// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include // NOLINT(readability/streams) #include "src/arm/simulator-arm.h" #include "src/assembler-inl.h" #include "src/base/utils/random-number-generator.h" #include "src/disassembler.h" #include "src/double.h" #include "src/factory.h" #include "src/macro-assembler.h" #include "src/ostreams.h" #include "src/v8.h" #include "test/cctest/cctest.h" namespace v8 { namespace internal { namespace test_assembler_arm { using base::RandomNumberGenerator; // Define these function prototypes to match JSEntryFunction in execution.cc. typedef Object* (*F1)(int x, int p1, int p2, int p3, int p4); typedef Object* (*F2)(int x, int y, int p2, int p3, int p4); typedef Object* (*F3)(void* p0, int p1, int p2, int p3, int p4); typedef Object* (*F4)(void* p0, void* p1, int p2, int p3, int p4); typedef Object* (*F5)(uint32_t p0, void* p1, void* p2, int p3, int p4); #define __ assm. TEST(0) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); Assembler assm(isolate, nullptr, 0); __ add(r0, r0, Operand(r1)); __ mov(pc, Operand(lr)); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef DEBUG OFStream os(stdout); code->Print(os); #endif F2 f = FUNCTION_CAST(code->entry()); int res = reinterpret_cast(CALL_GENERATED_CODE(isolate, f, 3, 4, 0, 0, 0)); ::printf("f() = %d\n", res); CHECK_EQ(7, res); } TEST(1) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); Assembler assm(isolate, nullptr, 0); Label L, C; __ mov(r1, Operand(r0)); __ mov(r0, Operand::Zero()); __ b(&C); __ bind(&L); __ add(r0, r0, Operand(r1)); __ sub(r1, r1, Operand(1)); __ bind(&C); __ teq(r1, Operand::Zero()); __ b(ne, &L); __ mov(pc, Operand(lr)); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef DEBUG OFStream os(stdout); code->Print(os); #endif F1 f = FUNCTION_CAST(code->entry()); int res = reinterpret_cast(CALL_GENERATED_CODE(isolate, f, 100, 0, 0, 0, 0)); ::printf("f() = %d\n", res); CHECK_EQ(5050, res); } TEST(2) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); Assembler assm(isolate, nullptr, 0); Label L, C; __ mov(r1, Operand(r0)); __ mov(r0, Operand(1)); __ b(&C); __ bind(&L); __ mul(r0, r1, r0); __ sub(r1, r1, Operand(1)); __ bind(&C); __ teq(r1, Operand::Zero()); __ b(ne, &L); __ mov(pc, Operand(lr)); // some relocated stuff here, not executed __ RecordComment("dead code, just testing relocations"); __ mov(r0, Operand(isolate->factory()->true_value())); __ RecordComment("dead code, just testing immediate operands"); __ mov(r0, Operand(-1)); __ mov(r0, Operand(0xFF000000)); __ mov(r0, Operand(0xF0F0F0F0)); __ mov(r0, Operand(0xFFF0FFFF)); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef DEBUG OFStream os(stdout); code->Print(os); #endif F1 f = FUNCTION_CAST(code->entry()); int res = reinterpret_cast(CALL_GENERATED_CODE(isolate, f, 10, 0, 0, 0, 0)); ::printf("f() = %d\n", res); CHECK_EQ(3628800, res); } TEST(3) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { int i; char c; int16_t s; } T; T t; Assembler assm(isolate, nullptr, 0); Label L, C; __ mov(ip, Operand(sp)); __ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit()); __ sub(fp, ip, Operand(4)); __ mov(r4, Operand(r0)); __ ldr(r0, MemOperand(r4, offsetof(T, i))); __ mov(r2, Operand(r0, ASR, 1)); __ str(r2, MemOperand(r4, offsetof(T, i))); __ ldrsb(r2, MemOperand(r4, offsetof(T, c))); __ add(r0, r2, Operand(r0)); __ mov(r2, Operand(r2, LSL, 2)); __ strb(r2, MemOperand(r4, offsetof(T, c))); __ ldrsh(r2, MemOperand(r4, offsetof(T, s))); __ add(r0, r2, Operand(r0)); __ mov(r2, Operand(r2, ASR, 3)); __ strh(r2, MemOperand(r4, offsetof(T, s))); __ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit()); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef DEBUG OFStream os(stdout); code->Print(os); #endif F3 f = FUNCTION_CAST(code->entry()); t.i = 100000; t.c = 10; t.s = 1000; int res = reinterpret_cast(CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0)); ::printf("f() = %d\n", res); CHECK_EQ(101010, res); CHECK_EQ(100000/2, t.i); CHECK_EQ(10*4, t.c); CHECK_EQ(1000/8, t.s); } TEST(4) { // Test the VFP floating point instructions. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { double a; double b; double c; double d; double e; double f; double g; double h; int i; double j; double m; double n; float o; float p; float x; float y; } T; T t; // Create a function that accepts &t, and loads, manipulates, and stores // the doubles and floats. Assembler assm(isolate, nullptr, 0); Label L, C; if (CpuFeatures::IsSupported(VFPv3)) { CpuFeatureScope scope(&assm, VFPv3); __ mov(ip, Operand(sp)); __ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit()); __ sub(fp, ip, Operand(4)); __ mov(r4, Operand(r0)); __ vldr(d6, r4, offsetof(T, a)); __ vldr(d7, r4, offsetof(T, b)); __ vadd(d5, d6, d7); __ vstr(d5, r4, offsetof(T, c)); __ vmla(d5, d6, d7); __ vmls(d5, d5, d6); __ vmov(r2, r3, d5); __ vmov(d4, r2, r3); __ vstr(d4, r4, offsetof(T, b)); // Load t.x and t.y, switch values, and store back to the struct. __ vldr(s0, r4, offsetof(T, x)); __ vldr(s1, r4, offsetof(T, y)); __ vmov(s2, s0); __ vmov(s0, s1); __ vmov(s1, s2); __ vstr(s0, r4, offsetof(T, x)); __ vstr(s1, r4, offsetof(T, y)); // Move a literal into a register that can be encoded in the instruction. __ vmov(d4, Double(1.0)); __ vstr(d4, r4, offsetof(T, e)); // Move a literal into a register that requires 64 bits to encode. // 0x3ff0000010000000 = 1.000000059604644775390625 __ vmov(d4, Double(1.000000059604644775390625)); __ vstr(d4, r4, offsetof(T, d)); // Convert from floating point to integer. __ vmov(d4, Double(2.0)); __ vcvt_s32_f64(s1, d4); __ vstr(s1, r4, offsetof(T, i)); // Convert from integer to floating point. __ mov(lr, Operand(42)); __ vmov(s1, lr); __ vcvt_f64_s32(d4, s1); __ vstr(d4, r4, offsetof(T, f)); // Convert from fixed point to floating point. __ mov(lr, Operand(2468)); __ vmov(s8, lr); __ vcvt_f64_s32(d4, 2); __ vstr(d4, r4, offsetof(T, j)); // Test vabs. __ vldr(d1, r4, offsetof(T, g)); __ vabs(d0, d1); __ vstr(d0, r4, offsetof(T, g)); __ vldr(d2, r4, offsetof(T, h)); __ vabs(d0, d2); __ vstr(d0, r4, offsetof(T, h)); // Test vneg. __ vldr(d1, r4, offsetof(T, m)); __ vneg(d0, d1); __ vstr(d0, r4, offsetof(T, m)); __ vldr(d1, r4, offsetof(T, n)); __ vneg(d0, d1); __ vstr(d0, r4, offsetof(T, n)); // Test vmov for single-precision immediates. __ vmov(s0, Float32(0.25f)); __ vstr(s0, r4, offsetof(T, o)); __ vmov(s0, Float32(-16.0f)); __ vstr(s0, r4, offsetof(T, p)); __ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit()); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef DEBUG OFStream os(stdout); code->Print(os); #endif F3 f = FUNCTION_CAST(code->entry()); t.a = 1.5; t.b = 2.75; t.c = 17.17; t.d = 0.0; t.e = 0.0; t.f = 0.0; t.g = -2718.2818; t.h = 31415926.5; t.i = 0; t.j = 0; t.m = -2718.2818; t.n = 123.456; t.x = 4.5; t.y = 9.0; Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); USE(dummy); CHECK_EQ(-16.0f, t.p); CHECK_EQ(0.25f, t.o); CHECK_EQ(-123.456, t.n); CHECK_EQ(2718.2818, t.m); CHECK_EQ(2, t.i); CHECK_EQ(2718.2818, t.g); CHECK_EQ(31415926.5, t.h); CHECK_EQ(617.0, t.j); CHECK_EQ(42.0, t.f); CHECK_EQ(1.0, t.e); CHECK_EQ(1.000000059604644775390625, t.d); CHECK_EQ(4.25, t.c); CHECK_EQ(-4.1875, t.b); CHECK_EQ(1.5, t.a); CHECK_EQ(4.5f, t.y); CHECK_EQ(9.0f, t.x); } } TEST(5) { // Test the ARMv7 bitfield instructions. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); Assembler assm(isolate, nullptr, 0); if (CpuFeatures::IsSupported(ARMv7)) { CpuFeatureScope scope(&assm, ARMv7); // On entry, r0 = 0xAAAAAAAA = 0b10..10101010. __ ubfx(r0, r0, 1, 12); // 0b00..010101010101 = 0x555 __ sbfx(r0, r0, 0, 5); // 0b11..111111110101 = -11 __ bfc(r0, 1, 3); // 0b11..111111110001 = -15 __ mov(r1, Operand(7)); __ bfi(r0, r1, 3, 3); // 0b11..111111111001 = -7 __ mov(pc, Operand(lr)); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef DEBUG OFStream os(stdout); code->Print(os); #endif F1 f = FUNCTION_CAST(code->entry()); int res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, 0xAAAAAAAA, 0, 0, 0, 0)); ::printf("f() = %d\n", res); CHECK_EQ(-7, res); } } TEST(6) { // Test saturating instructions. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); Assembler assm(isolate, nullptr, 0); __ usat(r1, 8, Operand(r0)); // Sat 0xFFFF to 0-255 = 0xFF. __ usat(r2, 12, Operand(r0, ASR, 9)); // Sat (0xFFFF>>9) to 0-4095 = 0x7F. __ usat(r3, 1, Operand(r0, LSL, 16)); // Sat (0xFFFF<<16) to 0-1 = 0x0. __ add(r0, r1, Operand(r2)); __ add(r0, r0, Operand(r3)); __ mov(pc, Operand(lr)); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef DEBUG OFStream os(stdout); code->Print(os); #endif F1 f = FUNCTION_CAST(code->entry()); int res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, 0xFFFF, 0, 0, 0, 0)); ::printf("f() = %d\n", res); CHECK_EQ(382, res); } enum VCVTTypes { s32_f64, u32_f64 }; static void TestRoundingMode(VCVTTypes types, VFPRoundingMode mode, double value, int expected, bool expected_exception = false) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); Assembler assm(isolate, nullptr, 0); Label wrong_exception; __ vmrs(r1); // Set custom FPSCR. __ bic(r2, r1, Operand(kVFPRoundingModeMask | kVFPExceptionMask)); __ orr(r2, r2, Operand(mode)); __ vmsr(r2); // Load value, convert, and move back result to r0 if everything went well. __ vmov(d1, Double(value)); switch (types) { case s32_f64: __ vcvt_s32_f64(s0, d1, kFPSCRRounding); break; case u32_f64: __ vcvt_u32_f64(s0, d1, kFPSCRRounding); break; default: UNREACHABLE(); break; } // Check for vfp exceptions __ vmrs(r2); __ tst(r2, Operand(kVFPExceptionMask)); // Check that we behaved as expected. __ b(&wrong_exception, expected_exception ? eq : ne); // There was no exception. Retrieve the result and return. __ vmov(r0, s0); __ mov(pc, Operand(lr)); // The exception behaviour is not what we expected. // Load a special value and return. __ bind(&wrong_exception); __ mov(r0, Operand(11223344)); __ mov(pc, Operand(lr)); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef DEBUG OFStream os(stdout); code->Print(os); #endif F1 f = FUNCTION_CAST(code->entry()); int res = reinterpret_cast(CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0)); ::printf("res = %d\n", res); CHECK_EQ(expected, res); } TEST(7) { CcTest::InitializeVM(); // Test vfp rounding modes. // s32_f64 (double to integer). TestRoundingMode(s32_f64, RN, 0, 0); TestRoundingMode(s32_f64, RN, 0.5, 0); TestRoundingMode(s32_f64, RN, -0.5, 0); TestRoundingMode(s32_f64, RN, 1.5, 2); TestRoundingMode(s32_f64, RN, -1.5, -2); TestRoundingMode(s32_f64, RN, 123.7, 124); TestRoundingMode(s32_f64, RN, -123.7, -124); TestRoundingMode(s32_f64, RN, 123456.2, 123456); TestRoundingMode(s32_f64, RN, -123456.2, -123456); TestRoundingMode(s32_f64, RN, static_cast(kMaxInt), kMaxInt); TestRoundingMode(s32_f64, RN, (kMaxInt + 0.49), kMaxInt); TestRoundingMode(s32_f64, RN, (kMaxInt + 1.0), kMaxInt, true); TestRoundingMode(s32_f64, RN, (kMaxInt + 0.5), kMaxInt, true); TestRoundingMode(s32_f64, RN, static_cast(kMinInt), kMinInt); TestRoundingMode(s32_f64, RN, (kMinInt - 0.5), kMinInt); TestRoundingMode(s32_f64, RN, (kMinInt - 1.0), kMinInt, true); TestRoundingMode(s32_f64, RN, (kMinInt - 0.51), kMinInt, true); TestRoundingMode(s32_f64, RM, 0, 0); TestRoundingMode(s32_f64, RM, 0.5, 0); TestRoundingMode(s32_f64, RM, -0.5, -1); TestRoundingMode(s32_f64, RM, 123.7, 123); TestRoundingMode(s32_f64, RM, -123.7, -124); TestRoundingMode(s32_f64, RM, 123456.2, 123456); TestRoundingMode(s32_f64, RM, -123456.2, -123457); TestRoundingMode(s32_f64, RM, static_cast(kMaxInt), kMaxInt); TestRoundingMode(s32_f64, RM, (kMaxInt + 0.5), kMaxInt); TestRoundingMode(s32_f64, RM, (kMaxInt + 1.0), kMaxInt, true); TestRoundingMode(s32_f64, RM, static_cast(kMinInt), kMinInt); TestRoundingMode(s32_f64, RM, (kMinInt - 0.5), kMinInt, true); TestRoundingMode(s32_f64, RM, (kMinInt + 0.5), kMinInt); TestRoundingMode(s32_f64, RZ, 0, 0); TestRoundingMode(s32_f64, RZ, 0.5, 0); TestRoundingMode(s32_f64, RZ, -0.5, 0); TestRoundingMode(s32_f64, RZ, 123.7, 123); TestRoundingMode(s32_f64, RZ, -123.7, -123); TestRoundingMode(s32_f64, RZ, 123456.2, 123456); TestRoundingMode(s32_f64, RZ, -123456.2, -123456); TestRoundingMode(s32_f64, RZ, static_cast(kMaxInt), kMaxInt); TestRoundingMode(s32_f64, RZ, (kMaxInt + 0.5), kMaxInt); TestRoundingMode(s32_f64, RZ, (kMaxInt + 1.0), kMaxInt, true); TestRoundingMode(s32_f64, RZ, static_cast(kMinInt), kMinInt); TestRoundingMode(s32_f64, RZ, (kMinInt - 0.5), kMinInt); TestRoundingMode(s32_f64, RZ, (kMinInt - 1.0), kMinInt, true); // u32_f64 (double to integer). // Negative values. TestRoundingMode(u32_f64, RN, -0.5, 0); TestRoundingMode(u32_f64, RN, -123456.7, 0, true); TestRoundingMode(u32_f64, RN, static_cast(kMinInt), 0, true); TestRoundingMode(u32_f64, RN, kMinInt - 1.0, 0, true); TestRoundingMode(u32_f64, RM, -0.5, 0, true); TestRoundingMode(u32_f64, RM, -123456.7, 0, true); TestRoundingMode(u32_f64, RM, static_cast(kMinInt), 0, true); TestRoundingMode(u32_f64, RM, kMinInt - 1.0, 0, true); TestRoundingMode(u32_f64, RZ, -0.5, 0); TestRoundingMode(u32_f64, RZ, -123456.7, 0, true); TestRoundingMode(u32_f64, RZ, static_cast(kMinInt), 0, true); TestRoundingMode(u32_f64, RZ, kMinInt - 1.0, 0, true); // Positive values. // kMaxInt is the maximum *signed* integer: 0x7fffffff. static const uint32_t kMaxUInt = 0xffffffffu; TestRoundingMode(u32_f64, RZ, 0, 0); TestRoundingMode(u32_f64, RZ, 0.5, 0); TestRoundingMode(u32_f64, RZ, 123.7, 123); TestRoundingMode(u32_f64, RZ, 123456.2, 123456); TestRoundingMode(u32_f64, RZ, static_cast(kMaxInt), kMaxInt); TestRoundingMode(u32_f64, RZ, (kMaxInt + 0.5), kMaxInt); TestRoundingMode(u32_f64, RZ, (kMaxInt + 1.0), static_cast(kMaxInt) + 1); TestRoundingMode(u32_f64, RZ, (kMaxUInt + 0.5), kMaxUInt); TestRoundingMode(u32_f64, RZ, (kMaxUInt + 1.0), kMaxUInt, true); TestRoundingMode(u32_f64, RM, 0, 0); TestRoundingMode(u32_f64, RM, 0.5, 0); TestRoundingMode(u32_f64, RM, 123.7, 123); TestRoundingMode(u32_f64, RM, 123456.2, 123456); TestRoundingMode(u32_f64, RM, static_cast(kMaxInt), kMaxInt); TestRoundingMode(u32_f64, RM, (kMaxInt + 0.5), kMaxInt); TestRoundingMode(u32_f64, RM, (kMaxInt + 1.0), static_cast(kMaxInt) + 1); TestRoundingMode(u32_f64, RM, (kMaxUInt + 0.5), kMaxUInt); TestRoundingMode(u32_f64, RM, (kMaxUInt + 1.0), kMaxUInt, true); TestRoundingMode(u32_f64, RN, 0, 0); TestRoundingMode(u32_f64, RN, 0.5, 0); TestRoundingMode(u32_f64, RN, 1.5, 2); TestRoundingMode(u32_f64, RN, 123.7, 124); TestRoundingMode(u32_f64, RN, 123456.2, 123456); TestRoundingMode(u32_f64, RN, static_cast(kMaxInt), kMaxInt); TestRoundingMode(u32_f64, RN, (kMaxInt + 0.49), kMaxInt); TestRoundingMode(u32_f64, RN, (kMaxInt + 0.5), static_cast(kMaxInt) + 1); TestRoundingMode(u32_f64, RN, (kMaxUInt + 0.49), kMaxUInt); TestRoundingMode(u32_f64, RN, (kMaxUInt + 0.5), kMaxUInt, true); TestRoundingMode(u32_f64, RN, (kMaxUInt + 1.0), kMaxUInt, true); } TEST(8) { // Test VFP multi load/store with ia_w. