// Copyright 2006-2008 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "codegen-inl.h" #include "ic-inl.h" #include "runtime.h" #include "stub-cache.h" namespace v8 { namespace internal { // ---------------------------------------------------------------------------- // Static IC stub generators. // #define __ ACCESS_MASM(masm) // Helper function used from LoadIC/CallIC GenerateNormal. static void GenerateDictionaryLoad(MacroAssembler* masm, Label* miss, Register t0, Register t1) { // Register use: // // t0 - used to hold the property dictionary. // // t1 - initially the receiver // - used for the index into the property dictionary // - holds the result on exit. // // r3 - used as temporary and to hold the capacity of the property // dictionary. // // r2 - holds the name of the property and is unchanges. Label done; // Check for the absence of an interceptor. // Load the map into t0. __ ldr(t0, FieldMemOperand(t1, JSObject::kMapOffset)); // Test the has_named_interceptor bit in the map. __ ldr(t0, FieldMemOperand(t1, Map::kInstanceAttributesOffset)); __ tst(t0, Operand(1 << (Map::kHasNamedInterceptor + (3 * 8)))); // Jump to miss if the interceptor bit is set. __ b(ne, miss); // Check that the properties array is a dictionary. __ ldr(t0, FieldMemOperand(t1, JSObject::kPropertiesOffset)); __ ldr(r3, FieldMemOperand(t0, HeapObject::kMapOffset)); __ cmp(r3, Operand(Factory::hash_table_map())); __ b(ne, miss); // Compute the capacity mask. const int kCapacityOffset = Array::kHeaderSize + Dictionary::kCapacityIndex * kPointerSize; __ ldr(r3, FieldMemOperand(t0, kCapacityOffset)); __ mov(r3, Operand(r3, ASR, kSmiTagSize)); // convert smi to int __ sub(r3, r3, Operand(1)); const int kElementsStartOffset = Array::kHeaderSize + Dictionary::kElementsStartIndex * kPointerSize; // Generate an unrolled loop that performs a few probes before // giving up. Measurements done on Gmail indicate that 2 probes // cover ~93% of loads from dictionaries. static const int kProbes = 4; for (int i = 0; i < kProbes; i++) { // Compute the masked index: (hash + i + i * i) & mask. __ ldr(t1, FieldMemOperand(r2, String::kLengthOffset)); __ mov(t1, Operand(t1, LSR, String::kHashShift)); if (i > 0) { __ add(t1, t1, Operand(Dictionary::GetProbeOffset(i))); } __ and_(t1, t1, Operand(r3)); // Scale the index by multiplying by the element size. ASSERT(Dictionary::kElementSize == 3); __ add(t1, t1, Operand(t1, LSL, 1)); // t1 = t1 * 3 // Check if the key is identical to the name. __ add(t1, t0, Operand(t1, LSL, 2)); __ ldr(ip, FieldMemOperand(t1, kElementsStartOffset)); __ cmp(r2, Operand(ip)); if (i != kProbes - 1) { __ b(eq, &done); } else { __ b(ne, miss); } } // Check that the value is a normal property. __ bind(&done); // t1 == t0 + 4*index __ ldr(r3, FieldMemOperand(t1, kElementsStartOffset + 2 * kPointerSize)); __ tst(r3, Operand(PropertyDetails::TypeField::mask() << kSmiTagSize)); __ b(ne, miss); // Get the value at the masked, scaled index and return. __ ldr(t1, FieldMemOperand(t1, kElementsStartOffset + 1 * kPointerSize)); } // Helper function used to check that a value is either not an object // or is loaded if it is an object. static void GenerateCheckNonObjectOrLoaded(MacroAssembler* masm, Label* miss, Register value, Register scratch) { Label done; // Check if the value is a Smi. __ tst(value, Operand(kSmiTagMask)); __ b(eq, &done); // Check if the object has been loaded. __ ldr(scratch, FieldMemOperand(value, JSObject::kMapOffset)); __ ldrb(scratch, FieldMemOperand(scratch, Map::kBitField2Offset)); __ tst(scratch, Operand(1 << Map::kNeedsLoading)); __ b(ne, miss); __ bind(&done); } void LoadIC::GenerateArrayLength(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r2 : name // -- lr : return address // -- [sp] : receiver // ----------------------------------- Label miss; __ ldr(r0, MemOperand(sp, 