// Copyright 2015 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/wasm/function-body-decoder.h" #include "src/init/v8.h" #include "src/objects/objects-inl.h" #include "src/objects/objects.h" #include "src/utils/ostreams.h" #include "src/wasm/function-body-decoder-impl.h" #include "src/wasm/leb-helper.h" #include "src/wasm/local-decl-encoder.h" #include "src/wasm/signature-map.h" #include "src/wasm/wasm-limits.h" #include "src/wasm/wasm-module.h" #include "src/wasm/wasm-opcodes-inl.h" #include "src/zone/zone.h" #include "test/common/wasm/flag-utils.h" #include "test/common/wasm/test-signatures.h" #include "test/common/wasm/wasm-macro-gen.h" #include "test/unittests/test-utils.h" #include "testing/gmock-support.h" namespace v8 { namespace internal { namespace wasm { namespace function_body_decoder_unittest { #define B1(a) WASM_BLOCK(a) #define B2(a, b) WASM_BLOCK(a, b) #define B3(a, b, c) WASM_BLOCK(a, b, c) #define WASM_IF_OP kExprIf, kVoidCode #define WASM_LOOP_OP kExprLoop, kVoidCode #define EXPECT_OK(result) \ do { \ if (!result.ok()) { \ GTEST_NONFATAL_FAILURE_(result.error().message().c_str()); \ return; \ } \ } while (false) static const byte kCodeGetLocal0[] = {kExprLocalGet, 0}; static const byte kCodeGetLocal1[] = {kExprLocalGet, 1}; static const byte kCodeSetLocal0[] = {WASM_LOCAL_SET(0, WASM_ZERO)}; static const byte kCodeTeeLocal0[] = {WASM_LOCAL_TEE(0, WASM_ZERO)}; static const ValueType kValueTypes[] = {kWasmI32, kWasmI64, kWasmF32, kWasmF64, kWasmExternRef}; static const MachineType machineTypes[] = { MachineType::Int8(), MachineType::Uint8(), MachineType::Int16(), MachineType::Uint16(), MachineType::Int32(), MachineType::Uint32(), MachineType::Int64(), MachineType::Uint64(), MachineType::Float32(), MachineType::Float64()}; static const WasmOpcode kInt32BinopOpcodes[] = { kExprI32Add, kExprI32Sub, kExprI32Mul, kExprI32DivS, kExprI32DivU, kExprI32RemS, kExprI32RemU, kExprI32And, kExprI32Ior, kExprI32Xor, kExprI32Shl, kExprI32ShrU, kExprI32ShrS, kExprI32Eq, kExprI32LtS, kExprI32LeS, kExprI32LtU, kExprI32LeU}; #define WASM_BRV_IF_ZERO(depth, val) \ val, WASM_ZERO, kExprBrIf, static_cast(depth) constexpr size_t kMaxByteSizedLeb128 = 127; using F = std::pair; enum MemoryType { kMemory32, kMemory64 }; // A helper for tests that require a module environment for functions, // globals, or memories. class TestModuleBuilder { public: explicit TestModuleBuilder(ModuleOrigin origin = kWasmOrigin) : allocator(), mod(std::make_unique(&allocator, ZONE_NAME)) { mod.origin = origin; } byte AddGlobal(ValueType type, bool mutability = true) { mod.globals.push_back( {type, mutability, WasmInitExpr(), {0}, false, false}); CHECK_LE(mod.globals.size(), kMaxByteSizedLeb128); return static_cast(mod.globals.size() - 1); } byte AddSignature(const FunctionSig* sig) { mod.add_signature(sig); CHECK_LE(mod.types.size(), kMaxByteSizedLeb128); return static_cast(mod.types.size() - 1); } byte AddFunction(const FunctionSig* sig, bool declared = true) { byte sig_index = AddSignature(sig); mod.functions.push_back( {sig, // sig static_cast(mod.functions.size()), // func_index sig_index, // sig_index {0, 0}, // code false, // import false, // export declared}); // declared CHECK_LE(mod.functions.size(), kMaxByteSizedLeb128); return static_cast(mod.functions.size() - 1); } byte AddImport(const FunctionSig* sig) { byte result = AddFunction(sig); mod.functions[result].imported = true; return result; } byte AddException(WasmExceptionSig* sig) { mod.exceptions.emplace_back(sig); CHECK_LE(mod.types.size(), kMaxByteSizedLeb128); return static_cast(mod.exceptions.size() - 1); } byte AddTable(ValueType type, uint32_t initial_size, bool has_maximum_size, uint32_t maximum_size) { CHECK(WasmTable::IsValidTableType(type, &mod)); mod.tables.emplace_back(); WasmTable& table = mod.tables.back(); table.type = type; table.initial_size = initial_size; table.has_maximum_size = has_maximum_size; table.maximum_size = maximum_size; return static_cast(mod.tables.size() - 1); } byte AddStruct(std::initializer_list fields) { StructType::Builder type_builder(mod.signature_zone.get(), static_cast(fields.size())); for (F field : fields) { type_builder.AddField(field.first, field.second); } mod.add_struct_type(type_builder.Build()); return static_cast(mod.type_kinds.size() - 1); } byte AddArray(ValueType type, bool mutability) { ArrayType* array = mod.signature_zone->New(type, mutability); mod.add_array_type(array); return static_cast(mod.type_kinds.size() - 1); } void InitializeMemory(MemoryType mem_type = kMemory32) { mod.has_memory = true; mod.is_memory64 = mem_type == kMemory64; mod.initial_pages = 1; mod.maximum_pages = 100; } byte InitializeTable(wasm::ValueType type) { mod.tables.emplace_back(); mod.tables.back().type = type; return static_cast(mod.tables.size() - 1); } byte AddPassiveElementSegment(wasm::ValueType type) { mod.elem_segments.emplace_back(false); auto& init = mod.elem_segments.back(); init.type = type; // Add 5 empty elements. for (uint32_t j = 0; j < 5; j++) { init.entries.push_back(WasmElemSegment::kNullIndex); } return static_cast(mod.elem_segments.size() - 1); } byte AddDeclarativeElementSegment() { mod.elem_segments.emplace_back(true); mod.elem_segments.back().entries.push_back(WasmElemSegment::kNullIndex); return static_cast(mod.elem_segments.size() - 1); } // Set the number of data segments as declared by the DataCount section. void SetDataSegmentCount(uint32_t data_segment_count) { // The Data section occurs after the Code section, so we don't need to // update mod.data_segments, as it is always empty. mod.num_declared_data_segments = data_segment_count; } WasmModule* module() { return &mod; } private: AccountingAllocator allocator; WasmModule mod; }; template class FunctionBodyDecoderTestBase : public WithZoneMixin { public: using LocalsDecl = std::pair; // All features are disabled by default and must be activated with // a WASM_FEATURE_SCOPE in individual tests. WasmFeatures enabled_features_ = WasmFeatures::None(); TestSignatures sigs; TestModuleBuilder builder; WasmModule* module = builder.module(); LocalDeclEncoder local_decls{this->zone()}; void AddLocals(ValueType type, uint32_t count) { local_decls.AddLocals(count, type); } enum AppendEnd : bool { kAppendEnd, kOmitEnd }; Vector PrepareBytecode(Vector code, AppendEnd append_end) { size_t locals_size = local_decls.Size(); size_t total_size = code.size() + locals_size + (append_end == kAppendEnd ? 1 : 0); byte* buffer = this->zone()->template NewArray(total_size); // Prepend the local decls to the code. local_decls.Emit(buffer); // Emit the code. if (code.size() > 0) { memcpy(buffer + locals_size, code.begin(), code.size()); } if (append_end == kAppendEnd) { // Append an extra end opcode. buffer[total_size - 1] = kExprEnd; } return {buffer, total_size}; } template Vector CodeToVector(const byte (&code)[N]) { return ArrayVector(code); } Vector CodeToVector( const std::initializer_list& code) { return VectorOf(&*code.begin(), code.size()); } Vector CodeToVector(Vector vec) { return vec; } // Prepends local variable declarations and renders nice error messages for // verification failures. template > void Validate(bool expected_success, const FunctionSig* sig, Code&& raw_code, AppendEnd append_end = kAppendEnd, const char* message = nullptr) { Vector code = PrepareBytecode(CodeToVector(std::forward(raw_code)), append_end); // Validate the code. FunctionBody body(sig, 0, code.begin(), code.end()); WasmFeatures unused_detected_features = WasmFeatures::None(); DecodeResult result = VerifyWasmCode(this->zone()->allocator(), enabled_features_, module, &unused_detected_features, body); std::ostringstream str; if (result.failed()) { str << "Verification failed: pc = +" << result.error().offset() << ", msg = " << result.error().message(); } else { str << "Verification succeeded, expected failure"; } EXPECT_EQ(result.ok(), expected_success) << str.str(); if (result.failed() && message) { EXPECT_THAT(result.error().message(), ::testing::HasSubstr(message)); } } template > void ExpectValidates(const FunctionSig* sig, Code&& raw_code, AppendEnd append_end = kAppendEnd, const char* message = nullptr) { Validate(true, sig, std::forward(raw_code), append_end, message); } template > void ExpectFailure(const FunctionSig* sig, Code&& raw_code, AppendEnd append_end = kAppendEnd, const char* message = nullptr) { Validate(false, sig, std::forward(raw_code), append_end, message); } void TestBinop(WasmOpcode opcode, const FunctionSig* success) { // op(local[0], local[1]) byte code[] = {WASM_BINOP(opcode, WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))}; ExpectValidates(success, code); // Try all combinations of return and parameter types. for (size_t i = 0; i < arraysize(kValueTypes); i++) { for (size_t j = 0; j < arraysize(kValueTypes); j++) { for (size_t k = 0; k < arraysize(kValueTypes); k++) { ValueType types[] = {kValueTypes[i], kValueTypes[j], kValueTypes[k]}; if (types[0] != success->GetReturn(0) || types[1] != success->GetParam(0) || types[2] != success->GetParam(1)) { // Test signature mismatch. FunctionSig sig(1, 2, types); ExpectFailure(&sig, code); } } } } } void TestUnop(WasmOpcode opcode, const FunctionSig* success) { TestUnop(opcode, success->GetReturn(), success->GetParam(0)); } void TestUnop(WasmOpcode opcode, ValueType ret_type, ValueType param_type) { // Return(op(local[0])) byte code[] = {WASM_UNOP(opcode, WASM_LOCAL_GET(0))}; { ValueType types[] = {ret_type, param_type}; FunctionSig sig(1, 1, types); ExpectValidates(&sig, code); } // Try all combinations of return and parameter types. for (size_t i = 0; i < arraysize(kValueTypes); i++) { for (size_t j = 0; j < arraysize(kValueTypes); j++) { ValueType types[] = {kValueTypes[i], kValueTypes[j]}; if (types[0] != ret_type || types[1] != param_type) { // Test signature mismatch. FunctionSig sig(1, 1, types); ExpectFailure(&sig, code); } } } } }; using FunctionBodyDecoderTest = FunctionBodyDecoderTestBase<::testing::Test>; TEST_F(FunctionBodyDecoderTest, Int32Const1) { byte code[] = {kExprI32Const, 0}; for (int i = -64; i <= 63; i++) { code[1] = static_cast(i & 0x7F); ExpectValidates(sigs.i_i(), code); } } TEST_F(FunctionBodyDecoderTest, RefFunc) { WASM_FEATURE_SCOPE(reftypes); builder.AddFunction(sigs.v_ii()); builder.AddFunction(sigs.ii_v()); ExpectValidates(sigs.a_v(), {kExprRefFunc, 1}); } TEST_F(FunctionBodyDecoderTest, EmptyFunction) { ExpectValidates(sigs.v_v(), {}); ExpectFailure(sigs.i_i(), {}); } TEST_F(FunctionBodyDecoderTest, IncompleteIf1) { byte code[] = {kExprIf}; ExpectFailure(sigs.v_v(), code); ExpectFailure(sigs.i_i(), code); } TEST_F(FunctionBodyDecoderTest, Int32Const_fallthru) { ExpectValidates(sigs.i_i(), {WASM_I32V_1(0)}); } TEST_F(FunctionBodyDecoderTest, Int32Const_fallthru2) { ExpectFailure(sigs.i_i(), {WASM_I32V_1(0), WASM_I32V_1(1)}); } TEST_F(FunctionBodyDecoderTest, Int32Const) { const int kInc = 4498211; for (int32_t i = kMinInt; i < kMaxInt - kInc; i = i + kInc) { // TODO(binji): expand test for other sized int32s; 1 through 5 bytes. ExpectValidates(sigs.i_i(), {WASM_I32V(i)}); } } TEST_F(FunctionBodyDecoderTest, Int64Const) { const int kInc = 4498211; for (int32_t i = kMinInt; i < kMaxInt - kInc; i = i + kInc) { ExpectValidates(sigs.l_l(), {WASM_I64V((static_cast(i) << 32) | i)}); } } TEST_F(FunctionBodyDecoderTest, Float32Const) { byte code[] = {kExprF32Const, 0, 0, 0, 0}; Address ptr = reinterpret_cast
(code + 1); for (int i = 0; i < 30; i++) { base::WriteLittleEndianValue(ptr, i * -7.75f); ExpectValidates(sigs.f_ff(), code); } } TEST_F(FunctionBodyDecoderTest, Float64Const) { byte code[] = {kExprF64Const, 0, 0, 0, 0, 0, 0, 0, 0}; Address ptr = reinterpret_cast
(code + 1); for (int i = 0; i < 30; i++) { base::WriteLittleEndianValue(ptr, i * 33.45); ExpectValidates(sigs.d_dd(), code); } } TEST_F(FunctionBodyDecoderTest, Int32Const_off_end) { byte code[] = {kExprI32Const, 0xAA, 0xBB, 0xCC, 0x44}; for (size_t size = 1; size <= 4; ++size) { ExpectFailure(sigs.i_i(), VectorOf(code, size), kAppendEnd); // Should also fail without the trailing 'end' opcode. ExpectFailure(sigs.i_i(), VectorOf(code, size), kOmitEnd); } } TEST_F(FunctionBodyDecoderTest, GetLocal0_param) { ExpectValidates(sigs.i_i(), kCodeGetLocal0); } TEST_F(FunctionBodyDecoderTest, GetLocal0_local) { AddLocals(kWasmI32, 1); ExpectValidates(sigs.i_v(), kCodeGetLocal0); } TEST_F(FunctionBodyDecoderTest, TooManyLocals) { AddLocals(kWasmI32, 4034986500); ExpectFailure(sigs.i_v(), kCodeGetLocal0); } TEST_F(FunctionBodyDecoderTest, GetLocal0_param_n) { for (const FunctionSig* sig : {sigs.i_i(), sigs.i_ii(), sigs.i_iii()}) { ExpectValidates(sig, kCodeGetLocal0); } } TEST_F(FunctionBodyDecoderTest, GetLocalN_local) { for (byte i = 1; i < 8; i++) { AddLocals(kWasmI32, 1); for (byte j = 0; j < i; j++) { ExpectValidates(sigs.i_v(), {kExprLocalGet, j}); } } } TEST_F(FunctionBodyDecoderTest, GetLocal0_fail_no_params) { ExpectFailure(sigs.i_v(), kCodeGetLocal0); } TEST_F(FunctionBodyDecoderTest, GetLocal1_fail_no_locals) { ExpectFailure(sigs.i_i(), kCodeGetLocal1); } TEST_F(FunctionBodyDecoderTest, GetLocal_off_end) { ExpectFailure(sigs.i_i(), {kExprLocalGet}); } TEST_F(FunctionBodyDecoderTest, NumLocalBelowLimit) { AddLocals(kWasmI32, kV8MaxWasmFunctionLocals - 1); ExpectValidates(sigs.v_v(), {WASM_NOP}); } TEST_F(FunctionBodyDecoderTest, NumLocalAtLimit) { AddLocals(kWasmI32, kV8MaxWasmFunctionLocals); ExpectValidates(sigs.v_v(), {WASM_NOP}); } TEST_F(FunctionBodyDecoderTest, NumLocalAboveLimit) { AddLocals(kWasmI32, kV8MaxWasmFunctionLocals + 1); ExpectFailure(sigs.v_v(), {WASM_NOP}); } TEST_F(FunctionBodyDecoderTest, GetLocal_varint) { const int kMaxLocals = kV8MaxWasmFunctionLocals - 1; AddLocals(kWasmI32, kMaxLocals); ExpectValidates(sigs.i_i(), {kExprLocalGet, U32V_1(66)}); ExpectValidates(sigs.i_i(), {kExprLocalGet, U32V_2(7777)}); ExpectValidates(sigs.i_i(), {kExprLocalGet, U32V_3(8888)}); ExpectValidates(sigs.i_i(), {kExprLocalGet, U32V_4(9999)}); ExpectValidates(sigs.i_i(), {kExprLocalGet, U32V_5(kMaxLocals - 1)}); ExpectFailure(sigs.i_i(), {kExprLocalGet, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}); ExpectValidates(sigs.i_i(), {kExprLocalGet, U32V_4(kMaxLocals - 1)}); ExpectValidates(sigs.i_i(), {kExprLocalGet, U32V_4(kMaxLocals)}); ExpectFailure(sigs.i_i(), {kExprLocalGet, U32V_4(kMaxLocals + 1)}); ExpectFailure(sigs.i_v(), {kExprLocalGet, U32V_4(kMaxLocals)}); ExpectFailure(sigs.i_v(), {kExprLocalGet, U32V_4(kMaxLocals + 1)}); } TEST_F(FunctionBodyDecoderTest, GetLocal_toomany) { AddLocals(kWasmI32, kV8MaxWasmFunctionLocals - 100); AddLocals(kWasmI32, 100); ExpectValidates(sigs.i_v(), {kExprLocalGet, U32V_1(66)}); ExpectFailure(sigs.i_i(), {kExprLocalGet, U32V_1(66)}); } TEST_F(FunctionBodyDecoderTest, Binops_off_end) { byte code1[] = {0}; // [opcode] for (size_t i = 0; i < arraysize(kInt32BinopOpcodes); i++) { code1[0] = kInt32BinopOpcodes[i]; ExpectFailure(sigs.i_i(), code1); } byte code3[] = {kExprLocalGet, 0, 0}; // [expr] [opcode] for (size_t i = 0; i < arraysize(kInt32BinopOpcodes); i++) { code3[2] = kInt32BinopOpcodes[i]; ExpectFailure(sigs.i_i(), code3); } byte code4[] = {kExprLocalGet, 0, 0, 0}; // [expr] [opcode] [opcode] for (size_t i = 0; i < arraysize(kInt32BinopOpcodes); i++) { code4[2] = kInt32BinopOpcodes[i]; code4[3] = kInt32BinopOpcodes[i]; ExpectFailure(sigs.i_i(), code4); } } TEST_F(FunctionBodyDecoderTest, BinopsAcrossBlock1) { ExpectFailure(sigs.i_i(), {WASM_ZERO, kExprBlock, kI32Code, WASM_ZERO, kExprI32Add, kExprEnd}); } TEST_F(FunctionBodyDecoderTest, BinopsAcrossBlock2) { ExpectFailure(sigs.i_i(), {WASM_ZERO, WASM_ZERO, kExprBlock, kI32Code, kExprI32Add, kExprEnd}); } TEST_F(FunctionBodyDecoderTest, BinopsAcrossBlock3) { ExpectFailure(sigs.i_i(), {WASM_ZERO, WASM_ZERO, kExprIf, kI32Code, kExprI32Add, kExprElse, kExprI32Add, kExprEnd}); } TEST_F(FunctionBodyDecoderTest, Nop) { ExpectValidates(sigs.v_v(), {kExprNop}); } TEST_F(FunctionBodyDecoderTest, SetLocal0_void) { ExpectFailure(sigs.i_i(), {WASM_LOCAL_SET(0, WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, SetLocal0_param) { ExpectFailure(sigs.i_i(), kCodeSetLocal0); ExpectFailure(sigs.f_ff(), kCodeSetLocal0); ExpectFailure(sigs.d_dd(), kCodeSetLocal0); } TEST_F(FunctionBodyDecoderTest, TeeLocal0_param) { ExpectValidates(sigs.i_i(), kCodeTeeLocal0); ExpectFailure(sigs.f_ff(), kCodeTeeLocal0); ExpectFailure(sigs.d_dd(), kCodeTeeLocal0); } TEST_F(FunctionBodyDecoderTest, SetLocal0_local) { ExpectFailure(sigs.i_v(), kCodeSetLocal0); ExpectFailure(sigs.v_v(), kCodeSetLocal0); AddLocals(kWasmI32, 1); ExpectFailure(sigs.i_v(), kCodeSetLocal0); ExpectValidates(sigs.v_v(), kCodeSetLocal0); } TEST_F(FunctionBodyDecoderTest, TeeLocal0_local) { ExpectFailure(sigs.i_v(), kCodeTeeLocal0); AddLocals(kWasmI32, 1); ExpectValidates(sigs.i_v(), kCodeTeeLocal0); } TEST_F(FunctionBodyDecoderTest, TeeLocalN_local) { for (byte i = 1; i < 8; i++) { AddLocals(kWasmI32, 1); for (byte j = 0; j < i; j++) { ExpectFailure(sigs.v_v(), {WASM_LOCAL_TEE(j, WASM_I32V_1(i))}); ExpectValidates(sigs.i_i(), {WASM_LOCAL_TEE(j, WASM_I32V_1(i))}); } } } TEST_F(FunctionBodyDecoderTest, BlockN) { constexpr size_t kMaxSize = 200; byte buffer[kMaxSize + 3]; for (size_t i = 0; i <= kMaxSize; i++) { memset(buffer, kExprNop, sizeof(buffer)); buffer[0] = kExprBlock; buffer[1] = kVoidCode; buffer[i + 2] = kExprEnd; ExpectValidates(sigs.v_i(), VectorOf(buffer, i + 3), kAppendEnd); } } #define WASM_EMPTY_BLOCK kExprBlock, kVoidCode, kExprEnd TEST_F(FunctionBodyDecoderTest, Block0) { ExpectValidates(sigs.v_v(), {WASM_EMPTY_BLOCK}); ExpectFailure(sigs.i_i(), {WASM_EMPTY_BLOCK}); } TEST_F(FunctionBodyDecoderTest, Block0_fallthru1) { ExpectValidates(sigs.v_v(), {WASM_BLOCK(WASM_EMPTY_BLOCK)}); ExpectFailure(sigs.i_i(), {WASM_BLOCK(WASM_EMPTY_BLOCK)}); } TEST_F(FunctionBodyDecoderTest, Block0Block0) { ExpectValidates(sigs.v_v(), {WASM_EMPTY_BLOCK, WASM_EMPTY_BLOCK}); ExpectFailure(sigs.i_i(), {WASM_EMPTY_BLOCK, WASM_EMPTY_BLOCK}); } TEST_F(FunctionBodyDecoderTest, Block0_end) { ExpectFailure(sigs.v_v(), {WASM_EMPTY_BLOCK, kExprEnd}); } #undef WASM_EMPTY_BLOCK TEST_F(FunctionBodyDecoderTest, Block1) { byte code[] = {WASM_BLOCK_I(WASM_LOCAL_GET(0))}; ExpectValidates(sigs.i_i(), code); ExpectFailure(sigs.v_i(), code); ExpectFailure(sigs.d_dd(), code); ExpectFailure(sigs.i_f(), code); ExpectFailure(sigs.i_d(), code); } TEST_F(FunctionBodyDecoderTest, Block1_i) { byte code[] = {WASM_BLOCK_I(WASM_ZERO)}; ExpectValidates(sigs.i_i(), code); ExpectFailure(sigs.f_ff(), code); ExpectFailure(sigs.d_dd(), code); ExpectFailure(sigs.l_ll(), code); } TEST_F(FunctionBodyDecoderTest, Block1_f) { byte code[] = {WASM_BLOCK_F(WASM_F32(0))}; ExpectFailure(sigs.i_i(), code); ExpectValidates(sigs.f_ff(), code); ExpectFailure(sigs.d_dd(), code); ExpectFailure(sigs.l_ll(), code); } TEST_F(FunctionBodyDecoderTest, Block1_continue) { ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_BR(0))}); } TEST_F(FunctionBodyDecoderTest, Block1_br) { ExpectValidates(sigs.v_v(), {B1(WASM_BR(0))}); ExpectValidates(sigs.v_v(), {B1(WASM_BR(1))}); ExpectFailure(sigs.v_v(), {B1(WASM_BR(2))}); } TEST_F(FunctionBodyDecoderTest, Block2_br) { ExpectValidates(sigs.v_v(), {B2(WASM_NOP, WASM_BR(0))}); ExpectValidates(sigs.v_v(), {B2(WASM_BR(0), WASM_NOP)}); ExpectValidates(sigs.v_v(), {B2(WASM_BR(0), WASM_BR(0))}); } TEST_F(FunctionBodyDecoderTest, Block2) { ExpectFailure(sigs.i_i(), {WASM_BLOCK(WASM_NOP, WASM_NOP)}); ExpectFailure(sigs.i_i(), {WASM_BLOCK_I(WASM_NOP, WASM_NOP)}); ExpectValidates(sigs.i_i(), {WASM_BLOCK_I(WASM_NOP, WASM_ZERO)}); ExpectValidates(sigs.i_i(), {WASM_BLOCK_I(WASM_ZERO, WASM_NOP)}); ExpectFailure(sigs.i_i(), {WASM_BLOCK_I(WASM_ZERO, WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, Block2b) { byte