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { double a; double b; double c; double d; double e; double f; double g; double h; } D; D d; typedef struct { float a; float b; float c; float d; float e; float f; float g; float h; } F; F f; // Create a function that uses vldm/vstm to move some double and // single precision values around in memory. Assembler assm(isolate, nullptr, 0); __ mov(ip, Operand(sp)); __ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit()); __ sub(fp, ip, Operand(4)); __ add(r4, r0, Operand(static_cast(offsetof(D, a)))); __ vldm(ia_w, r4, d0, d3); __ vldm(ia_w, r4, d4, d7); __ add(r4, r0, Operand(static_cast(offsetof(D, a)))); __ vstm(ia_w, r4, d6, d7); __ vstm(ia_w, r4, d0, d5); __ add(r4, r1, Operand(static_cast(offsetof(F, a)))); __ vldm(ia_w, r4, s0, s3); __ vldm(ia_w, r4, s4, s7); __ add(r4, r1, Operand(static_cast(offsetof(F, a)))); __ vstm(ia_w, r4, s6, s7); __ vstm(ia_w, r4, s0, s5); __ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit()); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef DEBUG OFStream os(stdout); code->Print(os); #endif F4 fn = FUNCTION_CAST(code->entry()); d.a = 1.1; d.b = 2.2; d.c = 3.3; d.d = 4.4; d.e = 5.5; d.f = 6.6; d.g = 7.7; d.h = 8.8; f.a = 1.0; f.b = 2.0; f.c = 3.0; f.d = 4.0; f.e = 5.0; f.f = 6.0; f.g = 7.0; f.h = 8.0; Object* dummy = CALL_GENERATED_CODE(isolate, fn, &d, &f, 0, 0, 0); USE(dummy); CHECK_EQ(7.7, d.a); CHECK_EQ(8.8, d.b); CHECK_EQ(1.1, d.c); CHECK_EQ(2.2, d.d); CHECK_EQ(3.3, d.e); CHECK_EQ(4.4, d.f); CHECK_EQ(5.5, d.g); CHECK_EQ(6.6, d.h); CHECK_EQ(7.0f, f.a); CHECK_EQ(8.0f, f.b); CHECK_EQ(1.0f, f.c); CHECK_EQ(2.0f, f.d); CHECK_EQ(3.0f, f.e); CHECK_EQ(4.0f, f.f); CHECK_EQ(5.0f, f.g); CHECK_EQ(6.0f, f.h); } TEST(9) { // Test VFP multi load/store with ia. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { double a; double b; double c; double d; double e; double f; double g; double h; } D; D d; typedef struct { float a; float b; float c; float d; float e; float f; float g; float h; } F; F f; // Create a function that uses vldm/vstm to move some double and // single precision values around in memory. Assembler assm(isolate, nullptr, 0); __ mov(ip, Operand(sp)); __ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit()); __ sub(fp, ip, Operand(4)); __ add(r4, r0, Operand(static_cast(offsetof(D, a)))); __ vldm(ia, r4, d0, d3); __ add(r4, r4, Operand(4 * 8)); __ vldm(ia, r4, d4, d7); __ add(r4, r0, Operand(static_cast(offsetof(D, a)))); __ vstm(ia, r4, d6, d7); __ add(r4, r4, Operand(2 * 8)); __ vstm(ia, r4, d0, d5); __ add(r4, r1, Operand(static_cast(offsetof(F, a)))); __ vldm(ia, r4, s0, s3); __ add(r4, r4, Operand(4 * 4)); __ vldm(ia, r4, s4, s7); __ add(r4, r1, Operand(static_cast(offsetof(F, a)))); __ vstm(ia, r4, s6, s7); __ add(r4, r4, Operand(2 * 4)); __ vstm(ia, r4, s0, s5); __ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit()); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef DEBUG OFStream os(stdout); code->Print(os); #endif F4 fn = FUNCTION_CAST(code->entry()); d.a = 1.1; d.b = 2.2; d.c = 3.3; d.d = 4.4; d.e = 5.5; d.f = 6.6; d.g = 7.7; d.h = 8.8; f.a = 1.0; f.b = 2.0; f.c = 3.0; f.d = 4.0; f.e = 5.0; f.f = 6.0; f.g = 7.0; f.h = 8.0; Object* dummy = CALL_GENERATED_CODE(isolate, fn, &d, &f, 0, 0, 0); USE(dummy); CHECK_EQ(7.7, d.a); CHECK_EQ(8.8, d.b); CHECK_EQ(1.1, d.c); CHECK_EQ(2.2, d.d); CHECK_EQ(3.3, d.e); CHECK_EQ(4.4, d.f); CHECK_EQ(5.5, d.g); CHECK_EQ(6.6, d.h); CHECK_EQ(7.0f, f.a); CHECK_EQ(8.0f, f.b); CHECK_EQ(1.0f, f.c); CHECK_EQ(2.0f, f.d); CHECK_EQ(3.0f, f.e); CHECK_EQ(4.0f, f.f); CHECK_EQ(5.0f, f.g); CHECK_EQ(6.0f, f.h); } TEST(10) { // Test VFP multi load/store with db_w. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { double a; double b; double c; double d; double e; double f; double g; double h; } D; D d; typedef struct { float a; float b; float c; float d; float e; float f; float g; float h; } F; F f; // Create a function that uses vldm/vstm to move some double and // single precision values around in memory. Assembler assm(isolate, nullptr, 0); __ mov(ip, Operand(sp)); __ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit()); __ sub(fp, ip, Operand(4)); __ add(r4, r0, Operand(static_cast(offsetof(D, h)) + 8)); __ vldm(db_w, r4, d4, d7); __ vldm(db_w, r4, d0, d3); __ add(r4, r0, Operand(static_cast(offsetof(D, h)) + 8)); __ vstm(db_w, r4, d0, d5); __ vstm(db_w, r4, d6, d7); __ add(r4, r1, Operand(static_cast(offsetof(F, h)) + 4)); __ vldm(db_w, r4, s4, s7); __ vldm(db_w, r4, s0, s3); __ add(r4, r1, Operand(static_cast(offsetof(F, h)) + 4)); __ vstm(db_w, r4, s0, s5); __ vstm(db_w, r4, s6, s7); __ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit()); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef DEBUG OFStream os(stdout); code->Print(os); #endif F4 fn = FUNCTION_CAST(code->entry()); d.a = 1.1; d.b = 2.2; d.c = 3.3; d.d = 4.4; d.e = 5.5; d.f = 6.6; d.g = 7.7; d.h = 8.8; f.a = 1.0; f.b = 2.0; f.c = 3.0; f.d = 4.0; f.e = 5.0; f.f = 6.0; f.g = 7.0; f.h = 8.0; Object* dummy = CALL_GENERATED_CODE(isolate, fn, &d, &f, 0, 0, 0); USE(dummy); CHECK_EQ(7.7, d.a); CHECK_EQ(8.8, d.b); CHECK_EQ(1.1, d.c); CHECK_EQ(2.2, d.d); CHECK_EQ(3.3, d.e); CHECK_EQ(4.4, d.f); CHECK_EQ(5.5, d.g); CHECK_EQ(6.6, d.h); CHECK_EQ(7.0f, f.a); CHECK_EQ(8.0f, f.b); CHECK_EQ(1.0f, f.c); CHECK_EQ(2.0f, f.d); CHECK_EQ(3.0f, f.e); CHECK_EQ(4.0f, f.f); CHECK_EQ(5.0f, f.g); CHECK_EQ(6.0f, f.h); } TEST(11) { // Test instructions using the carry flag. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { int32_t a; int32_t b; int32_t c; int32_t d; } I; I i; i.a = 0xabcd0001; i.b = 0xabcd0000; Assembler assm(isolate, nullptr, 0); // Test HeapObject untagging. __ ldr(r1, MemOperand(r0, offsetof(I, a))); __ mov(r1, Operand(r1, ASR, 1), SetCC); __ adc(r1, r1, Operand(r1), LeaveCC, cs); __ str(r1, MemOperand(r0, offsetof(I, a))); __ ldr(r2, MemOperand(r0, offsetof(I, b))); __ mov(r2, Operand(r2, ASR, 1), SetCC); __ adc(r2, r2, Operand(r2), LeaveCC, cs); __ str(r2, MemOperand(r0, offsetof(I, b))); // Test corner cases. __ mov(r1, Operand(0xffffffff)); __ mov(r2, Operand::Zero()); __ mov(r3, Operand(r1, ASR, 1), SetCC); // Set the carry. __ adc(r3, r1, Operand(r2)); __ str(r3, MemOperand(r0, offsetof(I, c))); __ mov(r1, Operand(0xffffffff)); __ mov(r2, Operand::Zero()); __ mov(r3, Operand(r2, ASR, 1), SetCC); // Unset the carry. __ adc(r3, r1, Operand(r2)); __ str(r3, MemOperand(r0, offsetof(I, d))); __ mov(pc, Operand(lr)); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef DEBUG OFStream os(stdout); code->Print(os); #endif F3 f = FUNCTION_CAST(code->entry()); Object* dummy = CALL_GENERATED_CODE(isolate, f, &i, 0, 0, 0, 0); USE(dummy); CHECK_EQ(static_cast(0xabcd0001), i.a); CHECK_EQ(static_cast(0xabcd0000) >> 1, i.b); CHECK_EQ(0x00000000, i.c); CHECK_EQ(static_cast(0xffffffff), i.d); } TEST(12) { // Test chaining of label usages within instructions (issue 1644). CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); Assembler assm(isolate, nullptr, 0); Label target; __ b(eq, &target); __ b(ne, &target); __ bind(&target); __ nop(); } TEST(13) { // Test VFP instructions using registers d16-d31. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); if (!CpuFeatures::IsSupported(VFP32DREGS)) { return; } typedef struct { double a; double b; double c; double x; double y; double z; double i; double j; double k; uint32_t low; uint32_t high; } T; T t; // Create a function that accepts &t, and loads, manipulates, and stores // the doubles and floats. Assembler assm(isolate, nullptr, 0); Label L, C; if (CpuFeatures::IsSupported(VFPv3)) { CpuFeatureScope scope(&assm, VFPv3); __ stm(db_w, sp, r4.bit() | lr.bit()); // Load a, b, c into d16, d17, d18. __ mov(r4, Operand(r0)); __ vldr(d16, r4, offsetof(T, a)); __ vldr(d17, r4, offsetof(T, b)); __ vldr(d18, r4, offsetof(T, c)); __ vneg(d25, d16); __ vadd(d25, d25, d17); __ vsub(d25, d25, d18); __ vmul(d25, d25, d25); __ vdiv(d25, d25, d18); __ vmov(d16, d25); __ vsqrt(d17, d25); __ vneg(d17, d17); __ vabs(d17, d17); __ vmla(d18, d16, d17); // Store d16, d17, d18 into a, b, c. __ mov(r4, Operand(r0)); __ vstr(d16, r4, offsetof(T, a)); __ vstr(d17, r4, offsetof(T, b)); __ vstr(d18, r4, offsetof(T, c)); // Load x, y, z into d29-d31. __ add(r4, r0, Operand(static_cast(offsetof(T, x)))); __ vldm(ia_w, r4, d29, d31); // Swap d29 and d30 via r registers. __ vmov(r1, r2, d29); __ vmov(d29, d30); __ vmov(d30, r1, r2); // Convert to and from integer. __ vcvt_s32_f64(s1, d31); __ vcvt_f64_u32(d31, s1); // Store d29-d31 into x, y, z. __ add(r4, r0, Operand(static_cast(offsetof(T, x)))); __ vstm(ia_w, r4, d29, d31); // Move constants into d20, d21, d22 and store into i, j, k. __ vmov(d20, Double(14.7610017472335499)); __ vmov(d21, Double(16.0)); __ mov(r1, Operand(372106121)); __ mov(r2, Operand(1079146608)); __ vmov(d22, VmovIndexLo, r1); __ vmov(d22, VmovIndexHi, r2); __ add(r4, r0, Operand(static_cast(offsetof(T, i)))); __ vstm(ia_w, r4, d20, d22); // Move d22 into low and high. __ vmov(r4, VmovIndexLo, d22); __ str(r4, MemOperand(r0, offsetof(T, low))); __ vmov(r4, VmovIndexHi, d22); __ str(r4, MemOperand(r0, offsetof(T, high))); __ ldm(ia_w, sp, r4.bit() | pc.bit()); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef DEBUG OFStream os(stdout); code->Print(os); #endif F3 f = FUNCTION_CAST(code->entry()); t.a = 1.5; t.b = 2.75; t.c = 17.17; t.x = 1.5; t.y = 2.75; t.z = 17.17; Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); USE(dummy); CHECK_EQ(14.7610017472335499, t.a); CHECK_EQ(3.84200491244266251, t.b); CHECK_EQ(73.8818412254460241, t.c); CHECK_EQ(2.75, t.x); CHECK_EQ(1.5, t.y); CHECK_EQ(17.0, t.z); CHECK_EQ(14.7610017472335499, t.i); CHECK_EQ(16.0, t.j); CHECK_EQ(73.8818412254460241, t.k); CHECK_EQ(372106121u, t.low); CHECK_EQ(1079146608u, t.high); } } TEST(14) { // Test the VFP Canonicalized Nan mode. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { double left; double right; double add_result; double sub_result; double mul_result; double div_result; } T; T t; // Create a function that makes the four basic operations. Assembler assm(isolate, nullptr, 0); // Ensure FPSCR state (as JSEntryStub does). Label fpscr_done; __ vmrs(r1); __ tst(r1, Operand(kVFPDefaultNaNModeControlBit)); __ b(ne, &fpscr_done); __ orr(r1, r1, Operand(kVFPDefaultNaNModeControlBit)); __ vmsr(r1); __ bind(&fpscr_done); __ vldr(d0, r0, offsetof(T, left)); __ vldr(d1, r0, offsetof(T, right)); __ vadd(d2, d0, d1); __ vstr(d2, r0, offsetof(T, add_result)); __ vsub(d2, d0, d1); __ vstr(d2, r0, offsetof(T, sub_result)); __ vmul(d2, d0, d1); __ vstr(d2, r0, offsetof(T, mul_result)); __ vdiv(d2, d0, d1); __ vstr(d2, r0, offsetof(T, div_result)); __ mov(pc, Operand(lr)); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef DEBUG OFStream os(stdout); code->Print(os); #endif F3 f = FUNCTION_CAST(code->entry()); t.left = bit_cast(kHoleNanInt64); t.right = 1; t.add_result = 0; t.sub_result = 0; t.mul_result = 0; t.div_result = 0; Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); USE(dummy); const uint32_t kArmNanUpper32 = 0x7ff80000; const uint32_t kArmNanLower32 = 0x00000000; #ifdef DEBUG const uint64_t kArmNanInt64 = (static_cast(kArmNanUpper32) << 32) | kArmNanLower32; CHECK_NE(kArmNanInt64, kHoleNanInt64); #endif // With VFP2 the sign of the canonicalized Nan is undefined. So // we remove the sign bit for the upper tests. CHECK_EQ(kArmNanUpper32, (bit_cast(t.add_result) >> 32) & 0x7fffffff); CHECK_EQ(kArmNanLower32, bit_cast(t.add_result) & 0xffffffffu); CHECK_EQ(kArmNanUpper32, (bit_cast(t.sub_result) >> 32) & 0x7fffffff); CHECK_EQ(kArmNanLower32, bit_cast(t.sub_result) & 0xffffffffu); CHECK_EQ(kArmNanUpper32, (bit_cast(t.mul_result) >> 32) & 0x7fffffff); CHECK_EQ(kArmNanLower32, bit_cast(t.mul_result) & 0xffffffffu); CHECK_EQ(kArmNanUpper32, (bit_cast(t.div_result) >> 32) & 0x7fffffff); CHECK_EQ(kArmNanLower32, bit_cast(t.div_result) & 0xffffffffu); } #define CHECK_EQ_SPLAT(field, ex) \ CHECK_EQ(ex, t.field[0]); \ CHECK_EQ(ex, t.field[1]); \ CHECK_EQ(ex, t.field[2]); \ CHECK_EQ(ex, t.field[3]); #define CHECK_EQ_32X2(field, ex0, ex1) \ CHECK_EQ(ex0, t.field[0]); \ CHECK_EQ(ex1, t.field[1]); #define CHECK_EQ_32X4(field, ex0, ex1, ex2, ex3) \ CHECK_EQ(ex0, t.field[0]); \ CHECK_EQ(ex1, t.field[1]); \ CHECK_EQ(ex2, t.field[2]); \ CHECK_EQ(ex3, t.field[3]); #define CHECK_ESTIMATE(expected, tolerance, value) \ CHECK_LT((expected) - (tolerance), value); \ CHECK_GT((expected) + (tolerance), value); #define CHECK_ESTIMATE_SPLAT(field, ex, tol) \ CHECK_ESTIMATE(ex, tol, t.field[0]); \ CHECK_ESTIMATE(ex, tol, t.field[1]); \ CHECK_ESTIMATE(ex, tol, t.field[2]); \ CHECK_ESTIMATE(ex, tol, t.field[3]); #define INT32_TO_FLOAT(val) \ std::round(static_cast(bit_cast(val))) #define UINT32_TO_FLOAT(val) \ std::round(static_cast(bit_cast(val))) TEST(15) { // Test the Neon instructions. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { uint32_t src0; uint32_t src1; uint32_t src2; uint32_t src3; uint32_t src4; uint32_t src5; uint32_t src6; uint32_t src7; uint32_t dst0; uint32_t dst1; uint32_t dst2; uint32_t dst3; uint32_t dst4; uint32_t dst5; uint32_t dst6; uint32_t dst7; uint32_t srcA0; uint32_t srcA1; uint32_t dstA0; uint32_t dstA1; uint32_t dstA2; uint32_t dstA3; uint32_t lane_test[4]; uint64_t vmov_to_scalar1, vmov_to_scalar2; uint32_t vmov_from_scalar_s8, vmov_from_scalar_u8; uint32_t vmov_from_scalar_s16, vmov_from_scalar_u16; uint32_t vmov_from_scalar_32; uint32_t vmov[4], vmvn[4]; uint32_t vmovl_s8[4], vmovl_u16[4], vmovl_s32[4]; uint32_t vqmovn_s8[2], vqmovn_u16[2], vqmovn_s32[2]; int32_t vcvt_s32_f32[4]; uint32_t vcvt_u32_f32[4]; float vcvt_f32_s32[4], vcvt_f32_u32[4]; uint32_t vdup8[4], vdup16[4], vdup32[4]; float vabsf[4], vnegf[4]; uint32_t vabs_s8[4], vabs_s16[4], vabs_s32[4]; uint32_t vneg_s8[4], vneg_s16[4], vneg_s32[4]; uint32_t veor[4], vand[4], vorr[4]; float vdupf[4], vaddf[4], vpaddf[2], vsubf[4], vmulf[4]; uint32_t vdupf_16[2], vdupf_8[4]; uint32_t vmin_s8[4], vmin_u16[4], vmin_s32[4]; uint32_t vmax_s8[4], vmax_u16[4], vmax_s32[4]; uint32_t vpadd_i8[2], vpadd_i16[2], vpadd_i32[2]; uint32_t vpmin_s8[2], vpmin_u16[2], vpmin_s32[2]; uint32_t vpmax_s8[2], vpmax_u16[2], vpmax_s32[2]; uint32_t vadd8[4], vadd16[4], vadd32[4]; uint32_t vqadd_s8[4], vqadd_u16[4], vqadd_s32[4]; uint32_t vsub8[4], vsub16[4], vsub32[4]; uint32_t vqsub_u8[4], vqsub_s16[4], vqsub_u32[4]; uint32_t vmul8[4], vmul16[4], vmul32[4]; uint32_t vshl8[4], vshl16[4], vshl32[5]; uint32_t vshr_s8[4], vshr_u16[4], vshr_s32[5]; uint32_t vsli_64[2], vsri_64[2], vsli_32[2], vsri_32[2]; uint32_t vceq[4], vceqf[4], vcgef[4], vcgtf[4]; uint32_t vcge_s8[4], vcge_u16[4], vcge_s32[4]; uint32_t vcgt_s8[4], vcgt_u16[4], vcgt_s32[4]; float vrecpe[4], vrecps[4], vrsqrte[4], vrsqrts[4]; float vminf[4], vmaxf[4]; uint32_t vtst[4], vbsl[4]; uint32_t vext[4]; uint32_t vzip8a[4], vzip8b[4], vzip16a[4], vzip16b[4], vzip32a[4], vzip32b[4]; uint32_t vzipd8a[2], vzipd8b[2], vzipd16a[2], vzipd16b[2]; uint32_t vuzp8a[4], vuzp8b[4], vuzp16a[4], vuzp16b[4], vuzp32a[4], vuzp32b[4]; uint32_t vuzpd8a[2], vuzpd8b[2], vuzpd16a[2], vuzpd16b[2]; uint32_t vrev64_32[4], vrev64_16[4], vrev64_8[4]; uint32_t vrev32_16[4], vrev32_8[4], vrev16_8[4]; uint32_t vtrn8a[4], vtrn8b[4], vtrn16a[4], vtrn16b[4], vtrn32a[4], vtrn32b[4]; uint32_t vtrnd8a[2], vtrnd8b[2], vtrnd16a[2], vtrnd16b[2], vtrnd32a[2], vtrnd32b[2]; uint32_t vtbl[2], vtbx[2]; } T; T t; // Create a function that accepts &t, and loads, manipulates, and stores // the doubles, floats, and SIMD values. Assembler assm(isolate, nullptr, 0); if (CpuFeatures::IsSupported(NEON)) { CpuFeatureScope scope(&assm, NEON); __ stm(db_w, sp, r4.bit() | r5.bit() | lr.bit()); // Move 32 bytes with neon. __ add(r4, r0, Operand(static_cast(offsetof(T, src0)))); __ vld1(Neon8, NeonListOperand(d0, 4), NeonMemOperand(r4)); __ add(r4, r0, Operand(static_cast(offsetof(T, dst0)))); __ vst1(Neon8, NeonListOperand(d0, 4), NeonMemOperand(r4)); // Expand 8 bytes into 8 words(16 bits). __ add(r4, r0, Operand(static_cast(offsetof(T, srcA0)))); __ vld1(Neon8, NeonListOperand(d0), NeonMemOperand(r4)); __ vmovl(NeonU8, q0, d0); __ add(r4, r0, Operand(static_cast(offsetof(T, dstA0)))); __ vst1(Neon8, NeonListOperand(d0, 2), NeonMemOperand(r4)); // The same expansion, but with different source and destination registers. __ add(r4, r0, Operand(static_cast(offsetof(T, srcA0)))); __ vld1(Neon8, NeonListOperand(d1), NeonMemOperand(r4)); __ vmovl(NeonS8, q1, d1); __ add(r4, r0, Operand(static_cast(offsetof(T, vmovl_s8)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); __ vmovl(NeonU16, q2, d3); __ add(r4, r0, Operand(static_cast(offsetof(T, vmovl_u16)))); __ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4)); __ vmovl(NeonS32, q3, d4); __ add(r4, r0, Operand(static_cast(offsetof(T, vmovl_s32)))); __ vst1(Neon8, NeonListOperand(q3), NeonMemOperand(r4)); // Narrow what we widened. __ vqmovn(NeonU16, d0, q2); __ vstr(d0, r0, offsetof(T, vqmovn_u16)); __ vmov(d1, d0); __ vqmovn(NeonS8, d2, q0); __ vstr(d2, r0, offsetof(T, vqmovn_s8)); __ vqmovn(NeonS32, d4, q3); __ vstr(d4, r0, offsetof(T, vqmovn_s32)); // ARM core register to scalar. __ mov(r4, Operand(0xfffffff8)); __ vmov(d0, Double(0.0)); __ vmov(NeonS8, d0, 1, r4); __ vmov(NeonS16, d0, 1, r4); __ vmov(NeonS32, d0, 1, r4); __ vstr(d0, r0, offsetof(T, vmov_to_scalar1)); __ vmov(d0, Double(0.0)); __ vmov(NeonS8, d0, 3, r4); __ vmov(NeonS16, d0, 3, r4); __ vstr(d0, r0, offsetof(T, vmov_to_scalar2)); // Scalar to ARM core register. __ mov(r4, Operand(0xffffff00)); __ mov(r5, Operand(0xffffffff)); __ vmov(d0, r4, r5); __ vmov(NeonS8, r4, d0, 1); __ str(r4, MemOperand(r0, offsetof(T, vmov_from_scalar_s8))); __ vmov(NeonU8, r4, d0, 1); __ str(r4, MemOperand(r0, offsetof(T, vmov_from_scalar_u8))); __ vmov(NeonS16, r4, d0, 1); __ str(r4, MemOperand(r0, offsetof(T, vmov_from_scalar_s16))); __ vmov(NeonU16, r4, d0, 1); __ str(r4, MemOperand(r0, offsetof(T, vmov_from_scalar_u16))); __ vmov(NeonS32, r4, d0, 1); __ str(r4, MemOperand(r0, offsetof(T, vmov_from_scalar_32))); // vmov for q-registers. __ add(r4, r0, Operand(static_cast(offsetof(T, lane_test)))); __ vld1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); __ vmov(q1, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, vmov)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); // vmvn. __ add(r4, r0, Operand(static_cast(offsetof(T, lane_test)))); __ vld1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); __ vmvn(q1, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, vmvn)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); // vcvt for q-registers. __ vmov(s0, Float32(-1.5f)); __ vmov(s1, Float32(-1.0f)); __ vmov(s2, Float32(1.0f)); __ vmov(s3, Float32(1.5f)); __ vcvt_s32_f32(q1, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, vcvt_s32_f32)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); __ vcvt_u32_f32(q1, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, vcvt_u32_f32)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); __ mov(r4, Operand(kMinInt)); __ mov(r5, Operand(kMaxInt)); __ vmov(d0, r4, r5); __ mov(r4, Operand(kMaxUInt32)); __ mov(r5, Operand(kMinInt + 1)); __ vmov(d1, r4, r5); // q0 = [kMinInt, kMaxInt, kMaxUInt32, kMinInt + 1] __ vcvt_f32_s32(q1, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, vcvt_f32_s32)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); __ vcvt_f32_u32(q1, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, vcvt_f32_u32)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); // vdup (from register). __ mov(r4, Operand(0xa)); __ vdup(Neon8, q0, r4); __ vdup(Neon16, q1, r4); __ vdup(Neon32, q2, r4); __ add(r4, r0, Operand(static_cast(offsetof(T, vdup8)))); __ vst1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); __ add(r4, r0, Operand(static_cast(offsetof(T, vdup16)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); __ add(r4, r0, Operand(static_cast(offsetof(T, vdup32)))); __ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4)); // vdup (from scalar). __ vmov(s0, Float32(-1.0f)); __ vdup(Neon32, q1, d0, 0); __ add(r4, r0, Operand(static_cast(offsetof(T, vdupf)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); __ vdup(Neon16, d2, d0, 1); __ vstr(d2, r0, offsetof(T, vdupf_16)); __ vdup(Neon8, q1, d0, 3); __ add(r4, r0, Operand(static_cast(offsetof(T, vdupf_8)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); // vabs (float). __ vmov(s0, Float32(-1.0f)); __ vmov(s1, Float32(-0.0f)); __ vmov(s2, Float32(0.0f)); __ vmov(s3, Float32(1.0f)); __ vabs(q1, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, vabsf)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); // vneg (float). __ vneg(q1, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, vnegf)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); // vabs (integer). __ mov(r4, Operand(0x7f7f7f7f)); __ mov(r5, Operand(0x01010101)); __ vmov(d0, r4, r5); __ mov(r4, Operand(0xffffffff)); __ mov(r5, Operand(0x80808080)); __ vmov(d1, r4, r5); __ vabs(Neon8, q1, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, vabs_s8)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); __ vabs(Neon16, q1, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, vabs_s16)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); __ vabs(Neon32, q1, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, vabs_s32)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); // vneg (integer). __ vneg(Neon8, q1, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, vneg_s8)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); __ vneg(Neon16, q1, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, vneg_s16)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); __ vneg(Neon32, q1, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, vneg_s32)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); // veor. __ mov(r4, Operand(0xaa)); __ vdup(Neon16, q0, r4); __ mov(r4, Operand(0x55)); __ vdup(Neon16, q1, r4); __ veor(q1, q1, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, veor)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); // vand. __ mov(r4, Operand(0xff)); __ vdup(Neon16, q0, r4); __ mov(r4, Operand(0xfe)); __ vdup(Neon16, q1, r4); __ vand(q1, q1, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, vand)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); // vorr. __ mov(r4, Operand(0xaa)); __ vdup(Neon16, q0, r4); __ mov(r4, Operand(0x55)); __ vdup(Neon16, q1, r4); __ vorr(q1, q1, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, vorr)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); // vmin (float). __ vmov(s4, Float32(2.0f)); __ vdup(Neon32, q0, d2, 0); __ vmov(s4, Float32(1.0f)); __ vdup(Neon32, q1, d2, 0); __ vmin(q1, q1, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, vminf)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); // vmax (float). __ vmov(s4, Float32(2.0f)); __ vdup(Neon32, q0, d2, 0); __ vmov(s4, Float32(1.0f)); __ vdup(Neon32, q1, d2, 0); __ vmax(q1, q1, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, vmaxf)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); // vadd (float). __ vmov(s4, Float32(1.0f)); __ vdup(Neon32, q0, d2, 0); __ vdup(Neon32, q1, d2, 0); __ vadd(q1, q1, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, vaddf)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); // vpadd (float). __ vmov(s0, Float32(1.0f)); __ vmov(s1, Float32(2.0f)); __ vmov(s2, Float32(3.0f)); __ vmov(s3, Float32(4.0f)); __ vpadd(d2, d0, d1); __ vstr(d2, r0, offsetof(T, vpaddf)); // vsub (float). __ vmov(s4, Float32(2.0f)); __ vdup(Neon32, q0, d2, 0); __ vmov(s4, Float32(1.0f)); __ vdup(Neon32, q1, d2, 0); __ vsub(q1, q1, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, vsubf)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); // vmul (float). __ vmov(s4, Float32(2.0f)); __ vdup(Neon32, q0, d2, 0); __ vdup(Neon32, q1, d2, 0); __ vmul(q1, q1, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, vmulf)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); // vrecpe. __ vmov(s4, Float32(2.0f)); __ vdup(Neon32, q0, d2, 0); __ vrecpe(q1, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, vrecpe)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); // vrecps. __ vmov(s4, Float32(2.0f)); __ vdup(Neon32, q0, d2, 0); __ vmov(s4, Float32(1.5f)); __ vdup(Neon32, q1, d2, 0); __ vrecps(q1, q0, q1); __ add(r4, r0, Operand(static_cast(offsetof(T, vrecps)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); // vrsqrte. __ vmov(s4, Float32(4.0f)); __ vdup(Neon32, q0, d2, 0); __ vrsqrte(q1, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, vrsqrte)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); // vrsqrts. __ vmov(s4, Float32(2.0f)); __ vdup(Neon32, q0, d2, 0); __ vmov(s4, Float32(2.5f)); __ vdup(Neon32, q1, d2, 0); __ vrsqrts(q1, q0, q1); __ add(r4, r0, Operand(static_cast(offsetof(T, vrsqrts)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); // vceq (float). __ vmov(s4, Float32(1.0f)); __ vdup(Neon32, q0, d2, 0); __ vdup(Neon32, q1, d2, 0); __ vceq(q1, q1, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, vceqf)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); // vcge (float). __ vmov(s0, Float32(1.0f)); __ vmov(s1, Float32(-1.0f)); __ vmov(s2, Float32(-0.0f)); __ vmov(s3, Float32(0.0f)); __ vdup(Neon32, q1, d1, 1); __ vcge(q2, q1, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, vcgef)))); __ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4)); __ vcgt(q2, q1, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, vcgtf)))); __ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4)); // vmin/vmax integer. __ mov(r4, Operand(0x03)); __ vdup(Neon16, q0, r4); __ vdup(Neon8, q1, r4); __ vmin(NeonS8, q2, q0, q1); __ add(r4, r0, Operand(static_cast(offsetof(T, vmin_s8)))); __ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4)); __ vmax(NeonS8, q2, q0, q1); __ add(r4, r0, Operand(static_cast(offsetof(T, vmax_s8)))); __ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4)); __ mov(r4, Operand(0xff)); __ vdup(Neon16, q0, r4); __ vdup(Neon8, q1, r4); __ vmin(NeonU16, q2, q0, q1); __ add(r4, r0, Operand(static_cast(offsetof(T, vmin_u16)))); __ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4)); __ vmax(NeonU16, q2, q0, q1); __ add(r4, r0, Operand(static_cast(offsetof(T, vmax_u16)))); __ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4)); __ mov(r4, Operand(0xff)); __ vdup(Neon32, q0, r4); __ vdup(Neon8, q1, r4); __ vmin(NeonS32, q2, q0, q1); __ add(r4, r0, Operand(static_cast(offsetof(T, vmin_s32)))); __ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4)); __ vmax(NeonS32, q2, q0, q1); __ add(r4, r0, Operand(static_cast(offsetof(T, vmax_s32)))); __ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4)); // vpadd integer. __ mov(r4, Operand(0x03)); __ vdup(Neon16, q0, r4); __ vdup(Neon8, q1, r4); __ vpadd(Neon8, d0, d0, d2); __ vstr(d0, r0, offsetof(T, vpadd_i8)); __ vpadd(Neon16, d0, d0, d2); __ vstr(d0, r0, offsetof(T, vpadd_i16)); __ vpadd(Neon32, d0, d0, d2); __ vstr(d0, r0, offsetof(T, vpadd_i32)); // vpmin/vpmax integer. __ mov(r4, Operand(0x03)); __ vdup(Neon16, q0, r4); __ vdup(Neon8, q1, r4); __ vpmin(NeonS8, d4, d0, d2); __ vstr(d4, r0, offsetof(T, vpmin_s8)); __ vpmax(NeonS8, d4, d0, d2); __ vstr(d4, r0, offsetof(T, vpmax_s8)); __ mov(r4, Operand(0xffff)); __ vdup(Neon32, q0, r4); __ vdup(Neon16, q1, r4); __ vpmin(NeonU16, d4, d0, d2); __ vstr(d4, r0, offsetof(T, vpmin_u16)); __ vpmax(NeonU16, d4, d0, d2); __ vstr(d4, r0, offsetof(T, vpmax_u16)); __ mov(r4, Operand(0xff)); __ veor(q0, q0, q0); __ vmov(s0, r4); __ vdup(Neon8, q1, r4); __ vpmin(NeonS32, d4, d0, d2); __ vstr(d4, r0, offsetof(T, vpmin_s32)); __ vpmax(NeonS32, d4, d0, d2); __ vstr(d4, r0, offsetof(T, vpmax_s32)); // vadd (integer). __ mov(r4, Operand(0x81)); __ vdup(Neon8, q0, r4); __ mov(r4, Operand(0x82)); __ vdup(Neon8, q1, r4); __ vadd(Neon8, q1, q1, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, vadd8)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); __ mov(r4, Operand(0x8001)); __ vdup(Neon16, q0, r4); __ mov(r4, Operand(0x8002)); __ vdup(Neon16, q1, r4); __ vadd(Neon16, q1, q1, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, vadd16)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); __ mov(r4, Operand(0x80000001)); __ vdup(Neon32, q0, r4); __ mov(r4, Operand(0x80000002)); __ vdup(Neon32, q1, r4); __ vadd(Neon32, q1, q1, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, vadd32)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); // vqadd. __ mov(r4, Operand(0x81)); __ vdup(Neon8, q0, r4); __ mov(r4, Operand(0x82)); __ vdup(Neon8, q1, r4); __ vqadd(NeonS8, q1, q1, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, vqadd_s8)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); __ mov(r4, Operand(0x8000)); __ vdup(Neon16, q0, r4); __ vdup(Neon16, q1, r4); __ vqadd(NeonU16, q1, q1, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, vqadd_u16)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); __ mov(r4, Operand(0x80000001)); __ vdup(Neon32, q0, r4); __ mov(r4, Operand(0x80000002)); __ vdup(Neon32, q1, r4); __ vqadd(NeonS32, q1, q1, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, vqadd_s32)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); // vsub (integer). __ mov(r4, Operand(0x01)); __ vdup(Neon8, q0, r4); __ mov(r4, Operand(0x03)); __ vdup(Neon8, q1, r4); __ vsub(Neon8, q1, q0, q1); __ add(r4, r0, Operand(static_cast(offsetof(T, vsub8)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); __ mov(r4, Operand(0x0001)); __ vdup(Neon16, q0, r4); __ mov(r4, Operand(0x0003)); __ vdup(Neon16, q1, r4); __ vsub(Neon16, q1, q0, q1); __ add(r4, r0, Operand(static_cast(offsetof(T, vsub16)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); __ mov(r4, Operand(0x00000001)); __ vdup(Neon32, q0, r4); __ mov(r4, Operand(0x00000003)); __ vdup(Neon32, q1, r4); __ vsub(Neon32, q1, q0, q1); __ add(r4, r0, Operand(static_cast(offsetof(T, vsub32)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); // vqsub. __ mov(r4, Operand(0x7f)); __ vdup(Neon8, q0, r4); __ mov(r4, Operand(0x3f)); __ vdup(Neon8, q1, r4); __ vqsub(NeonU8, q1, q1, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, vqsub_u8)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); __ mov(r4, Operand(0x8000)); __ vdup(Neon16, q0, r4); __ mov(r4, Operand(0x7fff)); __ vdup(Neon16, q1, r4); __ vqsub(NeonS16, q1, q1, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, vqsub_s16)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); __ mov(r4, Operand(0x80000001)); __ vdup(Neon32, q0, r4); __ mov(r4, Operand(0x80000000)); __ vdup(Neon32, q1, r4); __ vqsub(NeonU32, q1, q1, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, vqsub_u32)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); // vmul (integer). __ mov(r4, Operand(0x02)); __ vdup(Neon8, q0, r4); __ vmul(Neon8, q1, q0, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, vmul8)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); __ mov(r4, Operand(0x0002)); __ vdup(Neon16, q0, r4); __ vmul(Neon16, q1, q0, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, vmul16)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); __ mov(r4, Operand(0x00000002)); __ vdup(Neon32, q0, r4); __ vmul(Neon32, q1, q0, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, vmul32)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); // vshl. __ mov(r4, Operand(0x55)); __ vdup(Neon8, q0, r4); __ vshl(NeonS8, q1, q0, 1); __ add(r4, r0, Operand(static_cast(offsetof(T, vshl8)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); __ vshl(NeonU16, q1, q0, 9); __ add(r4, r0, Operand(static_cast(offsetof(T, vshl16)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); __ vshl(NeonS32, q1, q0, 17); __ add(r4, r0, Operand(static_cast(offsetof(T, vshl32)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); // vshr.s, vshr.u. __ mov(r4, Operand(0x80)); __ vdup(Neon8, q0, r4); __ vshr(NeonS8, q1, q0, 1); __ add(r4, r0, Operand(static_cast(offsetof(T, vshr_s8)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); __ vshr(NeonU16, q1, q0, 9); __ add(r4, r0, Operand(static_cast(offsetof(T, vshr_u16)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); __ vshr(NeonS32, q1, q0, 17); __ add(r4, r0, Operand(static_cast(offsetof(T, vshr_s32)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); // vsli, vsri. __ mov(r4, Operand(0xffffffff)); __ mov(r5, Operand(0x1)); __ vmov(d0, r4, r5); __ vmov(d1, r5, r5); __ vsli(Neon64, d1, d0, 32); __ vstr(d1, r0, offsetof(T, vsli_64)); __ vmov(d0, r5, r4); __ vmov(d1, r5, r5); __ vsri(Neon64, d1, d0, 32); __ vstr(d1, r0, offsetof(T, vsri_64)); __ vmov(d0, r4, r5); __ vmov(d1, r5, r5); __ vsli(Neon32, d1, d0, 16); __ vstr(d1, r0, offsetof(T, vsli_32)); __ vmov(d0, r5, r4); __ vmov(d1, r5, r5); __ vsri(Neon32, d1, d0, 16); __ vstr(d1, r0, offsetof(T, vsri_32)); // vceq. __ mov(r4, Operand(0x03)); __ vdup(Neon8, q0, r4); __ vdup(Neon16, q1, r4); __ vceq(Neon8, q1, q0, q1); __ add(r4, r0, Operand(static_cast(offsetof(T, vceq)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); // vcge/vcgt (integer). __ mov(r4, Operand(0x03)); __ vdup(Neon16, q0, r4); __ vdup(Neon8, q1, r4); __ vcge(NeonS8, q2, q0, q1); __ add(r4, r0, Operand(static_cast(offsetof(T, vcge_s8)))); __ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4)); __ vcgt(NeonS8, q2, q0, q1); __ add(r4, r0, Operand(static_cast(offsetof(T, vcgt_s8)))); __ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4)); __ mov(r4, Operand(0xff)); __ vdup(Neon16, q0, r4); __ vdup(Neon8, q1, r4); __ vcge(NeonU16, q2, q0, q1); __ add(r4, r0, Operand(static_cast(offsetof(T, vcge_u16)))); __ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4)); __ vcgt(NeonU16, q2, q0, q1); __ add(r4, r0, Operand(static_cast(offsetof(T, vcgt_u16)))); __ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4)); __ mov(r4, Operand(0xff)); __ vdup(Neon32, q0, r4); __ vdup(Neon8, q1, r4); __ vcge(NeonS32, q2, q0, q1); __ add(r4, r0, Operand(static_cast(offsetof(T, vcge_s32)))); __ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4)); __ vcgt(NeonS32, q2, q0, q1); __ add(r4, r0, Operand(static_cast(offsetof(T, vcgt_s32)))); __ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4)); // vtst. __ mov(r4, Operand(0x03)); __ vdup(Neon8, q0, r4); __ mov(r4, Operand(0x02)); __ vdup(Neon16, q1, r4); __ vtst(Neon8, q1, q0, q1); __ add(r4, r0, Operand(static_cast(offsetof(T, vtst)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); // vbsl. __ mov(r4, Operand(0x00ff)); __ vdup(Neon16, q0, r4); __ mov(r4, Operand(0x01)); __ vdup(Neon8, q1, r4); __ mov(r4, Operand(0x02)); __ vdup(Neon8, q2, r4); __ vbsl(q0, q1, q2); __ add(r4, r0, Operand(static_cast(offsetof(T, vbsl)))); __ vst1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); // vext. __ add(r4, r0, Operand(static_cast(offsetof(T, lane_test)))); __ vld1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); __ vmov(q1, q0); __ vext(q2, q0, q1, 3); __ add(r4, r0, Operand(static_cast(offsetof(T, vext)))); __ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4)); // vzip (q-register). __ add(r4, r0, Operand(static_cast(offsetof(T, lane_test)))); __ vld1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); __ vmov(q1, q0); __ vzip(Neon8, q0, q1); __ add(r4, r0, Operand(static_cast(offsetof(T, vzip8a)))); __ vst1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); __ add(r4, r0, Operand(static_cast(offsetof(T, vzip8b)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); __ add(r4, r0, Operand(static_cast(offsetof(T, lane_test)))); __ vld1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); __ vmov(q1, q0); __ vzip(Neon16, q0, q1); __ add(r4, r0, Operand(static_cast(offsetof(T, vzip16a)))); __ vst1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); __ add(r4, r0, Operand(static_cast(offsetof(T, vzip16b)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); __ add(r4, r0, Operand(static_cast(offsetof(T, lane_test)))); __ vld1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); __ vmov(q1, q0); __ vzip(Neon32, q0, q1); __ add(r4, r0, Operand(static_cast(offsetof(T, vzip32a)))); __ vst1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); __ add(r4, r0, Operand(static_cast(offsetof(T, vzip32b)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); // vzip (d-register). __ vldr(d2, r0, offsetof(T, lane_test)); __ vmov(d0, d2); __ vmov(d1, d2); __ vzip(Neon8, d0, d1); __ vstr(d0, r0, offsetof(T, vzipd8a)); __ vstr(d1, r0, offsetof(T, vzipd8b)); __ vmov(d0, d2); __ vmov(d1, d2); __ vzip(Neon16, d0, d1); __ vstr(d0, r0, offsetof(T, vzipd16a)); __ vstr(d1, r0, offsetof(T, vzipd16b)); // vuzp (q-register). __ add(r4, r0, Operand(static_cast(offsetof(T, lane_test)))); __ vld1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); __ vmov(q1, q0); __ vuzp(Neon8, q0, q1); __ add(r4, r0, Operand(static_cast(offsetof(T, vuzp8a)))); __ vst1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); __ add(r4, r0, Operand(static_cast(offsetof(T, vuzp8b)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); __ add(r4, r0, Operand(static_cast(offsetof(T, lane_test)))); __ vld1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); __ vmov(q1, q0); __ vuzp(Neon16, q0, q1); __ add(r4, r0, Operand(static_cast(offsetof(T, vuzp16a)))); __ vst1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); __ add(r4, r0, Operand(static_cast(offsetof(T, vuzp16b)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); __ add(r4, r0, Operand(static_cast(offsetof(T, lane_test)))); __ vld1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); __ vmov(q1, q0); __ vuzp(Neon32, q0, q1); __ add(r4, r0, Operand(static_cast(offsetof(T, vuzp32a)))); __ vst1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); __ add(r4, r0, Operand(static_cast(offsetof(T, vuzp32b)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); // vuzp (d-register). __ vldr(d2, r0, offsetof(T, lane_test)); __ vmov(d0, d2); __ vmov(d1, d2); __ vuzp(Neon8, d0, d1); __ vstr(d0, r0, offsetof(T, vuzpd8a)); __ vstr(d1, r0, offsetof(T, vuzpd8b)); __ vmov(d0, d2); __ vmov(d1, d2); __ vuzp(Neon16, d0, d1); __ vstr(d0, r0, offsetof(T, vuzpd16a)); __ vstr(d1, r0, offsetof(T, vuzpd16b)); // vtrn (q-register). __ add(r4, r0, Operand(static_cast(offsetof(T, lane_test)))); __ vld1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); __ vmov(q1, q0); __ vtrn(Neon8, q0, q1); __ add(r4, r0, Operand(static_cast(offsetof(T, vtrn8a)))); __ vst1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); __ add(r4, r0, Operand(static_cast(offsetof(T, vtrn8b)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); __ add(r4, r0, Operand(static_cast(offsetof(T, lane_test)))); __ vld1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); __ vmov(q1, q0); __ vtrn(Neon16, q0, q1); __ add(r4, r0, Operand(static_cast(offsetof(T, vtrn16a)))); __ vst1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); __ add(r4, r0, Operand(static_cast(offsetof(T, vtrn16b)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); __ add(r4, r0, Operand(static_cast(offsetof(T, lane_test)))); __ vld1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); __ vmov(q1, q0); __ vtrn(Neon32, q0, q1); __ add(r4, r0, Operand(static_cast(offsetof(T, vtrn32a)))); __ vst1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); __ add(r4, r0, Operand(static_cast(offsetof(T, vtrn32b)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); // vtrn (d-register). __ vldr(d2, r0, offsetof(T, lane_test)); __ vmov(d0, d2); __ vmov(d1, d2); __ vtrn(Neon8, d0, d1); __ vstr(d0, r0, offsetof(T, vtrnd8a)); __ vstr(d1, r0, offsetof(T, vtrnd8b)); __ vmov(d0, d2); __ vmov(d1, d2); __ vtrn(Neon16, d0, d1); __ vstr(d0, r0, offsetof(T, vtrnd16a)); __ vstr(d1, r0, offsetof(T, vtrnd16b)); __ vmov(d0, d2); __ vmov(d1, d2); __ vtrn(Neon32, d0, d1); __ vstr(d0, r0, offsetof(T, vtrnd32a)); __ vstr(d1, r0, offsetof(T, vtrnd32b)); // vrev64/32/16 __ add(r4, r0, Operand(static_cast(offsetof(T, lane_test)))); __ vld1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); __ vrev64(Neon32, q1, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, vrev64_32)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); __ vrev64(Neon16, q1, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, vrev64_16)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); __ vrev64(Neon8, q1, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, vrev64_8)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); __ vrev32(Neon16, q1, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, vrev32_16)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); __ vrev32(Neon8, q1, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, vrev32_8)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); __ vrev16(Neon8, q1, q0); __ add(r4, r0, Operand(static_cast(offsetof(T, vrev16_8)))); __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); // vtb[l/x]. __ mov(r4, Operand(0x06040200)); __ mov(r5, Operand(0xff050301)); __ vmov(d2, r4, r5); // d2 = ff05030106040200 __ vtbl(d0, NeonListOperand(d2, 1), d2); __ vstr(d0, r0, offsetof(T, vtbl)); __ vtbx(d2, NeonListOperand(d2, 1), d2); __ vstr(d2, r0, offsetof(T, vtbx)); // Restore and return. __ ldm(ia_w, sp, r4.bit() | r5.bit() | pc.bit()); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef DEBUG OFStream os(stdout); code->Print(os); #endif F3 f = FUNCTION_CAST(code->entry()); t.src0 = 0x01020304; t.src1 = 0x11121314; t.src2 = 0x21222324; t.src3 = 0x31323334; t.src4 = 0x41424344; t.src5 = 0x51525354; t.src6 = 0x61626364; t.src7 = 0x71727374; t.dst0 = 0; t.dst1 = 0; t.dst2 = 0; t.dst3 = 0; t.dst4 = 0; t.dst5 = 0; t.dst6 = 0; t.dst7 = 0; t.srcA0 = 0x41424344; t.srcA1 = 0x81828384; t.dstA0 = 0; t.dstA1 = 0; t.dstA2 = 0; t.dstA3 = 0; t.lane_test[0] = 0x03020100; t.lane_test[1] = 0x07060504; t.lane_test[2] = 0x0b0a0908; t.lane_test[3] = 0x0f0e0d0c; Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); USE(dummy); CHECK_EQ(0x01020304u, t.dst0); CHECK_EQ(0x11121314u, t.dst1); CHECK_EQ(0x21222324u, t.dst2); CHECK_EQ(0x31323334u, t.dst3); CHECK_EQ(0x41424344u, t.dst4); CHECK_EQ(0x51525354u, t.dst5); CHECK_EQ(0x61626364u, t.dst6); CHECK_EQ(0x71727374u, t.dst7); CHECK_EQ(0x00430044u, t.dstA0); CHECK_EQ(0x00410042u, t.dstA1); CHECK_EQ(0x00830084u, t.dstA2); CHECK_EQ(0x00810082u, t.dstA3); CHECK_EQ_32X4(vmovl_s8, 0x00430044u, 0x00410042u, 0xff83ff84u, 0xff81ff82u); CHECK_EQ_32X4(vmovl_u16, 0xff84u, 0xff83u, 0xff82u, 0xff81u); CHECK_EQ_32X4(vmovl_s32, 0xff84u, 0x0u, 0xff83u, 0x0u); CHECK_EQ_32X2(vqmovn_u16, 0xff83ff84u, 0xff81ff82u); CHECK_EQ_32X2(vqmovn_s8, 0x81828384u, 0x81828384u); CHECK_EQ_32X2(vqmovn_s32, 0xff84u, 0xff83u); CHECK_EQ(0xfffffff8fff8f800u, t.vmov_to_scalar1); CHECK_EQ(0xfff80000f8000000u, t.vmov_to_scalar2); CHECK_EQ(0xFFFFFFFFu, t.vmov_from_scalar_s8); CHECK_EQ(0xFFu, t.vmov_from_scalar_u8); CHECK_EQ(0xFFFFFFFFu, t.vmov_from_scalar_s16); CHECK_EQ(0xFFFFu, t.vmov_from_scalar_u16); CHECK_EQ(0xFFFFFFFFu, t.vmov_from_scalar_32); CHECK_EQ_32X4(vmov, 0x03020100u, 0x07060504u, 0x0b0a0908u, 0x0f0e0d0cu); CHECK_EQ_32X4(vmvn, 0xfcfdfeffu, 0xf8f9fafbu, 0xf4f5f6f7u, 0xf0f1f2f3u); CHECK_EQ_SPLAT(vdup8, 0x0a0a0a0au); CHECK_EQ_SPLAT(vdup16, 0x000a000au); CHECK_EQ_SPLAT(vdup32, 0x0000000au); CHECK_EQ_SPLAT(vdupf, -1.0); // bit pattern is 0xbf800000. CHECK_EQ_32X2(vdupf_16, 0xbf80bf80u, 0xbf80bf80u); CHECK_EQ_SPLAT(vdupf_8, 0xbfbfbfbfu); // src: [-1, -1, 1, 1] CHECK_EQ_32X4(vcvt_s32_f32, -1, -1, 1, 1); CHECK_EQ_32X4(vcvt_u32_f32, 0u, 0u, 1u, 1u); // src: [kMinInt, kMaxInt, kMaxUInt32, kMinInt + 1] CHECK_EQ_32X4(vcvt_f32_s32, INT32_TO_FLOAT(kMinInt), INT32_TO_FLOAT(kMaxInt), INT32_TO_FLOAT(kMaxUInt32), INT32_TO_FLOAT(kMinInt + 1)); CHECK_EQ_32X4(vcvt_f32_u32, UINT32_TO_FLOAT(kMinInt), UINT32_TO_FLOAT(kMaxInt), UINT32_TO_FLOAT(kMaxUInt32), UINT32_TO_FLOAT(kMinInt + 1)); CHECK_EQ_32X4(vabsf, 1.0, 0.0, 0.0, 1.0); CHECK_EQ_32X4(vnegf, 1.0, 0.0, -0.0, -1.0); // src: [0x7f7f7f7f, 0x01010101, 0xffffffff, 0x80808080] CHECK_EQ_32X4(vabs_s8, 0x7f7f7f7fu, 0x01010101u, 0x01010101u, 0x80808080u); CHECK_EQ_32X4(vabs_s16, 0x7f7f7f7fu, 0x01010101u, 0x00010001u, 0x7f807f80u); CHECK_EQ_32X4(vabs_s32, 0x7f7f7f7fu, 0x01010101u, 0x00000001u, 0x7f7f7f80u); CHECK_EQ_32X4(vneg_s8, 0x81818181u, 0xffffffffu, 0x01010101u, 0x80808080u); CHECK_EQ_32X4(vneg_s16, 0x80818081u, 0xfefffeffu, 0x00010001u, 0x7f807f80u); CHECK_EQ_32X4(vneg_s32, 0x80808081u, 0xfefefeffu, 0x00000001u, 0x7f7f7f80u); CHECK_EQ_SPLAT(veor, 0x00ff00ffu); CHECK_EQ_SPLAT(vand, 0x00fe00feu); CHECK_EQ_SPLAT(vorr, 0x00ff00ffu); CHECK_EQ_SPLAT(vaddf, 2.0); CHECK_EQ_32X2(vpaddf, 3.0, 7.0); CHECK_EQ_SPLAT(vminf, 1.0); CHECK_EQ_SPLAT(vmaxf, 2.0); CHECK_EQ_SPLAT(vsubf, -1.0); CHECK_EQ_SPLAT(vmulf, 4.0); CHECK_ESTIMATE_SPLAT(vrecpe, 0.5f, 0.1f); // 1 / 2 CHECK_EQ_SPLAT(vrecps, -1.0f); // 2 - (2 * 1.5) CHECK_ESTIMATE_SPLAT(vrsqrte, 0.5f, 0.1f); // 1 / sqrt(4) CHECK_EQ_SPLAT(vrsqrts, -1.0f); // (3 - (2 * 2.5)) / 2 CHECK_EQ_SPLAT(vceqf, 0xffffffffu); // [0] >= [-1, 1, -0, 0] CHECK_EQ_32X4(vcgef, 0u, 0xffffffffu, 0xffffffffu, 0xffffffffu); CHECK_EQ_32X4(vcgtf, 0u, 0xffffffffu, 0u, 0u); // [0, 3, 0, 3, ...] and [3, 3, 3, 3, ...] CHECK_EQ_SPLAT(vmin_s8, 0x00030003u); CHECK_EQ_SPLAT(vmax_s8, 0x03030303u); // [0x00ff, 0x00ff, ...] and [0xffff, 0xffff, ...] CHECK_EQ_SPLAT(vmin_u16, 0x00ff00ffu); CHECK_EQ_SPLAT(vmax_u16, 0xffffffffu); // [0x000000ff, 0x000000ff, ...] and [0xffffffff, 0xffffffff, ...] CHECK_EQ_SPLAT(vmin_s32, 0xffffffffu); CHECK_EQ_SPLAT(vmax_s32, 0xffu); // [0, 3, 0, 3, ...] and [3, 3, 3, 3, ...] CHECK_EQ_32X2(vpadd_i8, 0x03030303u, 0x06060606u); CHECK_EQ_32X2(vpadd_i16, 0x0c0c0606u, 0x06060606u); CHECK_EQ_32X2(vpadd_i32, 0x12120c0cu, 0x06060606u); CHECK_EQ_32X2(vpmin_s8, 0x00000000u, 0x03030303u); CHECK_EQ_32X2(vpmax_s8, 0x03030303u, 0x03030303u); // [0, ffff, 0, ffff] and [ffff, ffff] CHECK_EQ_32X2(vpmin_u16, 0x00000000u, 0xffffffffu); CHECK_EQ_32X2(vpmax_u16, 0xffffffffu, 0xffffffffu); // [0x000000ff, 0x00000000u] and [0xffffffff, 0xffffffff, ...] CHECK_EQ_32X2(vpmin_s32, 0x00u, 0xffffffffu); CHECK_EQ_32X2(vpmax_s32, 0xffu, 0xffffffffu); CHECK_EQ_SPLAT(vadd8, 0x03030303u); CHECK_EQ_SPLAT(vadd16, 0x00030003u); CHECK_EQ_SPLAT(vadd32, 0x00000003u); CHECK_EQ_SPLAT(vqadd_s8, 0x80808080u); CHECK_EQ_SPLAT(vqadd_u16, 0xffffffffu); CHECK_EQ_SPLAT(vqadd_s32, 0x80000000u); CHECK_EQ_SPLAT(vqsub_u8, 0x00000000u); CHECK_EQ_SPLAT(vqsub_s16, 0x7fff7fffu); CHECK_EQ_SPLAT(vqsub_u32, 0x00000000u); CHECK_EQ_SPLAT(vsub8, 0xfefefefeu); CHECK_EQ_SPLAT(vsub16, 0xfffefffeu); CHECK_EQ_SPLAT(vsub32, 0xfffffffeu); CHECK_EQ_SPLAT(vmul8, 0x04040404u); CHECK_EQ_SPLAT(vmul16, 0x00040004u); CHECK_EQ_SPLAT(vmul32, 0x00000004u); CHECK_EQ_SPLAT(vshl8, 0xaaaaaaaau); CHECK_EQ_SPLAT(vshl16, 0xaa00aa00u); CHECK_EQ_SPLAT(vshl32, 0xaaaa0000u); CHECK_EQ_SPLAT(vshr_s8, 0xc0c0c0c0u); CHECK_EQ_SPLAT(vshr_u16, 0x00400040u); CHECK_EQ_SPLAT(vshr_s32, 0xffffc040u); CHECK_EQ_32X2(vsli_64, 0x01u, 0xffffffffu); CHECK_EQ_32X2(vsri_64, 0xffffffffu, 0x01u); CHECK_EQ_32X2(vsli_32, 0xffff0001u, 0x00010001u); CHECK_EQ_32X2(vsri_32, 0x00000000u, 0x0000ffffu); CHECK_EQ_SPLAT(vceq, 0x00ff00ffu); // [0, 3, 0, 3, ...] >= [3, 3, 3, 3, ...] CHECK_EQ_SPLAT(vcge_s8, 0x00ff00ffu); CHECK_EQ_SPLAT(vcgt_s8, 0u); // [0x00ff, 0x00ff, ...] >= [0xffff, 0xffff, ...] CHECK_EQ_SPLAT(vcge_u16, 0u); CHECK_EQ_SPLAT(vcgt_u16, 0u); // [0x000000ff, 0x000000ff, ...] >= [0xffffffff, 0xffffffff, ...] CHECK_EQ_SPLAT(vcge_s32, 0xffffffffu); CHECK_EQ_SPLAT(vcgt_s32, 0xffffffffu); CHECK_EQ_SPLAT(vtst, 0x00ff00ffu); CHECK_EQ_SPLAT(vbsl, 0x02010201u); CHECK_EQ_32X4(vext, 0x06050403u, 0x0a090807u, 0x0e0d0c0bu, 0x0201000fu); CHECK_EQ_32X4(vzip8a, 0x01010000u, 0x03030202u, 0x05050404u, 0x07070606u); CHECK_EQ_32X4(vzip8b, 0x09090808u, 0x0b0b0a0au, 0x0d0d0c0cu, 0x0f0f0e0eu); CHECK_EQ_32X4(vzip16a, 0x01000100u, 0x03020302u, 0x05040504u, 0x07060706u); CHECK_EQ_32X4(vzip16b, 0x09080908u, 0x0b0a0b0au, 0x0d0c0d0cu, 0x0f0e0f0eu); CHECK_EQ_32X4(vzip32a, 0x03020100u, 0x03020100u, 0x07060504u, 0x07060504u); CHECK_EQ_32X4(vzip32b, 0x0b0a0908u, 0x0b0a0908u, 0x0f0e0d0cu, 0x0f0e0d0cu); CHECK_EQ_32X2(vzipd8a, 0x01010000u, 0x03030202u); CHECK_EQ_32X2(vzipd8b, 0x05050404u, 0x07070606u); CHECK_EQ_32X2(vzipd16a, 0x01000100u, 0x03020302u); CHECK_EQ_32X2(vzipd16b, 0x05040504u, 0x07060706u); CHECK_EQ_32X4(vuzp8a, 0x06040200u, 0x0e0c0a08u, 0x06040200u, 0x0e0c0a08u); CHECK_EQ_32X4(vuzp8b, 0x07050301u, 0x0f0d0b09u, 0x07050301u, 0x0f0d0b09u); CHECK_EQ_32X4(vuzp16a, 0x05040100u, 0x0d0c0908u, 0x05040100u, 0x0d0c0908u); CHECK_EQ_32X4(vuzp16b, 0x07060302u, 0x0f0e0b0au, 0x07060302u, 0x0f0e0b0au); CHECK_EQ_32X4(vuzp32a, 0x03020100u, 0x0b0a0908u, 0x03020100u, 0x0b0a0908u); CHECK_EQ_32X4(vuzp32b, 0x07060504u, 0x0f0e0d0cu, 0x07060504u, 0x0f0e0d0cu); CHECK_EQ_32X2(vuzpd8a, 0x06040200u, 0x06040200u); CHECK_EQ_32X2(vuzpd8b, 0x07050301u, 0x07050301u); CHECK_EQ_32X2(vuzpd16a, 0x05040100u, 0x05040100u); CHECK_EQ_32X2(vuzpd16b, 0x07060302u, 0x07060302u); CHECK_EQ_32X4(vtrn8a, 0x02020000u, 0x06060404u, 0x0a0a0808u, 0x0e0e0c0cu); CHECK_EQ_32X4(vtrn8b, 0x03030101u, 0x07070505u, 0x0b0b0909u, 0x0f0f0d0du); CHECK_EQ_32X4(vtrn16a, 0x01000100u, 0x05040504u, 0x09080908u, 0x0d0c0d0cu); CHECK_EQ_32X4(vtrn16b, 0x03020302u, 0x07060706u, 0x0b0a0b0au, 0x0f0e0f0eu); CHECK_EQ_32X4(vtrn32a, 0x03020100u, 0x03020100u, 0x0b0a0908u, 0x0b0a0908u); CHECK_EQ_32X4(vtrn32b, 0x07060504u, 0x07060504u, 0x0f0e0d0cu, 0x0f0e0d0cu); CHECK_EQ_32X2(vtrnd8a, 0x02020000u, 0x06060404u); CHECK_EQ_32X2(vtrnd8b, 0x03030101u, 0x07070505u); CHECK_EQ_32X2(vtrnd16a, 0x01000100u, 0x05040504u); CHECK_EQ_32X2(vtrnd16b, 0x03020302u, 0x07060706u); CHECK_EQ_32X2(vtrnd32a, 0x03020100u, 0x03020100u); CHECK_EQ_32X2(vtrnd32b, 0x07060504u, 0x07060504u); // src: 0 1 2 3 4 5 6 7 8 9 a b c d e f (little endian) CHECK_EQ_32X4(vrev64_32, 0x07060504u, 0x03020100u, 0x0f0e0d0cu, 0x0b0a0908u); CHECK_EQ_32X4(vrev64_16, 0x05040706u, 0x01000302u, 0x0d0c0f0eu, 0x09080b0au); CHECK_EQ_32X4(vrev64_8, 0x04050607u, 0x00010203u, 0x0c0d0e0fu, 0x08090a0bu); CHECK_EQ_32X4(vrev32_16, 0x01000302u, 0x05040706u, 0x09080b0au, 0x0d0c0f0eu); CHECK_EQ_32X4(vrev32_8, 0x00010203u, 0x04050607u, 0x08090a0bu, 0x0c0d0e0fu); CHECK_EQ_32X4(vrev16_8, 0x02030001u, 0x06070405u, 0x0a0b0809u, 0x0e0f0c0du); CHECK_EQ(0x05010400u, t.vtbl[0]); CHECK_EQ(0x00030602u, t.vtbl[1]); CHECK_EQ(0x05010400u, t.vtbx[0]); CHECK_EQ(0xff030602u, t.vtbx[1]); } } TEST(16) { // Test the pkh, uxtb, uxtab and uxtb16 instructions. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { uint32_t src0; uint32_t src1; uint32_t src2; uint32_t dst0; uint32_t dst1; uint32_t dst2; uint32_t dst3; uint32_t dst4; } T; T t; // Create a function that accepts &t, and loads, manipulates, and stores // the doubles and floats. Assembler assm(isolate, nullptr, 0); __ stm(db_w, sp, r4.bit() | lr.bit()); __ mov(r4, Operand(r0)); __ ldr(r0, MemOperand(r4, offsetof(T, src0))); __ ldr(r1, MemOperand(r4, offsetof(T, src1))); __ pkhbt(r2, r0, Operand(r1, LSL, 8)); __ str(r2, MemOperand(r4, offsetof(T, dst0))); __ pkhtb(r2, r0, Operand(r1, ASR, 8)); __ str(r2, MemOperand(r4, offsetof(T, dst1))); __ uxtb16(r2, r0, 8); __ str(r2, MemOperand(r4, offsetof(T, dst2))); __ uxtb(r2, r0, 8); __ str(r2, MemOperand(r4, offsetof(T, dst3))); __ ldr(r0, MemOperand(r4, offsetof(T, src2))); __ uxtab(r2, r0, r1, 8); __ str(r2, MemOperand(r4, offsetof(T, dst4))); __ ldm(ia_w, sp, r4.bit() | pc.bit()); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef DEBUG OFStream os(stdout); code->Print(os); #endif F3 f = FUNCTION_CAST(code->entry()); t.src0 = 0x01020304; t.src1 = 0x11121314; t.src2 = 0x11121300; t.dst0 = 0; t.dst1 = 0; t.dst2 = 0; t.dst3 = 0; t.dst4 = 0; Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); USE(dummy); CHECK_EQ(0x12130304u, t.dst0); CHECK_EQ(0x01021213u, t.dst1); CHECK_EQ(0x00010003u, t.dst2); CHECK_EQ(0x00000003u, t.dst3); CHECK_EQ(0x11121313u, t.dst4); } TEST(17) { // Test generating labels at high addresses. // Should not assert. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); // Generate a code segment that will be longer than 2^24 bytes. Assembler assm(isolate, nullptr, 0); for (size_t i = 0; i < 1 << 23 ; ++i) { // 2^23 __ nop(); } Label target; __ b(eq, &target); __ bind(&target); __ nop(); } #define TEST_SDIV(expected_, dividend_, divisor_) \ t.dividend = dividend_; \ t.divisor = divisor_; \ t.result = 0; \ dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); \ CHECK_EQ(expected_, t.result); TEST(sdiv) { // Test the sdiv. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); Assembler assm(isolate, nullptr, 0); struct T { int32_t dividend; int32_t divisor; int32_t result; } t; if (CpuFeatures::IsSupported(SUDIV)) { CpuFeatureScope scope(&assm, SUDIV); __ mov(r3, Operand(r0)); __ ldr(r0, MemOperand(r3, offsetof(T, dividend))); __ ldr(r1, MemOperand(r3, offsetof(T, divisor))); __ sdiv(r2, r0, r1); __ str(r2, MemOperand(r3, offsetof(T, result))); __ bx(lr); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef DEBUG OFStream os(stdout); code->Print(os); #endif F3 f = FUNCTION_CAST(code->entry()); Object* dummy; TEST_SDIV(0, kMinInt, 0); TEST_SDIV(0, 1024, 0); TEST_SDIV(1073741824, kMinInt, -2); TEST_SDIV(kMinInt, kMinInt, -1); TEST_SDIV(5, 10, 2); TEST_SDIV(3, 10, 3); TEST_SDIV(-5, 10, -2); TEST_SDIV(-3, 10, -3); TEST_SDIV(-5, -10, 2); TEST_SDIV(-3, -10, 3); TEST_SDIV(5, -10, -2); TEST_SDIV(3, -10, -3); USE(dummy); } } #undef TEST_SDIV #define TEST_UDIV(expected_, dividend_, divisor_) \ t.dividend = dividend_; \ t.divisor = divisor_; \ t.result = 0; \ dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); \ CHECK_EQ(expected_, t.result); TEST(udiv) { // Test the udiv. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); Assembler assm(isolate, nullptr, 0); struct T { uint32_t dividend; uint32_t divisor; uint32_t result; } t; if (CpuFeatures::IsSupported(SUDIV)) { CpuFeatureScope scope(&assm, SUDIV); __ mov(r3, Operand(r0)); __ ldr(r0, MemOperand(r3, offsetof(T, dividend))); __ ldr(r1, MemOperand(r3, offsetof(T, divisor))); __ sdiv(r2, r0, r1); __ str(r2, MemOperand(r3, offsetof(T, result))); __ bx(lr); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef DEBUG OFStream os(stdout); code->Print(os); #endif F3 f = FUNCTION_CAST(code->entry()); Object* dummy; TEST_UDIV(0u, 0, 0); TEST_UDIV(0u, 1024, 0); TEST_UDIV(5u, 10, 2); TEST_UDIV(3u, 10, 3); USE(dummy); } } #undef TEST_UDIV TEST(smmla) { CcTest::InitializeVM(); Isolate* const isolate = CcTest::i_isolate(); HandleScope scope(isolate); RandomNumberGenerator* const rng = isolate->random_number_generator(); Assembler assm(isolate, nullptr, 0); __ smmla(r1, r1, r2, r3); __ str(r1, MemOperand(r0)); __ bx(lr); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif F3 f = FUNCTION_CAST(code->entry()); for (size_t i = 0; i < 128; ++i) { int32_t r, x = rng->NextInt(), y = rng->NextInt(), z = rng->NextInt(); Object* dummy = CALL_GENERATED_CODE(isolate, f, &r, x, y, z, 0); CHECK_EQ(base::bits::SignedMulHighAndAdd32(x, y, z), r); USE(dummy); } } TEST(smmul) { CcTest::InitializeVM(); Isolate* const isolate = CcTest::i_isolate(); HandleScope scope(isolate); RandomNumberGenerator* const rng = isolate->random_number_generator(); Assembler assm(isolate, nullptr, 0); __ smmul(r1, r1, r2); __ str(r1, MemOperand(r0)); __ bx(lr); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif F3 f = FUNCTION_CAST(code->entry()); for (size_t i = 0; i < 128; ++i) { int32_t r, x = rng->NextInt(), y = rng->NextInt(); Object* dummy = CALL_GENERATED_CODE(isolate, f, &r, x, y, 0, 0); CHECK_EQ(base::bits::SignedMulHigh32(x, y), r); USE(dummy); } } TEST(sxtb) { CcTest::InitializeVM(); Isolate* const isolate = CcTest::i_isolate(); HandleScope scope(isolate); RandomNumberGenerator* const rng = isolate->random_number_generator(); Assembler assm(isolate, nullptr, 0); __ sxtb(r1, r1); __ str(r1, MemOperand(r0)); __ bx(lr); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif F3 f = FUNCTION_CAST(code->entry()); for (size_t i = 0; i < 128; ++i) { int32_t r, x = rng->NextInt(); Object* dummy = CALL_GENERATED_CODE(isolate, f, &r, x, 0, 0, 0); CHECK_EQ(static_cast(static_cast(x)), r); USE(dummy); } } TEST(sxtab) { CcTest::InitializeVM(); Isolate* const isolate = CcTest::i_isolate(); HandleScope scope(isolate); RandomNumberGenerator* const rng = isolate->random_number_generator(); Assembler assm(isolate, nullptr, 0); __ sxtab(r1, r2, r1); __ str(r1, MemOperand(r0)); __ bx(lr); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif F3 f = FUNCTION_CAST(code->entry()); for (size_t i = 0; i < 128; ++i) { int32_t r, x = rng->NextInt(), y = rng->NextInt(); Object* dummy = CALL_GENERATED_CODE(isolate, f, &r, x, y, 0, 0); CHECK_EQ(static_cast(static_cast(x)) + y, r); USE(dummy); } } TEST(sxth) { CcTest::InitializeVM(); Isolate* const isolate = CcTest::i_isolate(); HandleScope scope(isolate); RandomNumberGenerator* const rng = isolate->random_number_generator(); Assembler assm(isolate, nullptr, 0); __ sxth(r1, r1); __ str(r1, MemOperand(r0)); __ bx(lr); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif F3 f = FUNCTION_CAST(code->entry()); for (size_t i = 0; i < 128; ++i) { int32_t r, x = rng->NextInt(); Object* dummy = CALL_GENERATED_CODE(isolate, f, &r, x, 0, 0, 0); CHECK_EQ(static_cast(static_cast(x)), r); USE(dummy); } } TEST(sxtah) { CcTest::InitializeVM(); Isolate* const isolate = CcTest::i_isolate(); HandleScope scope(isolate); RandomNumberGenerator* const rng = isolate->random_number_generator(); Assembler assm(isolate, nullptr, 0); __ sxtah(r1, r2, r1); __ str(r1, MemOperand(r0)); __ bx(lr); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif F3 f = FUNCTION_CAST(code->entry()); for (size_t i = 0; i < 128; ++i) { int32_t r, x = rng->NextInt(), y = rng->NextInt(); Object* dummy = CALL_GENERATED_CODE(isolate, f, &r, x, y, 0, 0); CHECK_EQ(static_cast(static_cast(x)) + y, r); USE(dummy); } } TEST(uxtb) { CcTest::InitializeVM(); Isolate* const isolate = CcTest::i_isolate(); HandleScope scope(isolate); RandomNumberGenerator* const rng = isolate->random_number_generator(); Assembler assm(isolate, nullptr, 0); __ uxtb(r1, r1); __ str(r1, MemOperand(r0)); __ bx(lr); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif F3 f = FUNCTION_CAST(code->entry()); for (size_t i = 0; i < 128; ++i) { int32_t r, x = rng->NextInt(); Object* dummy = CALL_GENERATED_CODE(isolate, f, &r, x, 0, 0, 0); CHECK_EQ(static_cast(static_cast(x)), r); USE(dummy); } } TEST(uxtab) { CcTest::InitializeVM(); Isolate* const isolate = CcTest::i_isolate(); HandleScope scope(isolate); RandomNumberGenerator* const rng = isolate->random_number_generator(); Assembler assm(isolate, nullptr, 0); __ uxtab(r1, r2, r1); __ str(r1, MemOperand(r0)); __ bx(lr); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif F3 f = FUNCTION_CAST(code->entry()); for (size_t i = 0; i < 128; ++i) { int32_t r, x = rng->NextInt(), y = rng->NextInt(); Object* dummy = CALL_GENERATED_CODE(isolate, f, &r, x, y, 0, 0); CHECK_EQ(static_cast(static_cast(x)) + y, r); USE(dummy); } } TEST(uxth) { CcTest::InitializeVM(); Isolate* const isolate = CcTest::i_isolate(); HandleScope scope(isolate); RandomNumberGenerator* const rng = isolate->random_number_generator(); Assembler assm(isolate, nullptr, 0); __ uxth(r1, r1); __ str(r1, MemOperand(r0)); __ bx(lr); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif F3 f = FUNCTION_CAST(code->entry()); for (size_t i = 0; i < 128; ++i) { int32_t r, x = rng->NextInt(); Object* dummy = CALL_GENERATED_CODE(isolate, f, &r, x, 0, 0, 0); CHECK_EQ(static_cast(static_cast(x)), r); USE(dummy); } } TEST(uxtah) { CcTest::InitializeVM(); Isolate* const isolate = CcTest::i_isolate(); HandleScope scope(isolate); RandomNumberGenerator* const rng = isolate->random_number_generator(); Assembler assm(isolate, nullptr, 0); __ uxtah(r1, r2, r1); __ str(r1, MemOperand(r0)); __ bx(lr); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif F3 f = FUNCTION_CAST(code->entry()); for (size_t i = 0; i < 128; ++i) { int32_t r, x = rng->NextInt(), y = rng->NextInt(); Object* dummy = CALL_GENERATED_CODE(isolate, f, &r, x, y, 0, 0); CHECK_EQ(static_cast(static_cast(x)) + y, r); USE(dummy); } } #define TEST_RBIT(expected_, input_) \ t.input = input_; \ t.result = 0; \ dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); \ CHECK_EQ(static_cast(expected_), t.result); TEST(rbit) { CcTest::InitializeVM(); Isolate* const isolate = CcTest::i_isolate(); HandleScope scope(isolate); Assembler assm(isolate, nullptr, 0); if (CpuFeatures::IsSupported(ARMv7)) { CpuFeatureScope scope(&assm, ARMv7); typedef struct { uint32_t input; uint32_t result; } T; T t; __ ldr(r1, MemOperand(r0, offsetof(T, input))); __ rbit(r1, r1); __ str(r1, MemOperand(r0, offsetof(T, result))); __ bx(lr); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif F3 f = FUNCTION_CAST(code->entry()); Object* dummy = nullptr; TEST_RBIT(0xffffffff, 0xffffffff); TEST_RBIT(0x00000000, 0x00000000); TEST_RBIT(0xffff0000, 0x0000ffff); TEST_RBIT(0xff00ff00, 0x00ff00ff); TEST_RBIT(0xf0f0f0f0, 0x0f0f0f0f); TEST_RBIT(0x1e6a2c48, 0x12345678); USE(dummy); } } TEST(code_relative_offset) { // Test extracting the offset of a label from the beginning of the code // in a register. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); // Initialize a code object that will contain the code. Handle code_object(isolate->heap()->undefined_value(), isolate); Assembler assm(isolate, nullptr, 0); Label start, target_away, target_faraway; __ stm(db_w, sp, r4.bit() | r5.bit() | lr.bit()); // r3 is used as the address zero, the test will crash when we load it. __ mov(r3, Operand::Zero()); // r5 will be a pointer to the start of the code. __ mov(r5, Operand(code_object)); __ mov_label_offset(r4, &start); __ mov_label_offset(r1, &target_faraway); __ str(r1, MemOperand(sp, kPointerSize, NegPreIndex)); __ mov_label_offset(r1, &target_away); // Jump straight to 'target_away' the first time and use the relative // position the second time. This covers the case when extracting the // position of a label which is linked. __ mov(r2, Operand::Zero()); __ bind(&start); __ cmp(r2, Operand::Zero()); __ b(eq, &target_away); __ add(pc, r5, r1); // Emit invalid instructions to push the label between 2^8 and 2^16 // instructions away. The test will crash if they are reached. for (int i = 0; i < (1 << 10); i++) { __ ldr(r3, MemOperand(r3)); } __ bind(&target_away); // This will be hit twice: r0 = r0 + 5 + 5. __ add(r0, r0, Operand(5)); __ ldr(r1, MemOperand(sp, kPointerSize, PostIndex), ne); __ add(pc, r5, r4, LeaveCC, ne); __ mov(r2, Operand(1)); __ b(&start); // Emit invalid instructions to push the label between 2^16 and 2^24 // instructions away. The test will crash if they are reached. for (int i = 0; i < (1 << 21); i++) { __ ldr(r3, MemOperand(r3)); } __ bind(&target_faraway); // r0 = r0 + 5 + 5 + 11 __ add(r0, r0, Operand(11)); __ ldm(ia_w, sp, r4.bit() | r5.bit() | pc.bit()); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, code_object); F1 f = FUNCTION_CAST(code->entry()); int res = reinterpret_cast(CALL_GENERATED_CODE(isolate, f, 21, 0, 0, 0, 0)); ::printf("f() = %d\n", res); CHECK_EQ(42, res); } TEST(msr_mrs) { // Test msr and mrs. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); Assembler assm(isolate, nullptr, 0); // Create a helper function: // void TestMsrMrs(uint32_t nzcv, // uint32_t * result_conditionals, // uint32_t * result_mrs); __ msr(CPSR_f, Operand(r0)); // Test that the condition flags have taken effect. __ mov(r3, Operand(0)); __ orr(r3, r3, Operand(1 << 31), LeaveCC, mi); // N __ orr(r3, r3, Operand(1 << 30), LeaveCC, eq); // Z __ orr(r3, r3, Operand(1 << 29), LeaveCC, cs); // C __ orr(r3, r3, Operand(1 << 28), LeaveCC, vs); // V __ str(r3, MemOperand(r1)); // Also check mrs, ignoring everything other than the flags. __ mrs(r3, CPSR); __ and_(r3, r3, Operand(kSpecialCondition)); __ str(r3, MemOperand(r2)); __ bx(lr); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef DEBUG OFStream os(stdout); code->Print(os); #endif F5 f = FUNCTION_CAST(code->entry()); Object* dummy = nullptr; USE(dummy); #define CHECK_MSR_MRS(n, z, c, v) \ do { \ uint32_t nzcv = (n << 31) | (z << 30) | (c << 29) | (v << 28); \ uint32_t result_conditionals = -1; \ uint32_t result_mrs = -1; \ dummy = CALL_GENERATED_CODE(isolate, f, nzcv, &result_conditionals, \ &result_mrs, 0, 0); \ CHECK_EQ(nzcv, result_conditionals); \ CHECK_EQ(nzcv, result_mrs); \ } while (0); // N Z C V CHECK_MSR_MRS(0, 0, 0, 0); CHECK_MSR_MRS(0, 0, 0, 1); CHECK_MSR_MRS(0, 0, 1, 0); CHECK_MSR_MRS(0, 0, 1, 1); CHECK_MSR_MRS(0, 1, 0, 0); CHECK_MSR_MRS(0, 1, 0, 1); CHECK_MSR_MRS(0, 1, 1, 0); CHECK_MSR_MRS(0, 1, 1, 1); CHECK_MSR_MRS(1, 0, 0, 0); CHECK_MSR_MRS(1, 0, 0, 1); CHECK_MSR_MRS(1, 0, 1, 0); CHECK_MSR_MRS(1, 0, 1, 1); CHECK_MSR_MRS(1, 1, 0, 0); CHECK_MSR_MRS(1, 1, 0, 1); CHECK_MSR_MRS(1, 1, 1, 0); CHECK_MSR_MRS(1, 1, 1, 1); #undef CHECK_MSR_MRS } TEST(ARMv8_float32_vrintX) { // Test the vrintX floating point instructions. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { float input; float ar; float nr; float mr; float pr; float zr; } T; T t; // Create a function that accepts &t, and loads, manipulates, and stores // the floats. Assembler assm(isolate, nullptr, 0); Label L, C; if (CpuFeatures::IsSupported(ARMv8)) { CpuFeatureScope scope(&assm, ARMv8); __ mov(ip, Operand(sp)); __ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit()); __ mov(r4, Operand(r0)); // Test vrinta __ vldr(s6, r4, offsetof(T, input)); __ vrinta(s5, s6); __ vstr(s5, r4, offsetof(T, ar)); // Test vrintn __ vldr(s6, r4, offsetof(T, input)); __ vrintn(s5, s6); __ vstr(s5, r4, offsetof(T, nr)); // Test vrintp __ vldr(s6, r4, offsetof(T, input)); __ vrintp(s5, s6); __ vstr(s5, r4, offsetof(T, pr)); // Test vrintm __ vldr(s6, r4, offsetof(T, input)); __ vrintm(s5, s6); __ vstr(s5, r4, offsetof(T, mr)); // Test vrintz __ vldr(s6, r4, offsetof(T, input)); __ vrintz(s5, s6); __ vstr(s5, r4, offsetof(T, zr)); __ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit()); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef DEBUG OFStream os(stdout); code->Print(os); #endif F3 f = FUNCTION_CAST(code->entry()); Object* dummy = nullptr; USE(dummy); #define CHECK_VRINT(input_val, ares, nres, mres, pres, zres) \ t.input = input_val; \ dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); \ CHECK_EQ(ares, t.ar); \ CHECK_EQ(nres, t.nr); \ CHECK_EQ(mres, t.mr); \ CHECK_EQ(pres, t.pr); \ CHECK_EQ(zres, t.zr); CHECK_VRINT(-0.5, -1.0, -0.0, -1.0, -0.0, -0.0) CHECK_VRINT(-0.6, -1.0, -1.0, -1.0, -0.0, -0.0) CHECK_VRINT(-1.1, -1.0, -1.0, -2.0, -1.0, -1.0) CHECK_VRINT(0.5, 1.0, 0.0, 0.0, 1.0, 0.0) CHECK_VRINT(0.6, 1.0, 1.0, 0.0, 1.0, 0.0) CHECK_VRINT(1.1, 1.0, 1.0, 1.0, 2.0, 1.0) float inf = std::numeric_limits::infinity(); CHECK_VRINT(inf, inf, inf, inf, inf, inf) CHECK_VRINT(-inf, -inf, -inf, -inf, -inf, -inf) CHECK_VRINT(-0.0, -0.0, -0.0, -0.0, -0.0, -0.0) // Check NaN propagation. float nan = std::numeric_limits::quiet_NaN(); t.input = nan; dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); CHECK_EQ(bit_cast(nan), bit_cast(t.ar)); CHECK_EQ(bit_cast(nan), bit_cast(t.nr)); CHECK_EQ(bit_cast(nan), bit_cast(t.mr)); CHECK_EQ(bit_cast(nan), bit_cast(t.pr)); CHECK_EQ(bit_cast(nan), bit_cast(t.zr)); #undef CHECK_VRINT } } TEST(ARMv8_vrintX) { // Test the vrintX floating point instructions. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { double input; double ar; double nr; double mr; double pr; double zr; } T; T t; // Create a function that accepts &t, and loads, manipulates, and stores // the doubles and floats. Assembler assm(isolate, nullptr, 0); Label L, C; if (CpuFeatures::IsSupported(ARMv8)) { CpuFeatureScope scope(&assm, ARMv8); __ mov(ip, Operand(sp)); __ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit()); __ mov(r4, Operand(r0)); // Test vrinta __ vldr(d6, r4, offsetof(T, input)); __ vrinta(d5, d6); __ vstr(d5, r4, offsetof(T, ar)); // Test vrintn __ vldr(d6, r4, offsetof(T, input)); __ vrintn(d5, d6); __ vstr(d5, r4, offsetof(T, nr)); // Test vrintp __ vldr(d6, r4, offsetof(T, input)); __ vrintp(d5, d6); __ vstr(d5, r4, offsetof(T, pr)); // Test vrintm __ vldr(d6, r4, offsetof(T, input)); __ vrintm(d5, d6); __ vstr(d5, r4, offsetof(T, mr)); // Test vrintz __ vldr(d6, r4, offsetof(T, input)); __ vrintz(d5, d6); __ vstr(d5, r4, offsetof(T, zr)); __ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit()); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef DEBUG OFStream os(stdout); code->Print(os); #endif F3 f = FUNCTION_CAST(code->entry()); Object* dummy = nullptr; USE(dummy); #define CHECK_VRINT(input_val, ares, nres, mres, pres, zres) \ t.input = input_val; \ dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); \ CHECK_EQ(ares, t.ar); \ CHECK_EQ(nres, t.nr); \ CHECK_EQ(mres, t.mr); \ CHECK_EQ(pres, t.pr); \ CHECK_EQ(zres, t.zr); CHECK_VRINT(-0.5, -1.0, -0.0, -1.0, -0.0, -0.0) CHECK_VRINT(-0.6, -1.0, -1.0, -1.0, -0.0, -0.0) CHECK_VRINT(-1.1, -1.0, -1.0, -2.0, -1.0, -1.0) CHECK_VRINT(0.5, 1.0, 0.0, 0.0, 1.0, 0.0) CHECK_VRINT(0.6, 1.0, 1.0, 0.0, 1.0, 0.0) CHECK_VRINT(1.1, 1.0, 1.0, 1.0, 2.0, 1.0) double inf = std::numeric_limits::infinity(); CHECK_VRINT(inf, inf, inf, inf, inf, inf) CHECK_VRINT(-inf, -inf, -inf, -inf, -inf, -inf) CHECK_VRINT(-0.0, -0.0, -0.0, -0.0, -0.0, -0.0) // Check NaN propagation. double nan = std::numeric_limits::quiet_NaN(); t.input = nan; dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); CHECK_EQ(bit_cast(nan), bit_cast(t.ar)); CHECK_EQ(bit_cast(nan), bit_cast(t.nr)); CHECK_EQ(bit_cast(nan), bit_cast(t.mr)); CHECK_EQ(bit_cast(nan), bit_cast(t.pr)); CHECK_EQ(bit_cast(nan), bit_cast(t.zr)); #undef CHECK_VRINT } } TEST(ARMv8_vsel) { // Test the vsel floating point instructions. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); Assembler assm(isolate, nullptr, 0); // Used to indicate whether a condition passed or failed. static constexpr float kResultPass = 1.0f; static constexpr float kResultFail = -kResultPass; struct ResultsF32 { float vseleq_; float vselge_; float vselgt_; float vselvs_; // The following conditions aren't architecturally supported, but the // assembler implements them by swapping the inputs. float vselne_; float vsellt_; float vselle_; float vselvc_; }; struct ResultsF64 { double vseleq_; double vselge_; double vselgt_; double vselvs_; // The following conditions aren't architecturally supported, but the // assembler implements them by swapping the inputs. double vselne_; double vsellt_; double vselle_; double vselvc_; }; if (CpuFeatures::IsSupported(ARMv8)) { CpuFeatureScope scope(&assm, ARMv8); // Create a helper function: // void TestVsel(uint32_t nzcv, // ResultsF32* results_f32, // ResultsF64* results_f64); __ msr(CPSR_f, Operand(r0)); __ vmov(s1, Float32(kResultPass)); __ vmov(s2, Float32(kResultFail)); __ vsel(eq, s0, s1, s2); __ vstr(s0, r1, offsetof(ResultsF32, vseleq_)); __ vsel(ge, s0, s1, s2); __ vstr(s0, r1, offsetof(ResultsF32, vselge_)); __ vsel(gt, s0, s1, s2); __ vstr(s0, r1, offsetof(ResultsF32, vselgt_)); __ vsel(vs, s0, s1, s2); __ vstr(s0, r1, offsetof(ResultsF32, vselvs_)); __ vsel(ne, s0, s1, s2); __ vstr(s0, r1, offsetof(ResultsF32, vselne_)); __ vsel(lt, s0, s1, s2); __ vstr(s0, r1, offsetof(ResultsF32, vsellt_)); __ vsel(le, s0, s1, s2); __ vstr(s0, r1, offsetof(ResultsF32, vselle_)); __ vsel(vc, s0, s1, s2); __ vstr(s0, r1, offsetof(ResultsF32, vselvc_)); __ vmov(d1, Double(kResultPass)); __ vmov(d2, Double(kResultFail)); __ vsel(eq, d0, d1, d2); __ vstr(d0, r2, offsetof(ResultsF64, vseleq_)); __ vsel(ge, d0, d1, d2); __ vstr(d0, r2, offsetof(ResultsF64, vselge_)); __ vsel(gt, d0, d1, d2); __ vstr(d0, r2, offsetof(ResultsF64, vselgt_)); __ vsel(vs, d0, d1, d2); __ vstr(d0, r2, offsetof(ResultsF64, vselvs_)); __ vsel(ne, d0, d1, d2); __ vstr(d0, r2, offsetof(ResultsF64, vselne_)); __ vsel(lt, d0, d1, d2); __ vstr(d0, r2, offsetof(ResultsF64, vsellt_)); __ vsel(le, d0, d1, d2); __ vstr(d0, r2, offsetof(ResultsF64, vselle_)); __ vsel(vc, d0, d1, d2); __ vstr(d0, r2, offsetof(ResultsF64, vselvc_)); __ bx(lr); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef DEBUG OFStream os(stdout); code->Print(os); #endif F5 f = FUNCTION_CAST(code->entry()); Object* dummy = nullptr; USE(dummy); STATIC_ASSERT(kResultPass == -kResultFail); #define CHECK_VSEL(n, z, c, v, vseleq, vselge, vselgt, vselvs) \ do { \ ResultsF32 results_f32; \ ResultsF64 results_f64; \ uint32_t nzcv = (n << 31) | (z << 30) | (c << 29) | (v << 28); \ dummy = CALL_GENERATED_CODE(isolate, f, nzcv, &results_f32, &results_f64, \ 0, 0); \ CHECK_EQ(vseleq, results_f32.vseleq_); \ CHECK_EQ(vselge, results_f32.vselge_); \ CHECK_EQ(vselgt, results_f32.vselgt_); \ CHECK_EQ(vselvs, results_f32.vselvs_); \ CHECK_EQ(-vseleq, results_f32.vselne_); \ CHECK_EQ(-vselge, results_f32.vsellt_); \ CHECK_EQ(-vselgt, results_f32.vselle_); \ CHECK_EQ(-vselvs, results_f32.vselvc_); \ CHECK_EQ(vseleq, results_f64.vseleq_); \ CHECK_EQ(vselge, results_f64.vselge_); \ CHECK_EQ(vselgt, results_f64.vselgt_); \ CHECK_EQ(vselvs, results_f64.vselvs_); \ CHECK_EQ(-vseleq, results_f64.vselne_); \ CHECK_EQ(-vselge, results_f64.vsellt_); \ CHECK_EQ(-vselgt, results_f64.vselle_); \ CHECK_EQ(-vselvs, results_f64.vselvc_); \ } while (0); // N Z C V vseleq vselge vselgt vselvs CHECK_VSEL(0, 0, 0, 0, kResultFail, kResultPass, kResultPass, kResultFail); CHECK_VSEL(0, 0, 0, 1, kResultFail, kResultFail, kResultFail, kResultPass); CHECK_VSEL(0, 0, 1, 0, kResultFail, kResultPass, kResultPass, kResultFail); CHECK_VSEL(0, 0, 1, 1, kResultFail, kResultFail, kResultFail, kResultPass); CHECK_VSEL(0, 1, 0, 0, kResultPass, kResultPass, kResultFail, kResultFail); CHECK_VSEL(0, 1, 0, 1, kResultPass, kResultFail, kResultFail, kResultPass); CHECK_VSEL(0, 1, 1, 0, kResultPass, kResultPass, kResultFail, kResultFail); CHECK_VSEL(0, 1, 1, 1, kResultPass, kResultFail, kResultFail, kResultPass); CHECK_VSEL(1, 0, 0, 0, kResultFail, kResultFail, kResultFail, kResultFail); CHECK_VSEL(1, 0, 0, 1, kResultFail, kResultPass, kResultPass, kResultPass); CHECK_VSEL(1, 0, 1, 0, kResultFail, kResultFail, kResultFail, kResultFail); CHECK_VSEL(1, 0, 1, 1, kResultFail, kResultPass, kResultPass, kResultPass); CHECK_VSEL(1, 1, 0, 0, kResultPass, kResultFail, kResultFail, kResultFail); CHECK_VSEL(1, 1, 0, 1, kResultPass, kResultPass, kResultFail, kResultPass); CHECK_VSEL(1, 1, 1, 0, kResultPass, kResultFail, kResultFail, kResultFail); CHECK_VSEL(1, 1, 1, 1, kResultPass, kResultPass, kResultFail, kResultPass); #undef CHECK_VSEL } } TEST(ARMv8_vminmax_f64) { // Test the vminnm and vmaxnm floating point instructions. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); Assembler assm(isolate, nullptr, 0); struct Inputs { double left_; double right_; }; struct Results { double vminnm_; double vmaxnm_; }; if (CpuFeatures::IsSupported(ARMv8)) { CpuFeatureScope scope(&assm, ARMv8); // Create a helper function: // void TestVminmax(const Inputs* inputs, // Results* results); __ vldr(d1, r0, offsetof(Inputs, left_)); __ vldr(d2, r0, offsetof(Inputs, right_)); __ vminnm(d0, d1, d2); __ vstr(d0, r1, offsetof(Results, vminnm_)); __ vmaxnm(d0, d1, d2); __ vstr(d0, r1, offsetof(Results, vmaxnm_)); __ bx(lr); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef DEBUG OFStream os(stdout); code->Print(os); #endif F4 f = FUNCTION_CAST(code->entry()); Object* dummy = nullptr; USE(dummy); #define CHECK_VMINMAX(left, right, vminnm, vmaxnm) \ do { \ Inputs inputs = {left, right}; \ Results results; \ dummy = CALL_GENERATED_CODE(isolate, f, &inputs, &results, 0, 0, 0); \ /* Use a bit_cast to correctly identify -0.0 and NaNs. */ \ CHECK_EQ(bit_cast(vminnm), bit_cast(results.vminnm_)); \ CHECK_EQ(bit_cast(vmaxnm), bit_cast(results.vmaxnm_)); \ } while (0); double nan_a = bit_cast(UINT64_C(0x7ff8000000000001)); double nan_b = bit_cast(UINT64_C(0x7ff8000000000002)); CHECK_VMINMAX(1.0, -1.0, -1.0, 1.0); CHECK_VMINMAX(-1.0, 1.0, -1.0, 1.0); CHECK_VMINMAX(0.0, -1.0, -1.0, 0.0); CHECK_VMINMAX(-1.0, 0.0, -1.0, 0.0); CHECK_VMINMAX(-0.0, -1.0, -1.0, -0.0); CHECK_VMINMAX(-1.0, -0.0, -1.0, -0.0); CHECK_VMINMAX(0.0, 1.0, 0.0, 1.0); CHECK_VMINMAX(1.0, 0.0, 0.0, 1.0); CHECK_VMINMAX(0.0, 0.0, 0.0, 0.0); CHECK_VMINMAX(-0.0, -0.0, -0.0, -0.0); CHECK_VMINMAX(-0.0, 0.0, -0.0, 0.0); CHECK_VMINMAX(0.0, -0.0, -0.0, 0.0); CHECK_VMINMAX(0.0, nan_a, 0.0, 0.0); CHECK_VMINMAX(nan_a, 0.0, 0.0, 0.0); CHECK_VMINMAX(nan_a, nan_b, nan_a, nan_a); CHECK_VMINMAX(nan_b, nan_a, nan_b, nan_b); #undef CHECK_VMINMAX } } TEST(ARMv8_vminmax_f32) { // Test the vminnm and vmaxnm floating point instructions. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); Assembler assm(isolate, nullptr, 0); struct Inputs { float left_; float right_; }; struct Results { float vminnm_; float vmaxnm_; }; if (CpuFeatures::IsSupported(ARMv8)) { CpuFeatureScope scope(&assm, ARMv8); // Create a helper function: // void TestVminmax(const Inputs* inputs, // Results* results); __ vldr(s1, r0, offsetof(Inputs, left_)); __ vldr(s2, r0, offsetof(Inputs, right_)); __ vminnm(s0, s1, s2); __ vstr(s0, r1, offsetof(Results, vminnm_)); __ vmaxnm(s0, s1, s2); __ vstr(s0, r1, offsetof(Results, vmaxnm_)); __ bx(lr); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef DEBUG OFStream os(stdout); code->Print(os); #endif F4 f = FUNCTION_CAST(code->entry()); Object* dummy = nullptr; USE(dummy); #define CHECK_VMINMAX(left, right, vminnm, vmaxnm) \ do { \ Inputs inputs = {left, right}; \ Results results; \ dummy = CALL_GENERATED_CODE(isolate, f, &inputs, &results, 0, 0, 0); \ /* Use a bit_cast to correctly identify -0.0 and NaNs. */ \ CHECK_EQ(bit_cast(vminnm), bit_cast(results.vminnm_)); \ CHECK_EQ(bit_cast(vmaxnm), bit_cast(results.vmaxnm_)); \ } while (0); float nan_a = bit_cast(UINT32_C(0x7fc00001)); float nan_b = bit_cast(UINT32_C(0x7fc00002)); CHECK_VMINMAX(1.0f, -1.0f, -1.0f, 1.0f); CHECK_VMINMAX(-1.0f, 1.0f, -1.0f, 1.0f); CHECK_VMINMAX(0.0f, -1.0f, -1.0f, 0.0f); CHECK_VMINMAX(-1.0f, 0.0f, -1.0f, 0.0f); CHECK_VMINMAX(-0.0f, -1.0f, -1.0f, -0.0f); CHECK_VMINMAX(-1.0f, -0.0f, -1.0f, -0.0f); CHECK_VMINMAX(0.0f, 1.0f, 0.0f, 1.0f); CHECK_VMINMAX(1.0f, 0.0f, 0.0f, 1.0f); CHECK_VMINMAX(0.0f, 0.0f, 0.0f, 0.0f); CHECK_VMINMAX(-0.0f, -0.0f, -0.0f, -0.0f); CHECK_VMINMAX(-0.0f, 0.0f, -0.0f, 0.0f); CHECK_VMINMAX(0.0f, -0.0f, -0.0f, 0.0f); CHECK_VMINMAX(0.0f, nan_a, 0.0f, 0.0f); CHECK_VMINMAX(nan_a, 0.0f, 0.0f, 0.0f); CHECK_VMINMAX(nan_a, nan_b, nan_a, nan_a); CHECK_VMINMAX(nan_b, nan_a, nan_b, nan_b); #undef CHECK_VMINMAX } } template static F4 GenerateMacroFloatMinMax(MacroAssembler& assm) { T a = T::from_code(0); // d0/s0 T b = T::from_code(1); // d1/s1 T c = T::from_code(2); // d2/s2 // Create a helper function: // void TestFloatMinMax(const Inputs* inputs, // Results* results); Label ool_min_abc, ool_min_aab, ool_min_aba; Label ool_max_abc, ool_max_aab, ool_max_aba; Label done_min_abc, done_min_aab, done_min_aba; Label done_max_abc, done_max_aab, done_max_aba; // a = min(b, c); __ vldr(b, r0, offsetof(Inputs, left_)); __ vldr(c, r0, offsetof(Inputs, right_)); __ FloatMin(a, b, c, &ool_min_abc); __ bind(&done_min_abc); __ vstr(a, r1, offsetof(Results, min_abc_)); // a = min(a, b); __ vldr(a, r0, offsetof(Inputs, left_)); __ vldr(b, r0, offsetof(Inputs, right_)); __ FloatMin(a, a, b, &ool_min_aab); __ bind(&done_min_aab); __ vstr(a, r1, offsetof(Results, min_aab_)); // a = min(b, a); __ vldr(b, r0, offsetof(Inputs, left_)); __ vldr(a, r0, offsetof(Inputs, right_)); __ FloatMin(a, b, a, &ool_min_aba); __ bind(&done_min_aba); __ vstr(a, r1, offsetof(Results, min_aba_)); // a = max(b, c); __ vldr(b, r0, offsetof(Inputs, left_)); __ vldr(c, r0, offsetof(Inputs, right_)); __ FloatMax(a, b, c, &ool_max_abc); __ bind(&done_max_abc); __ vstr(a, r1, offsetof(Results, max_abc_)); // a = max(a, b); __ vldr(a, r0, offsetof(Inputs, left_)); __ vldr(b, r0, offsetof(Inputs, right_)); __ FloatMax(a, a, b, &ool_max_aab); __ bind(&done_max_aab); __ vstr(a, r1, offsetof(Results, max_aab_)); // a = max(b, a); __ vldr(b, r0, offsetof(Inputs, left_)); __ vldr(a, r0, offsetof(Inputs, right_)); __ FloatMax(a, b, a, &ool_max_aba); __ bind(&done_max_aba); __ vstr(a, r1, offsetof(Results, max_aba_)); __ bx(lr); // Generate out-of-line cases. __ bind(&ool_min_abc); __ FloatMinOutOfLine(a, b, c); __ b(&done_min_abc); __ bind(&ool_min_aab); __ FloatMinOutOfLine(a, a, b); __ b(&done_min_aab); __ bind(&ool_min_aba); __ FloatMinOutOfLine(a, b, a); __ b(&done_min_aba); __ bind(&ool_max_abc); __ FloatMaxOutOfLine(a, b, c); __ b(&done_max_abc); __ bind(&ool_max_aab); __ FloatMaxOutOfLine(a, a, b); __ b(&done_max_aab); __ bind(&ool_max_aba); __ FloatMaxOutOfLine(a, b, a); __ b(&done_max_aba); CodeDesc desc; assm.GetCode(assm.isolate(), &desc); Handle code = assm.isolate()->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef DEBUG OFStream os(stdout); code->Print(os); #endif return FUNCTION_CAST(code->entry()); } TEST(macro_float_minmax_f64) { // Test the FloatMin and FloatMax macros. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, CodeObjectRequired::kYes); struct Inputs { double left_; double right_; }; struct Results { // Check all register aliasing possibilities in order to exercise all // code-paths in the macro assembler. double min_abc_; double min_aab_; double min_aba_; double max_abc_; double max_aab_; double max_aba_; }; F4 f = GenerateMacroFloatMinMax(assm); Object* dummy = nullptr; USE(dummy); #define CHECK_MINMAX(left, right, min, max) \ do { \ Inputs inputs = {left, right}; \ Results results; \ dummy = CALL_GENERATED_CODE(isolate, f, &inputs, &results, 0, 0, 0); \ /* Use a bit_cast to correctly identify -0.0 and NaNs. */ \ CHECK_EQ(bit_cast(min), bit_cast(results.min_abc_)); \ CHECK_EQ(bit_cast(min), bit_cast(results.min_aab_)); \ CHECK_EQ(bit_cast(min), bit_cast(results.min_aba_)); \ CHECK_EQ(bit_cast(max), bit_cast(results.max_abc_)); \ CHECK_EQ(bit_cast(max), bit_cast(results.max_aab_)); \ CHECK_EQ(bit_cast(max), bit_cast(results.max_aba_)); \ } while (0) double nan_a = bit_cast(UINT64_C(0x7ff8000000000001)); double nan_b = bit_cast(UINT64_C(0x7ff8000000000002)); CHECK_MINMAX(1.0, -1.0, -1.0, 1.0); CHECK_MINMAX(-1.0, 1.0, -1.0, 1.0); CHECK_MINMAX(0.0, -1.0, -1.0, 0.0); CHECK_MINMAX(-1.0, 0.0, -1.0, 0.0); CHECK_MINMAX(-0.0, -1.0, -1.0, -0.0); CHECK_MINMAX(-1.0, -0.0, -1.0, -0.0); CHECK_MINMAX(0.0, 1.0, 0.0, 1.0); CHECK_MINMAX(1.0, 0.0, 0.0, 1.0); CHECK_MINMAX(0.0, 0.0, 0.0, 0.0); CHECK_MINMAX(-0.0, -0.0, -0.0, -0.0); CHECK_MINMAX(-0.0, 0.0, -0.0, 0.0); CHECK_MINMAX(0.0, -0.0, -0.0, 0.0); CHECK_MINMAX(0.0, nan_a, nan_a, nan_a); CHECK_MINMAX(nan_a, 0.0, nan_a, nan_a); CHECK_MINMAX(nan_a, nan_b, nan_a, nan_a); CHECK_MINMAX(nan_b, nan_a, nan_b, nan_b); #undef CHECK_MINMAX } TEST(macro_float_minmax_f32) { // Test the FloatMin and FloatMax macros. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, CodeObjectRequired::kYes); struct Inputs { float left_; float right_; }; struct Results { // Check all register aliasing possibilities in order to exercise all // code-paths in the macro assembler. float min_abc_; float min_aab_; float min_aba_; float max_abc_; float max_aab_; float max_aba_; }; F4 f = GenerateMacroFloatMinMax(assm); Object* dummy = nullptr; USE(dummy); #define CHECK_MINMAX(left, right, min, max) \ do { \ Inputs inputs = {left, right}; \ Results results; \ dummy = CALL_GENERATED_CODE(isolate, f, &inputs, &results, 0, 0, 0); \ /* Use a bit_cast to correctly identify -0.0 and NaNs. */ \ CHECK_EQ(bit_cast(min), bit_cast(results.min_abc_)); \ CHECK_EQ(bit_cast(min), bit_cast(results.min_aab_)); \ CHECK_EQ(bit_cast(min), bit_cast(results.min_aba_)); \ CHECK_EQ(bit_cast(max), bit_cast(results.max_abc_)); \ CHECK_EQ(bit_cast(max), bit_cast(results.max_aab_)); \ CHECK_EQ(bit_cast(max), bit_cast(results.max_aba_)); \ } while (0) float nan_a = bit_cast(UINT32_C(0x7fc00001)); float nan_b = bit_cast(UINT32_C(0x7fc00002)); CHECK_MINMAX(1.0f, -1.0f, -1.0f, 1.0f); CHECK_MINMAX(-1.0f, 1.0f, -1.0f, 1.0f); CHECK_MINMAX(0.0f, -1.0f, -1.0f, 0.0f); CHECK_MINMAX(-1.0f, 0.0f, -1.0f, 0.0f); CHECK_MINMAX(-0.0f, -1.0f, -1.0f, -0.0f); CHECK_MINMAX(-1.0f, -0.0f, -1.0f, -0.0f); CHECK_MINMAX(0.0f, 1.0f, 0.0f, 1.0f); CHECK_MINMAX(1.0f, 0.0f, 0.0f, 1.0f); CHECK_MINMAX(0.0f, 0.0f, 0.0f, 0.0f); CHECK_MINMAX(-0.0f, -0.0f, -0.0f, -0.0f); CHECK_MINMAX(-0.0f, 0.0f, -0.0f, 0.0f); CHECK_MINMAX(0.0f, -0.0f, -0.0f, 0.0f); CHECK_MINMAX(0.0f, nan_a, nan_a, nan_a); CHECK_MINMAX(nan_a, 0.0f, nan_a, nan_a); CHECK_MINMAX(nan_a, nan_b, nan_a, nan_a); CHECK_MINMAX(nan_b, nan_a, nan_b, nan_b); #undef CHECK_MINMAX } TEST(unaligned_loads) { // All supported ARM targets allow unaligned accesses. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { uint32_t ldrh; uint32_t ldrsh; uint32_t ldr; } T; T t; Assembler assm(isolate, nullptr, 0); __ ldrh(ip, MemOperand(r1, r2)); __ str(ip, MemOperand(r0, offsetof(T, ldrh))); __ ldrsh(ip, MemOperand(r1, r2)); __ str(ip, MemOperand(r0, offsetof(T, ldrsh))); __ ldr(ip, MemOperand(r1, r2)); __ str(ip, MemOperand(r0, offsetof(T, ldr))); __ bx(lr); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef DEBUG OFStream os(stdout); code->Print(os); #endif F4 f = FUNCTION_CAST(code->entry()); Object* dummy = nullptr; USE(dummy); #ifndef V8_TARGET_LITTLE_ENDIAN #error This test assumes a little-endian layout. #endif uint64_t data = UINT64_C(0x84838281807f7e7d); dummy = CALL_GENERATED_CODE(isolate, f, &t, &data, 0, 0, 0); CHECK_EQ(0x00007e7du, t.ldrh); CHECK_EQ(0x00007e7du, t.ldrsh); CHECK_EQ(0x807f7e7du, t.ldr); dummy = CALL_GENERATED_CODE(isolate, f, &t, &data, 1, 0, 0); CHECK_EQ(0x00007f7eu, t.ldrh); CHECK_EQ(0x00007f7eu, t.ldrsh); CHECK_EQ(0x81807f7eu, t.ldr); dummy = CALL_GENERATED_CODE(isolate, f, &t, &data, 2, 0, 0); CHECK_EQ(0x0000807fu, t.ldrh); CHECK_EQ(0xffff807fu, t.ldrsh); CHECK_EQ(0x8281807fu, t.ldr); dummy = CALL_GENERATED_CODE(isolate, f, &t, &data, 3, 0, 0); CHECK_EQ(0x00008180u, t.ldrh); CHECK_EQ(0xffff8180u, t.ldrsh); CHECK_EQ(0x83828180u, t.ldr); } TEST(unaligned_stores) { // All supported ARM targets allow unaligned accesses. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); Assembler assm(isolate, nullptr, 0); __ strh(r3, MemOperand(r0, r2)); __ str(r3, MemOperand(r1, r2)); __ bx(lr); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef DEBUG OFStream os(stdout); code->Print(os); #endif F4 f = FUNCTION_CAST(code->entry()); Object* dummy = nullptr; USE(dummy); #ifndef V8_TARGET_LITTLE_ENDIAN #error This test assumes a little-endian layout. #endif { uint64_t strh = 0; uint64_t str = 0; dummy = CALL_GENERATED_CODE(isolate, f, &strh, &str, 0, 0xfedcba98, 0); CHECK_EQ(UINT64_C(0x000000000000ba98), strh); CHECK_EQ(UINT64_C(0x00000000fedcba98), str); } { uint64_t strh = 0; uint64_t str = 0; dummy = CALL_GENERATED_CODE(isolate, f, &strh, &str, 1, 0xfedcba98, 0); CHECK_EQ(UINT64_C(0x0000000000ba9800), strh); CHECK_EQ(UINT64_C(0x000000fedcba9800), str); } { uint64_t strh = 0; uint64_t str = 0; dummy = CALL_GENERATED_CODE(isolate, f, &strh, &str, 2, 0xfedcba98, 0); CHECK_EQ(UINT64_C(0x00000000ba980000), strh); CHECK_EQ(UINT64_C(0x0000fedcba980000), str); } { uint64_t strh = 0; uint64_t str = 0; dummy = CALL_GENERATED_CODE(isolate, f, &strh, &str, 3, 0xfedcba98, 0); CHECK_EQ(UINT64_C(0x000000ba98000000), strh); CHECK_EQ(UINT64_C(0x00fedcba98000000), str); } } TEST(vswp) { if (!CpuFeatures::IsSupported(NEON)) return; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); Assembler assm(isolate, nullptr, 0); typedef struct { uint64_t vswp_d0; uint64_t vswp_d1; uint64_t vswp_d30; uint64_t vswp_d31; uint32_t vswp_q4[4]; uint32_t vswp_q5[4]; } T; T t; __ stm(db_w, sp, r4.bit() | r5.bit() | r6.bit() | r7.bit() | lr.bit()); uint64_t one = bit_cast(1.0); __ mov(r5, Operand(one >> 32)); __ mov(r4, Operand(one & 0xffffffff)); uint64_t minus_one = bit_cast(-1.0); __ mov(r7, Operand(minus_one >> 32)); __ mov(r6, Operand(minus_one & 0xffffffff)); __ vmov(d0, r4, r5); // d0 = 1.0 __ vmov(d1, r6, r7); // d1 = -1.0 __ vswp(d0, d1); __ vstr(d0, r0, offsetof(T, vswp_d0)); __ vstr(d1, r0, offsetof(T, vswp_d1)); if (CpuFeatures::IsSupported(VFP32DREGS)) { __ vmov(d30, r4, r5); // d30 = 1.0 __ vmov(d31, r6, r7); // d31 = -1.0 __ vswp(d30, d31); __ vstr(d30, r0, offsetof(T, vswp_d30)); __ vstr(d31, r0, offsetof(T, vswp_d31)); } // q-register swap. const uint32_t test_1 = 0x01234567; const uint32_t test_2 = 0x89abcdef; __ mov(r4, Operand(test_1)); __ mov(r5, Operand(test_2)); __ vdup(Neon32, q4, r4); __ vdup(Neon32, q5, r5); __ vswp(q4, q5); __ add(r6, r0, Operand(static_cast(offsetof(T, vswp_q4)))); __ vst1(Neon8, NeonListOperand(q4), NeonMemOperand(r6)); __ add(r6, r0, Operand(static_cast(offsetof(T, vswp_q5)))); __ vst1(Neon8, NeonListOperand(q5), NeonMemOperand(r6)); __ ldm(ia_w, sp, r4.bit() | r5.bit() | r6.bit() | r7.bit() | pc.bit()); __ bx(lr); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef DEBUG OFStream os(stdout); code->Print(os); #endif F3 f = FUNCTION_CAST(code->entry()); Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); USE(dummy); CHECK_EQ(minus_one, t.vswp_d0); CHECK_EQ(one, t.vswp_d1); if (CpuFeatures::IsSupported(VFP32DREGS)) { CHECK_EQ(minus_one, t.vswp_d30); CHECK_EQ(one, t.vswp_d31); } CHECK_EQ(t.vswp_q4[0], test_2); CHECK_EQ(t.vswp_q4[1], test_2); CHECK_EQ(t.vswp_q4[2], test_2); CHECK_EQ(t.vswp_q4[3], test_2); CHECK_EQ(t.vswp_q5[0], test_1); CHECK_EQ(t.vswp_q5[1], test_1); CHECK_EQ(t.vswp_q5[2], test_1); CHECK_EQ(t.vswp_q5[3], test_1); } TEST(regress4292_b) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); Assembler assm(isolate, nullptr, 0); Label end; __ mov(r0, Operand(isolate->factory()->infinity_value())); for (int i = 0; i < 1020; ++i) { __ b(hi, &end); } __ bind(&end); } TEST(regress4292_bl) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); Assembler assm(isolate, nullptr, 0); Label end; __ mov(r0, Operand(isolate->factory()->infinity_value())); for (int i = 0; i < 1020; ++i) { __ bl(hi, &end); } __ bind(&end); } TEST(regress4292_blx) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); Assembler assm(isolate, nullptr, 0); Label end; __ mov(r0, Operand(isolate->factory()->infinity_value())); for (int i = 0; i < 1020; ++i) { __ blx(&end); } __ bind(&end); } TEST(regress4292_CheckConstPool) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); Assembler assm(isolate, nullptr, 0); __ mov(r0, Operand(isolate->factory()->infinity_value())); __ BlockConstPoolFor(1019); for (int i = 0; i < 1019; ++i) __ nop(); __ vldr(d0, MemOperand(r0, 0)); } TEST(use_scratch_register_scope) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); Assembler assm(isolate, nullptr, 0); // The assembler should have ip as a scratch by default. CHECK_EQ(*assm.GetScratchRegisterList(), ip.bit()); { UseScratchRegisterScope temps(&assm); CHECK_EQ(*assm.GetScratchRegisterList(), ip.bit()); Register scratch = temps.Acquire(); CHECK_EQ(scratch.code(), ip.code()); CHECK_EQ(*assm.GetScratchRegisterList(), 0); } CHECK_EQ(*assm.GetScratchRegisterList(), ip.bit()); } TEST(split_add_immediate) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); { Assembler assm(isolate, nullptr, 0); __ mov(r1, r0); // Re-use the destination as a scratch. __ add(r0, r1, Operand(0x12345678)); __ blx(lr); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef DEBUG OFStream os(stdout); code->Print(os); #endif F1 f = FUNCTION_CAST(code->entry()); uint32_t res = reinterpret_cast(CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0)); ::printf("f() = 0x%x\n", res); CHECK_EQ(0x12345678, res); } { Assembler assm(isolate, nullptr, 0); // Use ip as a scratch. __ add(r0, r0, Operand(0x12345678)); __ blx(lr); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef DEBUG OFStream os(stdout); code->Print(os); #endif F1 f = FUNCTION_CAST(code->entry()); uint32_t res = reinterpret_cast(CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0)); ::printf("f() = 0x%x\n", res); CHECK_EQ(0x12345678, res); } { Assembler assm(isolate, nullptr, 0); UseScratchRegisterScope temps(&assm); Register reserved = temps.Acquire(); USE(reserved); // If ip is not available, split the operation into multiple additions. __ add(r0, r0, Operand(0x12345678)); __ blx(lr); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef DEBUG OFStream os(stdout); code->Print(os); #endif F1 f = FUNCTION_CAST(code->entry()); uint32_t res = reinterpret_cast(CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0)); ::printf("f() = 0x%x\n", res); CHECK_EQ(0x12345678, res); } } #undef __ } // namespace test_assembler_arm } // namespace internal } // namespace v8