// Copyright 2011 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/safepoint-table.h" #include "src/assembler-inl.h" #include "src/deoptimizer.h" #include "src/disasm.h" #include "src/frames-inl.h" #include "src/macro-assembler.h" #include "src/ostreams.h" namespace v8 { namespace internal { bool SafepointEntry::HasRegisters() const { DCHECK(is_valid()); DCHECK(IsAligned(kNumSafepointRegisters, kBitsPerByte)); const int num_reg_bytes = kNumSafepointRegisters >> kBitsPerByteLog2; for (int i = 0; i < num_reg_bytes; i++) { if (bits_[i] != SafepointTable::kNoRegisters) return true; } return false; } bool SafepointEntry::HasRegisterAt(int reg_index) const { DCHECK(is_valid()); DCHECK(reg_index >= 0 && reg_index < kNumSafepointRegisters); int byte_index = reg_index >> kBitsPerByteLog2; int bit_index = reg_index & (kBitsPerByte - 1); return (bits_[byte_index] & (1 << bit_index)) != 0; } SafepointTable::SafepointTable(Address instruction_start, size_t safepoint_table_offset, uint32_t stack_slots, bool has_deopt) : instruction_start_(instruction_start), stack_slots_(stack_slots), has_deopt_(has_deopt) { Address header = instruction_start_ + safepoint_table_offset; length_ = Memory::uint32_at(header + kLengthOffset); entry_size_ = Memory::uint32_at(header + kEntrySizeOffset); pc_and_deoptimization_indexes_ = header + kHeaderSize; entries_ = pc_and_deoptimization_indexes_ + (length_ * kFixedEntrySize); DCHECK_GT(entry_size_, 0); STATIC_ASSERT(SafepointEntry::DeoptimizationIndexField::kMax == Safepoint::kNoDeoptimizationIndex); } SafepointTable::SafepointTable(Code* code) : SafepointTable(code->InstructionStart(), code->safepoint_table_offset(), code->stack_slots(), true) {} unsigned SafepointTable::find_return_pc(unsigned pc_offset) { for (unsigned i = 0; i < length(); i++) { if (GetTrampolinePcOffset(i) == static_cast(pc_offset)) { return GetPcOffset(i); } else if (GetPcOffset(i) == pc_offset) { return pc_offset; } } UNREACHABLE(); return 0; } SafepointEntry SafepointTable::FindEntry(Address pc) const { unsigned pc_offset = static_cast(pc - instruction_start_); // We use kMaxUInt32 as sentinel value, so check that we don't hit that. DCHECK_NE(kMaxUInt32, pc_offset); unsigned len = length(); // If pc == kMaxUInt32, then this entry covers all call sites in the function. if (len == 1 && GetPcOffset(0) == kMaxUInt32) return GetEntry(0); for (unsigned i = 0; i < len; i++) { // TODO(kasperl): Replace the linear search with binary search. if (GetPcOffset(i) == pc_offset || (has_deopt_ && GetTrampolinePcOffset(i) == static_cast(pc_offset))) { return GetEntry(i); } } UNREACHABLE(); return SafepointEntry(); } void SafepointTable::PrintEntry(unsigned index, std::ostream& os) const { // NOLINT disasm::NameConverter converter; SafepointEntry entry = GetEntry(index); uint8_t* bits = entry.bits(); // Print the stack slot bits. if (entry_size_ > 0) { DCHECK(IsAligned(kNumSafepointRegisters, kBitsPerByte)); const int first = kNumSafepointRegisters >> kBitsPerByteLog2; int last = entry_size_ - 1; for (int i = first; i < last; i++) PrintBits(os, bits[i], kBitsPerByte); int last_bits = stack_slots_ - ((last - first) * kBitsPerByte); PrintBits(os, bits[last], last_bits); // Print the registers (if any). if (!entry.HasRegisters()) return; for (int j = 0; j < kNumSafepointRegisters; j++) { if (entry.HasRegisterAt(j)) { os << " | " << converter.NameOfCPURegister(j); } } } } void SafepointTable::PrintBits(std::ostream& os, // NOLINT uint8_t byte, int digits) { DCHECK(digits >= 0 && digits <= kBitsPerByte); for (int i = 0; i < digits; i++) { os << (((byte & (1 << i)) == 0) ? "0" : "1"); } } void Safepoint::DefinePointerRegister(Register reg, Zone* zone) { registers_->Add(reg.code(), zone); } Safepoint SafepointTableBuilder::DefineSafepoint( Assembler* assembler, Safepoint::Kind kind, int arguments, Safepoint::DeoptMode deopt_mode) { DCHECK_GE(arguments, 0); deoptimization_info_.Add( DeoptimizationInfo(zone_, assembler->pc_offset(), arguments, kind), zone_); if (deopt_mode == Safepoint::kNoLazyDeopt) { last_lazy_safepoint_ = deoptimization_info_.length(); } DeoptimizationInfo& new_info = deoptimization_info_.last(); return Safepoint(new_info.indexes, new_info.registers); } void SafepointTableBuilder::RecordLazyDeoptimizationIndex(int index) { while (last_lazy_safepoint_ < deoptimization_info_.length()) { deoptimization_info_[last_lazy_safepoint_++].deopt_index = index; } } unsigned SafepointTableBuilder::GetCodeOffset() const { DCHECK(emitted_); return