// Copyright 2011 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if defined(V8_TARGET_ARCH_X64) #include "bootstrapper.h" #include "code-stubs.h" #include "regexp-macro-assembler.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void ToNumberStub::Generate(MacroAssembler* masm) { // The ToNumber stub takes one argument in eax. NearLabel check_heap_number, call_builtin; __ SmiTest(rax); __ j(not_zero, &check_heap_number); __ Ret(); __ bind(&check_heap_number); __ Move(rbx, Factory::heap_number_map()); __ cmpq(rbx, FieldOperand(rax, HeapObject::kMapOffset)); __ j(not_equal, &call_builtin); __ Ret(); __ bind(&call_builtin); __ pop(rcx); // Pop return address. __ push(rax); __ push(rcx); // Push return address. __ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_FUNCTION); } void FastNewClosureStub::Generate(MacroAssembler* masm) { // Create a new closure from the given function info in new // space. Set the context to the current context in rsi. Label gc; __ AllocateInNewSpace(JSFunction::kSize, rax, rbx, rcx, &gc, TAG_OBJECT); // Get the function info from the stack. __ movq(rdx, Operand(rsp, 1 * kPointerSize)); // Compute the function map in the current global context and set that // as the map of the allocated object. __ movq(rcx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX))); __ movq(rcx, FieldOperand(rcx, GlobalObject::kGlobalContextOffset)); __ movq(rcx, Operand(rcx, Context::SlotOffset(Context::FUNCTION_MAP_INDEX))); __ movq(FieldOperand(rax, JSObject::kMapOffset), rcx); // Initialize the rest of the function. We don't have to update the // write barrier because the allocated object is in new space. __ LoadRoot(rbx, Heap::kEmptyFixedArrayRootIndex); __ LoadRoot(rcx, Heap::kTheHoleValueRootIndex); __ LoadRoot(rdi, Heap::kUndefinedValueRootIndex); __ movq(FieldOperand(rax, JSObject::kPropertiesOffset), rbx); __ movq(FieldOperand(rax, JSObject::kElementsOffset), rbx); __ movq(FieldOperand(rax, JSFunction::kPrototypeOrInitialMapOffset), rcx); __ movq(FieldOperand(rax, JSFunction::kSharedFunctionInfoOffset), rdx); __ movq(FieldOperand(rax, JSFunction::kContextOffset), rsi); __ movq(FieldOperand(rax, JSFunction::kLiteralsOffset), rbx); __ movq(FieldOperand(rax, JSFunction::kNextFunctionLinkOffset), rdi); // Initialize the code pointer in the function to be the one // found in the shared function info object. __ movq(rdx, FieldOperand(rdx, SharedFunctionInfo::kCodeOffset)); __ lea(rdx, FieldOperand(rdx, Code::kHeaderSize)); __ movq(FieldOperand(rax, JSFunction::kCodeEntryOffset), rdx); // Return and remove the on-stack parameter. __ ret(1 * kPointerSize); // Create a new closure through the slower runtime call. __ bind(&gc); __ pop(rcx); // Temporarily remove return address. __ pop(rdx); __ push(rsi); __ push(rdx); __ Push(Factory::false_value()); __ push(rcx); // Restore return address. __ TailCallRuntime(Runtime::kNewClosure, 3, 1); } void FastNewContextStub::Generate(MacroAssembler* masm) { // Try to allocate the context in new space. Label gc; int length = slots_ + Context::MIN_CONTEXT_SLOTS; __ AllocateInNewSpace((length * kPointerSize) + FixedArray::kHeaderSize, rax, rbx, rcx, &gc, TAG_OBJECT); // Get the function from the stack. __ movq(rcx, Operand(rsp, 1 * kPointerSize)); // Setup the object header. __ LoadRoot(kScratchRegister, Heap::kContextMapRootIndex); __ movq(FieldOperand(rax, HeapObject::kMapOffset), kScratchRegister); __ Move(FieldOperand(rax, FixedArray::kLengthOffset), Smi::FromInt(length)); // Setup the fixed slots. __ Set(rbx, 0); // Set to NULL. __ movq(Operand(rax, Context::SlotOffset(Context::CLOSURE_INDEX)), rcx); __ movq(Operand(rax, Context::SlotOffset(Context::FCONTEXT_INDEX)), rax); __ movq(Operand(rax, Context::SlotOffset(Context::PREVIOUS_INDEX)), rbx); __ movq(Operand(rax, Context::SlotOffset(Context::EXTENSION_INDEX)), rbx); // Copy the global object from the surrounding context. __ movq(rbx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX))); __ movq(Operand(rax, Context::SlotOffset(Context::GLOBAL_INDEX)), rbx); // Initialize the rest of the slots to undefined. __ LoadRoot(rbx, Heap::kUndefinedValueRootIndex); for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) { __ movq(Operand(rax, Context::SlotOffset(i)), rbx); } // Return and remove the on-stack parameter. __ movq(rsi, rax); __ ret(1 * kPointerSize); // Need to collect. Call into runtime system. __ bind(&gc); __ TailCallRuntime(Runtime::kNewContext, 1, 1); } void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) { // Stack layout on entry: // // [rsp + kPointerSize]: constant elements. // [rsp + (2 * kPointerSize)]: literal index. // [rsp + (3 * kPointerSize)]: literals array. // All sizes here are multiples of kPointerSize. int elements_size = (length_ > 0) ? FixedArray::SizeFor(length_) : 0; int size = JSArray::kSize + elements_size; // Load boilerplate object into rcx and check if we need to create a // boilerplate. Label slow_case; __ movq(rcx, Operand(rsp, 3 * kPointerSize)); __ movq(rax, Operand(rsp, 2 * kPointerSize)); SmiIndex index = masm->SmiToIndex(rax, rax, kPointerSizeLog2); __ movq(rcx, FieldOperand(rcx, index.reg, index.scale, FixedArray::kHeaderSize)); __ CompareRoot(rcx, Heap::kUndefinedValueRootIndex); __ j(equal, &slow_case); if (FLAG_debug_code) { const char* message; Heap::RootListIndex expected_map_index; if (mode_ == CLONE_ELEMENTS) { message = "Expected (writable) fixed array"; expected_map_index = Heap::kFixedArrayMapRootIndex; } else { ASSERT(mode_ == COPY_ON_WRITE_ELEMENTS); message = "Expected copy-on-write fixed array"; expected_map_index = Heap::kFixedCOWArrayMapRootIndex; } __ push(rcx); __ movq(rcx, FieldOperand(rcx, JSArray::kElementsOffset)); __ CompareRoot(FieldOperand(rcx, HeapObject::kMapOffset), expected_map_index); __ Assert(equal, message); __ pop(rcx); } // Allocate both the JS array and the elements array in one big // allocation. This avoids multiple limit checks. __ AllocateInNewSpace(size, rax, rbx, rdx, &slow_case, TAG_OBJECT); // Copy the JS array part. for (int i = 0; i < JSArray::kSize; i += kPointerSize) { if ((i != JSArray::kElementsOffset) || (length_ == 0)) { __ movq(rbx, FieldOperand(rcx, i)); __ movq(FieldOperand(rax, i), rbx); } } if (length_ > 0) { // Get hold of the elements array of the boilerplate and setup the // elements pointer in the resulting object. __ movq(rcx, FieldOperand(rcx, JSArray::kElementsOffset)); __ lea(rdx, Operand(rax, JSArray::kSize)); __ movq(FieldOperand(rax, JSArray::kElementsOffset), rdx); // Copy the elements array. for (int i = 0; i < elements_size; i += kPointerSize) { __ movq(rbx, FieldOperand(rcx, i)); __ movq(FieldOperand(rdx, i), rbx); } } // Return and remove the on-stack parameters. __ ret(3 * kPointerSize); __ bind(&slow_case); __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1); } void ToBooleanStub::Generate(MacroAssembler* masm) { NearLabel false_result, true_result, not_string; __ movq(rax, Operand(rsp, 1 * kPointerSize)); // 'null' => false. __ CompareRoot(rax, Heap::kNullValueRootIndex); __ j(equal, &false_result); // Get the map and type of the heap object. // We don't use CmpObjectType because we manipulate the type field. __ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset)); __ movzxbq(rcx, FieldOperand(rdx, Map::kInstanceTypeOffset)); // Undetectable => false. __ movzxbq(rbx, FieldOperand(rdx, Map::kBitFieldOffset)); __ and_(rbx, Immediate(1 << Map::kIsUndetectable)); __ j(not_zero, &false_result); // JavaScript object => true. __ cmpq(rcx, Immediate(FIRST_JS_OBJECT_TYPE)); __ j(above_equal, &true_result); // String value => false iff empty. __ cmpq(rcx, Immediate(FIRST_NONSTRING_TYPE)); __ j(above_equal, ¬_string); __ movq(rdx, FieldOperand(rax, String::kLengthOffset)); __ SmiTest(rdx); __ j(zero, &false_result); __ jmp(&true_result); __ bind(¬_string); __ CompareRoot(rdx, Heap::kHeapNumberMapRootIndex); __ j(not_equal, &true_result); // HeapNumber => false iff +0, -0, or NaN. // These three cases set the zero flag when compared to zero using ucomisd. __ xorpd(xmm0, xmm0); __ ucomisd(xmm0, FieldOperand(rax, HeapNumber::kValueOffset)); __ j(zero, &false_result); // Fall through to |true_result|. // Return 1/0 