code[] = {WASM_BLOCK_I(WASM_LOCAL_SET(0, WASM_ZERO), WASM_ZERO)}; ExpectValidates(sigs.i_i(), code); ExpectFailure(sigs.v_v(), code); ExpectFailure(sigs.f_ff(), code); } TEST_F(FunctionBodyDecoderTest, Block2_fallthru) { ExpectValidates(sigs.i_i(), {B2(WASM_LOCAL_SET(0, WASM_ZERO), WASM_LOCAL_SET(0, WASM_ZERO)), WASM_I32V_1(23)}); } TEST_F(FunctionBodyDecoderTest, Block3) { ExpectValidates(sigs.i_i(), {WASM_BLOCK_I(WASM_LOCAL_SET(0, WASM_ZERO), WASM_LOCAL_SET(0, WASM_ZERO), WASM_I32V_1(11))}); } TEST_F(FunctionBodyDecoderTest, Block5) { ExpectFailure(sigs.v_i(), {WASM_BLOCK(WASM_ZERO)}); ExpectFailure(sigs.v_i(), {WASM_BLOCK(WASM_ZERO, WASM_ZERO)}); ExpectFailure(sigs.v_i(), {WASM_BLOCK(WASM_ZERO, WASM_ZERO, WASM_ZERO)}); ExpectFailure(sigs.v_i(), {WASM_BLOCK(WASM_ZERO, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); ExpectFailure(sigs.v_i(), {WASM_BLOCK(WASM_ZERO, WASM_ZERO, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, BlockType) { ExpectValidates(sigs.i_i(), {WASM_BLOCK_I(WASM_LOCAL_GET(0))}); ExpectValidates(sigs.l_l(), {WASM_BLOCK_L(WASM_LOCAL_GET(0))}); ExpectValidates(sigs.f_f(), {WASM_BLOCK_F(WASM_LOCAL_GET(0))}); ExpectValidates(sigs.d_d(), {WASM_BLOCK_D(WASM_LOCAL_GET(0))}); } TEST_F(FunctionBodyDecoderTest, BlockType_fail) { ExpectFailure(sigs.i_i(), {WASM_BLOCK_L(WASM_I64V_1(0))}); ExpectFailure(sigs.i_i(), {WASM_BLOCK_F(WASM_F32(0.0))}); ExpectFailure(sigs.i_i(), {WASM_BLOCK_D(WASM_F64(1.1))}); ExpectFailure(sigs.l_l(), {WASM_BLOCK_I(WASM_ZERO)}); ExpectFailure(sigs.l_l(), {WASM_BLOCK_F(WASM_F32(0.0))}); ExpectFailure(sigs.l_l(), {WASM_BLOCK_D(WASM_F64(1.1))}); ExpectFailure(sigs.f_ff(), {WASM_BLOCK_I(WASM_ZERO)}); ExpectFailure(sigs.f_ff(), {WASM_BLOCK_L(WASM_I64V_1(0))}); ExpectFailure(sigs.f_ff(), {WASM_BLOCK_D(WASM_F64(1.1))}); ExpectFailure(sigs.d_dd(), {WASM_BLOCK_I(WASM_ZERO)}); ExpectFailure(sigs.d_dd(), {WASM_BLOCK_L(WASM_I64V_1(0))}); ExpectFailure(sigs.d_dd(), {WASM_BLOCK_F(WASM_F32(0.0))}); } TEST_F(FunctionBodyDecoderTest, BlockF32) { static const byte code[] = {WASM_BLOCK_F(kExprF32Const, 0, 0, 0, 0)}; ExpectValidates(sigs.f_ff(), code); ExpectFailure(sigs.i_i(), code); ExpectFailure(sigs.d_dd(), code); } TEST_F(FunctionBodyDecoderTest, BlockN_off_end) { byte code[] = {WASM_BLOCK(kExprNop, kExprNop, kExprNop, kExprNop)}; ExpectValidates(sigs.v_v(), code); for (size_t i = 1; i < arraysize(code); i++) { ExpectFailure(sigs.v_v(), VectorOf(code, i), kAppendEnd); ExpectFailure(sigs.v_v(), VectorOf(code, i), kOmitEnd); } } TEST_F(FunctionBodyDecoderTest, Block2_continue) { ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_NOP, WASM_BR(0))}); ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_NOP, WASM_BR(1))}); ExpectFailure(sigs.v_v(), {WASM_LOOP(WASM_NOP, WASM_BR(2))}); } TEST_F(FunctionBodyDecoderTest, Block3_continue) { ExpectValidates(sigs.v_v(), {B1(WASM_LOOP(WASM_NOP, WASM_BR(0)))}); ExpectValidates(sigs.v_v(), {B1(WASM_LOOP(WASM_NOP, WASM_BR(1)))}); ExpectValidates(sigs.v_v(), {B1(WASM_LOOP(WASM_NOP, WASM_BR(2)))}); ExpectFailure(sigs.v_v(), {B1(WASM_LOOP(WASM_NOP, WASM_BR(3)))}); } TEST_F(FunctionBodyDecoderTest, NestedBlock_return) { ExpectValidates(sigs.i_i(), {B1(B1(WASM_RETURN1(WASM_ZERO))), WASM_ZERO}); } TEST_F(FunctionBodyDecoderTest, BlockBrBinop) { ExpectValidates(sigs.i_i(), {WASM_I32_AND(WASM_BLOCK_I(WASM_BRV(0, WASM_I32V_1(1))), WASM_I32V_1(2))}); } TEST_F(FunctionBodyDecoderTest, VoidBlockTypeVariants) { // Valid kVoidCode encoded in 2 bytes. ExpectValidates(sigs.v_v(), {kExprBlock, kVoidCode | 0x80, 0x7F, kExprEnd}); // Invalid code, whose last 7 bits coincide with kVoidCode. ExpectFailure(sigs.v_v(), {kExprBlock, kVoidCode | 0x80, 0x45, kExprEnd}, kAppendEnd, "invalid block type"); } TEST_F(FunctionBodyDecoderTest, If_empty1) { ExpectValidates(sigs.v_v(), {WASM_ZERO, WASM_IF_OP, kExprEnd}); } TEST_F(FunctionBodyDecoderTest, If_empty2) { ExpectValidates(sigs.v_v(), {WASM_ZERO, WASM_IF_OP, kExprElse, kExprEnd}); } TEST_F(FunctionBodyDecoderTest, If_empty3) { ExpectValidates(sigs.v_v(), {WASM_ZERO, WASM_IF_OP, WASM_NOP, kExprElse, kExprEnd}); ExpectFailure(sigs.v_v(), {WASM_ZERO, WASM_IF_OP, WASM_ZERO, kExprElse, kExprEnd}); } TEST_F(FunctionBodyDecoderTest, If_empty4) { ExpectValidates(sigs.v_v(), {WASM_ZERO, WASM_IF_OP, kExprElse, WASM_NOP, kExprEnd}); ExpectFailure(sigs.v_v(), {WASM_ZERO, WASM_IF_OP, kExprElse, WASM_ZERO, kExprEnd}); } TEST_F(FunctionBodyDecoderTest, If_empty_stack) { byte code[] = {kExprIf}; ExpectFailure(sigs.v_v(), code); ExpectFailure(sigs.i_i(), code); } TEST_F(FunctionBodyDecoderTest, If_incomplete1) { byte code[] = {kExprI32Const, 0, kExprIf}; ExpectFailure(sigs.v_v(), code); ExpectFailure(sigs.i_i(), code); } TEST_F(FunctionBodyDecoderTest, If_incomplete2) { byte code[] = {kExprI32Const, 0, kExprIf, kExprNop}; ExpectFailure(sigs.v_v(), code); ExpectFailure(sigs.i_i(), code); } TEST_F(FunctionBodyDecoderTest, If_else_else) { byte code[] = {kExprI32Const, 0, WASM_IF_OP, kExprElse, kExprElse, kExprEnd}; ExpectFailure(sigs.v_v(), code); ExpectFailure(sigs.i_i(), code); } TEST_F(FunctionBodyDecoderTest, IfEmpty) { ExpectValidates(sigs.v_i(), {kExprLocalGet, 0, WASM_IF_OP, kExprEnd}); } TEST_F(FunctionBodyDecoderTest, IfSet) { ExpectValidates(sigs.v_i(), {WASM_IF(WASM_LOCAL_GET(0), WASM_LOCAL_SET(0, WASM_ZERO))}); ExpectValidates(sigs.v_i(), {WASM_IF_ELSE(WASM_LOCAL_GET(0), WASM_LOCAL_SET(0, WASM_ZERO), WASM_NOP)}); } TEST_F(FunctionBodyDecoderTest, IfElseEmpty) { ExpectValidates(sigs.v_i(), {WASM_LOCAL_GET(0), WASM_IF_OP, kExprElse, kExprEnd}); ExpectValidates(sigs.v_i(), {WASM_IF_ELSE(WASM_LOCAL_GET(0), WASM_NOP, WASM_NOP)}); } TEST_F(FunctionBodyDecoderTest, IfElseUnreachable1) { ExpectValidates( sigs.i_i(), {WASM_IF_ELSE_I(WASM_LOCAL_GET(0), WASM_UNREACHABLE, WASM_LOCAL_GET(0))}); ExpectValidates( sigs.i_i(), {WASM_IF_ELSE_I(WASM_LOCAL_GET(0), WASM_LOCAL_GET(0), WASM_UNREACHABLE)}); } TEST_F(FunctionBodyDecoderTest, IfElseUnreachable2) { static const byte code[] = { WASM_IF_ELSE_I(WASM_LOCAL_GET(0), WASM_UNREACHABLE, WASM_LOCAL_GET(0))}; for (size_t i = 0; i < arraysize(kValueTypes); i++) { ValueType types[] = {kWasmI32, kValueTypes[i]}; FunctionSig sig(1, 1, types); Validate(kValueTypes[i] == kWasmI32, &sig, code); } } TEST_F(FunctionBodyDecoderTest, OneArmedIfWithArity) { static const byte code[] = {WASM_ZERO, kExprIf, kI32Code, WASM_ONE, kExprEnd}; ExpectFailure(sigs.i_v(), code, kAppendEnd, "start-arity and end-arity of one-armed if must match"); } TEST_F(FunctionBodyDecoderTest, IfBreak) { ExpectValidates(sigs.v_i(), {WASM_IF(WASM_LOCAL_GET(0), WASM_BR(0))}); ExpectValidates(sigs.v_i(), {WASM_IF(WASM_LOCAL_GET(0), WASM_BR(1))}); ExpectFailure(sigs.v_i(), {WASM_IF(WASM_LOCAL_GET(0), WASM_BR(2))}); } TEST_F(FunctionBodyDecoderTest, IfElseBreak) { ExpectValidates(sigs.v_i(), {WASM_IF_ELSE(WASM_LOCAL_GET(0), WASM_NOP, WASM_BR(0))}); ExpectValidates(sigs.v_i(), {WASM_IF_ELSE(WASM_LOCAL_GET(0), WASM_NOP, WASM_BR(1))}); ExpectFailure(sigs.v_i(), {WASM_IF_ELSE(WASM_LOCAL_GET(0), WASM_NOP, WASM_BR(2))}); } TEST_F(FunctionBodyDecoderTest, Block_else) { byte code[] = {kExprI32Const, 0, kExprBlock, kExprElse, kExprEnd}; ExpectFailure(sigs.v_v(), code); ExpectFailure(sigs.i_i(), code); } TEST_F(FunctionBodyDecoderTest, IfNop) { ExpectValidates(sigs.v_i(), {WASM_IF(WASM_LOCAL_GET(0), WASM_NOP)}); ExpectValidates(sigs.v_i(), {WASM_IF_ELSE(WASM_LOCAL_GET(0), WASM_NOP, WASM_NOP)}); } TEST_F(FunctionBodyDecoderTest, If_end) { ExpectValidates(sigs.v_i(), {kExprLocalGet, 0, WASM_IF_OP, kExprEnd}); ExpectFailure(sigs.v_i(), {kExprLocalGet, 0, WASM_IF_OP, kExprEnd, kExprEnd}); } TEST_F(FunctionBodyDecoderTest, If_falloff1) { ExpectFailure(sigs.v_i(), {kExprLocalGet, 0, kExprIf}); ExpectFailure(sigs.v_i(), {kExprLocalGet, 0, WASM_IF_OP}); ExpectFailure(sigs.v_i(), {kExprLocalGet, 0, WASM_IF_OP, kExprNop, kExprElse}); } TEST_F(FunctionBodyDecoderTest, IfElseNop) { ExpectValidates(sigs.v_i(), {WASM_IF_ELSE(WASM_LOCAL_GET(0), WASM_LOCAL_SET(0, WASM_ZERO), WASM_NOP)}); } TEST_F(FunctionBodyDecoderTest, IfBlock1) { ExpectValidates(sigs.v_i(), {WASM_IF_ELSE(WASM_LOCAL_GET(0), B1(WASM_LOCAL_SET(0, WASM_ZERO)), WASM_NOP)}); } TEST_F(FunctionBodyDecoderTest, IfBlock1b) { ExpectValidates(sigs.v_i(), {WASM_IF(WASM_LOCAL_GET(0), B1(WASM_LOCAL_SET(0, WASM_ZERO)))}); } TEST_F(FunctionBodyDecoderTest, IfBlock2a) { ExpectValidates(sigs.v_i(), {WASM_IF(WASM_LOCAL_GET(0), B2(WASM_LOCAL_SET(0, WASM_ZERO), WASM_LOCAL_SET(0, WASM_ZERO)))}); } TEST_F(FunctionBodyDecoderTest, IfBlock2b) { ExpectValidates(sigs.v_i(), {WASM_IF_ELSE(WASM_LOCAL_GET(0), B2(WASM_LOCAL_SET(0, WASM_ZERO), WASM_LOCAL_SET(0, WASM_ZERO)), WASM_NOP)}); } TEST_F(FunctionBodyDecoderTest, IfElseSet) { ExpectValidates(sigs.v_i(), {WASM_IF_ELSE(WASM_LOCAL_GET(0), WASM_LOCAL_SET(0, WASM_ZERO), WASM_LOCAL_SET(0, WASM_I32V_1(1)))}); } TEST_F(FunctionBodyDecoderTest, Loop0) { ExpectValidates(sigs.v_v(), {WASM_LOOP_OP, kExprEnd}); } TEST_F(FunctionBodyDecoderTest, Loop1) { static const byte code[] = {WASM_LOOP(WASM_LOCAL_SET(0, WASM_ZERO))}; ExpectValidates(sigs.v_i(), code); ExpectFailure(sigs.v_v(), code); ExpectFailure(sigs.f_ff(), code); } TEST_F(FunctionBodyDecoderTest, Loop2) { ExpectValidates(sigs.v_i(), {WASM_LOOP(WASM_LOCAL_SET(0, WASM_ZERO), WASM_LOCAL_SET(0, WASM_ZERO))}); } TEST_F(FunctionBodyDecoderTest, Loop1_continue) { ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_BR(0))}); } TEST_F(FunctionBodyDecoderTest, Loop1_break) { ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_BR(1))}); } TEST_F(FunctionBodyDecoderTest, Loop2_continue) { ExpectValidates(sigs.v_i(), {WASM_LOOP(WASM_LOCAL_SET(0, WASM_ZERO), WASM_BR(0))}); } TEST_F(FunctionBodyDecoderTest, Loop2_break) { ExpectValidates(sigs.v_i(), {WASM_LOOP(WASM_LOCAL_SET(0, WASM_ZERO), WASM_BR(1))}); } TEST_F(FunctionBodyDecoderTest, InfiniteLoop1) { ExpectValidates(sigs.i_i(), {WASM_LOOP(WASM_BR(0)), WASM_ZERO}); ExpectValidates(sigs.i_i(), {WASM_LOOP(WASM_BR(0)), WASM_ZERO}); ExpectValidates(sigs.i_i(), {WASM_LOOP_I(WASM_BRV(1, WASM_ZERO))}); } TEST_F(FunctionBodyDecoderTest, InfiniteLoop2) { ExpectFailure(sigs.i_i(), {WASM_LOOP(WASM_BR(0), WASM_ZERO), WASM_ZERO}); } TEST_F(FunctionBodyDecoderTest, Loop2_unreachable) { ExpectValidates(sigs.i_i(), {WASM_LOOP_I(WASM_BR(0), WASM_NOP)}); } TEST_F(FunctionBodyDecoderTest, LoopType) { ExpectValidates(sigs.i_i(), {WASM_LOOP_I(WASM_LOCAL_GET(0))}); ExpectValidates(sigs.l_l(), {WASM_LOOP_L(WASM_LOCAL_GET(0))}); ExpectValidates(sigs.f_f(), {WASM_LOOP_F(WASM_LOCAL_GET(0))}); ExpectValidates(sigs.d_d(), {WASM_LOOP_D(WASM_LOCAL_GET(0))}); } TEST_F(FunctionBodyDecoderTest, LoopType_void) { ExpectFailure(sigs.v_v(), {WASM_LOOP_I(WASM_ZERO)}); ExpectFailure(sigs.v_v(), {WASM_LOOP_L(WASM_I64V_1(0))}); ExpectFailure(sigs.v_v(), {WASM_LOOP_F(WASM_F32(0.0))}); ExpectFailure(sigs.v_v(), {WASM_LOOP_D(WASM_F64(1.1))}); } TEST_F(FunctionBodyDecoderTest, LoopType_fail) { ExpectFailure(sigs.i_i(), {WASM_LOOP_L(WASM_I64V_1(0))}); ExpectFailure(sigs.i_i(), {WASM_LOOP_F(WASM_F32(0.0))}); ExpectFailure(sigs.i_i(), {WASM_LOOP_D(WASM_F64(1.1))}); ExpectFailure(sigs.l_l(), {WASM_LOOP_I(WASM_ZERO)}); ExpectFailure(sigs.l_l(), {WASM_LOOP_F(WASM_F32(0.0))}); ExpectFailure(sigs.l_l(), {WASM_LOOP_D(WASM_F64(1.1))}); ExpectFailure(sigs.f_ff(), {WASM_LOOP_I(WASM_ZERO)}); ExpectFailure(sigs.f_ff(), {WASM_LOOP_L(WASM_I64V_1(0))}); ExpectFailure(sigs.f_ff(), {WASM_LOOP_D(WASM_F64(1.1))}); ExpectFailure(sigs.d_dd(), {WASM_LOOP_I(WASM_ZERO)}); ExpectFailure(sigs.d_dd(), {WASM_LOOP_L(WASM_I64V_1(0))}); ExpectFailure(sigs.d_dd(), {WASM_LOOP_F(WASM_F32(0.0))}); } TEST_F(FunctionBodyDecoderTest, ReturnVoid1) { static const byte code[] = {kExprNop}; ExpectValidates(sigs.v_v(), code); ExpectFailure(sigs.i_i(), code); ExpectFailure(sigs.i_f(), code); } TEST_F(FunctionBodyDecoderTest, ReturnVoid2) { static const byte code[] = {WASM_BLOCK(WASM_BR(0))}; ExpectValidates(sigs.v_v(), code); ExpectFailure(sigs.i_i(), code); ExpectFailure(sigs.i_f(), code); } TEST_F(FunctionBodyDecoderTest, ReturnVoid3) { ExpectFailure(sigs.v_v(), {kExprI32Const, 0}); ExpectFailure(sigs.v_v(), {kExprI64Const, 0}); ExpectFailure(sigs.v_v(), {kExprF32Const, 0, 0, 0, 0}); ExpectFailure(sigs.v_v(), {kExprF64Const, 0, 0, 0, 0, 0, 0, 0, 0}); ExpectFailure(sigs.v_v(), {kExprRefNull}); ExpectFailure(sigs.v_v(), {kExprRefFunc, 0}); ExpectFailure(sigs.v_i(), {kExprLocalGet, 0}); } TEST_F(FunctionBodyDecoderTest, Unreachable1) { ExpectValidates(sigs.v_v(), {WASM_UNREACHABLE}); ExpectValidates(sigs.v_v(), {WASM_UNREACHABLE, WASM_UNREACHABLE}); ExpectValidates(sigs.i_i(), {WASM_UNREACHABLE, WASM_ZERO}); } TEST_F(FunctionBodyDecoderTest, Unreachable2) { ExpectFailure(sigs.v_v(), {B2(WASM_UNREACHABLE, WASM_ZERO)}); ExpectFailure(sigs.v_v(), {B2(WASM_BR(0), WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, UnreachableLoop1) { ExpectFailure(sigs.v_v(), {WASM_LOOP(WASM_UNREACHABLE, WASM_ZERO)}); ExpectFailure(sigs.v_v(), {WASM_LOOP(WASM_BR(0), WASM_ZERO)}); ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_UNREACHABLE, WASM_NOP)}); ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_BR(0), WASM_NOP)}); } TEST_F(FunctionBodyDecoderTest, Unreachable_binop1) { ExpectValidates(sigs.i_i(), {WASM_I32_AND(WASM_ZERO, WASM_UNREACHABLE)}); ExpectValidates(sigs.i_i(), {WASM_I32_AND(WASM_UNREACHABLE, WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, Unreachable_binop2) { ExpectValidates(sigs.i_i(), {WASM_I32_AND(WASM_F32(0.0), WASM_UNREACHABLE)}); ExpectFailure(sigs.i_i(), {WASM_I32_AND(WASM_UNREACHABLE, WASM_F32(0.0))}); } TEST_F(FunctionBodyDecoderTest, Unreachable_select1) { ExpectValidates(sigs.i_i(), {WASM_SELECT(WASM_UNREACHABLE, WASM_ZERO, WASM_ZERO)}); ExpectValidates(sigs.i_i(), {WASM_SELECT(WASM_ZERO, WASM_UNREACHABLE, WASM_ZERO)}); ExpectValidates(sigs.i_i(), {WASM_SELECT(WASM_ZERO, WASM_ZERO, WASM_UNREACHABLE)}); } TEST_F(FunctionBodyDecoderTest, Unreachable_select2) { ExpectValidates(sigs.i_i(), {WASM_SELECT(WASM_F32(0.0), WASM_UNREACHABLE, WASM_ZERO)}); ExpectFailure(sigs.i_i(), {WASM_SELECT(WASM_UNREACHABLE, WASM_F32(0.0), WASM_ZERO)}); ExpectFailure(sigs.i_i(), {WASM_SELECT(WASM_UNREACHABLE, WASM_ZERO, WASM_F32(0.0))}); } TEST_F(FunctionBodyDecoderTest, UnreachableRefTypes) { WASM_FEATURE_SCOPE(reftypes); WASM_FEATURE_SCOPE(typed_funcref); WASM_FEATURE_SCOPE(gc); WASM_FEATURE_SCOPE(return_call); byte function_index = builder.AddFunction(sigs.i_ii()); byte struct_index = builder.AddStruct({F(kWasmI32, true), F(kWasmI64, true)}); byte array_index = builder.AddArray(kWasmI32, true); ValueType struct_type = ValueType::Ref(struct_index, kNonNullable); FunctionSig sig_v_s(0, 1, &struct_type); byte struct_consumer = builder.AddFunction(&sig_v_s); ExpectValidates(sigs.i_v(), {WASM_UNREACHABLE, kExprRefIsNull}); ExpectValidates(sigs.v_v(), {WASM_UNREACHABLE, kExprRefAsNonNull, kExprDrop}); ExpectValidates(sigs.i_v(), {WASM_UNREACHABLE, kExprCallRef, WASM_I32V(1)}); ExpectValidates(sigs.i_v(), {WASM_UNREACHABLE, WASM_REF_FUNC(function_index), kExprCallRef}); ExpectValidates(sigs.v_v(), {WASM_UNREACHABLE, kExprReturnCallRef}); ExpectValidates(sigs.v_v(), {WASM_UNREACHABLE, WASM_GC_OP(kExprStructNewWithRtt), struct_index, kExprCallFunction, struct_consumer}); ExpectValidates(sigs.v_v(), {WASM_UNREACHABLE, WASM_RTT_CANON(struct_index), WASM_GC_OP(kExprStructNewWithRtt), struct_index, kExprCallFunction, struct_consumer}); ExpectValidates(sigs.v_v(), {WASM_UNREACHABLE, WASM_I64V(42), WASM_RTT_CANON(struct_index), WASM_GC_OP(kExprStructNewWithRtt), struct_index, kExprCallFunction, struct_consumer}); ExpectValidates(sigs.v_v(), {WASM_UNREACHABLE, WASM_GC_OP(kExprStructNewDefault), struct_index, kExprDrop}); ExpectValidates(sigs.v_v(), {WASM_UNREACHABLE, WASM_RTT_CANON(struct_index), WASM_GC_OP(kExprStructNewDefault), struct_index, kExprCallFunction, struct_consumer}); ExpectValidates(sigs.v_v(), {WASM_UNREACHABLE, WASM_GC_OP(kExprArrayNewWithRtt), array_index, kExprDrop}); ExpectValidates(sigs.v_v(), {WASM_UNREACHABLE, WASM_RTT_CANON(array_index), WASM_GC_OP(kExprArrayNewWithRtt), array_index, kExprDrop}); ExpectValidates(sigs.v_v(), {WASM_UNREACHABLE, WASM_I32V(42), WASM_RTT_CANON(array_index), WASM_GC_OP(kExprArrayNewWithRtt), array_index, kExprDrop}); ExpectValidates(sigs.v_v(), {WASM_UNREACHABLE, WASM_GC_OP(kExprArrayNewDefault), array_index, kExprDrop}); ExpectValidates(sigs.v_v(), {WASM_UNREACHABLE, WASM_RTT_CANON(array_index), WASM_GC_OP(kExprArrayNewDefault), array_index, kExprDrop}); ExpectValidates(sigs.i_v(), {WASM_UNREACHABLE, WASM_GC_OP(kExprRefTest), struct_index, struct_index}); ExpectValidates(sigs.i_v(), {WASM_UNREACHABLE, WASM_RTT_CANON(struct_index), WASM_GC_OP(kExprRefTest), struct_index, struct_index}); ExpectValidates(sigs.v_v(), {WASM_UNREACHABLE, WASM_GC_OP(kExprRefCast), struct_index, struct_index, kExprDrop}); ExpectValidates(sigs.v_v(), {WASM_UNREACHABLE, WASM_RTT_CANON(struct_index), WASM_GC_OP(kExprRefCast), struct_index, struct_index, kExprDrop}); ExpectValidates(sigs.v_v(), {WASM_UNREACHABLE, WASM_GC_OP(kExprRttSub), array_index, WASM_GC_OP(kExprRttSub), array_index, kExprDrop}); ExpectValidates(sigs.v_v(), {WASM_UNREACHABLE, kExprBrOnNull, 0, WASM_DROP}); ExpectValidates(&sig_v_s, {WASM_UNREACHABLE, WASM_LOCAL_GET(0), kExprBrOnNull, 0, kExprCallFunction, struct_consumer}); ValueType opt_struct_type = ValueType::Ref(struct_index, kNullable); FunctionSig sig_v_os(0, 1, &opt_struct_type); ExpectValidates(&sig_v_os, {WASM_UNREACHABLE, WASM_LOCAL_GET(0), kExprBrOnNull, 0, kExprCallFunction, struct_consumer}); ExpectFailure( sigs.v_v(), {WASM_UNREACHABLE, WASM_I32V(42), kExprBrOnNull, 0}, kAppendEnd, "br_on_null[0] expected object reference, found i32.const of type i32"); } TEST_F(FunctionBodyDecoderTest, If1) { ExpectValidates(sigs.i_i(), {WASM_IF_ELSE_I(WASM_LOCAL_GET(0), WASM_I32V_1(9), WASM_I32V_1(8))}); ExpectValidates(sigs.i_i(), {WASM_IF_ELSE_I(WASM_LOCAL_GET(0), WASM_I32V_1(9), WASM_LOCAL_GET(0))}); ExpectValidates( sigs.i_i(), {WASM_IF_ELSE_I(WASM_LOCAL_GET(0), WASM_LOCAL_GET(0), WASM_I32V_1(8))}); } TEST_F(FunctionBodyDecoderTest, If_off_end) { static const byte kCode[] = { WASM_IF_ELSE(WASM_LOCAL_GET(0), WASM_LOCAL_GET(0), WASM_LOCAL_GET(0))}; for (size_t len = 3; len < arraysize(kCode); len++) { ExpectFailure(sigs.i_i(), VectorOf(kCode, len), kAppendEnd); ExpectFailure(sigs.i_i(), VectorOf(kCode, len), kOmitEnd); } } TEST_F(FunctionBodyDecoderTest, If_type1) { // float|double ? 1 : 2 static const byte kCode[] = { WASM_IF_ELSE_I(WASM_LOCAL_GET(0), WASM_I32V_1(0), WASM_I32V_1(2))}; ExpectValidates(sigs.i_i(), kCode); ExpectFailure(sigs.i_f(), kCode); ExpectFailure(sigs.i_d(), kCode); } TEST_F(FunctionBodyDecoderTest, If_type2) { // 1 ? float|double : 2 static const byte kCode[] = { WASM_IF_ELSE_I(WASM_I32V_1(1), WASM_LOCAL_GET(0), WASM_I32V_1(1))}; ExpectValidates(sigs.i_i(), kCode); ExpectFailure(sigs.i_f(), kCode); ExpectFailure(sigs.i_d(), kCode); } TEST_F(FunctionBodyDecoderTest, If_type3) { // stmt ? 0 : 1 static const byte kCode[] = { WASM_IF_ELSE_I(WASM_NOP, WASM_I32V_1(0), WASM_I32V_1(1))}; ExpectFailure(sigs.i_i(), kCode); ExpectFailure(sigs.i_f(), kCode); ExpectFailure(sigs.i_d(), kCode); } TEST_F(FunctionBodyDecoderTest, If_type4) { // 0 ? stmt : 1 static const byte kCode[] = { WASM_IF_ELSE_I(WASM_LOCAL_GET(0), WASM_NOP, WASM_I32V_1(1))}; ExpectFailure(sigs.i_i(), kCode); ExpectFailure(sigs.i_f(), kCode); ExpectFailure(sigs.i_d(), kCode); } TEST_F(FunctionBodyDecoderTest, If_type5) { // 0 ? 