference(Debug_Address::Register(i)); mov(Operand::StaticVariable(reg_addr), reg); } } } void MacroAssembler::RestoreRegistersFromMemory(RegList regs) { ASSERT((regs & ~kJSCallerSaved) == 0); // Copy the content of memory location to registers. for (int i = kNumJSCallerSaved; --i >= 0;) { int r = JSCallerSavedCode(i); if ((regs & (1 << r)) != 0) { Register reg = { r }; ExternalReference reg_addr = ExternalReference(Debug_Address::Register(i)); mov(reg, Operand::StaticVariable(reg_addr)); } } } void MacroAssembler::PushRegistersFromMemory(RegList regs) { ASSERT((regs & ~kJSCallerSaved) == 0); // Push the content of the memory location to the stack. for (int i = 0; i < kNumJSCallerSaved; i++) { int r = JSCallerSavedCode(i); if ((regs & (1 << r)) != 0) { ExternalReference reg_addr = ExternalReference(Debug_Address::Register(i)); push(Operand::StaticVariable(reg_addr)); } } } void MacroAssembler::PopRegistersToMemory(RegList regs) { ASSERT((regs & ~kJSCallerSaved) == 0); // Pop the content from the stack to the memory location. for (int i = kNumJSCallerSaved; --i >= 0;) { int r = JSCallerSavedCode(i); if ((regs & (1 << r)) != 0) { ExternalReference reg_addr = ExternalReference(Debug_Address::Register(i)); pop(Operand::StaticVariable(reg_addr)); } } } void MacroAssembler::CopyRegistersFromStackToMemory(Register base, Register scratch, RegList regs) { ASSERT((regs & ~kJSCallerSaved) == 0); // Copy the content of the stack to the memory location and adjust base. for (int i = kNumJSCallerSaved; --i >= 0;) { int r = JSCallerSavedCode(i); if ((regs & (1 << r)) != 0) { mov(scratch, Operand(base, 0)); ExternalReference reg_addr = ExternalReference(Debug_Address::Register(i)); mov(Operand::StaticVariable(reg_addr), scratch); lea(base, Operand(base, kPointerSize)); } } } void MacroAssembler::Set(Register dst, const Immediate& x) { if (x.is_zero()) { xor_(dst, Operand(dst)); // shorter than mov } else { mov(Operand(dst), x); } } void MacroAssembler::Set(const Operand& dst, const Immediate& x) { mov(dst, x); } void MacroAssembler::FCmp() { fcompp(); push(eax); fnstsw_ax(); sahf(); pop(eax); } void MacroAssembler::EnterInternalFrame() { int type = StackFrame::INTERNAL; push(ebp); mov(ebp, Operand(esp)); push(esi); push(Immediate(Smi::FromInt(type))); push(Immediate(0)); // Push an empty code cache slot. } void MacroAssembler::LeaveInternalFrame() { if (FLAG_debug_code) { StackFrame::Type type = StackFrame::INTERNAL; cmp(Operand(ebp, StandardFrameConstants::kMarkerOffset), Immediate(Smi::FromInt(type))); Check(equal, "stack frame types must match"); } leave(); } void MacroAssembler::EnterExitFrame(StackFrame::Type type) { ASSERT(type == StackFrame::EXIT || type == StackFrame::EXIT_DEBUG); // Setup the frame structure on the stack. ASSERT(ExitFrameConstants::kPPDisplacement == +2 * kPointerSize); ASSERT(ExitFrameConstants::kCallerPCOffset == +1 * kPointerSize); ASSERT(ExitFrameConstants::kCallerFPOffset == 0 * kPointerSize); push(ebp); mov(ebp, Operand(esp)); // Reserve room for entry stack pointer and push the debug marker. ASSERT(ExitFrameConstants::kSPOffset == -1 * kPointerSize); push(Immediate(0)); // saved entry sp, patched before call push(Immediate(type == StackFrame::EXIT_DEBUG ? 