// Copyright 2019 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. "use strict"; // Test configuration. const TEST_ITERATIONS = 1000; const SLOW_TEST_ITERATIONS = 50; const SMALL_BITS_CASES = [32, 64, 128, 256]; const MEDIUM_BITS_CASES = [512, 1024]; const BIG_BITS_CASES = [2048, 4096, 8192]; const BITS_CASES = [32, 64, 128, 256, 512, 1024, 2048, 4096, 8192]; const RANDOM_BIGINTS_MAX_BITS = 64 * 100; const BIGINT_MAX_BITS = %BigIntMaxLengthBits(); function RandomHexDigit(allow_zero) { const chars = allow_zero ? '0123456789ABCDEF' : '123456789ABCDEF'; return chars.charAt(Math.floor(Math.random() * chars.length)); } // Some benchmarks shall compute sums but the result must not grow in terms // of digits. These can use "small" BigInts, which are BigInts where the most // significant bits of a digit are 0, so it does not overflow. function SmallRandomBigIntWithBits(bits) { console.assert(bits % 4 === 0); if (bits <= 0) { return 0n; } // Make sure it does not start with four 0-bits. let s = "0x" + RandomHexDigit(false); bits -= 4; // Digits are at least 32 bits long, so we round down to the next smaller // multiple of 32 to keep the most significant digit small. bits = Math.floor(bits / 32) * 32; for (; bits > 0; bits -= 4) { s += RandomHexDigit(true); } return BigInt(s); } function MaxBigIntWithBits(bits) { console.assert(bits % 4 === 0); if (bits <= 0) { return 0n; } let s = "0x"; s += "F".repeat(bits / 4); return BigInt(s); } // Generates a random BigInt between 2^(bits-4) and 2^bits-1 (for bits > 0). function RandomBigIntWithBits(bits) { console.assert(bits % 4 === 0); if (bits <= 0) { return 0n; } // Make sure it does not start with four 0-bits. let s = "0x" + RandomHexDigit(false); bits -= 4; // Randomly generate remaining bits. for (; bits > 0; bits -= 4) { s += RandomHexDigit(true); } return BigInt(s); }