offset_; } int SafepointTableBuilder::UpdateDeoptimizationInfo(int pc, int trampoline, int start) { int index = -1; for (int i = start; i < deoptimization_info_.length(); i++) { if (static_cast(deoptimization_info_[i].pc) == pc) { index = i; break; } } CHECK_GE(index, 0); DCHECK(index < deoptimization_info_.length()); deoptimization_info_[index].trampoline = trampoline; return index; } void SafepointTableBuilder::Emit(Assembler* assembler, int bits_per_entry) { RemoveDuplicates(); // Make sure the safepoint table is properly aligned. Pad with nops. assembler->Align(kIntSize); assembler->RecordComment(";;; Safepoint table."); offset_ = assembler->pc_offset(); // Take the register bits into account. bits_per_entry += kNumSafepointRegisters; // Compute the number of bytes per safepoint entry. int bytes_per_entry = RoundUp(bits_per_entry, kBitsPerByte) >> kBitsPerByteLog2; // Emit the table header. int length = deoptimization_info_.length(); assembler->dd(length); assembler->dd(bytes_per_entry); // Emit sorted table of pc offsets together with deoptimization indexes. for (int i = 0; i < length; i++) { const DeoptimizationInfo& info = deoptimization_info_[i]; assembler->dd(info.pc); assembler->dd(EncodeExceptPC(info)); assembler->dd(info.trampoline); } // Emit table of bitmaps. ZoneList bits(bytes_per_entry, zone_); for (int i = 0; i < length; i++) { ZoneList* indexes = deoptimization_info_[i].indexes; ZoneList* registers = deoptimization_info_[i].registers; bits.Clear(); bits.AddBlock(0, bytes_per_entry, zone_); // Run through the registers (if any). DCHECK(IsAligned(kNumSafepointRegisters, kBitsPerByte)); if (registers == nullptr) { const int num_reg_bytes = kNumSafepointRegisters >> kBitsPerByteLog2; for (int j = 0; j < num_reg_bytes; j++) { bits[j] = SafepointTable::kNoRegisters; } } else { for (int j = 0; j < registers->length(); j++) { int index = registers->at(j); DCHECK(index >= 0 && index < kNumSafepointRegisters); int byte_index = index >> kBitsPerByteLog2; int bit_index = index & (kBitsPerByte - 1); bits[byte_index] |= (1 << bit_index); } } // Run through the indexes and build a bitmap. for (int j = 0; j < indexes->length(); j++) { int index = bits_per_entry - 1 - indexes->at(j); int byte_index = index >> kBitsPerByteLog2; int bit_index = index & (kBitsPerByte - 1); bits[byte_index] |= (1U << bit_index); } // Emit the bitmap for the current entry. for (int k = 0; k < bytes_per_entry; k++) { assembler->db(bits[k]); } } emitted_ = true; } uint32_t SafepointTableBuilder::EncodeExceptPC(const DeoptimizationInfo& info) { return SafepointEntry::DeoptimizationIndexField::encode(info.deopt_index) | SafepointEntry::ArgumentsField::encode(info.arguments) | SafepointEntry::SaveDoublesField::encode(info.has_doubles); } void SafepointTableBuilder::RemoveDuplicates() { // If the table contains more than one entry, and all entries are identical // (except for the pc), replace the whole table by a single entry with pc = // kMaxUInt32. This especially compacts the table for wasm code without tagged // pointers and without deoptimization info. int length = deoptimization_info_.length(); if (length < 2) return; // Check that all entries (1, length] are identical to entry 0. const DeoptimizationInfo& first_info = deoptimization_info_[0]; for (int i = 1; i < length; ++i) { if (!IsIdenticalExceptForPc(first_info, deoptimization_info_[i])) return; } // If we get here, all entries were identical. Rewind the list to just one // entry, and set the pc to kMaxUInt32. deoptimization_info_.Rewind(1); deoptimization_info_[0].pc = kMaxUInt32; } bool SafepointTableBuilder::IsIdenticalExceptForPc( const DeoptimizationInfo& info1, const DeoptimizationInfo& info2) const { if (info1.arguments != info2.arguments) return false; if (info1.has_doubles != info2.has_doubles) return false; if (info1.deopt_index != info2.deopt_index) return false; ZoneList* indexes1 = info1.indexes; ZoneList* indexes2 = info2.indexes; if (indexes1->length() != indexes2->length()) return false; for (int i = 0; i < indexes1->length(); ++i) { if (indexes1->at(i) != indexes2->at(i)) return false; } ZoneList* registers1 = info1.registers; ZoneList* registers2 = info2.registers; if (registers1) { if (!registers2) return false; if (registers1->length() != registers2->length()) return false; for (int i = 0; i < registers1->length(); ++i) { if (registers1->at(i) != registers2->at(i)) return false; } } else if (registers2) { return false; } return true; } } // namespace internal } // namespace v8