for true/false in rax. __ bind(&true_result); __ movq(rax, Immediate(1)); __ ret(1 * kPointerSize); __ bind(&false_result); __ Set(rax, 0); __ ret(1 * kPointerSize); } const char* GenericBinaryOpStub::GetName() { if (name_ != NULL) return name_; const int kMaxNameLength = 100; name_ = Bootstrapper::AllocateAutoDeletedArray(kMaxNameLength); if (name_ == NULL) return "OOM"; const char* op_name = Token::Name(op_); const char* overwrite_name; switch (mode_) { case NO_OVERWRITE: overwrite_name = "Alloc"; break; case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break; case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break; default: overwrite_name = "UnknownOverwrite"; break; } OS::SNPrintF(Vector(name_, kMaxNameLength), "GenericBinaryOpStub_%s_%s%s_%s%s_%s_%s", op_name, overwrite_name, (flags_ & NO_SMI_CODE_IN_STUB) ? "_NoSmiInStub" : "", args_in_registers_ ? "RegArgs" : "StackArgs", args_reversed_ ? "_R" : "", static_operands_type_.ToString(), BinaryOpIC::GetName(runtime_operands_type_)); return name_; } void GenericBinaryOpStub::GenerateCall( MacroAssembler* masm, Register left, Register right) { if (!ArgsInRegistersSupported()) { // Pass arguments on the stack. __ push(left); __ push(right); } else { // The calling convention with registers is left in rdx and right in rax. Register left_arg = rdx; Register right_arg = rax; if (!(left.is(left_arg) && right.is(right_arg))) { if (left.is(right_arg) && right.is(left_arg)) { if (IsOperationCommutative()) { SetArgsReversed(); } else { __ xchg(left, right); } } else if (left.is(left_arg)) { __ movq(right_arg, right); } else if (right.is(right_arg)) { __ movq(left_arg, left); } else if (left.is(right_arg)) { if (IsOperationCommutative()) { __ movq(left_arg, right); SetArgsReversed(); } else { // Order of moves important to avoid destroying left argument. __ movq(left_arg, left); __ movq(right_arg, right); } } else if (right.is(left_arg)) { if (IsOperationCommutative()) { __ movq(right_arg, left); SetArgsReversed(); } else { // Order of moves important to avoid destroying right argument. __ movq(right_arg, right); __ movq(left_arg, left); } } else { // Order of moves is not important. __ movq(left_arg, left); __ movq(right_arg, right); } } // Update flags to indicate that arguments are in registers. SetArgsInRegisters(); __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1); } // Call the stub. __ CallStub(this); } void GenericBinaryOpStub::GenerateCall( MacroAssembler* masm, Register left, Smi* right) { if (!ArgsInRegistersSupported()) { // Pass arguments on the stack. __ push(left); __ Push(right); } else { // The calling convention with registers is left in rdx and right in rax. Register left_arg = rdx; Register right_arg = rax; if (left.is(left_arg)) { __ Move(right_arg, right); } else if (left.is(right_arg) && IsOperationCommutative()) { __ Move(left_arg, right); SetArgsReversed(); } else { // For non-commutative operations, left and right_arg might be // the same register. Therefore, the order of the moves is // important here in order to not overwrite left before moving // it to left_arg. __ movq(left_arg, left); __ Move(right_arg, right); } // Update flags to indicate that arguments are in registers. SetArgsInRegisters(); __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1); } // Call the stub. __ CallStub(this); } void GenericBinaryOpStub::GenerateCall( MacroAssembler* masm, Smi* left, Register right) { if (!ArgsInRegistersSupported()) { // Pass arguments on the stack. __ Push(left); __ push(right); } else { // The calling convention with registers is left in rdx and right in rax. Register left_arg = rdx; Register right_arg = rax; if (right.is(right_arg)) { __ Move(left_arg, left); } else if (right.is(left_arg) && IsOperationCommutative()) { __ Move(right_arg, left); SetArgsReversed(); } else { // For non-commutative operations, right and left_arg might be // the same register. Therefore, the order of the moves is // important here in order to not overwrite right before moving // it to right_arg. __ movq(right_arg, right); __ Move(left_arg, left); } // Update flags to indicate that arguments are in registers. SetArgsInRegisters(); __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1); } // Call the stub. __ CallStub(this); } class FloatingPointHelper : public AllStatic { public: // Load the operands from rdx and rax into xmm0 and xmm1, as doubles. // If the operands are not both numbers, jump to not_numbers. // Leaves rdx and rax unchanged. SmiOperands assumes both are smis. // NumberOperands assumes both are smis or heap numbers. static void LoadSSE2SmiOperands(MacroAssembler* masm); static void LoadSSE2NumberOperands(MacroAssembler* masm); static void LoadSSE2UnknownOperands(MacroAssembler* masm, Label* not_numbers); // Takes the operands in rdx and rax and loads them as integers in rax // and rcx. static void LoadAsIntegers(MacroAssembler* masm, Label* operand_conversion_failure, Register heap_number_map); // As above, but we know the operands to be numbers. In that case, // conversion can't fail. static void LoadNumbersAsIntegers(MacroAssembler* masm); }; void GenericBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, Label* slow) { // 1. Move arguments into rdx, rax except for DIV and MOD, which need the // dividend in rax and rdx free for the division. Use rax, rbx for those. Comment load_comment(masm, "-- Load arguments"); Register left = rdx; Register right = rax; if (op_ == Token::DIV || op_ == Token::MOD) { left = rax; right = rbx; if (HasArgsInRegisters()) { __ movq(rbx, rax); __ movq(rax, rdx); } } if (!HasArgsInRegisters()) { __ movq(right, Operand(rsp, 1 * kPointerSize)); __ movq(left, Operand(rsp, 2 * kPointerSize)); } Label not_smis; // 2. Smi check both operands. if (static_operands_type_.IsSmi()) { // Skip smi check if we know that both arguments are smis. if (FLAG_debug_code) { __ AbortIfNotSmi(left); __ AbortIfNotSmi(right); } if (op_ == Token::BIT_OR) { // Handle OR here, since we do extra smi-checking in the or code below. __ SmiOr(right, right, left); GenerateReturn(masm); return; } } else { if (op_ != Token::BIT_OR) { // Skip the check for OR as it is better combined with the // actual operation. Comment smi_check_comment(masm, "-- Smi check arguments"); __ JumpIfNotBothSmi(left, right, ¬_smis); } } // 3. Operands are both smis (except for OR), perform the operation leaving // the result in rax and check the result if necessary. Comment perform_smi(masm, "-- Perform smi operation"); Label use_fp_on_smis; switch (op_) { case Token::ADD: { ASSERT(right.is(rax)); __ SmiAdd(right, right, left, &use_fp_on_smis); // ADD is commutative. break; } case Token::SUB: { __ SmiSub(left, left, right, &use_fp_on_smis); __ movq(rax, left); break; } case Token::MUL: ASSERT(right.is(rax)); __ SmiMul(right, right, left, &use_fp_on_smis); // MUL is commutative. break; case Token::DIV: ASSERT(left.is(rax)); __ SmiDiv(left, left, right, &use_fp_on_smis); break; case Token::MOD: ASSERT(left.is(rax)); __ SmiMod(left, left, right, slow); break; case Token::BIT_OR: ASSERT(right.is(rax)); __ movq(rcx, right); // Save the right operand. __ SmiOr(right, right, left); // BIT_OR is commutative. __ testb(right, Immediate(kSmiTagMask)); __ j(not_zero, ¬_smis); break; case Token::BIT_AND: ASSERT(right.is(rax)); __ SmiAnd(right, right, left); // BIT_AND is commutative. break; case Token::BIT_XOR: ASSERT(right.is(rax)); __ SmiXor(right, right, left); // BIT_XOR is commutative. break; case Token::SHL: case Token::SHR: case Token::SAR: switch (op_) { case Token::SAR: __ SmiShiftArithmeticRight(left, left, right); break; case Token::SHR: __ SmiShiftLogicalRight(left, left, right, slow); break; case Token::SHL: __ SmiShiftLeft(left, left, right); break; default: UNREACHABLE(); } __ movq(rax, left); break; default: UNREACHABLE(); break; } // 4. Emit return of result in rax. GenerateReturn(masm); // 5. For some operations emit inline code to perform floating point // operations on known smis (e.g., if the result of the operation // overflowed the smi range). switch (op_) { case Token::ADD: case Token::SUB: case Token::MUL: case Token::DIV: { ASSERT(use_fp_on_smis.is_linked()); __ bind(&use_fp_on_smis); if (op_ == Token::DIV) { __ movq(rdx, rax); __ movq(rax, rbx); } // left is rdx, right is rax. __ AllocateHeapNumber(rbx, rcx, slow); FloatingPointHelper::LoadSSE2SmiOperands(masm); switch (op_) { case Token::ADD: __ addsd(xmm0, xmm1); break; case Token::SUB: __ subsd(xmm0, xmm1); break; case Token::MUL: __ mulsd(xmm0, xmm1); break; case Token::DIV: __ divsd(xmm0, xmm1); break; default: UNREACHABLE(); } __ movsd(FieldOperand(rbx, HeapNumber::kValueOffset), xmm0); __ movq(rax, rbx); GenerateReturn(masm); } default: break; } // 6. Non-smi operands, fall out to the non-smi code with the operands in // rdx and rax. Comment done_comment(masm, "-- Enter non-smi code"); __ bind(¬_smis); switch (op_) { case Token::DIV: case Token::MOD: // Operands are in rax, rbx at this point. __ movq(rdx, rax); __ movq(rax, rbx); break; case Token::BIT_OR: // Right operand is saved in rcx and rax was destroyed by the smi // operation. __ movq(rax, rcx); break; default: break; } } void GenericBinaryOpStub::Generate(MacroAssembler* masm) { Label call_runtime; if (ShouldGenerateSmiCode()) { GenerateSmiCode(masm, &call_runtime); } else if (op_ != Token::MOD) { if (!HasArgsInRegisters()) { GenerateLoadArguments(masm); } } // Floating point case. if (ShouldGenerateFPCode()) { switch (op_) { case Token::ADD: case Token::SUB: case Token::MUL: case Token::DIV: { if (runtime_operands_type_ == BinaryOpIC::DEFAULT && HasSmiCodeInStub()) { // Execution reaches this point when the first non-smi argument occurs // (and only if smi code is generated). This is the right moment to // patch to HEAP_NUMBERS state. The transition is attempted only for // the four basic operations. The stub stays in the DEFAULT state // forever for all other operations (also if smi code is skipped). GenerateTypeTransition(masm); break; } Label not_floats; // rax: y // rdx: x if (static_operands_type_.IsNumber()) { if (FLAG_debug_code) { // Assert at runtime that inputs are only numbers. __ AbortIfNotNumber(rdx); __ AbortIfNotNumber(rax); } FloatingPointHelper::LoadSSE2NumberOperands(masm); } else { FloatingPointHelper::LoadSSE2UnknownOperands(masm, &call_runtime); } switch (op_) { case Token::ADD: __ addsd(xmm0, xmm1); break; case Token::SUB: __ subsd(xmm0, xmm1); break; case Token::MUL: __ mulsd(xmm0, xmm1); break; case Token::DIV: __ divsd(xmm0, xmm1); break; default: UNREACHABLE(); } // Allocate a heap number, if needed. Label skip_allocation; OverwriteMode mode = mode_; if (HasArgsReversed()) { if (mode == OVERWRITE_RIGHT) { mode = OVERWRITE_LEFT; } else if (mode == OVERWRITE_LEFT) { mode = OVERWRITE_RIGHT; } } switch (mode) { case OVERWRITE_LEFT: __ JumpIfNotSmi(rdx, &skip_allocation); __ AllocateHeapNumber(rbx, rcx, &call_runtime); __ movq(rdx, rbx); __ bind(&skip_allocation); __ movq(rax, rdx); break; case OVERWRITE_RIGHT: // If the argument in rax is already an object, we skip the // allocation of a heap number. __ JumpIfNotSmi(rax, &skip_allocation); // Fall through! case NO_OVERWRITE: // Allocate a heap number for the result. Keep rax and rdx intact // for the possible runtime call. __ AllocateHeapNumber(rbx, rcx, &call_runtime); __ movq(rax, rbx); __ bind(&skip_allocation); break; default: UNREACHABLE(); } __ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm0); GenerateReturn(masm); __ bind(¬_floats); if (runtime_operands_type_ == BinaryOpIC::DEFAULT && !HasSmiCodeInStub()) { // Execution reaches this point when the first non-number argument // occurs (and only if smi code is skipped from the stub, otherwise // the patching has already been done earlier in this case branch). // A perfect moment to try patching to STRINGS for ADD operation. if (op_ == Token::ADD) { GenerateTypeTransition(masm); } } break; } case Token::MOD: { // For MOD we go directly to runtime in the non-smi case. break; } case Token::BIT_OR: case Token::BIT_AND: case Token::BIT_XOR: case Token::SAR: case Token::SHL: case Token::SHR: { Label skip_allocation, non_smi_shr_result; Register heap_number_map = r9; __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); if (static_operands_type_.IsNumber()) { if (FLAG_debug_code) { // Assert at runtime that inputs are only numbers. __ AbortIfNotNumber(rdx); __ AbortIfNotNumber(rax); } FloatingPointHelper::LoadNumbersAsIntegers(masm); } else { FloatingPointHelper::LoadAsIntegers(masm, &call_runtime, heap_number_map); } switch (op_) { case Token::BIT_OR: __ orl(rax, rcx); break; case Token::BIT_AND: __ andl(rax, rcx); break; case Token::BIT_XOR: __ xorl(rax, rcx); break; case Token::SAR: __ sarl_cl(rax); break; case Token::SHL: __ shll_cl(rax); break; case Token::SHR: { __ shrl_cl(rax); // Check if result is negative. This can only happen for a shift // by zero. __ testl(rax, rax); __ j(negative, &non_smi_shr_result); break; } default: UNREACHABLE(); } STATIC_ASSERT(kSmiValueSize == 32); // Tag smi result and return. __ Integer32ToSmi(rax, rax); GenerateReturn(masm); // All bit-ops except SHR return a signed int32 that can be // returned immediately as a smi. // We might need to allocate a HeapNumber if we shift a negative // number right by zero (i.e., convert to UInt32). if (op_ == Token::SHR) { ASSERT(non_smi_shr_result.is_linked()); __ bind(&non_smi_shr_result); // Allocate a heap number if needed. __ movl(rbx, rax); // rbx holds result value (uint32 value as int64). switch (mode_) { case OVERWRITE_LEFT: case OVERWRITE_RIGHT: // If the operand was an object, we skip the // allocation of a heap number. __ movq(rax, Operand(rsp, mode_ == OVERWRITE_RIGHT ? 1 * kPointerSize : 2 * kPointerSize)); __ JumpIfNotSmi(rax, &skip_allocation); // Fall through! case NO_OVERWRITE: // Allocate heap number in new space. // Not using AllocateHeapNumber macro in order to reuse // already loaded heap_number_map. __ AllocateInNewSpace(HeapNumber::kSize, rax, rcx, no_reg, &call_runtime, TAG_OBJECT); // Set the map. if (FLAG_debug_code) { __ AbortIfNotRootValue(heap_number_map, Heap::kHeapNumberMapRootIndex, "HeapNumberMap register clobbered."); } __ movq(FieldOperand(rax, HeapObject::kMapOffset), heap_number_map); __ bind(&skip_allocation); break; default: UNREACHABLE(); } // Store the result in the HeapNumber and return. __ cvtqsi2sd(xmm0, rbx); __ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm0); GenerateReturn(masm); } break; } default: UNREACHABLE(); break; } } // If all else fails, use the runtime system to get the correct // result. If arguments was passed in registers now place them on the // stack in the correct order below the return address. __ bind(&call_runtime); if (HasArgsInRegisters()) { GenerateRegisterArgsPush(masm); } switch (op_) { case Token::ADD: { // Registers containing left and right operands respectively. Register lhs, rhs; if (HasArgsReversed()) { lhs = rax; rhs = rdx; } else { lhs = rdx; rhs = rax; } // Test for string arguments before calling runtime. Label not_strings, both_strings, not_string1, string1, string1_smi2; // If this stub has already generated FP-specific code then the arguments // are already in rdx and rax. if (!ShouldGenerateFPCode() && !HasArgsInRegisters()) { GenerateLoadArguments(masm); } Condition is_smi; is_smi = masm->CheckSmi(lhs); __ j(is_smi, ¬_string1); __ CmpObjectType(lhs, FIRST_NONSTRING_TYPE, r8); __ j(above_equal, ¬_string1); // First argument is a a string, test second. is_smi = masm->CheckSmi(rhs); __ j(is_smi, &string1_smi2); __ CmpObjectType(rhs, FIRST_NONSTRING_TYPE, r9); __ j(above_equal, &string1); // First and second argument are strings. StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB); __ TailCallStub(&string_add_stub); __ bind(&string1_smi2); // First argument is a string, second is a smi. Try to lookup the number // string for the smi in the number string cache. NumberToStringStub::GenerateLookupNumberStringCache( masm, rhs, rbx, rcx, r8, true, &string1); // Replace second argument on stack and tailcall string add stub to make // the result. __ movq(Operand(rsp, 1 * kPointerSize), rbx); __ TailCallStub(&string_add_stub); // Only first argument is a string. __ bind(&string1); __ InvokeBuiltin(Builtins::STRING_ADD_LEFT, JUMP_FUNCTION); // First argument was not a string, test second. __ bind(¬_string1); is_smi = masm->CheckSmi(rhs); __ j(is_smi, ¬_strings); __ CmpObjectType(rhs, FIRST_NONSTRING_TYPE, rhs); __ j(above_equal, ¬_strings); // Only second argument is a string. __ InvokeBuiltin(Builtins::STRING_ADD_RIGHT, JUMP_FUNCTION); __ bind(¬_strings); // Neither argument is a string. __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION); break; } case Token::SUB: __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION); break; case Token::MUL: __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION); break; case Token::DIV: __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION); break; case Token::MOD: __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION); break; case Token::BIT_OR: __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION); break; case Token::BIT_AND: __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION); break; case Token::BIT_XOR: __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION); break; case Token::SAR: __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION); break; case Token::SHL: __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION); break; case Token::SHR: __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION); break; default: UNREACHABLE(); } } void GenericBinaryOpStub::GenerateLoadArguments(MacroAssembler* masm) { ASSERT(!HasArgsInRegisters()); __ movq(rax, Operand(rsp, 1 * kPointerSize)); __ movq(rdx, Operand(rsp, 2 * kPointerSize)); } void GenericBinaryOpStub::GenerateReturn(MacroAssembler* masm) { // If arguments are not passed in registers remove them from the stack before // returning. if (!HasArgsInRegisters()) { __ ret(2 * kPointerSize); // Remove both operands } else { __ ret(0); } } void GenericBinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) { ASSERT(HasArgsInRegisters()); __ pop(rcx); if (HasArgsReversed()) { __ push(rax); __ push(rdx); } else { __ push(rdx); __ push(rax); } __ push(rcx); } void GenericBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) { Label get_result; // Ensure the operands are on the stack. if (HasArgsInRegisters()) { GenerateRegisterArgsPush(masm); } // Left and right arguments are already on stack. __ pop(rcx); // Save the return address. // Push this stub's key. __ Push(Smi::FromInt(MinorKey())); // Although the operation and the type info are encoded into the key, // the encoding is opaque, so push them too. __ Push(Smi::FromInt(op_)); __ Push(Smi::FromInt(runtime_operands_type_)); __ push(rcx); // The return address. // Perform patching to an appropriate fast case and return the result. __ TailCallExternalReference( ExternalReference(IC_Utility(IC::kBinaryOp_Patch)), 5, 1); } Handle GetBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info) { GenericBinaryOpStub stub(key, type_info); return stub.GetCode(); } Handle GetTypeRecordingBinaryOpStub(int key, TRBinaryOpIC::TypeInfo type_info, TRBinaryOpIC::TypeInfo result_type_info) { TypeRecordingBinaryOpStub stub(key, type_info, result_type_info); return stub.GetCode(); } void TypeRecordingBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) { __ pop(rcx); // Save return address. __ push(rdx); __ push(rax); // Left and right arguments are now on top. // Push this stub's key. Although the operation and the type info are // encoded into the key, the encoding is opaque, so push them too. __ Push(Smi::FromInt(MinorKey())); __ Push(Smi::FromInt(op_)); __ Push(Smi::FromInt(operands_type_)); __ push(rcx); // Push return address. // Patch the caller to an appropriate specialized stub and return the // operation result to the caller of the stub. __ TailCallExternalReference( ExternalReference(IC_Utility(IC::kTypeRecordingBinaryOp_Patch)), 5, 1); } // Prepare for a type transition runtime call when the args are already on // the stack, under the return address. void TypeRecordingBinaryOpStub::GenerateTypeTransitionWithSavedArgs( MacroAssembler* masm) { __ pop(rcx); // Save return address. // Left and right arguments are already on top of the stack. // Push this stub's key. Although the operation and the type info are // encoded into the key, the encoding is opaque, so push them too. __ Push(Smi::FromInt(MinorKey())); __ Push(Smi::FromInt(op_)); __ Push(Smi::FromInt(operands_type_)); __ push(rcx); // Push return address. // Patch the caller to an appropriate specialized stub and return the // operation result to the caller of the stub. __ TailCallExternalReference( ExternalReference(IC_Utility(IC::kTypeRecordingBinaryOp_Patch)), 5, 1); } void TypeRecordingBinaryOpStub::Generate(MacroAssembler* masm) { switch (operands_type_) { case TRBinaryOpIC::UNINITIALIZED: GenerateTypeTransition(masm); break; case TRBinaryOpIC::SMI: GenerateSmiStub(masm); break; case TRBinaryOpIC::INT32: GenerateInt32Stub(masm); break; case TRBinaryOpIC::HEAP_NUMBER: GenerateHeapNumberStub(masm); break; case TRBinaryOpIC::STRING: GenerateStringStub(masm); break; case TRBinaryOpIC::GENERIC: GenerateGeneric(masm); break; default: UNREACHABLE(); } } const char* TypeRecordingBinaryOpStub::GetName() { if (name_ != NULL) return name_; const int kMaxNameLength = 100; name_ = Bootstrapper::AllocateAutoDeletedArray(kMaxNameLength); if (name_ == NULL) return "OOM"; const char* op_name = Token::Name(op_); const char* overwrite_name; switch (mode_) { case NO_OVERWRITE: overwrite_name = "Alloc"; break; case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break; case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break; default: overwrite_name = "UnknownOverwrite"; break; } OS::SNPrintF(Vector(name_, kMaxNameLength), "TypeRecordingBinaryOpStub_%s_%s_%s", op_name, overwrite_name, TRBinaryOpIC::GetName(operands_type_)); return name_; } void TypeRecordingBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, Label* slow, SmiCodeGenerateHeapNumberResults allow_heapnumber_results) { UNIMPLEMENTED(); } void TypeRecordingBinaryOpStub::GenerateSmiStub(MacroAssembler* masm) { Label call_runtime; switch (op_) { case Token::ADD: case Token::SUB: case Token::MUL: case Token::DIV: break; case Token::MOD: case Token::BIT_OR: case Token::BIT_AND: case Token::BIT_XOR: case Token::SAR: case Token::SHL: case Token::SHR: GenerateRegisterArgsPush(masm); break; default: UNREACHABLE(); } if (result_type_ == TRBinaryOpIC::UNINITIALIZED || result_type_ == TRBinaryOpIC::SMI) { GenerateSmiCode(masm, &call_runtime, NO_HEAPNUMBER_RESULTS); } else { GenerateSmiCode(masm, &call_runtime, ALLOW_HEAPNUMBER_RESULTS); } __ bind(&call_runtime); switch (op_) { case Token::ADD: case Token::SUB: case Token::MUL: case Token::DIV: GenerateTypeTransition(masm); break; case Token::MOD: case Token::BIT_OR: case Token::BIT_AND: case Token::BIT_XOR: case Token::SAR: case Token::SHL: case Token::SHR: GenerateTypeTransitionWithSavedArgs(masm); break; default: UNREACHABLE(); } } void TypeRecordingBinaryOpStub::GenerateStringStub(MacroAssembler* masm) { UNIMPLEMENTED(); } void TypeRecordingBinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) { UNIMPLEMENTED(); } void TypeRecordingBinaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) { UNIMPLEMENTED(); } void TypeRecordingBinaryOpStub::GenerateGeneric(MacroAssembler* masm) { UNIMPLEMENTED(); } void TypeRecordingBinaryOpStub::GenerateHeapResultAllocation( MacroAssembler* masm, Label* alloc_failure) { UNIMPLEMENTED(); } void TypeRecordingBinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) { __ pop(rcx); __ push(rdx); __ push(rax); __ push(rcx); } void TranscendentalCacheStub::Generate(MacroAssembler* masm) { // Input on stack: // rsp[8]: argument (should be number). // rsp[0]: return address. Label runtime_call; Label runtime_call_clear_stack; Label input_not_smi; NearLabel loaded; // Test that rax is a number. __ movq(rax, Operand(rsp, kPointerSize)); __ JumpIfNotSmi(rax, &input_not_smi); // Input is a smi. Untag and load it onto the FPU stack. // Then load the bits of the double into rbx. __ SmiToInteger32(rax, rax); __ subq(rsp, Immediate(kPointerSize)); __ cvtlsi2sd(xmm1, rax); __ movsd(Operand(rsp, 0), xmm1); __ movq(rbx, xmm1); __ movq(rdx, xmm1); __ fld_d(Operand(rsp, 0)); __ addq(rsp, Immediate(kPointerSize)); __ jmp(&loaded); __ bind(&input_not_smi); // Check if input is a HeapNumber. __ Move(rbx, Factory::heap_number_map()); __ cmpq(rbx, FieldOperand(rax, HeapObject::kMapOffset)); __ j(not_equal, &runtime_call); // Input is a HeapNumber. Push it on the FPU stack and load its // bits into rbx. __ fld_d(FieldOperand(rax, HeapNumber::kValueOffset)); __ movq(rbx, FieldOperand(rax, HeapNumber::kValueOffset)); __ movq(rdx, rbx); __ bind(&loaded); // ST[0] == double value // rbx = bits of double value. // rdx = also bits of double value. // Compute hash (h is 32 bits, bits are 64 and the shifts are arithmetic): // h = h0 = bits ^ (bits >> 32); // h ^= h >> 16; // h ^= h >> 8; // h = h & (cacheSize - 1); // or h = (h0 ^ (h0 >> 8) ^ (h0 >> 16) ^ (h0 >> 24)) & (cacheSize - 1) __ sar(rdx, Immediate(32)); __ xorl(rdx, rbx); __ movl(rcx, rdx); __ movl(rax, rdx); __ movl(rdi, rdx); __ sarl(rdx, Immediate(8)); __ sarl(rcx, Immediate(16)); __ sarl(rax, Immediate(24)); __ xorl(rcx, rdx); __ xorl(rax, rdi); __ xorl(rcx, rax); ASSERT(IsPowerOf2(TranscendentalCache::kCacheSize)); __ andl(rcx, Immediate(TranscendentalCache::kCacheSize - 1)); // ST[0] == double value. // rbx = bits of double value. // rcx = TranscendentalCache::hash(double value). __ movq(rax, ExternalReference::transcendental_cache_array_address()); // rax points to cache array. __ movq(rax, Operand(rax, type_ * sizeof(TranscendentalCache::caches_[0]))); // rax points to the cache for the type type_. // If NULL, the cache hasn't been initialized yet, so go through runtime. __ testq(rax, rax); __ j(zero, &runtime_call_clear_stack); #ifdef DEBUG // Check that the layout of cache elements match expectations. { // NOLINT - doesn't like a single brace on a line. TranscendentalCache::Element test_elem[2]; char* elem_start = reinterpret_cast(&test_elem[0]); char* elem2_start = reinterpret_cast(&test_elem[1]); char* elem_in0 = reinterpret_cast(&(test_elem[0].in[0])); char* elem_in1 = reinterpret_cast(&(test_elem[0].in[1])); char* elem_out = reinterpret_cast(&(test_elem[0].output)); // Two uint_32's and a pointer per element. CHECK_EQ(16, static_cast(elem2_start - elem_start)); CHECK_EQ(0, static_cast(elem_in0 - elem_start)); CHECK_EQ(kIntSize, static_cast(elem_in1 - elem_start)); CHECK_EQ(2 * kIntSize, static_cast(elem_out - elem_start)); } #endif // Find the address of the rcx'th entry in the cache, i.e., &rax[rcx*16]. __ addl(rcx, rcx); __ lea(rcx, Operand(rax, rcx, times_8, 0)); // Check if cache matches: Double value is stored in uint32_t[2] array. NearLabel cache_miss; __ cmpq(rbx, Operand(rcx, 0)); __ j(not_equal, &cache_miss); // Cache hit! __ movq(rax, Operand(rcx, 2 * kIntSize)); __ fstp(0); // Clear FPU stack. __ ret(kPointerSize); __ bind(&cache_miss); // Update cache with new value. Label nan_result; GenerateOperation(masm, &nan_result); __ AllocateHeapNumber(rax, rdi, &runtime_call_clear_stack); __ movq(Operand(rcx, 0), rbx); __ movq(Operand(rcx, 2 * kIntSize), rax); __ fstp_d(FieldOperand(rax, HeapNumber::kValueOffset)); __ ret(kPointerSize); __ bind(&runtime_call_clear_stack); __ fstp(0); __ bind(&runtime_call); __ TailCallExternalReference(ExternalReference(RuntimeFunction()), 1, 1); __ bind(&nan_result); __ fstp(0); // Remove argument from FPU stack. __ LoadRoot(rax, Heap::kNanValueRootIndex); __ movq(Operand(rcx, 0), rbx); __ movq(Operand(rcx, 2 * kIntSize), rax); __ ret(kPointerSize); } Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() { switch (type_) { // Add more cases when necessary. case TranscendentalCache::SIN: return Runtime::kMath_sin; case TranscendentalCache::COS: return Runtime::kMath_cos; case TranscendentalCache::LOG: return Runtime::kMath_log; default: UNIMPLEMENTED(); return Runtime::kAbort; } } void TranscendentalCacheStub::GenerateOperation(MacroAssembler* masm, Label* on_nan_result) { // Registers: // rbx: Bits of input double. Must be preserved. // rcx: Pointer to cache entry. Must be preserved. // st(0): Input double Label done; if (type_ == TranscendentalCache::SIN || type_ == TranscendentalCache::COS) { // Both fsin and fcos require arguments in the range +/-2^63 and // return NaN for infinities and NaN. They can share all code except // the actual fsin/fcos operation. Label in_range; // If argument is outside the range -2^63..2^63, fsin/cos doesn't // work. We must reduce it to the appropriate range. __ movq(rdi, rbx); // Move exponent and sign bits to low bits. __ shr(rdi, Immediate(HeapNumber::kMantissaBits)); // Remove sign bit. __ andl(rdi, Immediate((1 << HeapNumber::kExponentBits) - 1)); int supported_exponent_limit = (63 + HeapNumber::kExponentBias); __ cmpl(rdi, Immediate(supported_exponent_limit)); __ j(below, &in_range); // Check for infinity and NaN. Both return NaN for sin. __ cmpl(rdi, Immediate(0x7ff)); __ j(equal, on_nan_result); // Use fpmod to restrict argument to the range +/-2*PI. __ fldpi(); __ fadd(0); __ fld(1); // FPU Stack: input, 2*pi, input. { Label no_exceptions; __ fwait(); __ fnstsw_ax(); // Clear if Illegal Operand or Zero Division exceptions are set. __ testl(rax, Immediate(5)); // #IO and #ZD flags of FPU status word. __ j(zero, &no_exceptions); __ fnclex(); __ bind(&no_exceptions); } // Compute st(0) % st(1) { NearLabel partial_remainder_loop; __ bind(&partial_remainder_loop); __ fprem1(); __ fwait(); __ fnstsw_ax(); __ testl(rax, Immediate(0x400)); // Check C2 bit of FPU status word. // If C2 is set, computation only has partial result. Loop to // continue computation. __ j(not_zero, &partial_remainder_loop); } // FPU Stack: input, 2*pi, input % 2*pi __ fstp(2); // FPU Stack: input % 2*pi, 2*pi, __ fstp(0); // FPU Stack: input % 2*pi __ bind(&in_range); switch (type_) { case TranscendentalCache::SIN: __ fsin(); break; case TranscendentalCache::COS: __ fcos(); break; default: UNREACHABLE(); } __ bind(&done); } else { ASSERT(type_ == TranscendentalCache::LOG); __ fldln2(); __ fxch(); __ fyl2x(); } } // Get the integer part of a heap number. // Overwrites the contents of rdi, rbx and rcx. Result cannot be rdi or rbx. void IntegerConvert(MacroAssembler* masm, Register result, Register source) { // Result may be rcx. If result and source are the same register, source will // be overwritten. ASSERT(!result.is(rdi) && !result.is(rbx)); // TODO(lrn): When type info reaches here, if value is a 32-bit integer, use // cvttsd2si (32-bit version) directly. Register double_exponent = rbx; Register double_value = rdi; NearLabel done, exponent_63_plus; // Get double and extract exponent. __ movq(double_value, FieldOperand(source, HeapNumber::kValueOffset)); // Clear result preemptively, in case we need to return zero. __ xorl(result, result); __ movq(xmm0, double_value); // Save copy in xmm0 in case we need it there. // Double to remove sign bit, shift exponent down to least significant bits. // and subtract bias to get the unshifted, unbiased exponent. __ lea(double_exponent, Operand(double_value, double_value, times_1, 0)); __ shr(double_exponent, Immediate(64 - HeapNumber::kExponentBits)); __ subl(double_exponent, Immediate(HeapNumber::kExponentBias)); // Check whether the exponent is too big for a 63 bit unsigned integer. __ cmpl(double_exponent, Immediate(63)); __ j(above_equal, &exponent_63_plus); // Handle exponent range 0..62. __ cvttsd2siq(result, xmm0); __ jmp(&done); __ bind(&exponent_63_plus); // Exponent negative or 63+. __ cmpl(double_exponent, Immediate(83)); // If exponent negative or above 83, number contains no significant bits in // the range 0..2^31, so result is zero, and rcx already holds zero. __ j(above, &done); // Exponent in rage 63..83. // Mantissa * 2^exponent contains bits in the range 2^0..2^31, namely // the least significant exponent-52 bits. // Negate low bits of mantissa if value is negative. __ addq(double_value, double_value); // Move sign bit to carry. __ sbbl(result, result); // And convert carry to -1 in result register. // if scratch2 is negative, do (scratch2-1)^-1, otherwise (scratch2-0)^0. __ addl(double_value, result); // Do xor in opposite directions depending on where we want the result // (depending on whether result is rcx or not). if (result.is(rcx)) { __ xorl(double_value, result); // Left shift mantissa by (exponent - mantissabits - 1) to save the // bits that have positional