1 : stmt static const byte kCode[] = { WASM_IF_ELSE_I(WASM_ZERO, WASM_I32V_1(1), WASM_NOP)}; ExpectFailure(sigs.i_i(), kCode); ExpectFailure(sigs.i_f(), kCode); ExpectFailure(sigs.i_d(), kCode); } TEST_F(FunctionBodyDecoderTest, Int64Local_param) { ExpectValidates(sigs.l_l(), kCodeGetLocal0); } TEST_F(FunctionBodyDecoderTest, Int64Locals) { for (byte i = 1; i < 8; i++) { AddLocals(kWasmI64, 1); for (byte j = 0; j < i; j++) { ExpectValidates(sigs.l_v(), {WASM_LOCAL_GET(j)}); } } } TEST_F(FunctionBodyDecoderTest, Int32Binops) { TestBinop(kExprI32Add, sigs.i_ii()); TestBinop(kExprI32Sub, sigs.i_ii()); TestBinop(kExprI32Mul, sigs.i_ii()); TestBinop(kExprI32DivS, sigs.i_ii()); TestBinop(kExprI32DivU, sigs.i_ii()); TestBinop(kExprI32RemS, sigs.i_ii()); TestBinop(kExprI32RemU, sigs.i_ii()); TestBinop(kExprI32And, sigs.i_ii()); TestBinop(kExprI32Ior, sigs.i_ii()); TestBinop(kExprI32Xor, sigs.i_ii()); TestBinop(kExprI32Shl, sigs.i_ii()); TestBinop(kExprI32ShrU, sigs.i_ii()); TestBinop(kExprI32ShrS, sigs.i_ii()); TestBinop(kExprI32Eq, sigs.i_ii()); TestBinop(kExprI32LtS, sigs.i_ii()); TestBinop(kExprI32LeS, sigs.i_ii()); TestBinop(kExprI32LtU, sigs.i_ii()); TestBinop(kExprI32LeU, sigs.i_ii()); } TEST_F(FunctionBodyDecoderTest, DoubleBinops) { TestBinop(kExprF64Add, sigs.d_dd()); TestBinop(kExprF64Sub, sigs.d_dd()); TestBinop(kExprF64Mul, sigs.d_dd()); TestBinop(kExprF64Div, sigs.d_dd()); TestBinop(kExprF64Eq, sigs.i_dd()); TestBinop(kExprF64Lt, sigs.i_dd()); TestBinop(kExprF64Le, sigs.i_dd()); } TEST_F(FunctionBodyDecoderTest, FloatBinops) { TestBinop(kExprF32Add, sigs.f_ff()); TestBinop(kExprF32Sub, sigs.f_ff()); TestBinop(kExprF32Mul, sigs.f_ff()); TestBinop(kExprF32Div, sigs.f_ff()); TestBinop(kExprF32Eq, sigs.i_ff()); TestBinop(kExprF32Lt, sigs.i_ff()); TestBinop(kExprF32Le, sigs.i_ff()); } TEST_F(FunctionBodyDecoderTest, TypeConversions) { TestUnop(kExprI32SConvertF32, kWasmI32, kWasmF32); TestUnop(kExprI32SConvertF64, kWasmI32, kWasmF64); TestUnop(kExprI32UConvertF32, kWasmI32, kWasmF32); TestUnop(kExprI32UConvertF64, kWasmI32, kWasmF64); TestUnop(kExprF64SConvertI32, kWasmF64, kWasmI32); TestUnop(kExprF64UConvertI32, kWasmF64, kWasmI32); TestUnop(kExprF64ConvertF32, kWasmF64, kWasmF32); TestUnop(kExprF32SConvertI32, kWasmF32, kWasmI32); TestUnop(kExprF32UConvertI32, kWasmF32, kWasmI32); TestUnop(kExprF32ConvertF64, kWasmF32, kWasmF64); } TEST_F(FunctionBodyDecoderTest, MacrosStmt) { builder.InitializeMemory(); ExpectValidates(sigs.v_i(), {WASM_LOCAL_SET(0, WASM_I32V_3(87348))}); ExpectValidates( sigs.v_i(), {WASM_STORE_MEM(MachineType::Int32(), WASM_I32V_1(24), WASM_I32V_1(40))}); ExpectValidates(sigs.v_i(), {WASM_IF(WASM_LOCAL_GET(0), WASM_NOP)}); ExpectValidates(sigs.v_i(), {WASM_IF_ELSE(WASM_LOCAL_GET(0), WASM_NOP, WASM_NOP)}); ExpectValidates(sigs.v_v(), {WASM_NOP}); ExpectValidates(sigs.v_v(), {B1(WASM_NOP)}); ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_NOP)}); ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_BR(0))}); } TEST_F(FunctionBodyDecoderTest, MacrosContinue) { ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_CONTINUE(0))}); } TEST_F(FunctionBodyDecoderTest, MacrosVariadic) { ExpectValidates(sigs.v_v(), {B2(WASM_NOP, WASM_NOP)}); ExpectValidates(sigs.v_v(), {B3(WASM_NOP, WASM_NOP, WASM_NOP)}); ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_NOP, WASM_NOP)}); ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_NOP, WASM_NOP, WASM_NOP)}); } TEST_F(FunctionBodyDecoderTest, MacrosNestedBlocks) { ExpectValidates(sigs.v_v(), {B2(WASM_NOP, B2(WASM_NOP, WASM_NOP))}); ExpectValidates(sigs.v_v(), {B3(WASM_NOP, // -- B2(WASM_NOP, WASM_NOP), // -- B2(WASM_NOP, WASM_NOP))}); // -- ExpectValidates(sigs.v_v(), {B1(B1(B2(WASM_NOP, WASM_NOP)))}); } TEST_F(FunctionBodyDecoderTest, MultipleReturn) { static ValueType kIntTypes5[] = {kWasmI32, kWasmI32, kWasmI32, kWasmI32, kWasmI32}; FunctionSig sig_ii_v(2, 0, kIntTypes5); ExpectValidates(&sig_ii_v, {WASM_RETURNN(2, WASM_ZERO, WASM_ONE)}); ExpectFailure(&sig_ii_v, {WASM_RETURNN(1, WASM_ZERO)}); FunctionSig sig_iii_v(3, 0, kIntTypes5); ExpectValidates(&sig_iii_v, {WASM_RETURNN(3, WASM_ZERO, WASM_ONE, WASM_I32V_1(44))}); ExpectFailure(&sig_iii_v, {WASM_RETURNN(2, WASM_ZERO, WASM_ONE)}); } TEST_F(FunctionBodyDecoderTest, MultipleReturn_fallthru) { static ValueType kIntTypes5[] = {kWasmI32, kWasmI32, kWasmI32, kWasmI32, kWasmI32}; FunctionSig sig_ii_v(2, 0, kIntTypes5); ExpectValidates(&sig_ii_v, {WASM_ZERO, WASM_ONE}); ExpectFailure(&sig_ii_v, {WASM_ZERO}); FunctionSig sig_iii_v(3, 0, kIntTypes5); ExpectValidates(&sig_iii_v, {WASM_ZERO, WASM_ONE, WASM_I32V_1(44)}); ExpectFailure(&sig_iii_v, {WASM_ZERO, WASM_ONE}); } TEST_F(FunctionBodyDecoderTest, MacrosInt32) { ExpectValidates(sigs.i_i(), {WASM_I32_ADD(WASM_LOCAL_GET(0), WASM_I32V_1(12))}); ExpectValidates(sigs.i_i(), {WASM_I32_SUB(WASM_LOCAL_GET(0), WASM_I32V_1(13))}); ExpectValidates(sigs.i_i(), {WASM_I32_MUL(WASM_LOCAL_GET(0), WASM_I32V_1(14))}); ExpectValidates(sigs.i_i(), {WASM_I32_DIVS(WASM_LOCAL_GET(0), WASM_I32V_1(15))}); ExpectValidates(sigs.i_i(), {WASM_I32_DIVU(WASM_LOCAL_GET(0), WASM_I32V_1(16))}); ExpectValidates(sigs.i_i(), {WASM_I32_REMS(WASM_LOCAL_GET(0), WASM_I32V_1(17))}); ExpectValidates(sigs.i_i(), {WASM_I32_REMU(WASM_LOCAL_GET(0), WASM_I32V_1(18))}); ExpectValidates(sigs.i_i(), {WASM_I32_AND(WASM_LOCAL_GET(0), WASM_I32V_1(19))}); ExpectValidates(sigs.i_i(), {WASM_I32_IOR(WASM_LOCAL_GET(0), WASM_I32V_1(20))}); ExpectValidates(sigs.i_i(), {WASM_I32_XOR(WASM_LOCAL_GET(0), WASM_I32V_1(21))}); ExpectValidates(sigs.i_i(), {WASM_I32_SHL(WASM_LOCAL_GET(0), WASM_I32V_1(22))}); ExpectValidates(sigs.i_i(), {WASM_I32_SHR(WASM_LOCAL_GET(0), WASM_I32V_1(23))}); ExpectValidates(sigs.i_i(), {WASM_I32_SAR(WASM_LOCAL_GET(0), WASM_I32V_1(24))}); ExpectValidates(sigs.i_i(), {WASM_I32_ROR(WASM_LOCAL_GET(0), WASM_I32V_1(24))}); ExpectValidates(sigs.i_i(), {WASM_I32_ROL(WASM_LOCAL_GET(0), WASM_I32V_1(24))}); ExpectValidates(sigs.i_i(), {WASM_I32_EQ(WASM_LOCAL_GET(0), WASM_I32V_1(25))}); ExpectValidates(sigs.i_i(), {WASM_I32_NE(WASM_LOCAL_GET(0), WASM_I32V_1(25))}); ExpectValidates(sigs.i_i(), {WASM_I32_LTS(WASM_LOCAL_GET(0), WASM_I32V_1(26))}); ExpectValidates(sigs.i_i(), {WASM_I32_LES(WASM_LOCAL_GET(0), WASM_I32V_1(27))}); ExpectValidates(sigs.i_i(), {WASM_I32_LTU(WASM_LOCAL_GET(0), WASM_I32V_1(28))}); ExpectValidates(sigs.i_i(), {WASM_I32_LEU(WASM_LOCAL_GET(0), WASM_I32V_1(29))}); ExpectValidates(sigs.i_i(), {WASM_I32_GTS(WASM_LOCAL_GET(0), WASM_I32V_1(26))}); ExpectValidates(sigs.i_i(), {WASM_I32_GES(WASM_LOCAL_GET(0), WASM_I32V_1(27))}); ExpectValidates(sigs.i_i(), {WASM_I32_GTU(WASM_LOCAL_GET(0), WASM_I32V_1(28))}); ExpectValidates(sigs.i_i(), {WASM_I32_GEU(WASM_LOCAL_GET(0), WASM_I32V_1(29))}); } TEST_F(FunctionBodyDecoderTest, MacrosInt64) { ExpectValidates(sigs.l_ll(), {WASM_I64_ADD(WASM_LOCAL_GET(0), WASM_I64V_1(12))}); ExpectValidates(sigs.l_ll(), {WASM_I64_SUB(WASM_LOCAL_GET(0), WASM_I64V_1(13))}); ExpectValidates(sigs.l_ll(), {WASM_I64_MUL(WASM_LOCAL_GET(0), WASM_I64V_1(14))}); ExpectValidates(sigs.l_ll(), {WASM_I64_DIVS(WASM_LOCAL_GET(0), WASM_I64V_1(15))}); ExpectValidates(sigs.l_ll(), {WASM_I64_DIVU(WASM_LOCAL_GET(0), WASM_I64V_1(16))}); ExpectValidates(sigs.l_ll(), {WASM_I64_REMS(WASM_LOCAL_GET(0), WASM_I64V_1(17))}); ExpectValidates(sigs.l_ll(), {WASM_I64_REMU(WASM_LOCAL_GET(0), WASM_I64V_1(18))}); ExpectValidates(sigs.l_ll(), {WASM_I64_AND(WASM_LOCAL_GET(0), WASM_I64V_1(19))}); ExpectValidates(sigs.l_ll(), {WASM_I64_IOR(WASM_LOCAL_GET(0), WASM_I64V_1(20))}); ExpectValidates(sigs.l_ll(), {WASM_I64_XOR(WASM_LOCAL_GET(0), WASM_I64V_1(21))}); ExpectValidates(sigs.l_ll(), {WASM_I64_SHL(WASM_LOCAL_GET(0), WASM_I64V_1(22))}); ExpectValidates(sigs.l_ll(), {WASM_I64_SHR(WASM_LOCAL_GET(0), WASM_I64V_1(23))}); ExpectValidates(sigs.l_ll(), {WASM_I64_SAR(WASM_LOCAL_GET(0), WASM_I64V_1(24))}); ExpectValidates(sigs.l_ll(), {WASM_I64_ROR(WASM_LOCAL_GET(0), WASM_I64V_1(24))}); ExpectValidates(sigs.l_ll(), {WASM_I64_ROL(WASM_LOCAL_GET(0), WASM_I64V_1(24))}); ExpectValidates(sigs.i_ll(), {WASM_I64_LTS(WASM_LOCAL_GET(0), WASM_I64V_1(26))}); ExpectValidates(sigs.i_ll(), {WASM_I64_LES(WASM_LOCAL_GET(0), WASM_I64V_1(27))}); ExpectValidates(sigs.i_ll(), {WASM_I64_LTU(WASM_LOCAL_GET(0), WASM_I64V_1(28))}); ExpectValidates(sigs.i_ll(), {WASM_I64_LEU(WASM_LOCAL_GET(0), WASM_I64V_1(29))}); ExpectValidates(sigs.i_ll(), {WASM_I64_GTS(WASM_LOCAL_GET(0), WASM_I64V_1(26))}); ExpectValidates(sigs.i_ll(), {WASM_I64_GES(WASM_LOCAL_GET(0), WASM_I64V_1(27))}); ExpectValidates(sigs.i_ll(), {WASM_I64_GTU(WASM_LOCAL_GET(0), WASM_I64V_1(28))}); ExpectValidates(sigs.i_ll(), {WASM_I64_GEU(WASM_LOCAL_GET(0), WASM_I64V_1(29))}); ExpectValidates(sigs.i_ll(), {WASM_I64_EQ(WASM_LOCAL_GET(0), WASM_I64V_1(25))}); ExpectValidates(sigs.i_ll(), {WASM_I64_NE(WASM_LOCAL_GET(0), WASM_I64V_1(25))}); } TEST_F(FunctionBodyDecoderTest, AllSimpleExpressions) { WASM_FEATURE_SCOPE(reftypes); // Test all simple expressions which are described by a signature. #define DECODE_TEST(name, opcode, sig) \ { \ const FunctionSig* sig = WasmOpcodes::Signature(kExpr##name); \ if (sig->parameter_count() == 1) { \ TestUnop(kExpr##name, sig); \ } else { \ TestBinop(kExpr##name, sig); \ } \ } FOREACH_SIMPLE_OPCODE(DECODE_TEST); #undef DECODE_TEST } TEST_F(FunctionBodyDecoderTest, MemorySize) { builder.InitializeMemory(); byte code[] = {kExprMemorySize, 0}; ExpectValidates(sigs.i_i(), code); ExpectFailure(sigs.f_ff(), code); } TEST_F(FunctionBodyDecoderTest, LoadMemOffset) { builder.InitializeMemory(); for (int offset = 0; offset < 128; offset += 7) { byte code[] = {kExprI32Const, 0, kExprI32LoadMem, ZERO_ALIGNMENT, static_cast(offset)}; ExpectValidates(sigs.i_i(), code); } } TEST_F(FunctionBodyDecoderTest, LoadMemAlignment) { builder.InitializeMemory(); struct { WasmOpcode instruction; uint32_t maximum_aligment; } values[] = { {kExprI32LoadMem8U, 0}, // -- {kExprI32LoadMem8S, 0}, // -- {kExprI32LoadMem16U, 1}, // -- {kExprI32LoadMem16S, 1}, // -- {kExprI64LoadMem8U, 0}, // -- {kExprI64LoadMem8S, 0}, // -- {kExprI64LoadMem16U, 1}, // -- {kExprI64LoadMem16S, 1}, // -- {kExprI64LoadMem32U, 2}, // -- {kExprI64LoadMem32S, 2}, // -- {kExprI32LoadMem, 2}, // -- {kExprI64LoadMem, 3}, // -- {kExprF32LoadMem, 2}, // -- {kExprF64LoadMem, 3}, // -- }; for (size_t i = 0; i < arraysize(values); i++) { for (byte alignment = 0; alignment <= 4; alignment++) { byte code[] = {WASM_ZERO, static_cast(values[i].instruction), alignment, ZERO_OFFSET, WASM_DROP}; Validate(alignment <= values[i].maximum_aligment, sigs.v_i(), code); } } } TEST_F(FunctionBodyDecoderTest, StoreMemOffset) { builder.InitializeMemory(); for (byte offset = 0; offset < 128; offset += 7) { byte code[] = {WASM_STORE_MEM_OFFSET(MachineType::Int32(), offset, WASM_ZERO, WASM_ZERO)}; ExpectValidates(sigs.v_i(), code); } } TEST_F(FunctionBodyDecoderTest, StoreMemOffset_void) { builder.InitializeMemory(); ExpectFailure(sigs.i_i(), {WASM_STORE_MEM_OFFSET(MachineType::Int32(), 0, WASM_ZERO, WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, LoadMemOffset_varint) { builder.InitializeMemory(); ExpectValidates(sigs.i_i(), {WASM_ZERO, kExprI32LoadMem, ZERO_ALIGNMENT, U32V_1(0x45)}); ExpectValidates(sigs.i_i(), {WASM_ZERO, kExprI32LoadMem, ZERO_ALIGNMENT, U32V_2(0x3999)}); ExpectValidates(sigs.i_i(), {WASM_ZERO, kExprI32LoadMem, ZERO_ALIGNMENT, U32V_3(0x344445)}); ExpectValidates(sigs.i_i(), {WASM_ZERO, kExprI32LoadMem, ZERO_ALIGNMENT, U32V_4(0x36666667)}); } TEST_F(FunctionBodyDecoderTest, StoreMemOffset_varint) { builder.InitializeMemory(); ExpectValidates(sigs.v_i(), {WASM_ZERO, WASM_ZERO, kExprI32StoreMem, ZERO_ALIGNMENT, U32V_1(0x33)}); ExpectValidates(sigs.v_i(), {WASM_ZERO, WASM_ZERO, kExprI32StoreMem, ZERO_ALIGNMENT, U32V_2(0x1111)}); ExpectValidates(sigs.v_i(), {WASM_ZERO, WASM_ZERO, kExprI32StoreMem, ZERO_ALIGNMENT, U32V_3(0x222222)}); ExpectValidates(sigs.v_i(), {WASM_ZERO, WASM_ZERO, kExprI32StoreMem, ZERO_ALIGNMENT, U32V_4(0x44444444)}); } TEST_F(FunctionBodyDecoderTest, AllLoadMemCombinations) { builder.InitializeMemory(); for (size_t i = 0; i < arraysize(kValueTypes); i++) { ValueType local_type = kValueTypes[i]; for (size_t j = 0; j < arraysize(machineTypes); j++) { MachineType mem_type = machineTypes[j]; byte code[] = {WASM_LOAD_MEM(mem_type, WASM_ZERO)}; FunctionSig sig(1, 0, &local_type); Validate(local_type == ValueType::For(mem_type), &sig, code); } } } TEST_F(FunctionBodyDecoderTest, AllStoreMemCombinations) { builder.InitializeMemory(); for (size_t i = 0; i < arraysize(kValueTypes); i++) { ValueType local_type = kValueTypes[i]; for (size_t j = 0; j < arraysize(machineTypes); j++) { MachineType mem_type = machineTypes[j]; byte code[] = {WASM_STORE_MEM(mem_type, WASM_ZERO, WASM_LOCAL_GET(0))}; FunctionSig sig(0, 1, &local_type); Validate(local_type == ValueType::For(mem_type), &sig, code); } } } TEST_F(FunctionBodyDecoderTest, SimpleCalls) { const FunctionSig* sig = sigs.i_i(); builder.AddFunction(sigs.i_v()); builder.AddFunction(sigs.i_i()); builder.AddFunction(sigs.i_ii()); ExpectValidates(sig, {WASM_CALL_FUNCTION0(0)}); ExpectValidates(sig, {WASM_CALL_FUNCTION(1, WASM_I32V_1(27))}); ExpectValidates(sig, {WASM_CALL_FUNCTION(2, WASM_I32V_1(37), WASM_I32V_2(77))}); } TEST_F(FunctionBodyDecoderTest, CallsWithTooFewArguments) { const FunctionSig* sig = sigs.i_i(); builder.AddFunction(sigs.i_i()); builder.AddFunction(sigs.i_ii()); builder.AddFunction(sigs.f_ff()); ExpectFailure(sig, {WASM_CALL_FUNCTION0(0)}); ExpectFailure(sig, {WASM_CALL_FUNCTION(1, WASM_ZERO)}); ExpectFailure(sig, {WASM_CALL_FUNCTION(2, WASM_LOCAL_GET(0))}); } TEST_F(FunctionBodyDecoderTest, CallsWithMismatchedSigs2) { const FunctionSig* sig = sigs.i_i(); builder.AddFunction(sigs.i_i()); ExpectFailure(sig, {WASM_CALL_FUNCTION(0, WASM_I64V_1(17))}); ExpectFailure(sig, {WASM_CALL_FUNCTION(0, WASM_F32(17.1))}); ExpectFailure(sig, {WASM_CALL_FUNCTION(0, WASM_F64(17.1))}); } TEST_F(FunctionBodyDecoderTest, CallsWithMismatchedSigs3) { const FunctionSig* sig = sigs.i_i(); builder.AddFunction(sigs.i_f()); ExpectFailure(sig, {WASM_CALL_FUNCTION(0, WASM_I32V_1(17))}); ExpectFailure(sig, {WASM_CALL_FUNCTION(0, WASM_I64V_1(27))}); ExpectFailure(sig, {WASM_CALL_FUNCTION(0, WASM_F64(37.2))}); builder.AddFunction(sigs.i_d()); ExpectFailure(sig, {WASM_CALL_FUNCTION(1, WASM_I32V_1(16))}); ExpectFailure(sig, {WASM_CALL_FUNCTION(1, WASM_I64V_1(16))}); ExpectFailure(sig, {WASM_CALL_FUNCTION(1, WASM_F32(17.6))}); } TEST_F(FunctionBodyDecoderTest, SimpleReturnCalls) { WASM_FEATURE_SCOPE(return_call); const FunctionSig* sig = sigs.i_i(); builder.AddFunction(sigs.i_v()); builder.AddFunction(sigs.i_i()); builder.AddFunction(sigs.i_ii()); ExpectValidates(sig, {WASM_RETURN_CALL_FUNCTION0(0)}); ExpectValidates(sig, {WASM_RETURN_CALL_FUNCTION(1, WASM_I32V_1(27))}); ExpectValidates( sig, {WASM_RETURN_CALL_FUNCTION(2, WASM_I32V_1(37), WASM_I32V_2(77))}); } TEST_F(FunctionBodyDecoderTest, ReturnCallsWithTooFewArguments) { WASM_FEATURE_SCOPE(return_call); const FunctionSig* sig = sigs.i_i(); builder.AddFunction(sigs.i_i()); builder.AddFunction(sigs.i_ii()); builder.AddFunction(sigs.f_ff()); ExpectFailure(sig, {WASM_RETURN_CALL_FUNCTION0(0)}); ExpectFailure(sig, {WASM_RETURN_CALL_FUNCTION(1, WASM_ZERO)}); ExpectFailure(sig, {WASM_RETURN_CALL_FUNCTION(2, WASM_LOCAL_GET(0))}); } TEST_F(FunctionBodyDecoderTest, ReturnCallsWithMismatchedSigs) { WASM_FEATURE_SCOPE(return_call); const FunctionSig* sig = sigs.i_i(); builder.AddFunction(sigs.i_f()); builder.AddFunction(sigs.f_f()); ExpectFailure(sig, {WASM_RETURN_CALL_FUNCTION(0, WASM_I32V_1(17))}); ExpectFailure(sig, {WASM_RETURN_CALL_FUNCTION(0, WASM_I64V_1(27))}); ExpectFailure(sig, {WASM_RETURN_CALL_FUNCTION(0, WASM_F64(37.2))}); ExpectFailure(sig, {WASM_RETURN_CALL_FUNCTION(1, WASM_F64(37.2))}); ExpectFailure(sig, {WASM_RETURN_CALL_FUNCTION(1, WASM_F32(37.2))}); ExpectFailure(sig, {WASM_RETURN_CALL_FUNCTION(1, WASM_I32V_1(17))}); } TEST_F(FunctionBodyDecoderTest, SimpleIndirectReturnCalls) { WASM_FEATURE_SCOPE(return_call); const FunctionSig* sig = sigs.i_i(); builder.AddTable(kWasmFuncRef, 20, true, 30); byte sig0 = builder.AddSignature(sigs.i_v()); byte sig1 = builder.AddSignature(sigs.i_i()); byte sig2 = builder.AddSignature(sigs.i_ii()); ExpectValidates(sig, {WASM_RETURN_CALL_INDIRECT(sig0, WASM_ZERO)}); ExpectValidates( sig, {WASM_RETURN_CALL_INDIRECT(sig1, WASM_I32V_1(22), WASM_ZERO)}); ExpectValidates(sig, {WASM_RETURN_CALL_INDIRECT(sig2, WASM_I32V_1(32), WASM_I32V_2(72), WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, IndirectReturnCallsOutOfBounds) { WASM_FEATURE_SCOPE(return_call); const FunctionSig* sig = sigs.i_i(); builder.AddTable(kWasmFuncRef, 20, false, 20); ExpectFailure(sig, {WASM_RETURN_CALL_INDIRECT(0, WASM_ZERO)}); builder.AddSignature(sigs.i_v()); ExpectValidates(sig, {WASM_RETURN_CALL_INDIRECT(0, WASM_ZERO)}); ExpectFailure(sig, {WASM_RETURN_CALL_INDIRECT(1, WASM_I32V_1(22), WASM_ZERO)}); builder.AddSignature(sigs.i_i()); ExpectValidates(sig, {WASM_RETURN_CALL_INDIRECT(1, WASM_I32V_1(27), WASM_ZERO)}); ExpectFailure(sig, {WASM_RETURN_CALL_INDIRECT(2, WASM_I32V_1(27), WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, IndirectReturnCallsWithMismatchedSigs3) { WASM_FEATURE_SCOPE(return_call); const FunctionSig* sig = sigs.i_i(); builder.InitializeTable(wasm::kWasmStmt); byte sig0 = builder.AddSignature(sigs.i_f()); ExpectFailure(sig, {WASM_RETURN_CALL_INDIRECT(sig0, WASM_I32V_1(17), WASM_ZERO)}); ExpectFailure(sig, {WASM_RETURN_CALL_INDIRECT(sig0, WASM_I64V_1(27), WASM_ZERO)}); ExpectFailure(sig, {WASM_RETURN_CALL_INDIRECT(sig0, WASM_F64(37.2), WASM_ZERO)}); ExpectFailure(sig, {WASM_RETURN_CALL_INDIRECT(sig0, WASM_I32V_1(17))}); ExpectFailure(sig, {WASM_RETURN_CALL_INDIRECT(sig0, WASM_I64V_1(27))}); ExpectFailure(sig, {WASM_RETURN_CALL_INDIRECT(sig0, WASM_F64(37.2))}); byte sig1 = builder.AddFunction(sigs.i_d()); ExpectFailure(sig, {WASM_RETURN_CALL_INDIRECT(sig1, WASM_I32V_1(16), WASM_ZERO)}); ExpectFailure(sig, {WASM_RETURN_CALL_INDIRECT(sig1, WASM_I64V_1(16), WASM_ZERO)}); ExpectFailure(sig, {WASM_RETURN_CALL_INDIRECT(sig1, WASM_F32(17.6), WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, IndirectReturnCallsWithoutTableCrash) { WASM_FEATURE_SCOPE(return_call); const FunctionSig* sig = sigs.i_i(); byte sig0 = builder.AddSignature(sigs.i_v()); byte sig1 = builder.AddSignature(sigs.i_i()); byte sig2 = builder.AddSignature(sigs.i_ii()); ExpectFailure(sig, {WASM_RETURN_CALL_INDIRECT(sig0, WASM_ZERO)}); ExpectFailure(sig, {WASM_RETURN_CALL_INDIRECT(sig1, WASM_I32V_1(22), WASM_ZERO)}); ExpectFailure(sig, {WASM_RETURN_CALL_INDIRECT(sig2, WASM_I32V_1(32), WASM_I32V_2(72), WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, IncompleteIndirectReturnCall) { const FunctionSig* sig = sigs.i_i(); builder.InitializeTable(wasm::kWasmStmt); static byte code[] = {kExprReturnCallIndirect}; ExpectFailure(sig, ArrayVector(code), kOmitEnd); } TEST_F(FunctionBodyDecoderTest, MultiReturn) { WASM_FEATURE_SCOPE(mv); ValueType storage[] = {kWasmI32, kWasmI32}; FunctionSig sig_ii_v(2, 0, storage); FunctionSig sig_v_ii(0, 2, storage); builder.AddFunction(&sig_v_ii); builder.AddFunction(&sig_ii_v); ExpectValidates(&sig_ii_v, {WASM_CALL_FUNCTION0(1)}); ExpectValidates(sigs.v_v(), {WASM_CALL_FUNCTION0(1), WASM_DROP, WASM_DROP}); ExpectValidates(sigs.v_v(), {WASM_CALL_FUNCTION0(1), kExprCallFunction, 0}); } TEST_F(FunctionBodyDecoderTest, MultiReturnType) { WASM_FEATURE_SCOPE(mv); for (size_t a = 0; a < arraysize(kValueTypes); a++) { for (size_t b = 0; b < arraysize(kValueTypes); b++) { for (size_t c = 0; c < arraysize(kValueTypes); c++) { for (size_t d = 0; d < arraysize(kValueTypes); d++) { ValueType storage_ab[] = {kValueTypes[a], kValueTypes[b]}; FunctionSig sig_ab_v(2, 0, storage_ab); ValueType storage_cd[] = {kValueTypes[c], kValueTypes[d]}; FunctionSig sig_cd_v(2, 0, storage_cd); TestModuleBuilder builder; module = builder.module(); builder.AddFunction(&sig_cd_v); ExpectValidates(&sig_cd_v, {WASM_CALL_FUNCTION0(0)}); if (IsSubtypeOf(kValueTypes[c], kValueTypes[a], module) && IsSubtypeOf(kValueTypes[d], kValueTypes[b], module)) { ExpectValidates(&sig_ab_v, {WASM_CALL_FUNCTION0(0)}); } else { ExpectFailure(&sig_ab_v, {WASM_CALL_FUNCTION0(0)}); } } } } } } TEST_F(FunctionBodyDecoderTest, SimpleIndirectCalls) { const FunctionSig* sig = sigs.i_i(); builder.AddTable(kWasmFuncRef, 20, false, 20); byte sig0 = builder.AddSignature(sigs.i_v()); byte sig1 = builder.AddSignature(sigs.i_i()); byte sig2 = builder.AddSignature(sigs.i_ii()); ExpectValidates(sig, {WASM_CALL_INDIRECT(sig0, WASM_ZERO)}); ExpectValidates(sig, {WASM_CALL_INDIRECT(sig1, WASM_I32V_1(22), WASM_ZERO)}); ExpectValidates(sig, {WASM_CALL_INDIRECT(sig2, WASM_I32V_1(32), WASM_I32V_2(72), WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, IndirectCallsOutOfBounds) { const FunctionSig* sig = sigs.i_i(); builder.AddTable(kWasmFuncRef, 20, false, 20); ExpectFailure(sig, {WASM_CALL_INDIRECT(0, WASM_ZERO)}); builder.AddSignature(sigs.i_v()); ExpectValidates(sig, {WASM_CALL_INDIRECT(0, WASM_ZERO)}); ExpectFailure(sig, {WASM_CALL_INDIRECT(1, WASM_I32V_1(22), WASM_ZERO)}); builder.AddSignature(sigs.i_i()); ExpectValidates(sig, {WASM_CALL_INDIRECT(1, WASM_I32V_1(27), WASM_ZERO)}); ExpectFailure(sig, {WASM_CALL_INDIRECT(2, WASM_I32V_1(27), WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, IndirectCallsWithMismatchedSigs1) { const