0)); StubCompiler::GenerateLoadArrayLength(masm, r0, r3, &miss); __ bind(&miss); StubCompiler::GenerateLoadMiss(masm, Code::LOAD_IC); } void LoadIC::GenerateStringLength(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r2 : name // -- lr : return address // -- [sp] : receiver // ----------------------------------- Label miss; __ ldr(r0, MemOperand(sp, 0)); StubCompiler::GenerateLoadStringLength2(masm, r0, r1, r3, &miss); // Cache miss: Jump to runtime. __ bind(&miss); StubCompiler::GenerateLoadMiss(masm, Code::LOAD_IC); } void LoadIC::GenerateFunctionPrototype(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r2 : name // -- lr : return address // -- [sp] : receiver // ----------------------------------- // NOTE: Right now, this code always misses on ARM which is // sub-optimal. We should port the fast case code from IA-32. Handle ic(Builtins::builtin(Builtins::LoadIC_Miss)); __ Jump(ic, RelocInfo::CODE_TARGET); } // Defined in ic.cc. Object* CallIC_Miss(Arguments args); void CallIC::GenerateMegamorphic(MacroAssembler* masm, int argc) { // ----------- S t a t e ------------- // -- lr: return address // ----------------------------------- Label number, non_number, non_string, boolean, probe, miss; // Get the receiver of the function from the stack into r1. __ ldr(r1, MemOperand(sp, argc * kPointerSize)); // Get the name of the function from the stack; 1 ~ receiver. __ ldr(r2, MemOperand(sp, (argc + 1) * kPointerSize)); // Probe the stub cache. Code::Flags flags = Code::ComputeFlags(Code::CALL_IC, NOT_IN_LOOP, MONOMORPHIC, NORMAL, argc); StubCache::GenerateProbe(masm, flags, r1, r2, r3); // If the stub cache probing failed, the receiver might be a value. // For value objects, we use the map of the prototype objects for // the corresponding JSValue for the cache and that is what we need // to probe. // // Check for number. __ tst(r1, Operand(kSmiTagMask)); __ b(eq, &number); __ CompareObjectType(r1, r3, r3, HEAP_NUMBER_TYPE); __ b(ne, &non_number); __ bind(&number); StubCompiler::GenerateLoadGlobalFunctionPrototype( masm, Context::NUMBER_FUNCTION_INDEX, r1); __ b(&probe); // Check for string. __ bind(&non_number); __ cmp(r3, Operand(FIRST_NONSTRING_TYPE)); __ b(hs, &non_string); StubCompiler::GenerateLoadGlobalFunctionPrototype( masm, Context::STRING_FUNCTION_INDEX, r1); __ b(&probe); // Check for boolean. __ bind(&non_string); __ cmp(r1, Operand(Factory::true_value())); __ b(eq, &boolean); __ cmp(r1, Operand(Factory::false_value())); __ b(ne, &miss); __ bind(&boolean); StubCompiler::GenerateLoadGlobalFunctionPrototype( masm, Context::BOOLEAN_FUNCTION_INDEX, r1); // Probe the stub cache for the value object. __ bind(&probe); StubCache::GenerateProbe(masm, flags, r1, r2, r3); // Cache miss: Jump to runtime. __ bind(&miss); Generate(masm, argc, ExternalReference(IC_Utility(kCallIC_Miss))); } static void GenerateNormalHelper(MacroAssembler* masm, int argc, bool is_global_object, Label* miss) { // Search dictionary - put result in register r1. GenerateDictionaryLoad(masm, miss, r0, r1); // Check that the value isn't a smi. __ tst(r1, Operand(kSmiTagMask)); __ b(eq, miss); // Check that the value is a JSFunction. __ CompareObjectType(r1, r0, r0, JS_FUNCTION_TYPE); __ b(ne, miss); // Check that the function has been loaded. __ ldr(r0, FieldMemOperand(r1, JSObject::kMapOffset)); __ ldrb(r0, FieldMemOperand(r0, Map::kBitField2Offset)); __ tst(r0, Operand(1 << Map::kNeedsLoading)); __ b(ne, miss); // Patch the receiver with the global proxy if necessary. if (is_global_object) { __ ldr(r2, MemOperand(sp, argc * kPointerSize)); __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalReceiverOffset)); __ str(r2, MemOperand(sp, argc * kPointerSize)); } // Invoke the function. ParameterCount actual(argc); __ InvokeFunction(r1, actual, JUMP_FUNCTION); } void CallIC::GenerateNormal(MacroAssembler* masm, int