1 : 0)); // Save the frame pointer and the context in top. ExternalReference c_entry_fp_address(Top::k_c_entry_fp_address); ExternalReference context_address(Top::k_context_address); mov(Operand::StaticVariable(c_entry_fp_address), ebp); mov(Operand::StaticVariable(context_address), esi); // Setup argc and argv in callee-saved registers. int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize; mov(edi, Operand(eax)); lea(esi, Operand(ebp, eax, times_4, offset)); } void MacroAssembler::LeaveExitFrame() { // Get the return address from the stack and restore the frame pointer. mov(ecx, Operand(ebp, 1 * kPointerSize)); mov(ebp, Operand(ebp, 0 * kPointerSize)); // Pop the arguments and the receiver from the caller stack. lea(esp, Operand(esi, 1 * kPointerSize)); // Restore current context from top and clear it in debug mode. ExternalReference context_address(Top::k_context_address); mov(esi, Operand::StaticVariable(context_address)); if (kDebug) { mov(Operand::StaticVariable(context_address), Immediate(0)); } // Push the return address to get ready to return. push(ecx); // Clear the top frame. ExternalReference c_entry_fp_address(Top::k_c_entry_fp_address); mov(Operand::StaticVariable(c_entry_fp_address), Immediate(0)); } void MacroAssembler::PushTryHandler(CodeLocation try_location, HandlerType type) { ASSERT(StackHandlerConstants::kSize == 6 * kPointerSize); // adjust this code // The pc (return address) is already on TOS. if (try_location == IN_JAVASCRIPT) { if (type == TRY_CATCH_HANDLER) { push(Immediate(StackHandler::TRY_CATCH)); } else { push(Immediate(StackHandler::TRY_FINALLY)); } push(Immediate(Smi::FromInt(StackHandler::kCodeNotPresent))); push(ebp); push(edi); } else { ASSERT(try_location == IN_JS_ENTRY); // The parameter pointer is meaningless here and ebp does not // point to a JS frame. So we save NULL for both pp and ebp. We // expect the code throwing an exception to check ebp before // dereferencing it to restore the context. push(Immediate(StackHandler::ENTRY)); push(Immediate(Smi::FromInt(StackHandler::kCodeNotPresent))); push(Immediate(0)); // NULL frame pointer push(Immediate(0)); // NULL parameter pointer } // Cached TOS. mov(eax, Operand::StaticVariable(ExternalReference(Top::k_handler_address))); // Link this handler. mov(Operand::StaticVariable(ExternalReference(Top::k_handler_address)), esp); } Register MacroAssembler::CheckMaps(JSObject* object, Register object_reg, JSObject* holder, Register holder_reg, Register scratch, Label* miss) { // Make sure there's no overlap between scratch and the other // registers. ASSERT(!scratch.is(object_reg) && !scratch.is(holder_reg)); // Keep track of the current object in register reg. Register reg = object_reg; int depth = 1; // Check the maps in the prototype chain. // Traverse the prototype chain from the object and do map checks. while (object != holder) { depth++; // Only global objects and objects that do not require access // checks are allowed in stubs. ASSERT(object->IsJSGlobalObject() || !object->IsAccessCheckNeeded()); JSObject* prototype = JSObject::cast(object->GetPrototype()); if (Heap::InNewSpace(prototype)) { // Get the map of the current object. mov(scratch, FieldOperand(reg, HeapObject::kMapOffset)); cmp(Operand(scratch), Immediate(Handle(object->map()))); // Branch on the result of the map check. j(not_equal, miss, not_taken); // Check access rights to the global object. This has to happen // after the map check so that we know that the object is // actually a global object. if (object->IsJSGlobalObject()) { CheckAccessGlobal(reg, scratch, miss); // Restore scratch register to be the map of the object. We // load the prototype from the map in the scratch register. mov(scratch, FieldOperand(reg, HeapObject::kMapOffset)); } // The prototype is in new space; we cannot store a reference // to it in the code. Load it from the map. reg = holder_reg; // from now the object is in holder_reg mov(reg, FieldOperand(scratch, Map::kPrototypeOffset)); } else { // Check the map of the current object. cmp(FieldOperand(reg, HeapObject::kMapOffset), Immediate(Handle(object->map()))); // Branch on the result of the map check. j(not_equal, miss, not_taken); // Check access rights to the global object. This