FunctionSig* sig = sigs.i_i(); builder.InitializeTable(wasm::kWasmStmt); byte sig0 = builder.AddSignature(sigs.i_f()); ExpectFailure(sig, {WASM_CALL_INDIRECT(sig0, WASM_I32V_1(17), WASM_ZERO)}); ExpectFailure(sig, {WASM_CALL_INDIRECT(sig0, WASM_I64V_1(27), WASM_ZERO)}); ExpectFailure(sig, {WASM_CALL_INDIRECT(sig0, WASM_F64(37.2), WASM_ZERO)}); ExpectFailure(sig, {WASM_CALL_INDIRECT(sig0, WASM_I32V_1(17))}); ExpectFailure(sig, {WASM_CALL_INDIRECT(sig0, WASM_I64V_1(27))}); ExpectFailure(sig, {WASM_CALL_INDIRECT(sig0, WASM_F64(37.2))}); byte sig1 = builder.AddFunction(sigs.i_d()); ExpectFailure(sig, {WASM_CALL_INDIRECT(sig1, WASM_I32V_1(16), WASM_ZERO)}); ExpectFailure(sig, {WASM_CALL_INDIRECT(sig1, WASM_I64V_1(16), WASM_ZERO)}); ExpectFailure(sig, {WASM_CALL_INDIRECT(sig1, WASM_F32(17.6), WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, IndirectCallsWithMismatchedSigs2) { WASM_FEATURE_SCOPE(reftypes); WASM_FEATURE_SCOPE(typed_funcref); byte table_type_index = builder.AddSignature(sigs.i_i()); byte table_index = builder.InitializeTable(ValueType::Ref(table_type_index, kNullable)); ExpectValidates(sigs.i_v(), {WASM_CALL_INDIRECT_TABLE(table_index, table_type_index, WASM_I32V_1(42), WASM_ZERO)}); byte wrong_type_index = builder.AddSignature(sigs.i_ii()); ExpectFailure(sigs.i_v(), {WASM_CALL_INDIRECT_TABLE(table_index, wrong_type_index, WASM_I32V_1(42), WASM_ZERO)}, kAppendEnd, "call_indirect: Immediate signature #1 is not a subtype of " "immediate table #0"); byte non_function_table_index = builder.InitializeTable(kWasmExternRef); ExpectFailure( sigs.i_v(), {WASM_CALL_INDIRECT_TABLE(non_function_table_index, table_type_index, WASM_I32V_1(42), WASM_ZERO)}, kAppendEnd, "call_indirect: immediate table #1 is not of a function type"); } TEST_F(FunctionBodyDecoderTest, IndirectCallsWithoutTableCrash) { const FunctionSig* sig = sigs.i_i(); byte sig0 = builder.AddSignature(sigs.i_v()); byte sig1 = builder.AddSignature(sigs.i_i()); byte sig2 = builder.AddSignature(sigs.i_ii()); ExpectFailure(sig, {WASM_CALL_INDIRECT(sig0, WASM_ZERO)}); ExpectFailure(sig, {WASM_CALL_INDIRECT(sig1, WASM_I32V_1(22), WASM_ZERO)}); ExpectFailure(sig, {WASM_CALL_INDIRECT(sig2, WASM_I32V_1(32), WASM_I32V_2(72), WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, IncompleteIndirectCall) { const FunctionSig* sig = sigs.i_i(); builder.InitializeTable(wasm::kWasmStmt); static byte code[] = {kExprCallIndirect}; ExpectFailure(sig, ArrayVector(code), kOmitEnd); } TEST_F(FunctionBodyDecoderTest, IncompleteStore) { const FunctionSig* sig = sigs.i_i(); builder.InitializeMemory(); builder.InitializeTable(wasm::kWasmStmt); static byte code[] = {kExprI32StoreMem}; ExpectFailure(sig, ArrayVector(code), kOmitEnd); } TEST_F(FunctionBodyDecoderTest, IncompleteI8x16Shuffle) { WASM_FEATURE_SCOPE(simd); const FunctionSig* sig = sigs.i_i(); builder.InitializeMemory(); builder.InitializeTable(wasm::kWasmStmt); static byte code[] = {kSimdPrefix, static_cast(kExprI8x16Shuffle & 0xff)}; ExpectFailure(sig, ArrayVector(code), kOmitEnd); } TEST_F(FunctionBodyDecoderTest, SimpleImportCalls) { const FunctionSig* sig = sigs.i_i(); byte f0 = builder.AddImport(sigs.i_v()); byte f1 = builder.AddImport(sigs.i_i()); byte f2 = builder.AddImport(sigs.i_ii()); ExpectValidates(sig, {WASM_CALL_FUNCTION0(f0)}); ExpectValidates(sig, {WASM_CALL_FUNCTION(f1, WASM_I32V_1(22))}); ExpectValidates(sig, {WASM_CALL_FUNCTION(f2, WASM_I32V_1(32), WASM_I32V_2(72))}); } TEST_F(FunctionBodyDecoderTest, ImportCallsWithMismatchedSigs3) { const FunctionSig* sig = sigs.i_i(); byte f0 = builder.AddImport(sigs.i_f()); ExpectFailure(sig, {WASM_CALL_FUNCTION0(f0)}); ExpectFailure(sig, {WASM_CALL_FUNCTION(f0, WASM_I32V_1(17))}); ExpectFailure(sig, {WASM_CALL_FUNCTION(f0, WASM_I64V_1(27))}); ExpectFailure(sig, {WASM_CALL_FUNCTION(f0, WASM_F64(37.2))}); byte f1 = builder.AddImport(sigs.i_d()); ExpectFailure(sig, {WASM_CALL_FUNCTION0(f1)}); ExpectFailure(sig, {WASM_CALL_FUNCTION(f1, WASM_I32V_1(16))}); ExpectFailure(sig, {WASM_CALL_FUNCTION(f1, WASM_I64V_1(16))}); ExpectFailure(sig, {WASM_CALL_FUNCTION(f1, WASM_F32(17.6))}); } TEST_F(FunctionBodyDecoderTest, Int32Globals) { const FunctionSig* sig = sigs.i_i(); builder.AddGlobal(kWasmI32); ExpectValidates(sig, {WASM_GLOBAL_GET(0)}); ExpectFailure(sig, {WASM_GLOBAL_SET(0, WASM_LOCAL_GET(0))}); ExpectValidates(sig, {WASM_GLOBAL_SET(0, WASM_LOCAL_GET(0)), WASM_ZERO}); } TEST_F(FunctionBodyDecoderTest, ImmutableGlobal) { const FunctionSig* sig = sigs.v_v(); uint32_t g0 = builder.AddGlobal(kWasmI32, true); uint32_t g1 = builder.AddGlobal(kWasmI32, false); ExpectValidates(sig, {WASM_GLOBAL_SET(g0, WASM_ZERO)}); ExpectFailure(sig, {WASM_GLOBAL_SET(g1, WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, Int32Globals_fail) { const FunctionSig* sig = sigs.i_i(); builder.AddGlobal(kWasmI64); builder.AddGlobal(kWasmI64); builder.AddGlobal(kWasmF32); builder.AddGlobal(kWasmF64); ExpectFailure(sig, {WASM_GLOBAL_GET(0)}); ExpectFailure(sig, {WASM_GLOBAL_GET(1)}); ExpectFailure(sig, {WASM_GLOBAL_GET(2)}); ExpectFailure(sig, {WASM_GLOBAL_GET(3)}); ExpectFailure(sig, {WASM_GLOBAL_SET(0, WASM_LOCAL_GET(0)), WASM_ZERO}); ExpectFailure(sig, {WASM_GLOBAL_SET(1, WASM_LOCAL_GET(0)), WASM_ZERO}); ExpectFailure(sig, {WASM_GLOBAL_SET(2, WASM_LOCAL_GET(0)), WASM_ZERO}); ExpectFailure(sig, {WASM_GLOBAL_SET(3, WASM_LOCAL_GET(0)), WASM_ZERO}); } TEST_F(FunctionBodyDecoderTest, Int64Globals) { const FunctionSig* sig = sigs.l_l(); builder.AddGlobal(kWasmI64); builder.AddGlobal(kWasmI64); ExpectValidates(sig, {WASM_GLOBAL_GET(0)}); ExpectValidates(sig, {WASM_GLOBAL_GET(1)}); ExpectValidates(sig, {WASM_GLOBAL_SET(0, WASM_LOCAL_GET(0)), WASM_LOCAL_GET(0)}); ExpectValidates(sig, {WASM_GLOBAL_SET(1, WASM_LOCAL_GET(0)), WASM_LOCAL_GET(0)}); } TEST_F(FunctionBodyDecoderTest, Float32Globals) { const FunctionSig* sig = sigs.f_ff(); builder.AddGlobal(kWasmF32); ExpectValidates(sig, {WASM_GLOBAL_GET(0)}); ExpectValidates(sig, {WASM_GLOBAL_SET(0, WASM_LOCAL_GET(0)), WASM_LOCAL_GET(0)}); } TEST_F(FunctionBodyDecoderTest, Float64Globals) { const FunctionSig* sig = sigs.d_dd(); builder.AddGlobal(kWasmF64); ExpectValidates(sig, {WASM_GLOBAL_GET(0)}); ExpectValidates(sig, {WASM_GLOBAL_SET(0, WASM_LOCAL_GET(0)), WASM_LOCAL_GET(0)}); } TEST_F(FunctionBodyDecoderTest, AllGetGlobalCombinations) { for (size_t i = 0; i < arraysize(kValueTypes); i++) { ValueType local_type = kValueTypes[i]; for (size_t j = 0; j < arraysize(kValueTypes); j++) { ValueType global_type = kValueTypes[j]; FunctionSig sig(1, 0, &local_type); TestModuleBuilder builder; module = builder.module(); builder.AddGlobal(global_type); Validate(IsSubtypeOf(global_type, local_type, module), &sig, {WASM_GLOBAL_GET(0)}); } } } TEST_F(FunctionBodyDecoderTest, AllSetGlobalCombinations) { for (size_t i = 0; i < arraysize(kValueTypes); i++) { ValueType local_type = kValueTypes[i]; for (size_t j = 0; j < arraysize(kValueTypes); j++) { ValueType global_type = kValueTypes[j]; FunctionSig sig(0, 1, &local_type); TestModuleBuilder builder; module = builder.module(); builder.AddGlobal(global_type); Validate(IsSubtypeOf(local_type, global_type, module), &sig, {WASM_GLOBAL_SET(0, WASM_LOCAL_GET(0))}); } } } TEST_F(FunctionBodyDecoderTest, TableSet) { WASM_FEATURE_SCOPE(reftypes); WASM_FEATURE_SCOPE(typed_funcref); byte tab_type = builder.AddSignature(sigs.i_i()); byte tab_ref1 = builder.AddTable(kWasmExternRef, 10, true, 20); byte tab_func1 = builder.AddTable(kWasmFuncRef, 20, true, 30); byte tab_func2 = builder.AddTable(kWasmFuncRef, 10, false, 20); byte tab_ref2 = builder.AddTable(kWasmExternRef, 10, false, 20); byte tab_typed_func = builder.AddTable(ValueType::Ref(tab_type, kNullable), 10, false, 20); ValueType sig_types[]{kWasmExternRef, kWasmFuncRef, kWasmI32, ValueType::Ref(tab_type, kNonNullable)}; FunctionSig sig(0, 4, sig_types); byte local_ref = 0; byte local_func = 1; byte local_int = 2; byte local_typed_func = 3; ExpectValidates(&sig, {WASM_TABLE_SET(tab_ref1, WASM_I32V(6), WASM_LOCAL_GET(local_ref))}); ExpectValidates(&sig, {WASM_TABLE_SET(tab_func1, WASM_I32V(5), WASM_LOCAL_GET(local_func))}); ExpectValidates(&sig, {WASM_TABLE_SET(tab_func2, WASM_I32V(7), WASM_LOCAL_GET(local_func))}); ExpectValidates(&sig, {WASM_TABLE_SET(tab_ref2, WASM_I32V(8), WASM_LOCAL_GET(local_ref))}); ExpectValidates(&sig, {WASM_TABLE_SET(tab_typed_func, WASM_I32V(8), WASM_LOCAL_GET(local_typed_func))}); ExpectValidates(&sig, {WASM_TABLE_SET(tab_func1, WASM_I32V(8), WASM_LOCAL_GET(local_typed_func))}); // Only values of the correct type can be set to a table. ExpectFailure(&sig, {WASM_TABLE_SET(tab_ref1, WASM_I32V(4), WASM_LOCAL_GET(local_func))}); ExpectFailure(&sig, {WASM_TABLE_SET(tab_func1, WASM_I32V(9), WASM_LOCAL_GET(local_ref))}); ExpectFailure(&sig, {WASM_TABLE_SET(tab_func2, WASM_I32V(3), WASM_LOCAL_GET(local_ref))}); ExpectFailure(&sig, {WASM_TABLE_SET(tab_ref2, WASM_I32V(2), WASM_LOCAL_GET(local_func))}); ExpectFailure(&sig, {WASM_TABLE_SET(tab_ref1, WASM_I32V(9), WASM_LOCAL_GET(local_int))}); ExpectFailure(&sig, {WASM_TABLE_SET(tab_func1, WASM_I32V(3), WASM_LOCAL_GET(local_int))}); ExpectFailure(&sig, {WASM_TABLE_SET(tab_typed_func, WASM_I32V(3), WASM_LOCAL_GET(local_func))}); // Out-of-bounds table index should fail. byte oob_tab = 37; ExpectFailure( &sig, {WASM_TABLE_SET(oob_tab, WASM_I32V(9), WASM_LOCAL_GET(local_ref))}); ExpectFailure(&sig, {WASM_TABLE_SET(oob_tab, WASM_I32V(3), WASM_LOCAL_GET(local_func))}); } TEST_F(FunctionBodyDecoderTest, TableGet) { WASM_FEATURE_SCOPE(reftypes); WASM_FEATURE_SCOPE(typed_funcref); byte tab_type = builder.AddSignature(sigs.i_i()); byte tab_ref1 = builder.AddTable(kWasmExternRef, 10, true, 20); byte tab_func1 = builder.AddTable(kWasmFuncRef, 20, true, 30); byte tab_func2 = builder.AddTable(kWasmFuncRef, 10, false, 20); byte tab_ref2 = builder.AddTable(kWasmExternRef, 10, false, 20); byte tab_typed_func = builder.AddTable(ValueType::Ref(tab_type, kNullable), 10, false, 20); ValueType sig_types[]{kWasmExternRef, kWasmFuncRef, kWasmI32, ValueType::Ref(tab_type, kNullable)}; FunctionSig sig(0, 4, sig_types); byte local_ref = 0; byte local_func = 1; byte local_int = 2; byte local_typed_func = 3; ExpectValidates( &sig, {WASM_LOCAL_SET(local_ref, WASM_TABLE_GET(tab_ref1, WASM_I32V(6)))}); ExpectValidates( &sig, {WASM_LOCAL_SET(local_ref, WASM_TABLE_GET(tab_ref2, WASM_I32V(8)))}); ExpectValidates( &sig, {WASM_LOCAL_SET(local_func, WASM_TABLE_GET(tab_func1, WASM_I32V(5)))}); ExpectValidates( &sig, {WASM_LOCAL_SET(local_func, WASM_TABLE_GET(tab_func2, WASM_I32V(7)))}); ExpectValidates( &sig, {WASM_LOCAL_SET(local_ref, WASM_SEQ(WASM_I32V(6), kExprTableGet, U32V_2(tab_ref1)))}); ExpectValidates( &sig, {WASM_LOCAL_SET(local_func, WASM_TABLE_GET(tab_typed_func, WASM_I32V(7)))}); ExpectValidates( &sig, {WASM_LOCAL_SET(local_typed_func, WASM_TABLE_GET(tab_typed_func, WASM_I32V(7)))}); // We cannot store references as any other type. ExpectFailure(&sig, {WASM_LOCAL_SET(local_func, WASM_TABLE_GET(tab_ref1, WASM_I32V(4)))}); ExpectFailure(&sig, {WASM_LOCAL_SET( local_ref, WASM_TABLE_GET(tab_func1, WASM_I32V(9)))}); ExpectFailure(&sig, {WASM_LOCAL_SET( local_ref, WASM_TABLE_GET(tab_func2, WASM_I32V(3)))}); ExpectFailure(&sig, {WASM_LOCAL_SET(local_func, WASM_TABLE_GET(tab_ref2, WASM_I32V(2)))}); ExpectFailure(&sig, {WASM_LOCAL_SET(local_int, WASM_TABLE_GET(tab_ref1, WASM_I32V(9)))}); ExpectFailure(&sig, {WASM_LOCAL_SET( local_int, WASM_TABLE_GET(tab_func1, WASM_I32V(3)))}); ExpectFailure(&sig, {WASM_LOCAL_SET(local_typed_func, WASM_TABLE_GET(tab_func1, WASM_I32V(3)))}); // Out-of-bounds table index should fail. byte oob_tab = 37; ExpectFailure( &sig, {WASM_LOCAL_SET(local_ref, WASM_TABLE_GET(oob_tab, WASM_I32V(9)))}); ExpectFailure(&sig, {WASM_LOCAL_SET(local_func, WASM_TABLE_GET(oob_tab, WASM_I32V(3)))}); } TEST_F(FunctionBodyDecoderTest, MultiTableCallIndirect) { WASM_FEATURE_SCOPE(reftypes); byte tab_ref = builder.AddTable(kWasmExternRef, 10, true, 20); byte tab_func = builder.AddTable(kWasmFuncRef, 20, true, 30); ValueType sig_types[]{kWasmExternRef, kWasmFuncRef, kWasmI32}; FunctionSig sig(0, 3, sig_types); byte sig_index = builder.AddSignature(sigs.i_v()); // We can store funcref values as externref, but not the other way around. ExpectValidates(sigs.i_v(), {kExprI32Const, 0, kExprCallIndirect, sig_index, tab_func}); ExpectFailure(sigs.i_v(), {kExprI32Const, 0, kExprCallIndirect, sig_index, tab_ref}); } TEST_F(FunctionBodyDecoderTest, WasmMemoryGrow) { builder.InitializeMemory(); byte code[] = {WASM_LOCAL_GET(0), kExprMemoryGrow, 0}; ExpectValidates(sigs.i_i(), code); ExpectFailure(sigs.i_d(), code); } TEST_F(FunctionBodyDecoderTest, AsmJsMemoryGrow) { module->origin = kAsmJsSloppyOrigin; builder.InitializeMemory(); byte code[] = {WASM_LOCAL_GET(0), kExprMemoryGrow, 0}; ExpectFailure(sigs.i_i(), code); } TEST_F(FunctionBodyDecoderTest, AsmJsBinOpsCheckOrigin) { ValueType float32int32float32[] = {kWasmF32, kWasmI32, kWasmF32}; FunctionSig sig_f_if(1, 2, float32int32float32); ValueType float64int32float64[] = {kWasmF64, kWasmI32, kWasmF64}; FunctionSig sig_d_id(1, 2, float64int32float64); struct { WasmOpcode op; const FunctionSig* sig; } AsmJsBinOps[] = { {kExprF64Atan2, sigs.d_dd()}, {kExprF64Pow, sigs.d_dd()}, {kExprF64Mod, sigs.d_dd()}, {kExprI32AsmjsDivS, sigs.i_ii()}, {kExprI32AsmjsDivU, sigs.i_ii()}, {kExprI32AsmjsRemS, sigs.i_ii()}, {kExprI32AsmjsRemU, sigs.i_ii()}, {kExprI32AsmjsStoreMem8, sigs.i_ii()}, {kExprI32AsmjsStoreMem16, sigs.i_ii()}, {kExprI32AsmjsStoreMem, sigs.i_ii()}, {kExprF32AsmjsStoreMem, &sig_f_if}, {kExprF64AsmjsStoreMem, &sig_d_id}, }; { TestModuleBuilder builder(kAsmJsSloppyOrigin); module = builder.module(); builder.InitializeMemory(); for (size_t i = 0; i < arraysize(AsmJsBinOps); i++) { TestBinop(AsmJsBinOps[i].op, AsmJsBinOps[i].sig); } } { TestModuleBuilder builder; module = builder.module(); builder.InitializeMemory(); for (size_t i = 0; i < arraysize(AsmJsBinOps); i++) { ExpectFailure(AsmJsBinOps[i].sig, {WASM_BINOP(AsmJsBinOps[i].op, WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))}); } } } TEST_F(FunctionBodyDecoderTest, AsmJsUnOpsCheckOrigin) { ValueType float32int32[] = {kWasmF32, kWasmI32}; FunctionSig sig_f_i(1, 1, float32int32); ValueType float64int32[] = {kWasmF64, kWasmI32}; FunctionSig sig_d_i(1, 1, float64int32); struct { WasmOpcode op; const FunctionSig* sig; } AsmJsUnOps[] = {{kExprF64Acos, sigs.d_d()}, {kExprF64Asin, sigs.d_d()}, {kExprF64Atan, sigs.d_d()}, {kExprF64Cos, sigs.d_d()}, {kExprF64Sin, sigs.d_d()}, {kExprF64Tan, sigs.d_d()}, {kExprF64Exp, sigs.d_d()}, {kExprF64Log, sigs.d_d()}, {kExprI32AsmjsLoadMem8S, sigs.i_i()}, {kExprI32AsmjsLoadMem8U, sigs.i_i()}, {kExprI32AsmjsLoadMem16S, sigs.i_i()}, {kExprI32AsmjsLoadMem16U, sigs.i_i()}, {kExprI32AsmjsLoadMem, sigs.i_i()}, {kExprF32AsmjsLoadMem, &sig_f_i}, {kExprF64AsmjsLoadMem, &sig_d_i}, {kExprI32AsmjsSConvertF32, sigs.i_f()}, {kExprI32AsmjsUConvertF32, sigs.i_f()}, {kExprI32AsmjsSConvertF64, sigs.i_d()}, {kExprI32AsmjsUConvertF64, sigs.i_d()}}; { TestModuleBuilder builder(kAsmJsSloppyOrigin); module = builder.module(); builder.InitializeMemory(); for (size_t i = 0; i < arraysize(AsmJsUnOps); i++) { TestUnop(AsmJsUnOps[i].op, AsmJsUnOps[i].sig); } } { TestModuleBuilder builder; module = builder.module(); builder.InitializeMemory(); for (size_t i = 0; i < arraysize(AsmJsUnOps); i++) { ExpectFailure(AsmJsUnOps[i].sig, {WASM_UNOP(AsmJsUnOps[i].op, WASM_LOCAL_GET(0))}); } } } TEST_F(FunctionBodyDecoderTest, BreakEnd) { ExpectValidates( sigs.i_i(), {WASM_BLOCK_I(WASM_I32_ADD(WASM_BRV(0, WASM_ZERO), WASM_ZERO))}); ExpectValidates( sigs.i_i(), {WASM_BLOCK_I(WASM_I32_ADD(WASM_ZERO, WASM_BRV(0, WASM_ZERO)))}); } TEST_F(FunctionBodyDecoderTest, BreakIfBinop) { ExpectValidates(sigs.i_i(), {WASM_BLOCK_I(WASM_I32_ADD( WASM_BRV_IF(0, WASM_ZERO, WASM_ZERO), WASM_ZERO))}); ExpectValidates(sigs.i_i(), {WASM_BLOCK_I(WASM_I32_ADD( WASM_ZERO, WASM_BRV_IF(0, WASM_ZERO, WASM_ZERO)))}); ExpectValidates( sigs.f_ff(), {WASM_BLOCK_F(WASM_F32_ABS(WASM_BRV_IF(0, WASM_F32(0.0f), WASM_ZERO)))}); } TEST_F(FunctionBodyDecoderTest, BreakIfBinop_fail) { ExpectFailure( sigs.f_ff(), {WASM_BLOCK_F(WASM_F32_ABS(WASM_BRV_IF(0, WASM_ZERO, WASM_ZERO)))}); ExpectFailure( sigs.i_i(), {WASM_BLOCK_I(WASM_F32_ABS(WASM_BRV_IF(0, WASM_F32(0.0f), WASM_ZERO)))}); } TEST_F(FunctionBodyDecoderTest, BreakIfUnrNarrow) { ExpectFailure( sigs.f_ff(), {WASM_BLOCK_I(WASM_BRV_IF(0, WASM_UNREACHABLE, WASM_UNREACHABLE), WASM_RETURN0), WASM_F32(0.0)}); } TEST_F(FunctionBodyDecoderTest, BreakNesting1) { for (int i = 0; i < 5; i++) { // (block[2] (loop[2] (if (get p) break[N]) (set p 1)) p) byte code[] = {WASM_BLOCK_I( WASM_LOOP(WASM_IF(WASM_LOCAL_GET(0), WASM_BRV(i + 1, WASM_ZERO)), WASM_LOCAL_SET(0, WASM_I32V_1(1))), WASM_ZERO)}; Validate(i < 3, sigs.i_i(), code); } } TEST_F(FunctionBodyDecoderTest, BreakNesting2) { for (int i = 0; i < 7; i++) { byte code[] = {B1(WASM_LOOP(WASM_IF(WASM_ZERO, WASM_BR(i)), WASM_NOP))}; Validate(i <= 3, sigs.v_v(), code); } } TEST_F(FunctionBodyDecoderTest, BreakNesting3) { for (int i = 0; i < 7; i++) { // (block[1] (loop[1] (block[1] (if 0 break[N]) byte code[] = { WASM_BLOCK(WASM_LOOP(B1(WASM_IF(WASM_ZERO, WASM_BR(i + 1)))))}; Validate(i < 4, sigs.v_v(), code); } } TEST_F(FunctionBodyDecoderTest, BreaksWithMultipleTypes) { ExpectFailure(sigs.i_i(), {B2(WASM_BRV_IF_ZERO(0, WASM_I32V_1(7)), WASM_F32(7.7))}); ExpectFailure(sigs.i_i(), {B2(WASM_BRV_IF_ZERO(0, WASM_I32V_1(7)), WASM_BRV_IF_ZERO(0, WASM_F32(7.7)))}); ExpectFailure(sigs.i_i(), {B3(WASM_BRV_IF_ZERO(0, WASM_I32V_1(8)), WASM_BRV_IF_ZERO(0, WASM_I32V_1(0)), WASM_BRV_IF_ZERO(0, WASM_F32(7.7)))}); ExpectFailure(sigs.i_i(), {B3(WASM_BRV_IF_ZERO(0, WASM_I32V_1(9)), WASM_BRV_IF_ZERO(0, WASM_F32(7.7)), WASM_BRV_IF_ZERO(0, WASM_I32V_1(11)))}); } TEST_F(FunctionBodyDecoderTest, BreakNesting_6_levels) { for (int mask = 0; mask < 64; mask++) { for (int i = 0; i < 14; i++) { byte code[] = {WASM_BLOCK(WASM_BLOCK( WASM_BLOCK(WASM_BLOCK(WASM_BLOCK(WASM_BLOCK(WASM_BR(i)))))))}; int depth = 6; int m = mask; for (size_t pos = 0; pos < sizeof(code) - 1; pos++) { if (code[pos] != kExprBlock) continue; if (m & 1) { code[pos] = kExprLoop; code[pos + 1] = kVoidCode; } m >>= 1; } Validate(i <= depth, sigs.v_v(), code); } } } TEST_F(FunctionBodyDecoderTest, Break_TypeCheck) { for (const FunctionSig* sig : {sigs.i_i(), sigs.l_l(), sigs.f_ff(), sigs.d_dd()}) { // unify X and X => OK byte code[] = {WASM_BLOCK_T( sig->GetReturn(), WASM_IF(WASM_ZERO, WASM_BRV(0, WASM_LOCAL_GET(0))), WASM_LOCAL_GET(0))}; ExpectValidates(sig, code); } // unify i32 and f32 => fail ExpectFailure(sigs.i_i(), {WASM_BLOCK_I(WASM_IF(WASM_ZERO, WASM_BRV(0, WASM_ZERO)), WASM_F32(1.2))}); // unify f64 and f64 => OK ExpectValidates( sigs.d_dd(), {WASM_BLOCK_D(WASM_IF(WASM_ZERO, WASM_BRV(0, WASM_LOCAL_GET(0))), WASM_F64(1.2))}); } TEST_F(FunctionBodyDecoderTest, Break_TypeCheckAll1) { WASM_FEATURE_SCOPE(reftypes); for (size_t i = 0; i < arraysize(kValueTypes); i++) { for (size_t j = 0; j < arraysize(kValueTypes); j++) { ValueType storage[] = {kValueTypes[i], kValueTypes[i], kValueTypes[j]}; FunctionSig sig(1, 2, storage); byte code[] = {WASM_BLOCK_T( sig.GetReturn(), WASM_IF(WASM_ZERO, WASM_BRV(0, WASM_LOCAL_GET(0))), WASM_LOCAL_GET(1))}; Validate(IsSubtypeOf(kValueTypes[j], kValueTypes[i], module), &sig, code); } } } TEST_F(FunctionBodyDecoderTest, Break_TypeCheckAll2) { WASM_FEATURE_SCOPE(reftypes); for (size_t i = 0; i < arraysize(kValueTypes); i++) { for (size_t j = 0; j < arraysize(kValueTypes); j++) { ValueType storage[] = {kValueTypes[i], kValueTypes[i], kValueTypes[j]}; FunctionSig sig(1, 2, storage); byte code[] = {WASM_IF_ELSE_T(sig.GetReturn(0), WASM_ZERO, WASM_BRV_IF_ZERO(0, WASM_LOCAL_GET(0)), WASM_LOCAL_GET(1))}; Validate(IsSubtypeOf(kValueTypes[j], kValueTypes[i], module), &sig, code); } } } TEST_F(FunctionBodyDecoderTest, Break_TypeCheckAll3) { WASM_FEATURE_SCOPE(reftypes); for (size_t i = 0; i < arraysize(kValueTypes); i++) { for (size_t j = 0; j < arraysize(kValueTypes); j++) { ValueType storage[] = {kValueTypes[i], kValueTypes[i], kValueTypes[j]}; FunctionSig sig(1, 2, storage); byte