argc) { // ----------- S t a t e ------------- // -- lr: return address // ----------------------------------- Label miss, global_object, non_global_object; // Get the receiver of the function from the stack into r1. __ ldr(r1, MemOperand(sp, argc * kPointerSize)); // Get the name of the function from the stack; 1 ~ receiver. __ ldr(r2, MemOperand(sp, (argc + 1) * kPointerSize)); // Check that the receiver isn't a smi. __ tst(r1, Operand(kSmiTagMask)); __ b(eq, &miss); // Check that the receiver is a valid JS object. Put the map in r3. __ CompareObjectType(r1, r3, r0, FIRST_JS_OBJECT_TYPE); __ b(lt, &miss); // If this assert fails, we have to check upper bound too. ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); // Check for access to global object. __ cmp(r0, Operand(JS_GLOBAL_OBJECT_TYPE)); __ b(eq, &global_object); __ cmp(r0, Operand(JS_BUILTINS_OBJECT_TYPE)); __ b(ne, &non_global_object); // Accessing global object: Load and invoke. __ bind(&global_object); // Check that the global object does not require access checks. __ ldrb(r3, FieldMemOperand(r3, Map::kBitFieldOffset)); __ tst(r3, Operand(1 << Map::kIsAccessCheckNeeded)); __ b(ne, &miss); GenerateNormalHelper(masm, argc, true, &miss); // Accessing non-global object: Check for access to global proxy. Label global_proxy, invoke; __ bind(&non_global_object); __ cmp(r0, Operand(JS_GLOBAL_PROXY_TYPE)); __ b(eq, &global_proxy); // Check that the non-global, non-global-proxy object does not // require access checks. __ ldrb(r3, FieldMemOperand(r3, Map::kBitFieldOffset)); __ tst(r3, Operand(1 << Map::kIsAccessCheckNeeded)); __ b(ne, &miss); __ bind(&invoke); GenerateNormalHelper(masm, argc, false, &miss); // Global object access: Check access rights. __ bind(&global_proxy); __ CheckAccessGlobalProxy(r1, r0, &miss); __ b(&invoke); // Cache miss: Jump to runtime. __ bind(&miss); Generate(masm, argc, ExternalReference(IC_Utility(kCallIC_Miss))); } void CallIC::Generate(MacroAssembler* masm, int argc, const ExternalReference& f) { // ----------- S t a t e ------------- // -- lr: return address // ----------------------------------- // Get the receiver of the function from the stack. __ ldr(r2, MemOperand(sp, argc * kPointerSize)); // Get the name of the function to call from the stack. __ ldr(r1, MemOperand(sp, (argc + 1) * kPointerSize)); __ EnterInternalFrame(); // Push the receiver and the name of the function. __ stm(db_w, sp, r1.bit() | r2.bit()); // Call the entry. __ mov(r0, Operand(2)); __ mov(r1, Operand(f)); CEntryStub stub; __ CallStub(&stub); // Move result to r1 and leave the internal frame. __ mov(r1, Operand(r0)); __ LeaveInternalFrame(); // Check if the receiver is a global object of some sort. Label invoke, global; __ ldr(r2, MemOperand(sp, argc * kPointerSize)); // receiver __ tst(r2, Operand(kSmiTagMask)); __ b(eq, &invoke); __ CompareObjectType(r2, r3, r3, JS_GLOBAL_OBJECT_TYPE); __ b(eq, &global); __ cmp(r3, Operand(JS_BUILTINS_OBJECT_TYPE)); __ b(ne, &invoke); // Patch the receiver on the stack. __ bind(&global); __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalReceiverOffset)); __ str(r2, MemOperand(sp, argc * kPointerSize)); // Invoke the function. ParameterCount actual(argc); __ bind(&invoke); __ InvokeFunction(r1, actual, JUMP_FUNCTION); } // Defined in ic.cc. Object* LoadIC_Miss(Arguments args); void LoadIC::GenerateMegamorphic(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r2 : name // -- lr : return address // -- [sp] : receiver // ----------------------------------- __ ldr(r0, MemOperand(sp, 0)); // Probe the stub cache. Code::Flags flags = Code::ComputeFlags(Code::LOAD_IC, NOT_IN_LOOP, MONOMORPHIC); StubCache::GenerateProbe(masm, flags, r0, r2, r3); // Cache miss: Jump to runtime. Generate(masm, ExternalReference(IC_Utility(kLoadIC_Miss))); } void LoadIC::GenerateNormal(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r2 : name // -- lr : return address // -- [sp] : receiver // ----------------------------------- Label miss, probe, global; __ ldr(r0, MemOperand(sp, 0)); // Check that the receiver isn't a smi. __ tst(r0, Operand(kSmiTagMask)); __ b(eq, &miss); // Check that the receiver is a valid JS object. Put the map in r3. __ CompareObjectType(r0, r3, r1, FIRST_JS_OBJECT_TYPE); __ b(lt, &miss); // If this assert fails, we have to check upper bound too. ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); // Check for access to global object (unlikely). __ cmp(r1, Operand(JS_GLOBAL_PROXY_TYPE)); __ b(eq, &global); // Check for non-global object that requires access check. __ ldrb(r3, FieldMemOperand(r3, Map::kBitFieldOffset)); __ tst(r3, Operand(1 << Map::kIsAccessCheckNeeded)); __ b(ne, &miss); __ bind(&probe); GenerateDictionaryLoad(masm, &miss, r1, r0); GenerateCheckNonObjectOrLoaded(masm, &miss, r0, r1); __ Ret(); // Global object access: Check access rights. __ bind(&global); __ CheckAccessGlobalProxy(r0, r1, &miss); __ b(&probe); // Cache miss: Restore receiver from stack and jump to runtime. __ bind(&miss); Generate(masm, ExternalReference(IC_Utility(kLoadIC_Miss))); } void LoadIC::GenerateMiss(MacroAssembler* masm) { Generate(masm, ExternalReference(IC_Utility(kLoadIC_Miss))); } void LoadIC::Generate(MacroAssembler* masm, const ExternalReference& f) { // ----------- S t a t e ------------- // -- r2 : name // -- lr : return address // -- [sp] : receiver // ----------------------------------- __ ldr(r3, MemOperand(sp, 0)); __ stm(db_w, sp, r2.bit() | r3.bit()); // Perform tail call to the entry. __ TailCallRuntime(f, 2); } // TODO(181): Implement map patching once loop nesting is tracked on the // ARM platform so we can generate inlined fast-case code loads in // loops. void LoadIC::ClearInlinedVersion(Address address) {} bool LoadIC::PatchInlinedLoad(Address address, Object* map, int offset) { return false; } void KeyedLoadIC::ClearInlinedVersion(Address address) {} bool KeyedLoadIC::PatchInlinedLoad(Address address, Object* map) { return false; } void KeyedStoreIC::ClearInlinedVersion(Address address) {} void KeyedStoreIC::RestoreInlinedVersion(Address address) {} bool KeyedStoreIC::PatchInlinedStore(Address address, Object* map) { return false; } Object* KeyedLoadIC_Miss(Arguments args); void KeyedLoadIC::GenerateMiss(MacroAssembler* masm) { Generate(masm, ExternalReference(IC_Utility(kKeyedLoadIC_Miss))); } void KeyedLoadIC::Generate(MacroAssembler* masm, const ExternalReference& f) { // ---------- S t a t e -------------- // -- lr : return address // -- sp[0] : key // -- sp[4] : receiver __ ldm(ia, sp, r2.bit() | r3.bit()); __ stm(db_w, sp, r2.bit() | r3.bit()); __ TailCallRuntime(f, 2); } void KeyedLoadIC::GenerateGeneric(MacroAssembler* masm) { // ---------- S t a t e -------------- // -- lr : return address // -- sp[0] : key // -- sp[4] : receiver Label slow, fast; // Get the key and receiver object from the stack. __ ldm(ia, sp, r0.bit() | r1.bit()); // Check that the key is a smi. __ tst(r0, Operand(kSmiTagMask)); __ b(ne, &slow); __ mov(r0, Operand(r0, ASR, kSmiTagSize)); // Check that the object isn't a smi. __ tst(r1, Operand(kSmiTagMask)); __ b(eq, &slow); // Get the map of the receiver. __ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset)); // Check that the receiver does not require access checks. We need // to check this explicitly since this generic stub does not perform // map checks. __ ldrb(r3, FieldMemOperand(r2, Map::kBitFieldOffset)); __ tst(r3, Operand(1 << Map::kIsAccessCheckNeeded)); __ b(ne, &slow); // Check that the object is some kind of JS object EXCEPT JS Value type. // In the case that the object is a value-wrapper object, // we enter the runtime system to make sure that indexing into string // objects work as