values below 2^32 (the extra -1 comes from the // doubling done above to move the sign bit into the carry flag). __ leal(rcx, Operand(double_exponent, -HeapNumber::kMantissaBits - 1)); __ shll_cl(double_value); __ movl(result, double_value); } else { // As the then-branch, but move double-value to result before shifting. __ xorl(result, double_value); __ leal(rcx, Operand(double_exponent, -HeapNumber::kMantissaBits - 1)); __ shll_cl(result); } __ bind(&done); } // Input: rdx, rax are the left and right objects of a bit op. // Output: rax, rcx are left and right integers for a bit op. void FloatingPointHelper::LoadNumbersAsIntegers(MacroAssembler* masm) { // Check float operands. Label done; Label rax_is_smi; Label rax_is_object; Label rdx_is_object; __ JumpIfNotSmi(rdx, &rdx_is_object); __ SmiToInteger32(rdx, rdx); __ JumpIfSmi(rax, &rax_is_smi); __ bind(&rax_is_object); IntegerConvert(masm, rcx, rax); // Uses rdi, rcx and rbx. __ jmp(&done); __ bind(&rdx_is_object); IntegerConvert(masm, rdx, rdx); // Uses rdi, rcx and rbx. __ JumpIfNotSmi(rax, &rax_is_object); __ bind(&rax_is_smi); __ SmiToInteger32(rcx, rax); __ bind(&done); __ movl(rax, rdx); } // Input: rdx, rax are the left and right objects of a bit op. // Output: rax, rcx are left and right integers for a bit op. void FloatingPointHelper::LoadAsIntegers(MacroAssembler* masm, Label* conversion_failure, Register heap_number_map) { // Check float operands. Label arg1_is_object, check_undefined_arg1; Label arg2_is_object, check_undefined_arg2; Label load_arg2, done; __ JumpIfNotSmi(rdx, &arg1_is_object); __ SmiToInteger32(rdx, rdx); __ jmp(&load_arg2); // If the argument is undefined it converts to zero (ECMA-262, section 9.5). __ bind(&check_undefined_arg1); __ CompareRoot(rdx, Heap::kUndefinedValueRootIndex); __ j(not_equal, conversion_failure); __ movl(rdx, Immediate(0)); __ jmp(&load_arg2); __ bind(&arg1_is_object); __ cmpq(FieldOperand(rdx, HeapObject::kMapOffset), heap_number_map); __ j(not_equal, &check_undefined_arg1); // Get the untagged integer version of the edx heap number in rcx. IntegerConvert(masm, rdx, rdx); // Here rdx has the untagged integer, rax has a Smi or a heap number. __ bind(&load_arg2); // Test if arg2 is a Smi. __ JumpIfNotSmi(rax, &arg2_is_object); __ SmiToInteger32(rax, rax); __ movl(rcx, rax); __ jmp(&done); // If the argument is undefined it converts to zero (ECMA-262, section 9.5). __ bind(&check_undefined_arg2); __ CompareRoot(rax, Heap::kUndefinedValueRootIndex); __ j(not_equal, conversion_failure); __ movl(rcx, Immediate(0)); __ jmp(&done); __ bind(&arg2_is_object); __ cmpq(FieldOperand(rax, HeapObject::kMapOffset), heap_number_map); __ j(not_equal, &check_undefined_arg2); // Get the untagged integer version of the rax heap number in rcx. IntegerConvert(masm, rcx, rax); __ bind(&done); __ movl(rax, rdx); } void FloatingPointHelper::LoadSSE2SmiOperands(MacroAssembler* masm) { __ SmiToInteger32(kScratchRegister, rdx); __ cvtlsi2sd(xmm0, kScratchRegister); __ SmiToInteger32(kScratchRegister, rax); __ cvtlsi2sd(xmm1, kScratchRegister); } void FloatingPointHelper::LoadSSE2NumberOperands(MacroAssembler* masm) { Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, done; // Load operand in rdx into xmm0. __ JumpIfSmi(rdx, &load_smi_rdx); __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset)); // Load operand in rax into xmm1. __ JumpIfSmi(rax, &load_smi_rax); __ bind(&load_nonsmi_rax); __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset)); __ jmp(&done); __ bind(&load_smi_rdx); __ SmiToInteger32(kScratchRegister, rdx); __ cvtlsi2sd(xmm0, kScratchRegister); __ JumpIfNotSmi(rax, &load_nonsmi_rax); __ bind(&load_smi_rax); __ SmiToInteger32(kScratchRegister, rax); __ cvtlsi2sd(xmm1, kScratchRegister); __ bind(&done); } void FloatingPointHelper::LoadSSE2UnknownOperands(MacroAssembler* masm, Label* not_numbers) { Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, load_float_rax, done; // Load operand in rdx into xmm0, or branch to not_numbers. __ LoadRoot(rcx, Heap::kHeapNumberMapRootIndex); __ JumpIfSmi(rdx, &load_smi_rdx); __ cmpq(FieldOperand(rdx, HeapObject::kMapOffset), rcx); __ j(not_equal, not_numbers); // Argument in rdx is not a number. __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset)); // Load operand in rax into xmm1, or branch to not_numbers. __ JumpIfSmi(rax, &load_smi_rax); __ bind(&load_nonsmi_rax); __ cmpq(FieldOperand(rax, HeapObject::kMapOffset), rcx); __ j(not_equal, not_numbers); __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset)); __ jmp(&done); __ bind(&load_smi_rdx); __ SmiToInteger32(kScratchRegister, rdx); __ cvtlsi2sd(xmm0, kScratchRegister); __ JumpIfNotSmi(rax, &load_nonsmi_rax); __ bind(&load_smi_rax); __ SmiToInteger32(kScratchRegister, rax); __ cvtlsi2sd(xmm1, kScratchRegister); __ bind(&done); } void GenericUnaryOpStub::Generate(MacroAssembler* masm) { Label slow, done; if (op_ == Token::SUB) { if (include_smi_code_) { // Check whether the value is a smi. Label try_float; __ JumpIfNotSmi(rax, &try_float); if (negative_zero_ == kIgnoreNegativeZero) { __ SmiCompare(rax, Smi::FromInt(0)); __ j(equal, &done); } __ SmiNeg(rax, rax, &done); __ jmp(&slow); // zero, if not handled above, and Smi::kMinValue. // Try floating point case. __ bind(&try_float); } else if (FLAG_debug_code) { __ AbortIfSmi(rax); } __ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset)); __ CompareRoot(rdx, Heap::kHeapNumberMapRootIndex); __ j(not_equal, &slow); // Operand is a float, negate its value by flipping sign bit. __ movq(rdx, FieldOperand(rax, HeapNumber::kValueOffset)); __ movq(kScratchRegister, Immediate(0x01)); __ shl(kScratchRegister, Immediate(63)); __ xor_(rdx, kScratchRegister); // Flip sign. // rdx is value to store. if (overwrite_ == UNARY_OVERWRITE) { __ movq(FieldOperand(rax, HeapNumber::kValueOffset), rdx); } else { __ AllocateHeapNumber(rcx, rbx, &slow); // rcx: allocated 'empty' number __ movq(FieldOperand(rcx, HeapNumber::kValueOffset), rdx); __ movq(rax, rcx); } } else if (op_ == Token::BIT_NOT) { if (include_smi_code_) { Label try_float; __ JumpIfNotSmi(rax, &try_float); __ SmiNot(rax, rax); __ jmp(&done); // Try floating point case. __ bind(&try_float); } else if (FLAG_debug_code) { __ AbortIfSmi(rax); } // Check if the operand is a heap number. __ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset)); __ CompareRoot(rdx, Heap::kHeapNumberMapRootIndex); __ j(not_equal, &slow); // Convert the heap number in rax to an untagged integer in rcx. IntegerConvert(masm, rax, rax); // Do the bitwise operation and smi tag the result. __ notl(rax); __ Integer32ToSmi(rax, rax); } // Return from the stub. __ bind(&done); __ StubReturn(1); // Handle the slow case by jumping to the JavaScript builtin. __ bind(&slow); __ pop(rcx); // pop return address __ push(rax); __ push(rcx); // push return address switch (op_) { case Token::SUB: __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION); break; case Token::BIT_NOT: __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION); break; default: UNREACHABLE(); } } void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { // The key is in rdx and the parameter count is in rax. // The displacement is used for skipping the frame pointer on the // stack. It is the offset of the last parameter (if any) relative // to the frame pointer. static const int kDisplacement = 1 * kPointerSize; // Check that the key is a smi. Label slow; __ JumpIfNotSmi(rdx, &slow); // Check if the calling frame is an arguments adaptor frame. Label adaptor; __ movq(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); __ SmiCompare(Operand(rbx, StandardFrameConstants::kContextOffset), Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); __ j(equal, &adaptor); // Check index against formal parameters count limit passed in // through register rax. Use unsigned comparison to get negative // check for free. __ cmpq(rdx, rax); __ j(above_equal, &slow); // Read the argument from the stack and return it. SmiIndex index = masm->SmiToIndex(rax, rax, kPointerSizeLog2); __ lea(rbx, Operand(rbp, index.reg, index.scale, 0)); index = masm->SmiToNegativeIndex(rdx, rdx, kPointerSizeLog2); __ movq(rax, Operand(rbx, index.reg, index.scale, kDisplacement)); __ Ret(); // Arguments adaptor case: Check index against actual arguments // limit found in the arguments adaptor frame. Use unsigned // comparison to get negative check for free. __ bind(&adaptor); __ movq(rcx, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ cmpq(rdx, rcx); __ j(above_equal, &slow); // Read the argument from the stack and return it. index = masm->SmiToIndex(rax, rcx, kPointerSizeLog2); __ lea(rbx, Operand(rbx, index.reg, index.scale, 0)); index = masm->SmiToNegativeIndex(rdx, rdx, kPointerSizeLog2); __ movq(rax, Operand(rbx, index.reg, index.scale, kDisplacement)); __ Ret(); // Slow-case: Handle non-smi or out-of-bounds access to arguments // by calling the runtime system. __ bind(&slow); __ pop(rbx); // Return address. __ push(rdx); __ push(rbx); __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1); } void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) { // rsp[0] : return address // rsp[8] : number of parameters // rsp[16] : receiver displacement // rsp[24] : function // The displacement is used for skipping the return address and the // frame pointer on the stack. It is the offset of the last // parameter (if any) relative to the frame pointer. static const int kDisplacement = 2 * kPointerSize; // Check if the calling frame is an arguments adaptor frame. Label adaptor_frame, try_allocate, runtime; __ movq(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); __ SmiCompare(Operand(rdx, StandardFrameConstants::kContextOffset), Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); __ j(equal, &adaptor_frame); // Get the length from the frame. __ SmiToInteger32(rcx, Operand(rsp, 1 * kPointerSize)); __ jmp(&try_allocate); // Patch the arguments.length and the parameters pointer. __ bind(&adaptor_frame); __ SmiToInteger32(rcx, Operand(rdx, ArgumentsAdaptorFrameConstants::kLengthOffset)); // Space on stack must already hold a smi. __ Integer32ToSmiField(Operand(rsp, 1 * kPointerSize), rcx); // Do not clobber the length index for the indexing operation since // it is used compute the size for allocation later. __ lea(rdx, Operand(rdx, rcx, times_pointer_size, kDisplacement)); __ movq(Operand(rsp, 2 * kPointerSize), rdx); // Try the new space allocation. Start out with computing the size of // the arguments object and the elements array. Label add_arguments_object; __ bind(&try_allocate); __ testl(rcx, rcx); __ j(zero, &add_arguments_object); __ leal(rcx, Operand(rcx, times_pointer_size, FixedArray::kHeaderSize)); __ bind(&add_arguments_object); __ addl(rcx, Immediate(Heap::kArgumentsObjectSize)); // Do the allocation of both objects in one go. __ AllocateInNewSpace(rcx, rax, rdx, rbx, &runtime, TAG_OBJECT); // Get the arguments boilerplate from the current (global) context. int offset = Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX); __ movq(rdi, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX))); __ movq(rdi, FieldOperand(rdi, GlobalObject::kGlobalContextOffset)); __ movq(rdi, Operand(rdi, offset)); // Copy the JS object part. STATIC_ASSERT(JSObject::kHeaderSize == 3 * kPointerSize); __ movq(kScratchRegister, FieldOperand(rdi, 0 * kPointerSize)); __ movq(rdx, FieldOperand(rdi, 1 * kPointerSize)); __ movq(rbx, FieldOperand(rdi, 2 * kPointerSize)); __ movq(FieldOperand(rax, 0 * kPointerSize), kScratchRegister); __ movq(FieldOperand(rax, 1 * kPointerSize), rdx); __ movq(FieldOperand(rax, 2 * kPointerSize), rbx); // Setup the callee in-object property. ASSERT(Heap::arguments_callee_index == 0); __ movq(kScratchRegister, Operand(rsp, 3 * kPointerSize)); __ movq(FieldOperand(rax, JSObject::kHeaderSize), kScratchRegister); // Get the length (smi tagged) and set that as an in-object property too. ASSERT(Heap::arguments_length_index == 1); __ movq(rcx, Operand(rsp, 1 * kPointerSize)); __ movq(FieldOperand(rax, JSObject::kHeaderSize + kPointerSize), rcx); // If there are no actual arguments, we're done. Label done; __ SmiTest(rcx); __ j(zero, &done); // Get the parameters pointer from the stack and untag the length. __ movq(rdx, Operand(rsp, 2 * kPointerSize)); // Setup the elements pointer in the allocated arguments object and // initialize the header in the elements fixed array. __ lea(rdi, Operand(rax, Heap::kArgumentsObjectSize)); __ movq(FieldOperand(rax, JSObject::kElementsOffset), rdi); __ LoadRoot(kScratchRegister, Heap::kFixedArrayMapRootIndex); __ movq(FieldOperand(rdi, FixedArray::kMapOffset), kScratchRegister); __ movq(FieldOperand(rdi, FixedArray::kLengthOffset), rcx); __ SmiToInteger32(rcx, rcx); // Untag length for the loop below. // Copy the fixed array slots. Label loop; __ bind(&loop); __ movq(kScratchRegister, Operand(rdx, -1 * kPointerSize)); // Skip receiver. __ movq(FieldOperand(rdi, FixedArray::kHeaderSize), kScratchRegister); __ addq(rdi, Immediate(kPointerSize)); __ subq(rdx, Immediate(kPointerSize)); __ decl(rcx); __ j(not_zero, &loop); // Return and remove the on-stack parameters. __ bind(&done); __ ret(3 * kPointerSize); // Do the runtime call to allocate the arguments object. __ bind(&runtime); __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1); } void RegExpExecStub::Generate(MacroAssembler* masm) { // Just jump directly to runtime if native RegExp is not selected at compile // time or if regexp entry in generated code is turned off runtime switch or // at compilation. #ifdef V8_INTERPRETED_REGEXP __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); #else // V8_INTERPRETED_REGEXP if (!FLAG_regexp_entry_native) { __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); return; } // Stack frame on entry. // esp[0]: return address // esp[8]: last_match_info (expected JSArray) // esp[16]: previous index // esp[24]: subject string // esp[32]: JSRegExp object static const int kLastMatchInfoOffset = 1 * kPointerSize; static const int kPreviousIndexOffset = 2 * kPointerSize; static const int kSubjectOffset = 3 * kPointerSize; static const int kJSRegExpOffset = 4 * kPointerSize; Label runtime; // Ensure that a RegExp stack is allocated. ExternalReference address_of_regexp_stack_memory_address = ExternalReference::address_of_regexp_stack_memory_address(); ExternalReference address_of_regexp_stack_memory_size = ExternalReference::address_of_regexp_stack_memory_size(); __ movq(kScratchRegister, address_of_regexp_stack_memory_size); __ movq(kScratchRegister, Operand(kScratchRegister, 0)); __ testq(kScratchRegister, kScratchRegister); __ j(zero, &runtime); // Check that the first argument is a JSRegExp object. __ movq(rax, Operand(rsp, kJSRegExpOffset)); __ JumpIfSmi(rax, &runtime); __ CmpObjectType(rax, JS_REGEXP_TYPE, kScratchRegister); __ j(not_equal, &runtime); // Check that the RegExp has been compiled (data contains a fixed array). __ movq(rcx, FieldOperand(rax, JSRegExp::kDataOffset)); if (FLAG_debug_code) { Condition is_smi = masm->CheckSmi(rcx); __ Check(NegateCondition(is_smi), "Unexpected type for RegExp data, FixedArray expected"); __ CmpObjectType(rcx, FIXED_ARRAY_TYPE, kScratchRegister); __ Check(equal, "Unexpected type for RegExp data, FixedArray expected"); } // rcx: RegExp data (FixedArray) // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. __ SmiToInteger32(rbx, FieldOperand(rcx, JSRegExp::kDataTagOffset)); __ cmpl(rbx, Immediate(JSRegExp::IRREGEXP)); __ j(not_equal, &runtime); // rcx: RegExp data (FixedArray) // Check that the number of captures fit in the static offsets vector buffer. __ SmiToInteger32(rdx, FieldOperand(rcx, JSRegExp::kIrregexpCaptureCountOffset)); // Calculate number of capture registers (number_of_captures + 1) * 2. __ leal(rdx, Operand(rdx, rdx, times_1, 2)); // Check that the static offsets vector buffer is large enough. __ cmpl(rdx, Immediate(OffsetsVector::kStaticOffsetsVectorSize)); __ j(above, &runtime); // rcx: RegExp data (FixedArray) // rdx: Number of capture registers // Check that the second argument is a string. __ movq(rax, Operand(rsp, kSubjectOffset)); __ JumpIfSmi(rax, &runtime); Condition is_string = masm->IsObjectStringType(rax, rbx, rbx); __ j(NegateCondition(is_string), &runtime); // rax: Subject string. // rcx: RegExp data (FixedArray). // rdx: Number of capture