code[] = {WASM_IF_ELSE_T(sig.GetReturn(), WASM_ZERO, WASM_LOCAL_GET(1), WASM_BRV_IF_ZERO(0, WASM_LOCAL_GET(0)))}; Validate(IsSubtypeOf(kValueTypes[j], kValueTypes[i], module), &sig, code); } } } TEST_F(FunctionBodyDecoderTest, Break_Unify) { for (int which = 0; which < 2; which++) { for (size_t i = 0; i < arraysize(kValueTypes); i++) { ValueType type = kValueTypes[i]; ValueType storage[] = {kWasmI32, kWasmI32, type}; FunctionSig sig(1, 2, storage); byte code1[] = {WASM_BLOCK_T( type, WASM_IF(WASM_ZERO, WASM_BRV(1, WASM_LOCAL_GET(which))), WASM_LOCAL_GET(which ^ 1))}; Validate(type == kWasmI32, &sig, code1); } } } TEST_F(FunctionBodyDecoderTest, BreakIf_cond_type) { WASM_FEATURE_SCOPE(reftypes); for (size_t i = 0; i < arraysize(kValueTypes); i++) { for (size_t j = 0; j < arraysize(kValueTypes); j++) { ValueType types[] = {kValueTypes[i], kValueTypes[i], kValueTypes[j]}; FunctionSig sig(1, 2, types); byte code[] = {WASM_BLOCK_T( types[0], WASM_BRV_IF(0, WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)))}; Validate(types[2] == kWasmI32, &sig, code); } } } TEST_F(FunctionBodyDecoderTest, BreakIf_val_type) { WASM_FEATURE_SCOPE(reftypes); for (size_t i = 0; i < arraysize(kValueTypes); i++) { for (size_t j = 0; j < arraysize(kValueTypes); j++) { ValueType types[] = {kValueTypes[i], kValueTypes[i], kValueTypes[j], kWasmI32}; FunctionSig sig(1, 3, types); byte code[] = {WASM_BLOCK_T( types[1], WASM_BRV_IF(0, WASM_LOCAL_GET(1), WASM_LOCAL_GET(2)), WASM_DROP, WASM_LOCAL_GET(0))}; Validate(IsSubtypeOf(kValueTypes[j], kValueTypes[i], module), &sig, code); } } } TEST_F(FunctionBodyDecoderTest, BreakIf_Unify) { for (int which = 0; which < 2; which++) { for (size_t i = 0; i < arraysize(kValueTypes); i++) { ValueType type = kValueTypes[i]; ValueType storage[] = {kWasmI32, kWasmI32, type}; FunctionSig sig(1, 2, storage); byte code[] = {WASM_BLOCK_I(WASM_BRV_IF_ZERO(0, WASM_LOCAL_GET(which)), WASM_DROP, WASM_LOCAL_GET(which ^ 1))}; Validate(type == kWasmI32, &sig, code); } } } TEST_F(FunctionBodyDecoderTest, BrTable0) { ExpectFailure(sigs.v_v(), {kExprBrTable, 0, BR_TARGET(0)}); } TEST_F(FunctionBodyDecoderTest, BrTable0b) { static byte code[] = {kExprI32Const, 11, kExprBrTable, 0, BR_TARGET(0)}; ExpectValidates(sigs.v_v(), code); ExpectFailure(sigs.i_i(), code); } TEST_F(FunctionBodyDecoderTest, BrTable0c) { static byte code[] = {kExprI32Const, 11, kExprBrTable, 0, BR_TARGET(1)}; ExpectFailure(sigs.v_v(), code); ExpectFailure(sigs.i_i(), code); } TEST_F(FunctionBodyDecoderTest, BrTable1a) { ExpectValidates(sigs.v_v(), {B1(WASM_BR_TABLE(WASM_I32V_2(67), 0, BR_TARGET(0)))}); } TEST_F(FunctionBodyDecoderTest, BrTable1b) { static byte code[] = {B1(WASM_BR_TABLE(WASM_ZERO, 0, BR_TARGET(0)))}; ExpectValidates(sigs.v_v(), code); ExpectFailure(sigs.i_i(), code); ExpectFailure(sigs.f_ff(), code); ExpectFailure(sigs.d_dd(), code); } TEST_F(FunctionBodyDecoderTest, BrTable2a) { ExpectValidates( sigs.v_v(), {B1(WASM_BR_TABLE(WASM_I32V_2(67), 1, BR_TARGET(0), BR_TARGET(0)))}); } TEST_F(FunctionBodyDecoderTest, BrTable2b) { ExpectValidates(sigs.v_v(), {WASM_BLOCK(WASM_BLOCK(WASM_BR_TABLE( WASM_I32V_2(67), 1, BR_TARGET(0), BR_TARGET(1))))}); } TEST_F(FunctionBodyDecoderTest, BrTable_off_end) { static byte code[] = {B1(WASM_BR_TABLE(WASM_LOCAL_GET(0), 0, BR_TARGET(0)))}; for (size_t len = 1; len < sizeof(code); len++) { ExpectFailure(sigs.i_i(), VectorOf(code, len), kAppendEnd); ExpectFailure(sigs.i_i(), VectorOf(code, len), kOmitEnd); } } TEST_F(FunctionBodyDecoderTest, BrTable_invalid_br1) { for (int depth = 0; depth < 4; depth++) { byte code[] = {B1(WASM_BR_TABLE(WASM_LOCAL_GET(0), 0, BR_TARGET(depth)))}; Validate(depth <= 1, sigs.v_i(), code); } } TEST_F(FunctionBodyDecoderTest, BrTable_invalid_br2) { for (int depth = 0; depth < 7; depth++) { byte code[] = { WASM_LOOP(WASM_BR_TABLE(WASM_LOCAL_GET(0), 0, BR_TARGET(depth)))}; Validate(depth < 2, sigs.v_i(), code); } } TEST_F(FunctionBodyDecoderTest, BrTable_arity_mismatch1) { ExpectFailure( sigs.v_v(), {WASM_BLOCK(WASM_BLOCK_I( WASM_ONE, WASM_BR_TABLE(WASM_ONE, 1, BR_TARGET(0), BR_TARGET(1))))}); } TEST_F(FunctionBodyDecoderTest, BrTable_arity_mismatch2) { ExpectFailure( sigs.v_v(), {WASM_BLOCK_I(WASM_BLOCK( WASM_ONE, WASM_BR_TABLE(WASM_ONE, 1, BR_TARGET(0), BR_TARGET(1))))}); } TEST_F(FunctionBodyDecoderTest, BrTable_arity_mismatch_loop1) { ExpectFailure( sigs.v_v(), {WASM_LOOP(WASM_BLOCK_I( WASM_ONE, WASM_BR_TABLE(WASM_ONE, 1, BR_TARGET(0), BR_TARGET(1))))}); } TEST_F(FunctionBodyDecoderTest, BrTable_arity_mismatch_loop2) { ExpectFailure( sigs.v_v(), {WASM_BLOCK_I(WASM_LOOP( WASM_ONE, WASM_BR_TABLE(WASM_ONE, 1, BR_TARGET(0), BR_TARGET(1))))}); } TEST_F(FunctionBodyDecoderTest, BrTable_loop_block) { ExpectValidates( sigs.v_v(), {WASM_LOOP(WASM_BLOCK( WASM_ONE, WASM_BR_TABLE(WASM_ONE, 1, BR_TARGET(0), BR_TARGET(1))))}); } TEST_F(FunctionBodyDecoderTest, BrTable_block_loop) { ExpectValidates( sigs.v_v(), {WASM_LOOP(WASM_BLOCK( WASM_ONE, WASM_BR_TABLE(WASM_ONE, 1, BR_TARGET(0), BR_TARGET(1))))}); } TEST_F(FunctionBodyDecoderTest, BrTable_type_mismatch1) { ExpectFailure( sigs.v_v(), {WASM_BLOCK_I(WASM_BLOCK_F( WASM_ONE, WASM_BR_TABLE(WASM_ONE, 1, BR_TARGET(0), BR_TARGET(1))))}); } TEST_F(FunctionBodyDecoderTest, BrTable_type_mismatch2) { ExpectFailure( sigs.v_v(), {WASM_BLOCK_F(WASM_BLOCK_I( WASM_ONE, WASM_BR_TABLE(WASM_ONE, 1, BR_TARGET(0), BR_TARGET(1))))}); } TEST_F(FunctionBodyDecoderTest, BrTable_type_mismatch_unreachable) { ExpectFailure(sigs.v_v(), {WASM_BLOCK_F(WASM_BLOCK_I( WASM_UNREACHABLE, WASM_BR_TABLE(WASM_ONE, 1, BR_TARGET(0), BR_TARGET(1))))}); } TEST_F(FunctionBodyDecoderTest, BrUnreachable1) { ExpectValidates(sigs.v_i(), {WASM_LOCAL_GET(0), kExprBrTable, 0, BR_TARGET(0)}); } TEST_F(FunctionBodyDecoderTest, BrUnreachable2) { ExpectValidates(sigs.v_i(), {WASM_LOCAL_GET(0), kExprBrTable, 0, BR_TARGET(0), WASM_NOP}); ExpectFailure(sigs.v_i(), {WASM_LOCAL_GET(0), kExprBrTable, 0, BR_TARGET(0), WASM_ZERO}); } TEST_F(FunctionBodyDecoderTest, Brv1) { ExpectValidates(sigs.i_i(), {WASM_BLOCK_I(WASM_BRV(0, WASM_ZERO))}); ExpectValidates(sigs.i_i(), {WASM_BLOCK_I(WASM_LOOP_I(WASM_BRV(2, WASM_ZERO)))}); } TEST_F(FunctionBodyDecoderTest, Brv1_type) { ExpectValidates(sigs.i_ii(), {WASM_BLOCK_I(WASM_BRV(0, WASM_LOCAL_GET(0)))}); ExpectValidates(sigs.l_ll(), {WASM_BLOCK_L(WASM_BRV(0, WASM_LOCAL_GET(0)))}); ExpectValidates(sigs.f_ff(), {WASM_BLOCK_F(WASM_BRV(0, WASM_LOCAL_GET(0)))}); ExpectValidates(sigs.d_dd(), {WASM_BLOCK_D(WASM_BRV(0, WASM_LOCAL_GET(0)))}); } TEST_F(FunctionBodyDecoderTest, Brv1_type_n) { ExpectFailure(sigs.i_f(), {WASM_BLOCK_I(WASM_BRV(0, WASM_LOCAL_GET(0)))}); ExpectFailure(sigs.i_d(), {WASM_BLOCK_I(WASM_BRV(0, WASM_LOCAL_GET(0)))}); } TEST_F(FunctionBodyDecoderTest, BrvIf1) { ExpectValidates(sigs.i_v(), {WASM_BLOCK_I(WASM_BRV_IF_ZERO(0, WASM_ZERO))}); } TEST_F(FunctionBodyDecoderTest, BrvIf1_type) { ExpectValidates(sigs.i_i(), {WASM_BLOCK_I(WASM_BRV_IF_ZERO(0, WASM_LOCAL_GET(0)))}); ExpectValidates(sigs.l_l(), {WASM_BLOCK_L(WASM_BRV_IF_ZERO(0, WASM_LOCAL_GET(0)))}); ExpectValidates(sigs.f_ff(), {WASM_BLOCK_F(WASM_BRV_IF_ZERO(0, WASM_LOCAL_GET(0)))}); ExpectValidates(sigs.d_dd(), {WASM_BLOCK_D(WASM_BRV_IF_ZERO(0, WASM_LOCAL_GET(0)))}); } TEST_F(FunctionBodyDecoderTest, BrvIf1_type_n) { ExpectFailure(sigs.i_f(), {WASM_BLOCK_I(WASM_BRV_IF_ZERO(0, WASM_LOCAL_GET(0)))}); ExpectFailure(sigs.i_d(), {WASM_BLOCK_I(WASM_BRV_IF_ZERO(0, WASM_LOCAL_GET(0)))}); } TEST_F(FunctionBodyDecoderTest, Select) { ExpectValidates(sigs.i_i(), {WASM_SELECT(WASM_LOCAL_GET(0), WASM_LOCAL_GET(0), WASM_ZERO)}); ExpectValidates(sigs.f_ff(), {WASM_SELECT(WASM_F32(0.0), WASM_F32(0.0), WASM_ZERO)}); ExpectValidates(sigs.d_dd(), {WASM_SELECT(WASM_F64(0.0), WASM_F64(0.0), WASM_ZERO)}); ExpectValidates(sigs.l_l(), {WASM_SELECT(WASM_I64V_1(0), WASM_I64V_1(0), WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, Select_needs_value_type) { WASM_FEATURE_SCOPE(reftypes); ExpectFailure(sigs.e_e(), {WASM_SELECT(WASM_LOCAL_GET(0), WASM_LOCAL_GET(0), WASM_ZERO)}); ExpectFailure(sigs.c_c(), {WASM_SELECT(WASM_LOCAL_GET(0), WASM_LOCAL_GET(0), WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, Select_fail1) { ExpectFailure(sigs.i_i(), {WASM_SELECT(WASM_F32(0.0), WASM_LOCAL_GET(0), WASM_LOCAL_GET(0))}); ExpectFailure(sigs.i_i(), {WASM_SELECT(WASM_LOCAL_GET(0), WASM_F32(0.0), WASM_LOCAL_GET(0))}); ExpectFailure(sigs.i_i(), {WASM_SELECT(WASM_LOCAL_GET(0), WASM_LOCAL_GET(0), WASM_F32(0.0))}); } TEST_F(FunctionBodyDecoderTest, Select_fail2) { for (size_t i = 0; i < arraysize(kValueTypes); i++) { ValueType type = kValueTypes[i]; if (type == kWasmI32) continue; // Select without specified type is only allowed for number types. if (type == kWasmExternRef) continue; ValueType types[] = {type, kWasmI32, type}; FunctionSig sig(1, 2, types); ExpectValidates(&sig, {WASM_SELECT(WASM_LOCAL_GET(1), WASM_LOCAL_GET(1), WASM_LOCAL_GET(0))}); ExpectFailure(&sig, {WASM_SELECT(WASM_LOCAL_GET(1), WASM_LOCAL_GET(0), WASM_LOCAL_GET(0))}); ExpectFailure(&sig, {WASM_SELECT(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1), WASM_LOCAL_GET(0))}); ExpectFailure(&sig, {WASM_SELECT(WASM_LOCAL_GET(0), WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))}); } } TEST_F(FunctionBodyDecoderTest, Select_TypeCheck) { ExpectFailure(sigs.i_i(), {WASM_SELECT(WASM_F32(9.9), WASM_LOCAL_GET(0), WASM_LOCAL_GET(0))}); ExpectFailure(sigs.i_i(), {WASM_SELECT(WASM_LOCAL_GET(0), WASM_F64(0.25), WASM_LOCAL_GET(0))}); ExpectFailure(sigs.i_i(), {WASM_SELECT(WASM_F32(9.9), WASM_LOCAL_GET(0), WASM_I64V_1(0))}); } TEST_F(FunctionBodyDecoderTest, SelectWithType) { WASM_FEATURE_SCOPE(reftypes); ExpectValidates(sigs.i_i(), {WASM_SELECT_I(WASM_LOCAL_GET(0), WASM_LOCAL_GET(0), WASM_ZERO)}); ExpectValidates(sigs.f_ff(), {WASM_SELECT_F(WASM_F32(0.0), WASM_F32(0.0), WASM_ZERO)}); ExpectValidates(sigs.d_dd(), {WASM_SELECT_D(WASM_F64(0.0), WASM_F64(0.0), WASM_ZERO)}); ExpectValidates(sigs.l_l(), {WASM_SELECT_L(WASM_I64V_1(0), WASM_I64V_1(0), WASM_ZERO)}); ExpectValidates(sigs.e_e(), {WASM_SELECT_R(WASM_REF_NULL(kExternRefCode), WASM_REF_NULL(kExternRefCode), WASM_ZERO)}); ExpectValidates(sigs.c_c(), {WASM_SELECT_A(WASM_REF_NULL(kFuncRefCode), WASM_REF_NULL(kFuncRefCode), WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, SelectWithType_fail) { WASM_FEATURE_SCOPE(reftypes); ExpectFailure(sigs.i_i(), {WASM_SELECT_F(WASM_LOCAL_GET(0), WASM_LOCAL_GET(0), WASM_ZERO)}); ExpectFailure(sigs.f_ff(), {WASM_SELECT_D(WASM_F32(0.0), WASM_F32(0.0), WASM_ZERO)}); ExpectFailure(sigs.d_dd(), {WASM_SELECT_L(WASM_F64(0.0), WASM_F64(0.0), WASM_ZERO)}); ExpectFailure(sigs.l_l(), {WASM_SELECT_I(WASM_I64V_1(0), WASM_I64V_1(0), WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, Throw) { WASM_FEATURE_SCOPE(eh); byte ex1 = builder.AddException(sigs.v_v()); byte ex2 = builder.AddException(sigs.v_i()); byte ex3 = builder.AddException(sigs.v_ii()); ExpectValidates(sigs.v_v(), {kExprThrow, ex1}); ExpectValidates(sigs.v_v(), {WASM_I32V(0), kExprThrow, ex2}); ExpectFailure(sigs.v_v(), {WASM_F32(0.0), kExprThrow, ex2}); ExpectValidates(sigs.v_v(), {WASM_I32V(0), WASM_I32V(0), kExprThrow, ex3}); ExpectFailure(sigs.v_v(), {WASM_F32(0.0), WASM_I32V(0), kExprThrow, ex3}); ExpectFailure(sigs.v_v(), {kExprThrow, 99}); } TEST_F(FunctionBodyDecoderTest, ThrowUnreachable) { WASM_FEATURE_SCOPE(eh); byte ex1 = builder.AddException(sigs.v_v()); byte ex2 = builder.AddException(sigs.v_i()); ExpectValidates(sigs.i_i(), {WASM_LOCAL_GET(0), kExprThrow, ex1, WASM_NOP}); ExpectValidates(sigs.v_i(), {WASM_LOCAL_GET(0), kExprThrow, ex2, WASM_NOP}); ExpectValidates(sigs.i_i(), {WASM_LOCAL_GET(0), kExprThrow, ex1, WASM_ZERO}); ExpectFailure(sigs.v_i(), {WASM_LOCAL_GET(0), kExprThrow, ex2, WASM_ZERO}); ExpectFailure(sigs.i_i(), {WASM_LOCAL_GET(0), kExprThrow, ex1, WASM_F32(0.0)}); ExpectFailure(sigs.v_i(), {WASM_LOCAL_GET(0), kExprThrow, ex2, WASM_F32(0.0)}); } #define WASM_TRY_OP kExprTry, kVoidCode TEST_F(FunctionBodyDecoderTest, TryCatch) { WASM_FEATURE_SCOPE(eh); byte ex = builder.AddException(sigs.v_v()); ExpectValidates(sigs.v_v(), {WASM_TRY_OP, kExprCatch, ex, kExprEnd}); ExpectValidates(sigs.v_v(), {WASM_TRY_OP, kExprCatch, ex, kExprElse, kExprEnd}); ExpectFailure(sigs.v_v(), {WASM_TRY_OP, kExprElse, kExprCatch, ex, kExprEnd}); ExpectFailure(sigs.v_v(), {WASM_TRY_OP, kExprElse, kExprElse, kExprEnd}); ExpectFailure(sigs.v_v(), {WASM_TRY_OP, kExprEnd}); // Missing catch. ExpectFailure(sigs.v_v(), {WASM_TRY_OP, kExprCatch, ex}); // Missing end. ExpectFailure(sigs.v_v(), {kExprCatch, kExprEnd}); // Missing try. } TEST_F(FunctionBodyDecoderTest, TryUnwind) { WASM_FEATURE_SCOPE(eh); byte ex = builder.AddException(sigs.v_v()); ExpectValidates(sigs.v_v(), {WASM_TRY_OP, kExprUnwind, kExprEnd}); ExpectFailure(sigs.v_v(), {WASM_TRY_OP, kExprUnwind, kExprCatch, ex, kExprEnd}); ExpectFailure(sigs.v_v(), {WASM_TRY_OP, kExprElse, kExprUnwind, kExprEnd}); ExpectFailure(sigs.v_v(), {WASM_TRY_OP, kExprCatch, ex, kExprUnwind, kExprEnd}); } TEST_F(FunctionBodyDecoderTest, Rethrow) { WASM_FEATURE_SCOPE(eh); ExpectValidates(sigs.v_v(), {WASM_TRY_OP, kExprElse, kExprRethrow, 0, kExprEnd}); ExpectFailure(sigs.v_v(), {WASM_TRY_OP, kExprRethrow, kExprCatch, kExprEnd}); ExpectFailure(sigs.v_v(), {WASM_BLOCK(kExprRethrow)}); ExpectFailure(sigs.v_v(), {kExprRethrow}); } TEST_F(FunctionBodyDecoderTest, TryDelegate) { WASM_FEATURE_SCOPE(eh); byte ex = builder.AddException(sigs.v_v()); ExpectValidates(sigs.v_v(), {WASM_TRY_OP, WASM_TRY_DELEGATE(WASM_STMTS(kExprThrow, ex), 0), kExprCatch, ex, kExprEnd}); ExpectValidates( sigs.v_v(), {WASM_BLOCK(WASM_TRY_OP, WASM_TRY_DELEGATE(WASM_STMTS(kExprThrow, ex), 2), kExprCatch, ex, kExprEnd)}); ExpectFailure(sigs.v_v(), {WASM_TRY_OP, WASM_BLOCK(WASM_TRY_DELEGATE(WASM_STMTS(kExprThrow, ex), 0)), kExprCatch, ex, kExprEnd}, kAppendEnd, "delegate target must be a try block or the function block"); ExpectFailure(sigs.v_v(), {WASM_TRY_OP, kExprCatch, ex, WASM_TRY_DELEGATE(WASM_STMTS(kExprThrow, ex), 0), kExprEnd}, kAppendEnd, "cannot delegate inside the catch handler of the target"); ExpectFailure( sigs.v_v(), {WASM_BLOCK(WASM_TRY_OP, WASM_TRY_DELEGATE(WASM_STMTS(kExprThrow, ex), 3), kExprCatch, ex, kExprEnd)}, kAppendEnd, "invalid branch depth: 3"); ExpectFailure( sigs.v_v(), {WASM_TRY_OP, WASM_TRY_OP, kExprCatch, ex, kExprDelegate, 0, kExprEnd}, kAppendEnd, "delegate does not match a try"); ExpectFailure( sigs.v_v(), {WASM_TRY_OP, WASM_TRY_OP, kExprElse, kExprDelegate, 1, kExprEnd}, kAppendEnd, "delegate does not match a try"); } #undef WASM_TRY_OP TEST_F(FunctionBodyDecoderTest, MultiValBlock1) { WASM_FEATURE_SCOPE(mv); byte sig0 = builder.AddSignature(sigs.ii_v()); ExpectValidates( sigs.i_ii(), {WASM_BLOCK_X(sig0, WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)), kExprI32Add}); ExpectFailure(sigs.i_ii(), {WASM_BLOCK_X(sig0, WASM_NOP), kExprI32Add}); ExpectFailure(sigs.i_ii(), {WASM_BLOCK_X(sig0, WASM_LOCAL_GET(0)), kExprI32Add}); ExpectFailure(sigs.i_ii(), {WASM_BLOCK_X(sig0, WASM_LOCAL_GET(0), WASM_LOCAL_GET(1), WASM_LOCAL_GET(0)), kExprI32Add}); ExpectFailure( sigs.i_ii(), {WASM_BLOCK_X(sig0, WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)), kExprF32Add}); } TEST_F(FunctionBodyDecoderTest, MultiValBlock2) { WASM_FEATURE_SCOPE(mv); byte sig0 = builder.AddSignature(sigs.ii_v()); ExpectValidates(sigs.i_ii(), {WASM_BLOCK_X(sig0, WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)), WASM_I32_ADD(WASM_NOP, WASM_NOP)}); ExpectFailure(sigs.i_ii(), {WASM_BLOCK_X(sig0, WASM_NOP), WASM_I32_ADD(WASM_NOP, WASM_NOP)}); ExpectFailure(sigs.i_ii(), {WASM_BLOCK_X(sig0, WASM_LOCAL_GET(0)), WASM_I32_ADD(WASM_NOP, WASM_NOP)}); ExpectFailure(sigs.i_ii(), {WASM_BLOCK_X(sig0, WASM_LOCAL_GET(0), WASM_LOCAL_GET(1), WASM_LOCAL_GET(0)), WASM_I32_ADD(WASM_NOP, WASM_NOP)}); ExpectFailure(sigs.i_ii(), {WASM_BLOCK_X(sig0, WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)), WASM_F32_ADD(WASM_NOP, WASM_NOP)}); } TEST_F(FunctionBodyDecoderTest, MultiValBlockBr) { WASM_FEATURE_SCOPE(mv); byte sig0 = builder.AddSignature(sigs.ii_v()); ExpectFailure(sigs.i_ii(), {WASM_BLOCK_X(sig0, WASM_LOCAL_GET(0), WASM_BR(0)), kExprI32Add}); ExpectValidates(sigs.i_ii(), {WASM_BLOCK_X(sig0, WASM_LOCAL_GET(0), WASM_LOCAL_GET(1), WASM_BR(0)), kExprI32Add}); } TEST_F(FunctionBodyDecoderTest, MultiValLoop1) { WASM_FEATURE_SCOPE(mv); byte sig0 = builder.AddSignature(sigs.ii_v()); ExpectValidates( sigs.i_ii(), {WASM_LOOP_X(sig0, WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)), kExprI32Add}); ExpectFailure(sigs.i_ii(), {WASM_LOOP_X(sig0, WASM_NOP), kExprI32Add}); ExpectFailure(sigs.i_ii(), {WASM_LOOP_X(sig0, WASM_LOCAL_GET(0)), kExprI32Add}); ExpectFailure(sigs.i_ii(), {WASM_LOOP_X(sig0, WASM_LOCAL_GET(0), WASM_LOCAL_GET(1), WASM_LOCAL_GET(0)), kExprI32Add}); ExpectFailure( sigs.i_ii(), {WASM_LOOP_X(sig0, WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)), kExprF32Add}); } TEST_F(FunctionBodyDecoderTest, MultiValIf) { WASM_FEATURE_SCOPE(mv); byte sig0 = builder.AddSignature(sigs.ii_v()); ExpectValidates( sigs.i_ii(), {WASM_IF_ELSE_X(sig0, WASM_LOCAL_GET(0), WASM_SEQ(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)), WASM_SEQ(WASM_LOCAL_GET(1), WASM_LOCAL_GET(0))), kExprI32Add}); ExpectFailure(sigs.i_ii(), {WASM_IF_ELSE_X(sig0, WASM_LOCAL_GET(0), WASM_NOP, WASM_NOP), kExprI32Add}); ExpectFailure(sigs.i_ii(), {WASM_IF_ELSE_X(sig0, WASM_LOCAL_GET(0), WASM_NOP, WASM_SEQ(WASM_LOCAL_GET(1), WASM_LOCAL_GET(0))), kExprI32Add}); ExpectFailure( sigs.i_ii(), {WASM_IF_ELSE_X(sig0, WASM_LOCAL_GET(0), WASM_SEQ(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)), WASM_NOP), kExprI32Add}); ExpectFailure(sigs.i_ii(), {WASM_IF_ELSE_X(sig0, WASM_LOCAL_GET(0), WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)), kExprI32Add}); ExpectFailure(sigs.i_ii(), {WASM_IF_ELSE_X(sig0, WASM_LOCAL_GET(0), WASM_LOCAL_GET(0), WASM_SEQ(WASM_LOCAL_GET(1), WASM_LOCAL_GET(0))), kExprI32Add}); ExpectFailure(sigs.i_ii(), {WASM_IF_ELSE_X(sig0, WASM_LOCAL_GET(0), WASM_SEQ(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)), WASM_LOCAL_GET(1)), kExprI32Add}); ExpectFailure( sigs.i_ii(), {WASM_IF_ELSE_X( sig0, WASM_LOCAL_GET(0), WASM_SEQ(WASM_LOCAL_GET(0), WASM_LOCAL_GET(0), WASM_LOCAL_GET(0)), WASM_SEQ(WASM_LOCAL_GET(1), WASM_LOCAL_GET(0), WASM_LOCAL_GET(0))), kExprI32Add}); ExpectFailure(sigs.i_ii(), {WASM_IF_ELSE_X(sig0, WASM_LOCAL_GET(0), WASM_SEQ(WASM_LOCAL_GET(0), WASM_LOCAL_GET(0), WASM_LOCAL_GET(0)), WASM_SEQ(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))), kExprI32Add}); ExpectFailure(sigs.i_ii(), {WASM_IF_ELSE_X(sig0, WASM_LOCAL_GET(0), WASM_SEQ(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)), WASM_SEQ(WASM_LOCAL_GET(1), WASM_LOCAL_GET(1), WASM_LOCAL_GET(1))), kExprI32Add}); ExpectFailure(sigs.i_ii(), {WASM_IF_ELSE_X(sig0, WASM_LOCAL_GET(0), WASM_SEQ(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)), WASM_SEQ(WASM_LOCAL_GET(1), WASM_LOCAL_GET(0))), kExprF32Add}); } TEST_F(FunctionBodyDecoderTest, BlockParam) { WASM_FEATURE_SCOPE(mv); byte sig1 = builder.AddSignature(sigs.i_i()); byte sig2 = builder.AddSignature(sigs.i_ii()); ExpectValidates( sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_BLOCK_X(sig1, WASM_LOCAL_GET(1), WASM_I32_ADD(WASM_NOP, WASM_NOP))}); ExpectValidates(sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_LOCAL_GET(1), WASM_BLOCK_X(sig2, WASM_I32_ADD(WASM_NOP, WASM_NOP))}); ExpectValidates(sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_LOCAL_GET(1), WASM_BLOCK_X(sig1, WASM_NOP), WASM_I32_ADD(WASM_NOP, WASM_NOP)}); ExpectFailure(sigs.i_ii(), {WASM_BLOCK_X(sig1, WASM_NOP), WASM_RETURN1(WASM_LOCAL_GET(0))}); ExpectFailure(sigs.i_ii(), {WASM_BLOCK_X(sig1, WASM_LOCAL_GET(0)), WASM_RETURN1(WASM_LOCAL_GET(0))}); ExpectFailure( sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_BLOCK_X(sig2, WASM_I32_ADD(WASM_NOP, WASM_NOP)), WASM_RETURN1(WASM_LOCAL_GET(0))}); ExpectFailure(sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_BLOCK_X(sig1, WASM_F32_NEG(WASM_NOP)), WASM_RETURN1(WASM_LOCAL_GET(0))}); } TEST_F(FunctionBodyDecoderTest, LoopParam) { WASM_FEATURE_SCOPE(mv); byte sig1 = builder.AddSignature(sigs.i_i()); byte sig2 = builder.AddSignature(sigs.i_ii()); ExpectValidates(sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_LOOP_X(sig1, WASM_LOCAL_GET(1), WASM_I32_ADD(WASM_NOP, WASM_NOP))}); ExpectValidates(sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_LOCAL_GET(1), WASM_LOOP_X(sig2, WASM_I32_ADD(WASM_NOP, WASM_NOP))}); ExpectValidates(sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_LOCAL_GET(1), WASM_LOOP_X(sig1, WASM_NOP), WASM_I32_ADD(WASM_NOP, WASM_NOP)}); ExpectFailure(sigs.i_ii(), {WASM_LOOP_X(sig1, WASM_NOP), WASM_RETURN1(WASM_LOCAL_GET(0))}); ExpectFailure(sigs.i_ii(), {WASM_LOOP_X(sig1, WASM_LOCAL_GET(0)), WASM_RETURN1(WASM_LOCAL_GET(0))}); ExpectFailure( sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_LOOP_X(sig2, WASM_I32_ADD(WASM_NOP, WASM_NOP)), WASM_RETURN1(WASM_LOCAL_GET(0))}); ExpectFailure(sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_LOOP_X(sig1, WASM_F32_NEG(WASM_NOP)), WASM_RETURN1(WASM_LOCAL_GET(0))}); } TEST_F(FunctionBodyDecoderTest, LoopParamBr) { WASM_FEATURE_SCOPE(mv); byte sig1 = builder.AddSignature(sigs.i_i()); byte sig2 = builder.AddSignature(sigs.i_ii()); ExpectValidates(sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_LOOP_X(sig1, WASM_BR(0))}); ExpectValidates( sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_LOOP_X(sig1, WASM_BRV(0, WASM_LOCAL_GET(1)))}); ExpectValidates(sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_LOCAL_GET(1), WASM_LOOP_X(sig2, WASM_BR(0))}); ExpectValidates( sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_LOOP_X(sig1, WASM_BLOCK_X(sig1, WASM_BR(1)))}); ExpectFailure(sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_LOOP_X(sig1, WASM_BLOCK(WASM_BR(1))), WASM_RETURN1(WASM_LOCAL_GET(0))}); ExpectFailure(sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_LOCAL_GET(1), WASM_LOOP_X(sig2, WASM_BLOCK_X(sig1, WASM_BR(1))), WASM_RETURN1(WASM_LOCAL_GET(0))}); } TEST_F(FunctionBodyDecoderTest, IfParam) { WASM_FEATURE_SCOPE(mv); byte sig1 = builder.AddSignature(sigs.i_i()); byte sig2 = builder.AddSignature(sigs.i_ii()); ExpectValidates(sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_IF_X(sig1, WASM_LOCAL_GET(0), WASM_I32_ADD(WASM_NOP, WASM_LOCAL_GET(1)))}); ExpectValidates(sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_IF_ELSE_X(sig1, WASM_LOCAL_GET(0), WASM_I32_ADD(WASM_NOP, WASM_LOCAL_GET(1)), WASM_I32_EQZ(WASM_NOP))}); ExpectValidates( sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_LOCAL_GET(1), WASM_IF_ELSE_X(sig2, WASM_LOCAL_GET(0), WASM_I32_ADD(WASM_NOP, WASM_NOP), WASM_I32_MUL(WASM_NOP, WASM_NOP))}); ExpectValidates(sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_LOCAL_GET(1), WASM_IF_X(sig1, WASM_LOCAL_GET(0), WASM_NOP), WASM_I32_ADD(WASM_NOP, WASM_NOP)}); ExpectValidates(sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_LOCAL_GET(1), WASM_IF_ELSE_X(sig1, WASM_LOCAL_GET(0), WASM_NOP, WASM_I32_EQZ(WASM_NOP)), WASM_I32_ADD(WASM_NOP, WASM_NOP)}); } TEST_F(FunctionBodyDecoderTest, Regression709741) { AddLocals(kWasmI32, kV8MaxWasmFunctionLocals - 1); ExpectValidates(sigs.v_v(), {WASM_NOP}); byte code[] = {WASM_NOP, WASM_END}; for (size_t i = 0; i < arraysize(code); ++i) { FunctionBody body(sigs.v_v(), 0, code, code + i); WasmFeatures unused_detected_features; DecodeResult result = VerifyWasmCode(this->zone()->allocator(), WasmFeatures::All(), nullptr, &unused_detected_features, body); if (result.ok()) { std::ostringstream str; str << "Expected verification to fail"; } } } TEST_F(FunctionBodyDecoderTest, MemoryInit) { builder.InitializeMemory(); builder.SetDataSegmentCount(1); ExpectValidates(sigs.v_v(), {WASM_MEMORY_INIT(0, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); ExpectFailure(sigs.v_v(), {WASM_TABLE_INIT(0, 1, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, MemoryInitInvalid) { builder.InitializeMemory(); builder.SetDataSegmentCount(1); byte code[] = {WASM_MEMORY_INIT(0, WASM_ZERO, WASM_ZERO, WASM_ZERO), WASM_END}; for (size_t i = 0; i <= arraysize(code); ++i) { Validate(i == arraysize(code), sigs.v_v(), VectorOf(code, i), kOmitEnd); } } TEST_F(FunctionBodyDecoderTest, DataDrop) { builder.InitializeMemory(); builder.SetDataSegmentCount(1); ExpectValidates(sigs.v_v(), {WASM_DATA_DROP(0)}); ExpectFailure(sigs.v_v(), {WASM_DATA_DROP(1)}); } TEST_F(FunctionBodyDecoderTest, DataSegmentIndexUnsigned) { builder.InitializeMemory(); builder.SetDataSegmentCount(65); // Make sure that the index is interpreted as an unsigned number; 64 is // interpreted as -64 when decoded as a signed LEB. ExpectValidates(sigs.v_v(), {WASM_MEMORY_INIT(64, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); ExpectValidates(sigs.v_v(), {WASM_DATA_DROP(64)}); } TEST_F(FunctionBodyDecoderTest, MemoryCopy) { builder.InitializeMemory(); ExpectValidates(sigs.v_v(), {WASM_MEMORY_COPY(WASM_ZERO, WASM_ZERO, WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, MemoryFill) { builder.InitializeMemory(); ExpectValidates(sigs.v_v(), {WASM_MEMORY_FILL(WASM_ZERO, WASM_ZERO, WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, BulkMemoryOpsWithoutMemory) { ExpectFailure(sigs.v_v(), {WASM_MEMORY_INIT(0, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); ExpectFailure(sigs.v_v(), {WASM_MEMORY_COPY(WASM_ZERO, WASM_ZERO, WASM_ZERO)}); ExpectFailure(sigs.v_v(), {WASM_MEMORY_FILL(WASM_ZERO, WASM_ZERO, WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, TableInit) { builder.InitializeTable(wasm::kWasmFuncRef); builder.AddPassiveElementSegment(wasm::kWasmFuncRef); ExpectValidates(sigs.v_v(), {WASM_TABLE_INIT(0, 0, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); ExpectFailure(sigs.v_v(), {WASM_TABLE_INIT(0, 1, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, TableInitWrongType) { uint32_t table_index = builder.InitializeTable(wasm::kWasmFuncRef); uint32_t element_index = builder.AddPassiveElementSegment(wasm::kWasmExternRef); WASM_FEATURE_SCOPE(reftypes); ExpectFailure(sigs.v_v(), {WASM_TABLE_INIT(table_index, element_index, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, TableInitInvalid) { builder.InitializeTable(wasm::kWasmFuncRef); builder.AddPassiveElementSegment(wasm::kWasmFuncRef); byte code[] = {WASM_TABLE_INIT(0, 0, WASM_ZERO, WASM_ZERO, WASM_ZERO), WASM_END}; for (size_t i = 0; i <= arraysize(code); ++i) { Validate(i == arraysize(code), sigs.v_v(), VectorOf(code, i), kOmitEnd); } } TEST_F(FunctionBodyDecoderTest, ElemDrop) { builder.InitializeTable(wasm::kWasmFuncRef); builder.AddPassiveElementSegment(wasm::kWasmFuncRef); ExpectValidates(sigs.v_v(), {WASM_ELEM_DROP(0)}); ExpectFailure(sigs.v_v(), {WASM_ELEM_DROP(1)}); } TEST_F(FunctionBodyDecoderTest, TableInitDeclarativeElem) { builder.InitializeTable(wasm::kWasmFuncRef); builder.AddDeclarativeElementSegment(); WASM_FEATURE_SCOPE(reftypes); byte code[] = {WASM_TABLE_INIT(0, 0, WASM_ZERO, WASM_ZERO, WASM_ZERO), WASM_END}; for (size_t i = 0; i <= arraysize(code); ++i) { Validate(i == arraysize(code), sigs.v_v(), VectorOf(code, i), kOmitEnd); } } TEST_F(FunctionBodyDecoderTest, DeclarativeElemDrop) { builder.InitializeTable(wasm::kWasmFuncRef); builder.AddDeclarativeElementSegment(); WASM_FEATURE_SCOPE(reftypes); ExpectValidates(sigs.v_v(), {WASM_ELEM_DROP(0)}); ExpectFailure(sigs.v_v(), {WASM_ELEM_DROP(1)}); } TEST_F(FunctionBodyDecoderTest, RefFuncDeclared) { builder.InitializeTable(wasm::kWasmStmt); byte function_index = builder.AddFunction(sigs.v_i()); ExpectFailure(sigs.a_v(), {WASM_REF_FUNC(function_index)}); WASM_FEATURE_SCOPE(reftypes); ExpectValidates(sigs.a_v(), {WASM_REF_FUNC(function_index)}); } TEST_F(FunctionBodyDecoderTest, RefFuncUndeclared) { builder.InitializeTable(wasm::kWasmStmt); byte function_index = builder.AddFunction(sigs.v_i(), false); WASM_FEATURE_SCOPE(reftypes); ExpectFailure(sigs.a_v(), {WASM_REF_FUNC(function_index)}); } TEST_F(FunctionBodyDecoderTest, ElemSegmentIndexUnsigned) { builder.InitializeTable(wasm::kWasmFuncRef); for (int i = 0; i < 65; ++i) { builder.AddPassiveElementSegment(wasm::kWasmFuncRef); } // Make sure that the index is interpreted as an unsigned number; 64 is // interpreted as -64 when decoded as a signed LEB. ExpectValidates(sigs.v_v(), {WASM_TABLE_INIT(0, 64, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); ExpectValidates(sigs.v_v(), {WASM_ELEM_DROP(64)}); } TEST_F(FunctionBodyDecoderTest, TableCopy) { builder.InitializeTable(wasm::kWasmStmt); ExpectValidates(sigs.v_v(), {WASM_TABLE_COPY(0, 0, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, TableCopyWrongType) { uint32_t dst_table_index = builder.InitializeTable(wasm::kWasmFuncRef); uint32_t src_table_index = builder.InitializeTable(wasm::kWasmExternRef); WASM_FEATURE_SCOPE(reftypes); ExpectFailure(sigs.v_v(), {WASM_TABLE_COPY(dst_table_index, src_table_index, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, TableGrow) { byte tab_func = builder.AddTable(kWasmFuncRef, 10, true, 20); byte tab_ref = builder.AddTable(kWasmExternRef, 10, true, 20); ExpectFailure( sigs.i_c(), {WASM_TABLE_GROW(tab_func, WASM_REF_NULL(kFuncRefCode), WASM_ONE)}); WASM_FEATURE_SCOPE(reftypes); ExpectValidates( sigs.i_c(), {WASM_TABLE_GROW(tab_func, WASM_REF_NULL(kFuncRefCode), WASM_ONE)}); ExpectValidates( sigs.i_e(), {WASM_TABLE_GROW(tab_ref, WASM_REF_NULL(kExternRefCode), WASM_ONE)}); // FuncRef table cannot be initialized with an ExternRef value. ExpectFailure(sigs.i_e(), {WASM_TABLE_GROW(tab_func, WASM_LOCAL_GET(0), WASM_ONE)}); // ExternRef table cannot be initialized with a FuncRef value. ExpectFailure(sigs.i_c(), {WASM_TABLE_GROW(tab_ref, WASM_LOCAL_GET(0), WASM_ONE)}); // Check that the table index gets verified. ExpectFailure( sigs.i_e(), {WASM_TABLE_GROW(tab_ref + 2, WASM_REF_NULL(kExternRefCode), WASM_ONE)}); } TEST_F(FunctionBodyDecoderTest, TableSize) { int tab = builder.AddTable(kWasmFuncRef, 10, true, 20); ExpectFailure(sigs.i_v(), {WASM_TABLE_SIZE(tab)}); WASM_FEATURE_SCOPE(reftypes); ExpectValidates(sigs.i_v(), {WASM_TABLE_SIZE(tab)}); ExpectFailure(sigs.i_v(), {WASM_TABLE_SIZE(tab + 2)}); } TEST_F(FunctionBodyDecoderTest, TableFill) { byte tab_func = builder.AddTable(kWasmFuncRef, 10, true, 20); byte tab_ref = builder.AddTable(kWasmExternRef, 10, true, 20); ExpectFailure(sigs.v_c(), {WASM_TABLE_FILL(tab_func, WASM_ONE, WASM_REF_NULL(kFuncRefCode), WASM_ONE)}); WASM_FEATURE_SCOPE(reftypes); ExpectValidates(sigs.v_c(), {WASM_TABLE_FILL(tab_func, WASM_ONE, WASM_REF_NULL(kFuncRefCode), WASM_ONE)}); ExpectValidates(sigs.v_e(), {WASM_TABLE_FILL(tab_ref, WASM_ONE, WASM_REF_NULL(kExternRefCode), WASM_ONE)}); // FuncRef table cannot be initialized with an ExternRef value. ExpectFailure(sigs.v_e(), {WASM_TABLE_FILL(tab_func, WASM_ONE, WASM_LOCAL_GET(0), WASM_ONE)}); // ExternRef table cannot be initialized with a FuncRef value. ExpectFailure(sigs.v_c(), {WASM_TABLE_FILL(tab_ref, WASM_ONE, WASM_LOCAL_GET(0), WASM_ONE)}); // Check that the table index gets verified. ExpectFailure(sigs.v_e(), {WASM_TABLE_FILL(tab_ref + 2, WASM_ONE, WASM_REF_NULL(kExternRefCode), WASM_ONE)}); } TEST_F(FunctionBodyDecoderTest, TableOpsWithoutTable) { { WASM_FEATURE_SCOPE(reftypes); ExpectFailure(sigs.i_v(), {WASM_TABLE_GROW(0, WASM_REF_NULL(kExternRefCode), WASM_ONE)}); ExpectFailure(sigs.i_v(), {WASM_TABLE_SIZE(0)}); ExpectFailure(sigs.i_e(), {WASM_TABLE_FILL(0, WASM_ONE, WASM_REF_NULL(kExternRefCode), WASM_ONE)}); } builder.AddPassiveElementSegment(wasm::kWasmFuncRef); ExpectFailure(sigs.v_v(), {WASM_TABLE_INIT(0, 0, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); ExpectFailure(sigs.v_v(), {WASM_TABLE_COPY(0, 0, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, TableCopyMultiTable) { WASM_FEATURE_SCOPE(reftypes); { TestModuleBuilder builder; builder.AddTable(kWasmExternRef, 10, true, 20); builder.AddPassiveElementSegment(wasm::kWasmFuncRef); module = builder.module(); // We added one table, therefore table.copy on table 0 should work. int table_src = 0; int table_dst = 0; ExpectValidates(sigs.v_v(), {WASM_TABLE_COPY(table_dst, table_src, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); // There is only one table, so table.copy on table 1 should fail. table_src = 0; table_dst = 1; ExpectFailure(sigs.v_v(), {WASM_TABLE_COPY(table_dst, table_src, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); table_src = 1; table_dst = 0; ExpectFailure(sigs.v_v(), {WASM_TABLE_COPY(table_dst, table_src, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); } { TestModuleBuilder builder; builder.AddTable(kWasmExternRef, 10, true, 20); builder.AddTable(kWasmExternRef, 10, true, 20); builder.AddPassiveElementSegment(wasm::kWasmFuncRef); module = builder.module(); // We added two tables, therefore table.copy on table 0 should work. int table_src = 0; int table_dst = 0; ExpectValidates(sigs.v_v(), {WASM_TABLE_COPY(table_dst, table_src, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); // Also table.copy on table 1 should work now. table_src = 1; table_dst = 0; ExpectValidates(sigs.v_v(), {WASM_TABLE_COPY(table_dst, table_src, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); table_src = 0; table_dst = 1; ExpectValidates(sigs.v_v(), {WASM_TABLE_COPY(table_dst, table_src, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); } } TEST_F(FunctionBodyDecoderTest, TableInitMultiTable) { WASM_FEATURE_SCOPE(reftypes); { TestModuleBuilder builder; builder.AddTable(kWasmExternRef, 10, true, 20); builder.AddPassiveElementSegment(wasm::kWasmExternRef); module = builder.module(); // We added one table, therefore table.init on table 0 should work. int table_index = 0; ExpectValidates(sigs.v_v(), {WASM_TABLE_INIT(table_index, 0, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); // There is only one table, so table.init on table 1 should fail. table_index = 1; ExpectFailure(sigs.v_v(), {WASM_TABLE_INIT(table_index, 0, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); } { TestModuleBuilder builder; builder.AddTable(kWasmExternRef, 10, true, 20); builder.AddTable(kWasmExternRef, 10, true, 20); builder.AddPassiveElementSegment(wasm::kWasmExternRef); module = builder.module(); // We added two tables, therefore table.init on table 0 should work. int table_index = 0; ExpectValidates(sigs.v_v(), {WASM_TABLE_INIT(table_index, 0, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); // Also table.init on table 1 should work now. table_index = 1; ExpectValidates(sigs.v_v(), {WASM_TABLE_INIT(table_index, 0, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); } } TEST_F(FunctionBodyDecoderTest, UnpackPackedTypes) { WASM_FEATURE_SCOPE(reftypes); WASM_FEATURE_SCOPE(typed_funcref); WASM_FEATURE_SCOPE(gc); { TestModuleBuilder builder; byte type_index = builder.AddStruct({F(kWasmI8, true), F(kWasmI16, false)}); module = builder.module(); ExpectValidates( sigs.v_v(), {WASM_STRUCT_SET( type_index, 0, WASM_STRUCT_NEW_WITH_RTT(type_index, WASM_I32V(1), WASM_I32V(42), WASM_RTT_CANON(type_index)), WASM_I32V(-1))}); } { TestModuleBuilder builder; byte type_index = builder.AddArray(kWasmI8, true); module = builder.module(); ExpectValidates(sigs.v_v(), {WASM_ARRAY_SET(type_index, WASM_ARRAY_NEW_WITH_RTT( type_index, WASM_I32V(10), WASM_I32V(5), WASM_RTT_CANON(type_index)), WASM_I32V(3), WASM_I32V(12345678))}); } } ValueType ref(byte type_index) { return ValueType::Ref(type_index, kNonNullable); } ValueType optref(byte type_index) { return ValueType::Ref(type_index, kNullable); } TEST_F(FunctionBodyDecoderTest, StructNewDefault) { WASM_FEATURE_SCOPE(reftypes); WASM_FEATURE_SCOPE(typed_funcref); WASM_FEATURE_SCOPE(gc); { TestModuleBuilder builder; byte type_index = builder.AddStruct({F(kWasmI32, true)}); byte bad_type_index = builder.AddStruct({F(ref(type_index), true)}); module = builder.module(); ExpectValidates(sigs.v_v(), {WASM_STRUCT_NEW_DEFAULT( type_index, WASM_RTT_CANON(type_index)), WASM_DROP}); ExpectFailure(sigs.v_v(), {WASM_STRUCT_NEW_DEFAULT(bad_type_index, WASM_RTT_CANON(bad_type_index)), WASM_DROP}); } { TestModuleBuilder builder; byte type_index = builder.AddArray(kWasmI32, true); byte bad_type_index = builder.AddArray(ref(type_index), true); module = builder.module(); ExpectValidates(sigs.v_v(), {WASM_ARRAY_NEW_DEFAULT(type_index, WASM_I32V(3), WASM_RTT_CANON(type_index)), WASM_DROP}); ExpectFailure(sigs.v_v(), {WASM_ARRAY_NEW_DEFAULT(bad_type_index, WASM_I32V(3), WASM_RTT_CANON(bad_type_index)), WASM_DROP}); } } TEST_F(FunctionBodyDecoderTest, DefaultableLocal) { WASM_FEATURE_SCOPE(typed_funcref); WASM_FEATURE_SCOPE(reftypes); AddLocals(kWasmExternRef, 1); ExpectValidates(sigs.v_v(), {}); } TEST_F(FunctionBodyDecoderTest, NonDefaultableLocal) { WASM_FEATURE_SCOPE(typed_funcref); WASM_FEATURE_SCOPE(reftypes); AddLocals(ValueType::Ref(HeapType::kExtern, kNonNullable), 1); ExpectFailure(sigs.v_v(), {}, kAppendEnd, "Cannot define function-level local of non-defaultable type"); } TEST_F(FunctionBodyDecoderTest, RefEq) { WASM_FEATURE_SCOPE(reftypes); WASM_FEATURE_SCOPE(eh); WASM_FEATURE_SCOPE(typed_funcref); WASM_FEATURE_SCOPE(simd); WASM_FEATURE_SCOPE(gc); TestModuleBuilder builder; module = builder.module(); byte struct_type_index = builder.AddStruct({F(kWasmI32, true)}); ValueType eqref_subtypes[] = {kWasmEqRef, kWasmI31Ref, ValueType::Ref(HeapType::kEq, kNonNullable), ValueType::Ref(HeapType::kI31, kNullable), ref(struct_type_index), optref(struct_type_index)}; ValueType non_eqref_subtypes[] = { kWasmI32, kWasmI64, kWasmF32, kWasmF64, kWasmS128, kWasmExternRef, kWasmFuncRef, kWasmAnyRef, ValueType::Ref(HeapType::kExtern, kNonNullable), ValueType::Ref(HeapType::kFunc, kNonNullable)}; for (ValueType type1 : eqref_subtypes) { for (ValueType type2 : eqref_subtypes) { ValueType reps[] = {kWasmI32, type1, type2}; FunctionSig sig(1, 2, reps); ExpectValidates(&sig, {WASM_REF_EQ(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))}); } } for (ValueType type1 : eqref_subtypes) { for (ValueType type2 : non_eqref_subtypes) { ValueType reps[] = {kWasmI32, type1, type2}; FunctionSig sig(1, 2, reps); ExpectFailure(&sig, {WASM_REF_EQ(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))}, kAppendEnd, "expected type eqref, found local.get of type"); ExpectFailure(&sig, {WASM_REF_EQ(WASM_LOCAL_GET(1), WASM_LOCAL_GET(0))}, kAppendEnd, "expected type eqref, found local.get of type"); } } } TEST_F(FunctionBodyDecoderTest, RefAsNonNull) { WASM_FEATURE_SCOPE(reftypes); WASM_FEATURE_SCOPE(eh); WASM_FEATURE_SCOPE(typed_funcref); WASM_FEATURE_SCOPE(simd); WASM_FEATURE_SCOPE(gc); TestModuleBuilder builder; module = builder.module(); byte struct_type_index = builder.AddStruct({F(kWasmI32, true)}); byte array_type_index = builder.AddArray(kWasmI32, true); uint32_t heap_types[] = { struct_type_index, array_type_index, HeapType::kFunc, HeapType::kEq, HeapType::kExtern, HeapType::kI31, HeapType::kAny}; ValueType non_compatible_types[] = {kWasmI32, kWasmI64, kWasmF32, kWasmF64, kWasmS128}; // It works with nullable types. for (uint32_t heap_type : heap_types) { ValueType reprs[] = {ValueType::Ref(heap_type, kNonNullable), ValueType::Ref(heap_type, kNullable)}; FunctionSig sig(1, 1, reprs); ExpectValidates(&sig, {WASM_REF_AS_NON_NULL(WASM_LOCAL_GET(0))}); } // It works with non-nullable types. for (uint32_t heap_type : heap_types) { ValueType reprs[] = {ValueType::Ref(heap_type, kNonNullable), ValueType::Ref(heap_type, kNonNullable)}; FunctionSig sig(1, 1, reprs); ExpectValidates(&sig, {WASM_REF_AS_NON_NULL(WASM_LOCAL_GET(0))}); } // It fails with other types. for (ValueType type : non_compatible_types) { FunctionSig sig(0, 1, &type); ExpectFailure( &sig, {WASM_REF_AS_NON_NULL(WASM_LOCAL_GET(0)), kExprDrop}, kAppendEnd, "ref.as_non_null[0] expected reference type, found local.get of type"); } } TEST_F(FunctionBodyDecoderTest, RefNull) { WASM_FEATURE_SCOPE(reftypes); WASM_FEATURE_SCOPE(eh); WASM_FEATURE_SCOPE(typed_funcref); WASM_FEATURE_SCOPE(gc); TestModuleBuilder builder; module = builder.module(); byte struct_type_index = builder.AddStruct({F(kWasmI32, true)}); byte array_type_index = builder.AddArray(kWasmI32, true); uint32_t type_reprs[] = { struct_type_index, array_type_index, HeapType::kFunc, HeapType::kEq, HeapType::kExtern, HeapType::kI31, HeapType::kAny}; // It works with heap types. for (uint32_t type_repr : type_reprs) { const ValueType type = ValueType::Ref(type_repr, kNullable); const FunctionSig sig(1, 