has to happen // after the map check so that we know that the object is // actually a global object. if (object->IsJSGlobalObject()) { CheckAccessGlobal(reg, scratch, miss); } // The prototype is in old space; load it directly. reg = holder_reg; // from now the object is in holder_reg mov(reg, Handle(prototype)); } // Go to the next object in the prototype chain. object = prototype; } // Check the holder map. cmp(FieldOperand(reg, HeapObject::kMapOffset), Immediate(Handle(holder->map()))); j(not_equal, miss, not_taken); // Log the check depth. LOG(IntEvent("check-maps-depth", depth)); // Perform security check for access to the global object and return // the holder register. ASSERT(object == holder); ASSERT(object->IsJSGlobalObject() || !object->IsAccessCheckNeeded()); if (object->IsJSGlobalObject()) { CheckAccessGlobal(reg, scratch, miss); } return reg; } void MacroAssembler::CheckAccessGlobal(Register holder_reg, Register scratch, Label* miss) { ASSERT(!holder_reg.is(scratch)); // Load the security context. ExternalReference security_context = ExternalReference(Top::k_security_context_address); mov(scratch, Operand::StaticVariable(security_context)); // When generating debug code, make sure the security context is set. if (FLAG_debug_code) { cmp(Operand(scratch), Immediate(0)); Check(not_equal, "we should not have an empty security context"); } // Load the global object of the security context. int offset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize; mov(scratch, FieldOperand(scratch, offset)); // Check that the security token in the calling global object is // compatible with the security token in the receiving global // object. mov(scratch, FieldOperand(scratch, JSGlobalObject::kSecurityTokenOffset)); cmp(scratch, FieldOperand(holder_reg, JSGlobalObject::kSecurityTokenOffset)); j(not_equal, miss, not_taken); } void MacroAssembler::NegativeZeroTest(Register result, Register op, Label* then_label) { Label ok; test(result, Operand(result)); j(not_zero, &ok, taken); test(op, Operand(op)); j(sign, then_label, not_taken); bind(&ok); } void MacroAssembler::NegativeZeroTest(Register result, Register op1, Register op2, Register scratch, Label* then_label) { Label ok; test(result, Operand(result)); j(not_zero, &ok, taken); mov(scratch, Operand(op1)); or_(scratch, Operand(op2)); j(sign, then_label, not_taken); bind(&ok); } void MacroAssembler::CallStub(CodeStub* stub) { ASSERT(allow_stub_calls()); // calls are not allowed in some stubs call(stub->GetCode(), RelocInfo::CODE_TARGET); } void MacroAssembler::StubReturn(int argc) { ASSERT(argc >= 1 && generating_stub()); ret((argc - 1) * kPointerSize); } void MacroAssembler::IllegalOperation() { push(Immediate(Factory::undefined_value())); } void MacroAssembler::CallRuntime(Runtime::FunctionId id, int num_arguments) { CallRuntime(Runtime::FunctionForId(id), num_arguments); } void MacroAssembler::CallRuntime(Runtime::Function* f, int num_arguments) { // If the expected number of arguments of the runtime function is // constant, we check that the actual number of arguments match the // expectation. if (f->nargs >= 0 && f->nargs != num_arguments) { IllegalOperation(); return; } Runtime::FunctionId function_id = static_cast(f->stub_id); RuntimeStub stub(function_id, num_arguments); CallStub(&stub); } void MacroAssembler::TailCallRuntime(const ExternalReference& ext, int num_arguments) { // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. mov(Operand(eax), Immediate(num_arguments)); JumpToBuiltin(ext); } void MacroAssembler::JumpToBuiltin(const ExternalReference& ext) { // Set the entry point and jump to the C entry runtime stub. mov(Operand(ebx), Immediate(ext)); CEntryStub ces; jmp(ces.GetCode(), RelocInfo::CODE_TARGET); } void