intended. ASSERT(JS_OBJECT_TYPE > JS_VALUE_TYPE); __ ldrb(r2, FieldMemOperand(r2, Map::kInstanceTypeOffset)); __ cmp(r2, Operand(JS_OBJECT_TYPE)); __ b(lt, &slow); // Get the elements array of the object. __ ldr(r1, FieldMemOperand(r1, JSObject::kElementsOffset)); // Check that the object is in fast mode (not dictionary). __ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset)); __ cmp(r3, Operand(Factory::hash_table_map())); __ b(eq, &slow); // Check that the key (index) is within bounds. __ ldr(r3, FieldMemOperand(r1, Array::kLengthOffset)); __ cmp(r0, Operand(r3)); __ b(lo, &fast); // Slow case: Push extra copies of the arguments (2). __ bind(&slow); __ IncrementCounter(&Counters::keyed_load_generic_slow, 1, r0, r1); __ ldm(ia, sp, r0.bit() | r1.bit()); __ stm(db_w, sp, r0.bit() | r1.bit()); // Do tail-call to runtime routine. __ TailCallRuntime(ExternalReference(Runtime::kGetProperty), 2); // Fast case: Do the load. __ bind(&fast); __ add(r3, r1, Operand(Array::kHeaderSize - kHeapObjectTag)); __ ldr(r0, MemOperand(r3, r0, LSL, kPointerSizeLog2)); __ cmp(r0, Operand(Factory::the_hole_value())); // In case the loaded value is the_hole we have to consult GetProperty // to ensure the prototype chain is searched. __ b(eq, &slow); __ Ret(); } void KeyedStoreIC::Generate(MacroAssembler* masm, const ExternalReference& f) { // ---------- S t a t e -------------- // -- r0 : value // -- lr : return address // -- sp[0] : key // -- sp[1] : receiver __ ldm(ia, sp, r2.bit() | r3.bit()); __ stm(db_w, sp, r0.bit() | r2.bit() | r3.bit()); __ TailCallRuntime(f, 3); } void KeyedStoreIC::GenerateGeneric(MacroAssembler* masm) { // ---------- S t a t e -------------- // -- r0 : value // -- lr : return address // -- sp[0] : key // -- sp[1] : receiver Label slow, fast, array, extra, exit; // Get the key and the object from the stack. __ ldm(ia, sp, r1.bit() | r3.bit()); // r1 = key, r3 = receiver // Check that the key is a smi. __ tst(r1, Operand(kSmiTagMask)); __ b(ne, &slow); // Check that the object isn't a smi. __ tst(r3, Operand(kSmiTagMask)); __ b(eq, &slow); // Get the map of the object. __ ldr(r2, FieldMemOperand(r3, HeapObject::kMapOffset)); // Check that the receiver does not require access checks. We need // to do this because this generic stub does not perform map checks. __ ldrb(ip, FieldMemOperand(r2, Map::kBitFieldOffset)); __ tst(ip, Operand(1 << Map::kIsAccessCheckNeeded)); __ b(ne, &slow); // Check if the object is a JS array or not. __ ldrb(r2, FieldMemOperand(r2, Map::kInstanceTypeOffset)); __ cmp(r2, Operand(JS_ARRAY_TYPE)); // r1 == key. __ b(eq, &array); // Check that the object is some kind of JS object. __ cmp(r2, Operand(FIRST_JS_OBJECT_TYPE)); __ b(lt, &slow); // Object case: Check key against length in the elements array. __ ldr(r3, FieldMemOperand(r3, JSObject::kElementsOffset)); // Check that the object is in fast mode (not dictionary). __ ldr(r2, FieldMemOperand(r3, HeapObject::kMapOffset)); __ cmp(r2, Operand(Factory::hash_table_map())); __ b(eq, &slow); // Untag the key (for checking against untagged length in the fixed array). __ mov(r1, Operand(r1, ASR, kSmiTagSize)); // Compute address to store into and check array bounds. __ add(r2, r3, Operand(Array::kHeaderSize - kHeapObjectTag)); __ add(r2, r2, Operand(r1, LSL, kPointerSizeLog2)); __ ldr(ip, FieldMemOperand(r3, Array::kLengthOffset)); __ cmp(r1, Operand(ip)); __ b(lo, &fast); // Slow case: Push extra copies of the arguments (3). __ bind(&slow); __ ldm(ia, sp, r1.bit() | r3.bit()); // r0 == value, r1 == key, r3 == object __ stm(db_w, sp, r0.bit() | r1.bit() | r3.bit()); // Do tail-call to runtime routine. __ TailCallRuntime(ExternalReference(Runtime::kSetProperty), 3); // Extra capacity case: Check if there is extra capacity to // perform the store and update the length. Used for adding one // element to the array by writing