0, &type); ExpectValidates(&sig, {WASM_REF_NULL(WASM_HEAP_TYPE(HeapType(type_repr)))}); } // It fails for undeclared types. ExpectFailure(sigs.v_v(), {WASM_REF_NULL(42), kExprDrop}, kAppendEnd, "Type index 42 is out of bounds"); } TEST_F(FunctionBodyDecoderTest, RefIsNull) { WASM_FEATURE_SCOPE(reftypes); WASM_FEATURE_SCOPE(eh); WASM_FEATURE_SCOPE(typed_funcref); WASM_FEATURE_SCOPE(gc); ExpectValidates(sigs.i_i(), {WASM_REF_IS_NULL(WASM_REF_NULL(kExternRefCode))}); ExpectFailure( sigs.i_i(), {WASM_REF_IS_NULL(WASM_LOCAL_GET(0))}, kAppendEnd, "ref.is_null[0] expected reference type, found local.get of type i32"); TestModuleBuilder builder; module = builder.module(); byte struct_type_index = builder.AddStruct({F(kWasmI32, true)}); byte array_type_index = builder.AddArray(kWasmI32, true); uint32_t heap_types[] = { struct_type_index, array_type_index, HeapType::kFunc, HeapType::kEq, HeapType::kExtern, HeapType::kI31, HeapType::kAny}; for (uint32_t heap_type : heap_types) { const ValueType types[] = {kWasmI32, ValueType::Ref(heap_type, kNullable)}; const FunctionSig sig(1, 1, types); // It works for nullable references. ExpectValidates(&sig, {WASM_REF_IS_NULL(WASM_LOCAL_GET(0))}); // It works for non-nullable references. ExpectValidates( &sig, {WASM_REF_IS_NULL(WASM_REF_AS_NON_NULL(WASM_LOCAL_GET(0)))}); } // It fails if the argument type is not a reference type. ExpectFailure( sigs.v_v(), {WASM_REF_IS_NULL(WASM_I32V(0)), kExprDrop}, kAppendEnd, "ref.is_null[0] expected reference type, found i32.const of type i32"); } TEST_F(FunctionBodyDecoderTest, BrOnNull) { WASM_FEATURE_SCOPE(reftypes); WASM_FEATURE_SCOPE(typed_funcref); WASM_FEATURE_SCOPE(gc); const ValueType reps[] = {ValueType::Ref(HeapType::kFunc, kNonNullable), ValueType::Ref(HeapType::kFunc, kNullable)}; const FunctionSig sig(1, 1, reps); ExpectValidates( &sig, {WASM_BLOCK_R(reps[0], WASM_REF_AS_NON_NULL(WASM_LOCAL_GET(0)), WASM_BR_ON_NULL(0, WASM_LOCAL_GET(0)), WASM_I32V(0), kExprSelectWithType, 1, WASM_REF_TYPE(reps[0]))}); // Should have block return value on stack before calling br_on_null. ExpectFailure(&sig, {WASM_BLOCK_R(reps[0], WASM_BR_ON_NULL(0, WASM_LOCAL_GET(0)), WASM_I32V(0), kExprSelectWithType, 1, WASM_REF_TYPE(reps[0]))}, kAppendEnd, "expected 1 elements on the stack for br to @1, found 0"); } TEST_F(FunctionBodyDecoderTest, GCStruct) { WASM_FEATURE_SCOPE(reftypes); WASM_FEATURE_SCOPE(typed_funcref); WASM_FEATURE_SCOPE(gc); TestModuleBuilder builder; module = builder.module(); byte struct_type_index = builder.AddStruct({F(kWasmI32, true)}); byte array_type_index = builder.AddArray(kWasmI32, true); byte immutable_struct_type_index = builder.AddStruct({F(kWasmI32, false)}); byte field_index = 0; ValueType struct_type = ValueType::Ref(struct_type_index, kNonNullable); ValueType reps_i_r[] = {kWasmI32, struct_type}; ValueType reps_f_r[] = {kWasmF32, struct_type}; const FunctionSig sig_i_r(1, 1, reps_i_r); const FunctionSig sig_v_r(0, 1, &struct_type); const FunctionSig sig_r_v(1, 0, &struct_type); const FunctionSig sig_f_r(1, 1, reps_f_r); /** struct.new_with_rtt **/ ExpectValidates( &sig_r_v, {WASM_STRUCT_NEW_WITH_RTT(struct_type_index, WASM_I32V(0), WASM_RTT_CANON(struct_type_index))}); // Too few arguments. ExpectFailure(&sig_r_v, {WASM_STRUCT_NEW_WITH_RTT(struct_type_index, WASM_RTT_CANON(struct_type_index))}, kAppendEnd, "not enough arguments on the stack for struct.new_with_rtt, " "expected 1 more"); // Too many arguments. ExpectFailure( &sig_r_v, {WASM_STRUCT_NEW_WITH_RTT(struct_type_index, WASM_I32V(0), WASM_I32V(1), WASM_RTT_CANON(struct_type_index))}, kAppendEnd, "expected 1 elements on the stack for fallthru to @1, found 2"); // Mistyped arguments. ExpectFailure(&sig_v_r, {WASM_STRUCT_NEW_WITH_RTT(struct_type_index, WASM_LOCAL_GET(0), WASM_RTT_CANON(struct_type_index))}, kAppendEnd, "struct.new_with_rtt[0] expected type i32, found local.get of " "type (ref 0)"); // Wrongly typed index. ExpectFailure(sigs.v_v(), {WASM_STRUCT_NEW_WITH_RTT(array_type_index, WASM_I32V(0), WASM_RTT_CANON(struct_type_index)), kExprDrop}, kAppendEnd, "invalid struct index: 1"); // Wrongly typed rtt. ExpectFailure(sigs.v_v(), {WASM_STRUCT_NEW_WITH_RTT(struct_type_index, WASM_I32V(0), WASM_RTT_CANON(array_type_index)), kExprDrop}, kAppendEnd, "struct.new_with_rtt[1] expected rtt for type 0, found " "rtt.canon of type (rtt 0 1)"); // Out-of-bounds index. ExpectFailure(sigs.v_v(), {WASM_STRUCT_NEW_WITH_RTT(42, WASM_I32V(0), WASM_RTT_CANON(struct_type_index)), kExprDrop}, kAppendEnd, "invalid struct index: 42"); /** struct.get **/ ExpectValidates(&sig_i_r, {WASM_STRUCT_GET(struct_type_index, field_index, WASM_LOCAL_GET(0))}); // With non-nullable struct. ExpectValidates(&sig_i_r, {WASM_STRUCT_GET(struct_type_index, field_index, WASM_REF_AS_NON_NULL(WASM_LOCAL_GET(0)))}); // Wrong index. ExpectFailure( &sig_v_r, {WASM_STRUCT_GET(struct_type_index, field_index + 1, WASM_LOCAL_GET(0)), kExprDrop}, kAppendEnd, "invalid field index: 1"); // Mistyped expected type. ExpectFailure( &sig_f_r, {WASM_STRUCT_GET(struct_type_index, field_index, WASM_LOCAL_GET(0))}, kAppendEnd, "type error in merge[0] (expected f32, got i32)"); /** struct.set **/ ExpectValidates(&sig_v_r, {WASM_STRUCT_SET(struct_type_index, field_index, WASM_LOCAL_GET(0), WASM_I32V(0))}); // Non-nullable struct. ExpectValidates( &sig_v_r, {WASM_STRUCT_SET(struct_type_index, field_index, WASM_REF_AS_NON_NULL(WASM_LOCAL_GET(0)), WASM_I32V(0))}); // Wrong index. ExpectFailure(&sig_v_r, {WASM_STRUCT_SET(struct_type_index, field_index + 1, WASM_LOCAL_GET(0), WASM_I32V(0))}, kAppendEnd, "invalid field index: 1"); // Mistyped input. ExpectFailure(&sig_v_r, {WASM_STRUCT_SET(struct_type_index, field_index, WASM_LOCAL_GET(0), WASM_I64V(0))}, kAppendEnd, "struct.set[1] expected type i32, found i64.const of type i64"); // Expecting output. ExpectFailure(&sig_i_r, {WASM_STRUCT_SET(struct_type_index, field_index, WASM_LOCAL_GET(0), WASM_I32V(0))}, kAppendEnd, "expected 1 elements on the stack for fallthru to @1, found 0"); // Setting immutable field. ExpectFailure( sigs.v_v(), {WASM_STRUCT_SET( immutable_struct_type_index, field_index, WASM_STRUCT_NEW_WITH_RTT(immutable_struct_type_index, WASM_I32V(42), WASM_RTT_CANON(immutable_struct_type_index)), WASM_I32V(0))}, kAppendEnd, "struct.set: Field 0 of type 2 is immutable."); // struct.get_s/u fail ExpectFailure( &sig_i_r, {WASM_STRUCT_GET_S(struct_type_index, field_index, WASM_LOCAL_GET(0))}, kAppendEnd, "struct.get_s: Immediate field 0 of type 0 has non-packed type i32. Use " "struct.get instead."); ExpectFailure( &sig_i_r, {WASM_STRUCT_GET_U(struct_type_index, field_index, WASM_LOCAL_GET(0))}, kAppendEnd, "struct.get_u: Immediate field 0 of type 0 has non-packed type i32. Use " "struct.get instead."); } TEST_F(FunctionBodyDecoderTest, GCArray) { WASM_FEATURE_SCOPE(reftypes); WASM_FEATURE_SCOPE(typed_funcref); WASM_FEATURE_SCOPE(gc); TestModuleBuilder builder; module = builder.module(); byte array_type_index = builder.AddArray(kWasmFuncRef, true); byte struct_type_index = builder.AddStruct({F(kWasmI32, false)}); ValueType array_type = ValueType::Ref(array_type_index, kNonNullable); ValueType reps_c_r[] = {kWasmFuncRef, array_type}; ValueType reps_f_r[] = {kWasmF32, array_type}; ValueType reps_i_r[] = {kWasmI32, array_type}; const FunctionSig sig_c_r(1, 1, reps_c_r); const FunctionSig sig_v_r(0, 1, &array_type); const FunctionSig sig_r_v(1, 0, &array_type); const FunctionSig sig_f_r(1, 1, reps_f_r); const FunctionSig sig_v_cr(0, 2, reps_c_r); const FunctionSig sig_i_r(1, 1, reps_i_r); /** array.new_with_rtt **/ ExpectValidates(&sig_r_v, {WASM_ARRAY_NEW_WITH_RTT( array_type_index, WASM_REF_NULL(kFuncRefCode), WASM_I32V(10), WASM_RTT_CANON(array_type_index))}); // Too few arguments. ExpectFailure(&sig_r_v, {WASM_I32V(10), WASM_RTT_CANON(array_type_index), WASM_GC_OP(kExprArrayNewWithRtt), array_type_index}, kAppendEnd, "not enough arguments on the stack for array.new_with_rtt, " "expected 1 more"); // Mistyped initializer. ExpectFailure(&sig_r_v, {WASM_ARRAY_NEW_WITH_RTT( array_type_index, WASM_REF_NULL(kExternRefCode), WASM_I32V(10), WASM_RTT_CANON(array_type_index))}, kAppendEnd, "array.new_with_rtt[0] expected type funcref, found ref.null " "of type externref"); // Mistyped length. ExpectFailure( &sig_r_v, {WASM_ARRAY_NEW_WITH_RTT(array_type_index, WASM_REF_NULL(kFuncRefCode), WASM_I64V(5), WASM_RTT_CANON(array_type_index))}, kAppendEnd, "array.new_with_rtt[1] expected type i32, found i64.const of type i64"); // Mistyped rtt. ExpectFailure(&sig_r_v, {WASM_ARRAY_NEW_WITH_RTT( array_type_index, WASM_REF_NULL(kFuncRefCode), WASM_I32V(5), WASM_RTT_CANON(struct_type_index))}, kAppendEnd, "array.new_with_rtt[2] expected rtt for type 0, found " "rtt.canon of type (rtt 0 1)"); // Wrong type index. ExpectFailure( sigs.v_v(), {WASM_ARRAY_NEW_WITH_RTT(struct_type_index, WASM_REF_NULL(kFuncRefCode), WASM_I32V(10), WASM_RTT_CANON(array_type_index)), kExprDrop}, kAppendEnd, "invalid array index: 1"); /** array.get **/ ExpectValidates(&sig_c_r, {WASM_ARRAY_GET(array_type_index, WASM_LOCAL_GET(0), WASM_I32V(5))}); // With non-nullable array type. ExpectValidates( &sig_c_r, {WASM_ARRAY_GET(array_type_index, WASM_REF_AS_NON_NULL(WASM_LOCAL_GET(0)), WASM_I32V(5))}); // Wrongly typed index. ExpectFailure( &sig_v_r, {WASM_ARRAY_GET(array_type_index, WASM_LOCAL_GET(0), WASM_I64V(5)), kExprDrop}, kAppendEnd, "array.get[1] expected type i32, found i64.const of type i64"); // Mistyped expected type. ExpectFailure( &sig_f_r, {WASM_ARRAY_GET(array_type_index, WASM_LOCAL_GET(0), WASM_I32V(5))}, kAppendEnd, "type error in merge[0] (expected f32, got funcref)"); // array.get_s/u fail. ExpectFailure( &sig_c_r, {WASM_ARRAY_GET_S(array_type_index, WASM_LOCAL_GET(0), WASM_I32V(5))}, kAppendEnd, "array.get_s: Immediate array type 0 has non-packed type funcref. Use " "array.get instead."); ExpectFailure( &sig_c_r, {WASM_ARRAY_GET_U(array_type_index, WASM_LOCAL_GET(0), WASM_I32V(5))}, kAppendEnd, "array.get_u: Immediate array type 0 has non-packed type funcref. Use " "array.get instead."); /** array.set **/ ExpectValidates(&sig_v_r, {WASM_ARRAY_SET(array_type_index, WASM_LOCAL_GET(0), WASM_I32V(42), WASM_REF_NULL(kFuncRefCode))}); // With non-nullable array type. ExpectValidates( &sig_v_cr, {WASM_ARRAY_SET(array_type_index, WASM_LOCAL_GET(1), WASM_I32V(42), WASM_REF_AS_NON_NULL(WASM_LOCAL_GET(0)))}); // Non-array type index. ExpectFailure(&sig_v_cr, {WASM_ARRAY_SET(struct_type_index, WASM_LOCAL_GET(1), WASM_I32V(42), WASM_LOCAL_GET(0))}, kAppendEnd, "invalid array index: 1"); // Wrongly typed index. ExpectFailure(&sig_v_cr, {WASM_ARRAY_SET(array_type_index, WASM_LOCAL_GET(1), WASM_I64V(42), WASM_LOCAL_GET(0))}, kAppendEnd, "array.set[1] expected type i32, found i64.const of type i64"); // Wrongly typed value. ExpectFailure( &sig_v_cr, {WASM_ARRAY_SET(array_type_index, WASM_LOCAL_GET(1), WASM_I32V(42), WASM_I64V(0))}, kAppendEnd, "array.set[2] expected type funcref, found i64.const of type i64"); /** array.len **/ ExpectValidates(&sig_i_r, {WASM_ARRAY_LEN(array_type_index, WASM_LOCAL_GET(0))}); // Wrong return type. ExpectFailure(&sig_f_r, {WASM_ARRAY_LEN(array_type_index, WASM_LOCAL_GET(0))}, kAppendEnd, "type error in merge[0] (expected f32, got i32)"); // Non-array type index. ExpectFailure(&sig_i_r, {WASM_ARRAY_LEN(struct_type_index, WASM_LOCAL_GET(0))}, kAppendEnd, "invalid array index: 1"); } TEST_F(FunctionBodyDecoderTest, PackedFields) { WASM_FEATURE_SCOPE(reftypes); WASM_FEATURE_SCOPE(typed_funcref); WASM_FEATURE_SCOPE(gc); TestModuleBuilder builder; module = builder.module(); byte array_type_index = builder.AddArray(kWasmI8, true); byte struct_type_index = builder.AddStruct({F(kWasmI16, true)}); byte field_index = 0; // *.new with packed fields works. ExpectValidates(sigs.v_v(), {WASM_ARRAY_NEW_WITH_RTT( array_type_index, WASM_I32V(0), WASM_I32V(5), WASM_RTT_CANON(array_type_index)), kExprDrop}); ExpectValidates(sigs.v_v(), {WASM_STRUCT_NEW_WITH_RTT(struct_type_index, WASM_I32V(42), WASM_RTT_CANON(struct_type_index)), kExprDrop}); // It can't unpack types other that i32. ExpectFailure( sigs.v_v(), {WASM_ARRAY_NEW_WITH_RTT(array_type_index, WASM_I64V(0), WASM_I32V(5), WASM_RTT_CANON(array_type_index)), kExprDrop}, kAppendEnd, "array.new_with_rtt[0] expected type i32, found i64.const of type i64"); ExpectFailure( sigs.v_v(), {WASM_STRUCT_NEW_WITH_RTT(struct_type_index, WASM_I64V(42), WASM_RTT_CANON(struct_type_index)), kExprDrop}, kAppendEnd, "struct.new_with_rtt[0] expected type i32, found i64.const of type i64"); // *.set with packed fields works. ExpectValidates(sigs.v_v(), {WASM_ARRAY_SET(array_type_index, WASM_REF_NULL(array_type_index), WASM_I32V(0), WASM_I32V(5))}); ExpectValidates(sigs.v_v(), {WASM_STRUCT_SET(struct_type_index, field_index, WASM_REF_NULL(struct_type_index), WASM_I32V(42))}); // It can't unpack into types other that i32. ExpectFailure( sigs.v_v(), {WASM_ARRAY_SET(array_type_index, WASM_REF_NULL(array_type_index), WASM_I32V(0), WASM_I64V(5))}, kAppendEnd, "array.set[2] expected type i32, found i64.const of type i64"); ExpectFailure( sigs.v_v(), {WASM_STRUCT_NEW_WITH_RTT(struct_type_index, field_index, WASM_REF_NULL(struct_type_index), WASM_I64V(42), WASM_RTT_CANON(struct_type_index))}, kAppendEnd, "struct.new_with_rtt[0] expected type i32, found i64.const of type i64"); // *.get_s/u works. ExpectValidates(sigs.i_v(), {WASM_ARRAY_GET_S(array_type_index, WASM_REF_NULL(array_type_index), WASM_I32V(0))}); ExpectValidates(sigs.i_v(), {WASM_ARRAY_GET_U(array_type_index, WASM_REF_NULL(array_type_index), WASM_I32V(0))}); ExpectValidates(sigs.i_v(), {WASM_STRUCT_GET_S(struct_type_index, field_index, WASM_REF_NULL(struct_type_index))}); ExpectValidates(sigs.i_v(), {WASM_STRUCT_GET_U(struct_type_index, field_index, WASM_REF_NULL(struct_type_index))}); // *.get fails. ExpectFailure(sigs.i_v(), {WASM_ARRAY_GET(array_type_index, WASM_REF_NULL(array_type_index), WASM_I32V(0))}, kAppendEnd, "array.get: Immediate array type 0 has packed type i8. Use " "array.get_s or array.get_u instead."); ExpectFailure(sigs.i_v(), {WASM_STRUCT_GET(struct_type_index, field_index, WASM_REF_NULL(struct_type_index))}, kAppendEnd, "struct.get: Immediate field 0 of type 1 has packed type i16. " "Use struct.get_s or struct.get_u instead."); } TEST_F(FunctionBodyDecoderTest, PackedTypesAsLocals) { WASM_FEATURE_SCOPE(reftypes); WASM_FEATURE_SCOPE(typed_funcref); WASM_FEATURE_SCOPE(gc); AddLocals(kWasmI8, 1); ExpectFailure(sigs.v_v(), {}, kAppendEnd, "invalid value type"); } TEST_F(FunctionBodyDecoderTest, RttCanon) { WASM_FEATURE_SCOPE(reftypes); WASM_FEATURE_SCOPE(typed_funcref); WASM_FEATURE_SCOPE(gc); WASM_FEATURE_SCOPE(eh); TestModuleBuilder builder; module = builder.module(); uint8_t array_type_index = builder.AddArray(kWasmI32, true); uint8_t struct_type_index = builder.AddStruct({F(kWasmI64, true)}); for (uint32_t type_index : {array_type_index, struct_type_index}) { ValueType rtt1 = ValueType::Rtt(type_index, 0); FunctionSig sig1(1, 0, &rtt1); ExpectValidates(&sig1, {WASM_RTT_CANON(type_index)}); // rtt.canon should fail for incorrect depth. ValueType rtt2 = ValueType::Rtt(type_index, 1); FunctionSig sig2(1, 0, &rtt2); ExpectFailure(&sig2, {WASM_RTT_CANON(type_index)}, kAppendEnd, "type error in merge[0]"); } } TEST_F(FunctionBodyDecoderTest, RttSub) { WASM_FEATURE_SCOPE(reftypes); WASM_FEATURE_SCOPE(typed_funcref); WASM_FEATURE_SCOPE(gc); WASM_FEATURE_SCOPE(eh); TestModuleBuilder builder; module = builder.module(); uint8_t array_type_index = builder.AddArray(kWasmI8, true); uint8_t super_struct_type_index = builder.AddStruct({F(kWasmI16, true)}); uint8_t sub_struct_type_index = builder.AddStruct({F(kWasmI16, true), F(kWasmI32, false)}); // Trivial type error. ExpectFailure( sigs.v_v(), {WASM_RTT_SUB(array_type_index, WASM_I32V(42)), kExprDrop}, kAppendEnd, "rtt.sub[0] expected rtt for a supertype of type 0"); { ValueType type = ValueType::Rtt(array_type_index, 1); FunctionSig sig(1, 0, &type); // Can build an rtt.sub with self type for an array type. ExpectValidates(&sig, {WASM_RTT_SUB(array_type_index, WASM_RTT_CANON(array_type_index))}); // Fails when argument to rtt.sub is not a supertype. ExpectFailure(sigs.v_v(), {WASM_RTT_SUB(super_struct_type_index, WASM_RTT_CANON(array_type_index)), kExprDrop}, kAppendEnd, "rtt.sub[0] expected rtt for a supertype of type 1"); } { ValueType type = ValueType::Rtt(super_struct_type_index, 1); FunctionSig sig(1, 0, &type); // Can build an rtt.sub with self type for a struct type. ExpectValidates(&sig, {WASM_RTT_SUB(super_struct_type_index, WASM_RTT_CANON(super_struct_type_index))}); // Fails when argument to rtt.sub is not a supertype. ExpectFailure(sigs.v_v(), {WASM_RTT_SUB(super_struct_type_index, WASM_RTT_CANON(array_type_index))}, kAppendEnd, "rtt.sub[0] expected rtt for a supertype of type 1"); ExpectFailure(sigs.v_v(), {WASM_RTT_SUB(super_struct_type_index, WASM_RTT_CANON(sub_struct_type_index))}, kAppendEnd, "rtt.sub[0] expected rtt for a supertype of type 1"); } { // Can build an rtt from a stuct supertype. ValueType type = ValueType::Rtt(sub_struct_type_index, 1); FunctionSig sig(1, 0, &type); ExpectValidates(&sig, {WASM_RTT_SUB(sub_struct_type_index, WASM_RTT_CANON(super_struct_type_index))}); } } TEST_F(FunctionBodyDecoderTest, RefTestCast) { WASM_FEATURE_SCOPE(reftypes); WASM_FEATURE_SCOPE(typed_funcref); WASM_FEATURE_SCOPE(gc); WASM_FEATURE_SCOPE(eh); TestModuleBuilder builder; module = builder.module(); HeapType::Representation array_heap = static_cast(builder.AddArray(kWasmI8, true)); HeapType::Representation super_struct_heap = static_cast( builder.AddStruct({F(kWasmI16, true)})); HeapType::Representation sub_struct_heap = static_cast( builder.AddStruct({F(kWasmI16, true), F(kWasmI32, false)})); HeapType::Representation func_heap_1 = static_cast(builder.AddSignature(sigs.i_i())); HeapType::Representation func_heap_2 = static_cast(builder.AddSignature(sigs.i_v())); // Passing/failing tests due to static subtyping. std::tuple tests[] = {{HeapType::kData, array_heap, true}, {HeapType::kData, super_struct_heap, true}, {HeapType::kFunc, func_heap_1, true}, {func_heap_1, func_heap_1, true}, {func_heap_1, func_heap_2, false}, {super_struct_heap, sub_struct_heap, true}, {sub_struct_heap, super_struct_heap, false}, {sub_struct_heap, array_heap, false}, {HeapType::kFunc, array_heap, false}}; for (auto test : tests) { HeapType from_heap = HeapType(std::get<0>(test)); HeapType to_heap = HeapType(std::get<1>(test)); bool should_pass = std::get<2>(test); ValueType test_reps[] = {kWasmI32, ValueType::Ref(from_heap, kNullable)}; FunctionSig test_sig(1, 1, test_reps); ValueType cast_reps_with_depth[] = {ValueType::Ref(to_heap, kNullable), ValueType::Ref(from_heap, kNullable)}; FunctionSig cast_sig_with_depth(1, 1, cast_reps_with_depth); ValueType cast_reps[] = {ValueType::Ref(to_heap, kNullable), ValueType::Ref(from_heap, kNullable), ValueType::Rtt(to_heap.ref_index())}; FunctionSig cast_sig(1, 2, cast_reps); if (should_pass) { ExpectValidates(&test_sig, {WASM_REF_TEST(WASM_LOCAL_GET(0), WASM_RTT_CANON(WASM_HEAP_TYPE(to_heap)))}); ExpectValidates(&cast_sig_with_depth, {WASM_REF_CAST(WASM_LOCAL_GET(0), WASM_RTT_CANON(WASM_HEAP_TYPE(to_heap)))}); ExpectValidates(&cast_sig, {WASM_REF_CAST(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))}); } else { std::string error_message = "[0] expected supertype of type " + std::to_string(to_heap.ref_index()) + ", found local.get of type " + test_reps[1].name(); ExpectFailure(&test_sig, {WASM_REF_TEST(WASM_LOCAL_GET(0), WASM_RTT_CANON(WASM_HEAP_TYPE(to_heap)))}, kAppendEnd, ("ref.test" + error_message).c_str()); ExpectFailure(&cast_sig_with_depth, {WASM_REF_CAST(WASM_LOCAL_GET(0), WASM_RTT_CANON(WASM_HEAP_TYPE(to_heap)))}, kAppendEnd, ("ref.cast" + error_message).c_str()); ExpectFailure(&cast_sig, {WASM_REF_CAST(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))}, kAppendEnd, ("ref.cast" + error_message).c_str()); } } // Trivial type error. ExpectFailure( sigs.v_v(), {WASM_REF_TEST(WASM_I32V(1), WASM_RTT_CANON(array_heap)), kExprDrop}, kAppendEnd, "ref.test[0] expected subtype of (ref null func) or (ref null data), " "found i32.const of type