MacroAssembler::InvokePrologue(const ParameterCount& expected, const ParameterCount& actual, Handle code_constant, const Operand& code_operand, Label* done, InvokeFlag flag) { bool definitely_matches = false; Label invoke; if (expected.is_immediate()) { ASSERT(actual.is_immediate()); if (expected.immediate() == actual.immediate()) { definitely_matches = true; } else { mov(eax, actual.immediate()); const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel; if (expected.immediate() == sentinel) { // Don't worry about adapting arguments for builtins that // don't want that done. Skip adaption code by making it look // like we have a match between expected and actual number of // arguments. definitely_matches = true; } else { mov(ebx, expected.immediate()); } } } else { if (actual.is_immediate()) { // Expected is in register, actual is immediate. This is the // case when we invoke function values without going through the // IC mechanism. cmp(expected.reg(), actual.immediate()); j(equal, &invoke); ASSERT(expected.reg().is(ebx)); mov(eax, actual.immediate()); } else if (!expected.reg().is(actual.reg())) { // Both expected and actual are in (different) registers. This // is the case when we invoke functions using call and apply. cmp(expected.reg(), Operand(actual.reg())); j(equal, &invoke); ASSERT(actual.reg().is(eax)); ASSERT(expected.reg().is(ebx)); } } if (!definitely_matches) { Handle adaptor = Handle(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline)); if (!code_constant.is_null()) { mov(Operand(edx), Immediate(code_constant)); add(Operand(edx), Immediate(Code::kHeaderSize - kHeapObjectTag)); } else if (!code_operand.is_reg(edx)) { mov(edx, code_operand); } if (flag == CALL_FUNCTION) { call(adaptor, RelocInfo::CODE_TARGET); jmp(done); } else { jmp(adaptor, RelocInfo::CODE_TARGET); } bind(&invoke); } } void MacroAssembler::InvokeCode(const Operand& code, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag) { Label done; InvokePrologue(expected, actual, Handle::null(), code, &done, flag); if (flag == CALL_FUNCTION) { call(code); } else { ASSERT(flag == JUMP_FUNCTION); jmp(code); } bind(&done); } void MacroAssembler::InvokeCode(Handle code, const ParameterCount& expected, const ParameterCount& actual, RelocInfo::Mode rmode, InvokeFlag flag) { Label done; Operand dummy(eax); InvokePrologue(expected, actual, code, dummy, &done, flag); if (flag == CALL_FUNCTION) { call(code, rmode); } else { ASSERT(flag == JUMP_FUNCTION); jmp(code, rmode); } bind(&done); } void MacroAssembler::InvokeFunction(Register fun, const ParameterCount& actual, InvokeFlag flag) { ASSERT(fun.is(edi)); mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); mov(ebx, FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset)); mov(edx, FieldOperand(edx, SharedFunctionInfo::kCodeOffset)); lea(edx, FieldOperand(edx, Code::kHeaderSize)); ParameterCount expected(ebx); InvokeCode(Operand(edx), expected, actual, flag); } void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id, InvokeFlag flag) { bool resolved; Handle code = ResolveBuiltin(id, &resolved); // Calls are not allowed in some stubs. ASSERT(flag == JUMP_FUNCTION || allow_stub_calls()); // Rely on the assertion to check that the number of provided // arguments match the expected number of arguments. Fake a // parameter count to avoid emitting code to do the check. ParameterCount expected(0); InvokeCode(Handle(code), expected, expected, RelocInfo::CODE_TARGET, flag); const char* name = Builtins::GetName(id); int argc = Builtins::GetArgumentsCount(id); if (!resolved) { uint32_t flags = Bootstrapper::FixupFlagsArgumentsCount::encode(argc) | Bootstrapper::FixupFlagsIsPCRelative::encode(true); Unresolved entry = { pc_offset() - sizeof(int32_t), flags, name }; unresolved_.Add(entry); } } void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) { bool resolved; Handle code = ResolveBuiltin(id, &resolved); const char* name = Builtins::GetName(id); int argc = Builtins::GetArgumentsCount(id); mov(Operand(target), Immediate(code)); if (!resolved) { uint32_t flags = Bootstrapper::FixupFlagsArgumentsCount::encode(argc) | Bootstrapper::FixupFlagsIsPCRelative::encode(false); Unresolved entry = { pc_offset() - sizeof(int32_t), flags, name }; unresolved_.Add(entry); } add(Operand(target), Immediate(Code::kHeaderSize - kHeapObjectTag)); } Handle MacroAssembler::ResolveBuiltin(Builtins::JavaScript id, bool* resolved) { // Move the builtin function into the temporary function slot by // reading it from the builtins object. NOTE: We should be able to // reduce this to two instructions by putting the function table in // the global object instead of the "builtins" object and by using a // real register for the function. mov(edx, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX))); mov(edx, FieldOperand(edx, GlobalObject::kBuiltinsOffset)); int builtins_offset = JSBuiltinsObject::kJSBuiltinsOffset + (id * kPointerSize); mov(edi, FieldOperand(edx, builtins_offset)); return Builtins::GetCode(id, resolved); } void MacroAssembler::Ret() { ret(0); } void MacroAssembler::SetCounter(StatsCounter* counter, int value) { if (FLAG_native_code_counters && counter->Enabled()) { mov(Operand::StaticVariable(ExternalReference(counter)), Immediate(value)); } } void MacroAssembler::IncrementCounter(StatsCounter* counter, int value) { ASSERT(value > 0); if (FLAG_native_code_counters && counter->Enabled()) { Operand operand = Operand::StaticVariable(ExternalReference(counter)); if (value == 1) { inc(operand); } else { add(operand, Immediate(value)); } } } void MacroAssembler::DecrementCounter(StatsCounter* counter, int value) { ASSERT(value > 0); if (FLAG_native_code_counters && counter->Enabled()) { Operand operand = Operand::StaticVariable(ExternalReference(counter)); if (value == 1) { dec(operand); } else { sub(operand, Immediate(value)); } } } void MacroAssembler::Assert(Condition cc, const char* msg) { if (FLAG_debug_code) Check(cc, msg); } void MacroAssembler::Check(Condition cc, const char* msg) { Label L; j(cc, &L, taken); Abort(msg); // will not return here bind(&L); } void MacroAssembler::Abort(const char* msg) { // We want to pass the msg string like a smi to avoid GC // problems, however msg is not guaranteed to be aligned // properly. Instead, we pass an aligned pointer that is // a proper v8 smi, but also pass the aligment difference // from the real pointer as a smi. intptr_t p1 = reinterpret_cast(msg); intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag; ASSERT(reinterpret_cast(p0)->IsSmi()); #ifdef DEBUG if (msg != NULL) { RecordComment("Abort message: "); RecordComment(msg); } #endif push(eax); push(Immediate(p0)); push(Immediate(reinterpret_cast(Smi::FromInt(p1 - p0)))); CallRuntime(Runtime::kAbort, 2); // will not return here } CodePatcher::CodePatcher(byte* address, int size) : address_(address), size_(size), masm_(address, size + Assembler::kGap) { // Create a new macro assembler pointing to the assress of the code to patch. // The size is adjusted with kGap on order for the assembler to generate size // bytes of instructions without failing with buffer size constraints. ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); } CodePatcher::~CodePatcher() { // Indicate that code has changed. CPU::FlushICache(address_, size_); // Check that the code was patched as expected. ASSERT(masm_.pc_ == address_ + size_); ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); } } } // namespace v8::internal