to array[array.length]. // r0 == value, r1 == key, r2 == elements, r3 == object __ bind(&extra); __ b(ne, &slow); // do not leave holes in the array __ mov(r1, Operand(r1, ASR, kSmiTagSize)); // untag __ ldr(ip, FieldMemOperand(r2, Array::kLengthOffset)); __ cmp(r1, Operand(ip)); __ b(hs, &slow); __ mov(r1, Operand(r1, LSL, kSmiTagSize)); // restore tag __ add(r1, r1, Operand(1 << kSmiTagSize)); // and increment __ str(r1, FieldMemOperand(r3, JSArray::kLengthOffset)); __ mov(r3, Operand(r2)); // NOTE: Computing the address to store into must take the fact // that the key has been incremented into account. int displacement = Array::kHeaderSize - kHeapObjectTag - ((1 << kSmiTagSize) * 2); __ add(r2, r2, Operand(displacement)); __ add(r2, r2, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize)); __ b(&fast); // Array case: Get the length and the elements array from the JS // array. Check that the array is in fast mode; if it is the // length is always a smi. // r0 == value, r3 == object __ bind(&array); __ ldr(r2, FieldMemOperand(r3, JSObject::kElementsOffset)); __ ldr(r1, FieldMemOperand(r2, HeapObject::kMapOffset)); __ cmp(r1, Operand(Factory::hash_table_map())); __ b(eq, &slow); // Check the key against the length in the array, compute the // address to store into and fall through to fast case. __ ldr(r1, MemOperand(sp)); // restore key // r0 == value, r1 == key, r2 == elements, r3 == object. __ ldr(ip, FieldMemOperand(r3, JSArray::kLengthOffset)); __ cmp(r1, Operand(ip)); __ b(hs, &extra); __ mov(r3, Operand(r2)); __ add(r2, r2, Operand(Array::kHeaderSize - kHeapObjectTag)); __ add(r2, r2, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize)); // Fast case: Do the store. // r0 == value, r2 == address to store into, r3 == elements __ bind(&fast); __ str(r0, MemOperand(r2)); // Skip write barrier if the written value is a smi. __ tst(r0, Operand(kSmiTagMask)); __ b(eq, &exit); // Update write barrier for the elements array address. __ sub(r1, r2, Operand(r3)); __ RecordWrite(r3, r1, r2); __ bind(&exit); __ Ret(); } void KeyedStoreIC::GenerateExtendStorage(MacroAssembler* masm) { // ---------- S t a t e -------------- // -- r0 : value // -- lr : return address // -- sp[0] : key // -- sp[1] : receiver // ----------- S t a t e ------------- __ ldm(ia, sp, r2.bit() | r3.bit()); __ stm(db_w, sp, r0.bit() | r2.bit() | r3.bit()); // Perform tail call to the entry. __ TailCallRuntime( ExternalReference(IC_Utility(kSharedStoreIC_ExtendStorage)), 3); } void StoreIC::GenerateMegamorphic(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : value // -- r2 : name // -- lr : return address // -- [sp] : receiver // ----------------------------------- // Get the receiver from the stack and probe the stub cache. __ ldr(r1, MemOperand(sp)); Code::Flags flags = Code::ComputeFlags(Code::STORE_IC, NOT_IN_LOOP, MONOMORPHIC); StubCache::GenerateProbe(masm, flags, r1, r2, r3); // Cache miss: Jump to runtime. Generate(masm, ExternalReference(IC_Utility(kStoreIC_Miss))); } void StoreIC::GenerateExtendStorage(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : value // -- r2 : name // -- lr : return address // -- [sp] : receiver // ----------------------------------- __ ldr(r3, MemOperand(sp)); // copy receiver __ stm(db_w, sp, r0.bit() | r2.bit() | r3.bit()); // Perform tail call to the entry. __ TailCallRuntime( ExternalReference(IC_Utility(kSharedStoreIC_ExtendStorage)), 3); } void StoreIC::Generate(MacroAssembler* masm, const ExternalReference& f) { // ----------- S t a t e ------------- // -- r0 : value // -- r2 : name // -- lr : return address // -- [sp] : receiver // ----------------------------------- __ ldr(r3, MemOperand(sp)); // copy receiver __ stm(db_w, sp, r0.bit() | r2.bit() | r3.bit()); // Perform tail call to the entry. __ TailCallRuntime(f, 3); } #undef __ } } // namespace v8::internal