i32"); ExpectFailure( sigs.v_v(), {WASM_REF_CAST(WASM_I32V(1), WASM_RTT_CANON(array_heap)), kExprDrop}, kAppendEnd, "ref.cast[0] expected subtype of (ref null func) or (ref null data), " "found i32.const of type i32"); // Trivial type error. ExpectFailure( sigs.v_v(), {WASM_REF_TEST(WASM_I32V(1), WASM_RTT_CANON(array_heap)), kExprDrop}, kAppendEnd, "ref.test[0] expected subtype of (ref null func) or (ref null data), " "found i32.const of type i32"); ExpectFailure( sigs.v_v(), {WASM_REF_CAST(WASM_I32V(1), WASM_RTT_CANON(array_heap)), kExprDrop}, kAppendEnd, "ref.cast[0] expected subtype of (ref null func) or (ref null data), " "found i32.const of type i32"); } // This tests that num_locals_ in decoder remains consistent, even if we fail // mid-DecodeLocals(). TEST_F(FunctionBodyDecoderTest, Regress_1154439) { WASM_FEATURE_SCOPE(reftypes); WASM_FEATURE_SCOPE(typed_funcref); AddLocals(kWasmI32, 1); AddLocals(kWasmI64, 1000000); ExpectFailure(sigs.v_v(), {}, kAppendEnd, "local count too large"); } class BranchTableIteratorTest : public TestWithZone { public: BranchTableIteratorTest() : TestWithZone() {} void CheckBrTableSize(const byte* start, const byte* end) { Decoder decoder(start, end); BranchTableImmediate operand(&decoder, start + 1); BranchTableIterator iterator(&decoder, operand); EXPECT_EQ(end - start - 1u, iterator.length()); EXPECT_OK(decoder); } void CheckBrTableError(const byte* start, const byte* end) { Decoder decoder(start, end); BranchTableImmediate operand(&decoder, start + 1); BranchTableIterator iterator(&decoder, operand); iterator.length(); EXPECT_FALSE(decoder.ok()); } }; #define CHECK_BR_TABLE_LENGTH(...) \ { \ static byte code[] = {kExprBrTable, __VA_ARGS__}; \ CheckBrTableSize(code, code + sizeof(code)); \ } #define CHECK_BR_TABLE_ERROR(...) \ { \ static byte code[] = {kExprBrTable, __VA_ARGS__}; \ CheckBrTableError(code, code + sizeof(code)); \ } TEST_F(BranchTableIteratorTest, count0) { CHECK_BR_TABLE_LENGTH(0, U32V_1(1)); CHECK_BR_TABLE_LENGTH(0, U32V_2(200)); CHECK_BR_TABLE_LENGTH(0, U32V_3(30000)); CHECK_BR_TABLE_LENGTH(0, U32V_4(400000)); CHECK_BR_TABLE_LENGTH(0, U32V_1(2)); CHECK_BR_TABLE_LENGTH(0, U32V_2(300)); CHECK_BR_TABLE_LENGTH(0, U32V_3(40000)); CHECK_BR_TABLE_LENGTH(0, U32V_4(500000)); } TEST_F(BranchTableIteratorTest, count1) { CHECK_BR_TABLE_LENGTH(1, U32V_1(1), U32V_1(6)); CHECK_BR_TABLE_LENGTH(1, U32V_2(200), U32V_1(8)); CHECK_BR_TABLE_LENGTH(1, U32V_3(30000), U32V_1(9)); CHECK_BR_TABLE_LENGTH(1, U32V_4(400000), U32V_1(11)); CHECK_BR_TABLE_LENGTH(1, U32V_1(2), U32V_2(6)); CHECK_BR_TABLE_LENGTH(1, U32V_2(300), U32V_2(7)); CHECK_BR_TABLE_LENGTH(1, U32V_3(40000), U32V_2(8)); CHECK_BR_TABLE_LENGTH(1, U32V_4(500000), U32V_2(9)); } TEST_F(BranchTableIteratorTest, error0) { CHECK_BR_TABLE_ERROR(0); CHECK_BR_TABLE_ERROR(1, U32V_1(33)); } #undef CHECK_BR_TABLE_LENGTH #undef CHECK_BR_TABLE_ERROR struct PrintOpcodes { const byte* start; const byte* end; }; std::ostream& operator<<(std::ostream& out, const PrintOpcodes& range) { out << "First opcode: \"" << WasmOpcodes::OpcodeName(static_cast(*range.start)) << "\"\nall bytes: ["; for (const byte* b = range.start; b < range.end; ++b) { out << (b == range.start ? "" : ", ") << uint32_t{*b} << "/" << AsHex(*b, 2, true); } return out << "]"; } class WasmOpcodeLengthTest : public TestWithZone { public: WasmOpcodeLengthTest() : TestWithZone() {} template void ExpectLength(unsigned expected, Bytes... bytes) { const byte code[] = {bytes..., 0, 0, 0, 0, 0, 0, 0, 0}; EXPECT_EQ(expected, OpcodeLength(code, code + sizeof(code))) << PrintOpcodes{code, code + sizeof...(bytes)}; } // Helper to check for prefixed opcodes, which can have multiple bytes. void ExpectLengthPrefixed(unsigned operands, WasmOpcode opcode) { uint8_t prefix = (opcode >> 8) & 0xff; DCHECK(WasmOpcodes::IsPrefixOpcode(static_cast(prefix))); uint8_t index = opcode & 0xff; uint8_t encoded[2] = {0, 0}; uint8_t* p = encoded; unsigned len = static_cast(LEBHelper::sizeof_u32v(index)); DCHECK_GE(2, len); LEBHelper::write_u32v(&p, index); // length of index, + number of operands + prefix bye ExpectLength(len + operands + 1, prefix, encoded[0], encoded[1]); } template void ExpectFailure(Bytes... bytes) { const byte code[] = {bytes..., 0, 0, 0, 0, 0, 0, 0, 0}; WasmFeatures no_features = WasmFeatures::None(); WasmDecoder decoder( this->zone(), nullptr, no_features, &no_features, nullptr, code, code + sizeof(code), 0); WasmDecoder::OpcodeLength(&decoder, code); EXPECT_EQ(decoder.failed(), true); } }; TEST_F(WasmOpcodeLengthTest, Statements) { ExpectLength(1, kExprNop); ExpectLength(1, kExprElse); ExpectLength(1, kExprEnd); ExpectLength(1, kExprSelect); ExpectLength(2, kExprCatch); ExpectLength(2, kExprDelegate); ExpectLength(2, kExprRethrow); ExpectLength(2, kExprBr); ExpectLength(2, kExprBrIf); ExpectLength(2, kExprThrow); ExpectLength(2, kExprBlock, kI32Code); ExpectLength(2, kExprLoop, kI32Code); ExpectLength(2, kExprIf, kI32Code); ExpectLength(2, kExprTry, kI32Code); } TEST_F(WasmOpcodeLengthTest, MiscExpressions) { ExpectLength(5, kExprF32Const); ExpectLength(9, kExprF64Const); ExpectLength(2, kExprRefNull); ExpectLength(2, kExprLocalGet); ExpectLength(2, kExprLocalSet); ExpectLength(2, kExprGlobalGet); ExpectLength(2, kExprGlobalSet); ExpectLength(2, kExprCallFunction); ExpectLength(3, kExprCallIndirect); } TEST_F(WasmOpcodeLengthTest, I32Const) { ExpectLength(2, kExprI32Const, U32V_1(1)); ExpectLength(3, kExprI32Const, U32V_2(999)); ExpectLength(4, kExprI32Const, U32V_3(9999)); ExpectLength(5, kExprI32Const, U32V_4(999999)); ExpectLength(6, kExprI32Const, U32V_5(99999999)); } TEST_F(WasmOpcodeLengthTest, I64Const) { ExpectLength(2, kExprI64Const, U32V_1(1)); ExpectLength(3, kExprI64Const, U32V_2(99)); ExpectLength(4, kExprI64Const, U32V_3(9999)); ExpectLength(5, kExprI64Const, U32V_4(99999)); ExpectLength(6, kExprI64Const, U32V_5(9999999)); ExpectLength(7, WASM_I64V_6(777777)); ExpectLength(8, WASM_I64V_7(7777777)); ExpectLength(9, WASM_I64V_8(77777777)); ExpectLength(10, WASM_I64V_9(777777777)); } TEST_F(WasmOpcodeLengthTest, VariableLength) { ExpectLength(2, kExprGlobalGet, U32V_1(1)); ExpectLength(3, kExprGlobalGet, U32V_2(33)); ExpectLength(4, kExprGlobalGet, U32V_3(44)); ExpectLength(5, kExprGlobalGet, U32V_4(66)); ExpectLength(6, kExprGlobalGet, U32V_5(77)); ExpectLength(2, kExprRefFunc, U32V_1(1)); ExpectLength(3, kExprRefFunc, U32V_2(33)); ExpectLength(4, kExprRefFunc, U32V_3(44)); ExpectLength(5, kExprRefFunc, U32V_4(66)); ExpectLength(6, kExprRefFunc, U32V_5(77)); ExpectLength(2, kExprTableGet, U32V_1(1)); ExpectLength(3, kExprTableGet, U32V_2(33)); ExpectLength(4, kExprTableGet, U32V_3(44)); ExpectLength(5, kExprTableGet, U32V_4(66)); ExpectLength(6, kExprTableGet, U32V_5(77)); ExpectLength(2, kExprTableSet, U32V_1(1)); ExpectLength(3, kExprTableSet, U32V_2(33)); ExpectLength(4, kExprTableSet, U32V_3(44)); ExpectLength(5, kExprTableSet, U32V_4(66)); ExpectLength(6, kExprTableSet, U32V_5(77)); ExpectLength(3, kExprCallIndirect, U32V_1(1), U32V_1(1)); ExpectLength(4, kExprCallIndirect, U32V_1(1), U32V_2(33)); ExpectLength(5, kExprCallIndirect, U32V_1(1), U32V_3(44)); ExpectLength(6, kExprCallIndirect, U32V_1(1), U32V_4(66)); ExpectLength(7, kExprCallIndirect, U32V_1(1), U32V_5(77)); } TEST_F(WasmOpcodeLengthTest, LoadsAndStores) { ExpectLength(3, kExprI32LoadMem8S); ExpectLength(3, kExprI32LoadMem8U); ExpectLength(3, kExprI32LoadMem16S); ExpectLength(3, kExprI32LoadMem16U); ExpectLength(3, kExprI32LoadMem); ExpectLength(3, kExprI64LoadMem8S); ExpectLength(3, kExprI64LoadMem8U); ExpectLength(3, kExprI64LoadMem16S); ExpectLength(3, kExprI64LoadMem16U); ExpectLength(3, kExprI64LoadMem32S); ExpectLength(3, kExprI64LoadMem32U); ExpectLength(3, kExprI64LoadMem); ExpectLength(3, kExprF32LoadMem); ExpectLength(3, kExprF64LoadMem); ExpectLength(3, kExprI32StoreMem8); ExpectLength(3, kExprI32StoreMem16); ExpectLength(3, kExprI32StoreMem); ExpectLength(3, kExprI64StoreMem8); ExpectLength(3, kExprI64StoreMem16); ExpectLength(3, kExprI64StoreMem32); ExpectLength(3, kExprI64StoreMem); ExpectLength(3, kExprF32StoreMem); ExpectLength(3, kExprF64StoreMem); } TEST_F(WasmOpcodeLengthTest, MiscMemExpressions) { ExpectLength(2, kExprMemorySize); ExpectLength(2, kExprMemoryGrow); } TEST_F(WasmOpcodeLengthTest, SimpleExpressions) { #define SIMPLE_OPCODE(name, byte, sig) byte, static constexpr uint8_t kSimpleOpcodes[] = { FOREACH_SIMPLE_OPCODE(SIMPLE_OPCODE)}; #undef SIMPLE_OPCODE for (uint8_t simple_opcode : kSimpleOpcodes) { ExpectLength(1, simple_opcode); } } TEST_F(WasmOpcodeLengthTest, SimdExpressions) { #define TEST_SIMD(name, opcode, sig) ExpectLengthPrefixed(0, kExpr##name); FOREACH_SIMD_0_OPERAND_OPCODE(TEST_SIMD) #undef TEST_SIMD #define TEST_SIMD(name, opcode, sig) ExpectLengthPrefixed(1, kExpr##name); FOREACH_SIMD_1_OPERAND_OPCODE(TEST_SIMD) #undef TEST_SIMD ExpectLengthPrefixed(16, kExprI8x16Shuffle); // test for bad simd opcode, 0xFF is encoded in two bytes. ExpectLength(3, kSimdPrefix, 0xFF, 0x1); } TEST_F(WasmOpcodeLengthTest, IllegalRefIndices) { ExpectFailure(kExprBlock, kOptRefCode, U32V_3(kV8MaxWasmTypes + 1)); ExpectFailure(kExprBlock, kOptRefCode, U32V_4(0x01000000)); } TEST_F(WasmOpcodeLengthTest, PrefixedOpcodesLEB) { // kExprI32New with a 4-byte LEB-encoded opcode. ExpectLength(5, 0xfb, 0xa0, 0x80, 0x80, 0x00); // kExprI8x16Splat with a 3-byte LEB-encoded opcode. ExpectLength(4, 0xfd, 0x8f, 0x80, 0x00); // kExprI32SConvertSatF32 with a 4-byte LEB-encoded opcode. ExpectLength(5, 0xfc, 0x80, 0x80, 0x80, 0x00); // kExprAtomicNotify with a 2-byte LEB-encoded opcode, and 2 i32 imm for // memarg. ExpectLength(5, 0xfe, 0x80, 0x00, 0x00, 0x00); } class TypeReaderTest : public TestWithZone { public: ValueType DecodeValueType(const byte* start, const byte* end, const WasmModule* module) { Decoder decoder(start, end); uint32_t length; return value_type_reader::read_value_type( &decoder, start, &length, module, enabled_features_); } HeapType DecodeHeapType(const byte* start, const byte* end, const WasmModule* module) { Decoder decoder(start, end); uint32_t length; return value_type_reader::read_heap_type( &decoder, start, &length, module, enabled_features_); } // This variable is modified by WASM_FEATURE_SCOPE. WasmFeatures enabled_features_; }; TEST_F(TypeReaderTest, HeapTypeDecodingTest) { WASM_FEATURE_SCOPE(gc); WASM_FEATURE_SCOPE(reftypes); WASM_FEATURE_SCOPE(typed_funcref); HeapType heap_func = HeapType(HeapType::kFunc); HeapType heap_bottom = HeapType(HeapType::kBottom); // 1- to 5-byte representation of kFuncRefCode. { const byte data[] = {kFuncRefCode}; HeapType result = DecodeHeapType(data, data + sizeof(data), nullptr); EXPECT_TRUE(result == heap_func); } { const byte data[] = {kFuncRefCode | 0x80, 0x7F}; HeapType result = DecodeHeapType(data, data + sizeof(data), nullptr); EXPECT_EQ(result, heap_func); } { const byte data[] = {kFuncRefCode | 0x80, 0xFF, 0x7F}; HeapType result = DecodeHeapType(data, data + sizeof(data), nullptr); EXPECT_EQ(result, heap_func); } { const byte data[] = {kFuncRefCode | 0x80, 0xFF, 0xFF, 0x7F}; HeapType result = DecodeHeapType(data, data + sizeof(data), nullptr); EXPECT_EQ(result, heap_func); } { const byte data[] = {kFuncRefCode | 0x80, 0xFF, 0xFF, 0xFF, 0x7F}; HeapType result = DecodeHeapType(data, data + sizeof(data), nullptr); EXPECT_EQ(result, heap_func); } { // Some negative number. const byte data[] = {0xB4, 0x7F}; HeapType result = DecodeHeapType(data, data + sizeof(data), nullptr); EXPECT_EQ(result, heap_bottom); } { // This differs from kFuncRefCode by one bit outside the 1-byte LEB128 // range. This should therefore NOT be decoded as HeapType::kFunc and // instead fail. const byte data[] = {kFuncRefCode | 0x80, 0x6F}; HeapType result = DecodeHeapType(data, data + sizeof(data), nullptr); EXPECT_EQ(result, heap_bottom); } } using TypesOfLocals = ZoneVector; class LocalDeclDecoderTest : public TestWithZone { public: v8::internal::AccountingAllocator allocator; WasmFeatures enabled_features_; size_t ExpectRun(TypesOfLocals map, size_t pos, ValueType expected, size_t count) { for (size_t i = 0; i < count; i++) { EXPECT_EQ(expected, map[pos++]); } return pos; } bool DecodeLocalDecls(BodyLocalDecls* decls, const byte* start, const byte* end) { WasmModule module; return i::wasm::DecodeLocalDecls(enabled_features_, decls, &module, start, end); } }; TEST_F(LocalDeclDecoderTest, EmptyLocals) { BodyLocalDecls decls(zone()); bool result = DecodeLocalDecls(&decls, nullptr, nullptr); EXPECT_FALSE(result); } TEST_F(LocalDeclDecoderTest, NoLocals) { static const byte data[] = {0}; BodyLocalDecls decls(zone()); bool result = DecodeLocalDecls(&decls, data, data + sizeof(data)); EXPECT_TRUE(result); EXPECT_TRUE(decls.type_list.empty()); } TEST_F(LocalDeclDecoderTest, WrongLocalDeclsCount1) { static const byte data[] = {1}; BodyLocalDecls decls(zone()); bool result = DecodeLocalDecls(&decls, data, data + sizeof(data)); EXPECT_FALSE(result); } TEST_F(LocalDeclDecoderTest, WrongLocalDeclsCount2) { static const byte data[] = {2, 1, static_cast(kWasmI32.value_type_code())}; BodyLocalDecls decls(zone()); bool result = DecodeLocalDecls(&decls, data, data + sizeof(data)); EXPECT_FALSE(result); } TEST_F(LocalDeclDecoderTest, OneLocal) { WASM_FEATURE_SCOPE(reftypes); for (size_t i = 0; i < arraysize(kValueTypes); i++) { ValueType type = kValueTypes[i]; const byte data[] = {1, 1, static_cast(type.value_type_code())}; BodyLocalDecls decls(zone()); bool result = DecodeLocalDecls(&decls, data, data + sizeof(data)); EXPECT_TRUE(result); EXPECT_EQ(1u, decls.type_list.size()); TypesOfLocals map = decls.type_list; EXPECT_EQ(type, map[0]); } } TEST_F(LocalDeclDecoderTest, FiveLocals) { WASM_FEATURE_SCOPE(reftypes); for (size_t i = 0; i < arraysize(kValueTypes); i++) { ValueType type = kValueTypes[i]; const byte data[] = {1, 5, static_cast(type.value_type_code())}; BodyLocalDecls decls(zone()); bool result = DecodeLocalDecls(&decls, data, data + sizeof(data)); EXPECT_TRUE(result); EXPECT_EQ(sizeof(data), decls.encoded_size); EXPECT_EQ(5u, decls.type_list.size()); TypesOfLocals map = decls.type_list; EXPECT_EQ(5u, map.size()); ExpectRun(map, 0, type, 5); } } TEST_F(LocalDeclDecoderTest, MixedLocals) { for (byte a = 0; a < 3; a++) { for (byte b = 0; b < 3; b++) { for (byte c = 0; c < 3; c++) { for (byte d = 0; d < 3; d++) { const byte data[] = {4, a, kI32Code, b, kI64Code, c, kF32Code, d, kF64Code}; BodyLocalDecls decls(zone()); bool result = DecodeLocalDecls(&decls, data, data + sizeof(data)); EXPECT_TRUE(result); EXPECT_EQ(sizeof(data), decls.encoded_size); EXPECT_EQ(static_cast(a + b + c + d), decls.type_list.size()); TypesOfLocals map = decls.type_list; size_t pos = 0; pos = ExpectRun(map, pos, kWasmI32, a); pos = ExpectRun(map, pos, kWasmI64, b); pos = ExpectRun(map, pos, kWasmF32, c); pos = ExpectRun(map, pos, kWasmF64, d); } } } } } TEST_F(LocalDeclDecoderTest, UseEncoder) { const byte* data = nullptr; const byte* end = nullptr; LocalDeclEncoder local_decls(zone()); local_decls.AddLocals(5, kWasmF32); local_decls.AddLocals(1337, kWasmI32); local_decls.AddLocals(212, kWasmI64); local_decls.Prepend(zone(), &data, &end); BodyLocalDecls decls(zone()); bool result = DecodeLocalDecls(&decls, data, end); EXPECT_TRUE(result); EXPECT_EQ(5u + 1337u + 212u, decls.type_list.size()); TypesOfLocals map = decls.type_list; size_t pos = 0; pos = ExpectRun(map, pos, kWasmF32, 5); pos = ExpectRun(map, pos, kWasmI32, 1337); pos = ExpectRun(map, pos, kWasmI64, 212); } TEST_F(LocalDeclDecoderTest, InvalidTypeIndex) { WASM_FEATURE_SCOPE(reftypes); WASM_FEATURE_SCOPE(typed_funcref); const byte* data = nullptr; const byte* end = nullptr; LocalDeclEncoder local_decls(zone()); local_decls.AddLocals(1, ValueType::Ref(0, kNullable)); BodyLocalDecls decls(zone()); bool result = DecodeLocalDecls(&decls, data, end); EXPECT_FALSE(result); } class BytecodeIteratorTest : public TestWithZone {}; TEST_F(BytecodeIteratorTest, SimpleForeach) { byte code[] = {WASM_IF_ELSE(WASM_ZERO, WASM_ZERO, WASM_ZERO)}; BytecodeIterator iter(code, code + sizeof(code)); WasmOpcode expected[] = {kExprI32Const, kExprIf, kExprI32Const, kExprElse, kExprI32Const, kExprEnd}; size_t pos = 0; for (WasmOpcode opcode : iter.opcodes()) { if (pos >= arraysize(expected)) { EXPECT_TRUE(false); break; } EXPECT_EQ(expected[pos++], opcode); } EXPECT_EQ(arraysize(expected), pos); } TEST_F(BytecodeIteratorTest, ForeachTwice) { byte code[] = {WASM_IF_ELSE(WASM_ZERO, WASM_ZERO, WASM_ZERO)}; BytecodeIterator iter(code, code + sizeof(code)); int count = 0; count = 0; for (WasmOpcode opcode : iter.opcodes()) { USE(opcode); count++; } EXPECT_EQ(6, count); count = 0; for (WasmOpcode opcode : iter.opcodes()) { USE(opcode); count++; } EXPECT_EQ(6, count); } TEST_F(BytecodeIteratorTest, ForeachOffset) { byte code[] = {WASM_IF_ELSE(WASM_ZERO, WASM_ZERO, WASM_ZERO)}; BytecodeIterator iter(code, code + sizeof(code)); int count = 0; count = 0; for (auto offset : iter.offsets()) { USE(offset); count++; } EXPECT_EQ(6, count); count = 0; for (auto offset : iter.offsets()) { USE(offset); count++; } EXPECT_EQ(6, count); } TEST_F(BytecodeIteratorTest, WithLocalDecls) { byte code[] = {1, 1, kI32Code, WASM_I32V_1(9), WASM_I32V_1(11)}; BodyLocalDecls decls(zone()); BytecodeIterator iter(code, code + sizeof(code), &decls); EXPECT_EQ(3u, decls.encoded_size); EXPECT_EQ(3u, iter.pc_offset()); EXPECT_TRUE(iter.has_next()); EXPECT_EQ(kExprI32Const, iter.current()); iter.next(); EXPECT_TRUE(iter.has_next()); EXPECT_EQ(kExprI32Const, iter.current()); iter.next(); EXPECT_FALSE(iter.has_next()); } /******************************************************************************* * Memory64 tests ******************************************************************************/ class FunctionBodyDecoderTestOnBothMemoryTypes : public FunctionBodyDecoderTestBase<::testing::TestWithParam> { public: bool is_memory64() const { return GetParam() == kMemory64; } }; std::string PrintMemoryType(::testing::TestParamInfo info) { switch (info.param) { case kMemory32: return "kMemory32"; case kMemory64: return "kMemory64"; } UNREACHABLE(); } INSTANTIATE_TEST_SUITE_P(MemoryTypes, FunctionBodyDecoderTestOnBothMemoryTypes, ::testing::Values(kMemory32, kMemory64), PrintMemoryType); TEST_P(FunctionBodyDecoderTestOnBothMemoryTypes, IndexTypes) { builder.InitializeMemory(GetParam()); Validate(!is_memory64(), sigs.i_v(), {WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO)}); Validate(is_memory64(), sigs.i_v(), {WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO64)}); Validate(!is_memory64(), sigs.v_v(), {WASM_STORE_MEM(MachineType::Int32(), WASM_ZERO, WASM_ZERO)}); Validate(is_memory64(), sigs.v_v(), {WASM_STORE_MEM(MachineType::Int32(), WASM_ZERO64, WASM_ZERO)}); } TEST_P(FunctionBodyDecoderTestOnBothMemoryTypes, 64BitOffset) { builder.InitializeMemory(GetParam()); // Macro for defining a zero constant of the right type. Explicitly use // {uint8_t} to make MSVC happy. #define ZERO_FOR_TYPE \ WASM_SEQ(is_memory64() ? uint8_t{kExprI64Const} : uint8_t{kExprI32Const}, 0) // Offset is zero encoded in 5 bytes (works always). Validate( true, sigs.i_v(), {WASM_LOAD_MEM_OFFSET(MachineType::Int32(), U64V_5(0), ZERO_FOR_TYPE)}); // Offset is zero encoded in 6 bytes (works only in memory64). Validate( is_memory64(), sigs.i_v(), {WASM_LOAD_MEM_OFFSET(MachineType::Int32(), U64V_6(0), ZERO_FOR_TYPE)}); // Same with store. Validate(true, sigs.v_v(), {WASM_STORE_MEM_OFFSET(MachineType::Int32(), U64V_5(0), ZERO_FOR_TYPE, WASM_ZERO)}); Validate(is_memory64(), sigs.v_v(), {WASM_STORE_MEM_OFFSET(MachineType::Int32(), U64V_6(0), ZERO_FOR_TYPE, WASM_ZERO)}); #undef ZERO_FOR_TYPE } TEST_P(FunctionBodyDecoderTestOnBothMemoryTypes, MemorySize) { builder.InitializeMemory(GetParam()); // memory.size returns i32 on memory32. Validate(!is_memory64(), sigs.v_v(), {WASM_MEMORY_SIZE, kExprI32Eqz, kExprDrop}); // memory.size returns i64 on memory64. Validate(is_memory64(), sigs.v_v(), {WASM_MEMORY_SIZE, kExprI64Eqz, kExprDrop}); } #undef B1 #undef B2 #undef B3 #undef WASM_IF_OP #undef WASM_LOOP_OP #undef WASM_BRV_IF_ZERO #undef EXPECT_OK } // namespace function_body_decoder_unittest } // namespace wasm } // namespace internal } // namespace v8