registers. // Check that the third argument is a positive smi less than the string // length. A negative value will be greater (unsigned comparison). __ movq(rbx, Operand(rsp, kPreviousIndexOffset)); __ JumpIfNotSmi(rbx, &runtime); __ SmiCompare(rbx, FieldOperand(rax, String::kLengthOffset)); __ j(above_equal, &runtime); // rcx: RegExp data (FixedArray) // rdx: Number of capture registers // Check that the fourth object is a JSArray object. __ movq(rax, Operand(rsp, kLastMatchInfoOffset)); __ JumpIfSmi(rax, &runtime); __ CmpObjectType(rax, JS_ARRAY_TYPE, kScratchRegister); __ j(not_equal, &runtime); // Check that the JSArray is in fast case. __ movq(rbx, FieldOperand(rax, JSArray::kElementsOffset)); __ movq(rax, FieldOperand(rbx, HeapObject::kMapOffset)); __ Cmp(rax, Factory::fixed_array_map()); __ j(not_equal, &runtime); // Check that the last match info has space for the capture registers and the // additional information. Ensure no overflow in add. STATIC_ASSERT(FixedArray::kMaxLength < kMaxInt - FixedArray::kLengthOffset); __ SmiToInteger32(rax, FieldOperand(rbx, FixedArray::kLengthOffset)); __ addl(rdx, Immediate(RegExpImpl::kLastMatchOverhead)); __ cmpl(rdx, rax); __ j(greater, &runtime); // rcx: RegExp data (FixedArray) // Check the representation and encoding of the subject string. NearLabel seq_ascii_string, seq_two_byte_string, check_code; __ movq(rax, Operand(rsp, kSubjectOffset)); __ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset)); __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset)); // First check for flat two byte string. __ andb(rbx, Immediate( kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask)); STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0); __ j(zero, &seq_two_byte_string); // Any other flat string must be a flat ascii string. __ testb(rbx, Immediate(kIsNotStringMask | kStringRepresentationMask)); __ j(zero, &seq_ascii_string); // Check for flat cons string. // A flat cons string is a cons string where the second part is the empty // string. In that case the subject string is just the first part of the cons // string. Also in this case the first part of the cons string is known to be // a sequential string or an external string. STATIC_ASSERT(kExternalStringTag !=0); STATIC_ASSERT((kConsStringTag & kExternalStringTag) == 0); __ testb(rbx, Immediate(kIsNotStringMask | kExternalStringTag)); __ j(not_zero, &runtime); // String is a cons string. __ movq(rdx, FieldOperand(rax, ConsString::kSecondOffset)); __ Cmp(rdx, Factory::empty_string()); __ j(not_equal, &runtime); __ movq(rax, FieldOperand(rax, ConsString::kFirstOffset)); __ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset)); // String is a cons string with empty second part. // rax: first part of cons string. // rbx: map of first part of cons string. // Is first part a flat two byte string? __ testb(FieldOperand(rbx, Map::kInstanceTypeOffset), Immediate(kStringRepresentationMask | kStringEncodingMask)); STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0); __ j(zero, &seq_two_byte_string); // Any other flat string must be ascii. __ testb(FieldOperand(rbx, Map::kInstanceTypeOffset), Immediate(kStringRepresentationMask)); __ j(not_zero, &runtime); __ bind(&seq_ascii_string); // rax: subject string (sequential ascii) // rcx: RegExp data (FixedArray) __ movq(r11, FieldOperand(rcx, JSRegExp::kDataAsciiCodeOffset)); __ Set(rdi, 1); // Type is ascii. __ jmp(&check_code); __ bind(&seq_two_byte_string); // rax: subject string (flat two-byte) // rcx: RegExp data (FixedArray) __ movq(r11, FieldOperand(rcx, JSRegExp::kDataUC16CodeOffset)); __ Set(rdi, 0); // Type is two byte. __ bind(&check_code); // Check that the irregexp code has been generated for the actual string // encoding. If it has, the field contains a code object otherwise it contains // the hole. __ CmpObjectType(r11, CODE_TYPE, kScratchRegister); __ j(not_equal, &runtime); // rax: subject string // rdi: encoding of subject string (1 if ascii, 0 if two_byte); // r11: code // Load used arguments before starting to push arguments for call to native // RegExp code to avoid handling changing stack height. __ SmiToInteger64(rbx, Operand(rsp, kPreviousIndexOffset)); // rax: subject string // rbx: previous index // rdi: encoding of subject string (1 if ascii 0 if two_byte); // r11: code // All checks done. Now push arguments for native regexp code. __ IncrementCounter(&Counters::regexp_entry_native, 1); // rsi is caller save on Windows and used to pass parameter on Linux. __ push(rsi); static const int kRegExpExecuteArguments = 7; __ PrepareCallCFunction(kRegExpExecuteArguments); int argument_slots_on_stack = masm->ArgumentStackSlotsForCFunctionCall(kRegExpExecuteArguments); // Argument 7: Indicate that this is a direct call from JavaScript. __ movq(Operand(rsp, (argument_slots_on_stack - 1) * kPointerSize), Immediate(1)); // Argument 6: Start (high end) of backtracking stack memory area. __ movq(kScratchRegister, address_of_regexp_stack_memory_address); __ movq(r9, Operand(kScratchRegister, 0)); __ movq(kScratchRegister, address_of_regexp_stack_memory_size); __ addq(r9, Operand(kScratchRegister, 0)); // Argument 6 passed in r9 on Linux and on the stack on Windows. #ifdef _WIN64 __ movq(Operand(rsp, (argument_slots_on_stack - 2) * kPointerSize), r9); #endif // Argument 5: static offsets vector buffer. __ movq(r8, ExternalReference::address_of_static_offsets_vector()); // Argument 5 passed in r8 on Linux and on the stack on Windows. #ifdef _WIN64 __ movq(Operand(rsp, (argument_slots_on_stack - 3) * kPointerSize), r8); #endif // First four arguments are passed in registers on both Linux and Windows. #ifdef _WIN64 Register arg4 = r9; Register arg3 = r8; Register arg2 = rdx; Register arg1 = rcx; #else Register arg4 = rcx; Register arg3 = rdx; Register arg2 = rsi; Register arg1 = rdi; #endif // Keep track on aliasing between argX defined above and the registers used. // rax: subject string // rbx: previous index // rdi: encoding of subject string (1 if ascii 0 if two_byte); // r11: code // Argument 4: End of string data // Argument 3: Start of string data NearLabel setup_two_byte, setup_rest; __ testb(rdi, rdi); __ j(zero, &setup_two_byte); __ SmiToInteger32(rdi, FieldOperand(rax, String::kLengthOffset)); __ lea(arg4, FieldOperand(rax, rdi, times_1, SeqAsciiString::kHeaderSize)); __ lea(arg3, FieldOperand(rax, rbx, times_1, SeqAsciiString::kHeaderSize)); __ jmp(&setup_rest); __ bind(&setup_two_byte); __ SmiToInteger32(rdi, FieldOperand(rax, String::kLengthOffset)); __ lea(arg4, FieldOperand(rax, rdi, times_2, SeqTwoByteString::kHeaderSize)); __ lea(arg3, FieldOperand(rax, rbx, times_2, SeqTwoByteString::kHeaderSize)); __ bind(&setup_rest); // Argument 2: Previous index. __ movq(arg2, rbx); // Argument 1: Subject string. __ movq(arg1, rax); // Locate the code entry and call it. __ addq(r11, Immediate(Code::kHeaderSize - kHeapObjectTag)); __ CallCFunction(r11, kRegExpExecuteArguments); // rsi is caller save, as it is used to pass parameter. __ pop(rsi); // Check the result. NearLabel success; __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::SUCCESS)); __ j(equal, &success); NearLabel failure; __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::FAILURE)); __ j(equal, &failure); __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::EXCEPTION)); // If not exception it can only be retry. Handle that in the runtime system. __ j(not_equal, &runtime); // Result must now be exception. If there is no pending exception already a // stack overflow (on the backtrack stack) was detected in RegExp code but // haven't created the exception yet. Handle that in the runtime system. // TODO(592): Rerunning the RegExp to get the stack overflow exception. ExternalReference pending_exception_address(Top::k_pending_exception_address); __ movq(kScratchRegister, pending_exception_address); __ Cmp(kScratchRegister, Factory::the_hole_value()); __ j(equal, &runtime); __ bind(&failure); // For failure and exception return null. __ Move(rax, Factory::null_value()); __ ret(4 * kPointerSize); // Load RegExp data. __ bind(&success); __ movq(rax, Operand(rsp, kJSRegExpOffset)); __ movq(rcx, FieldOperand(rax, JSRegExp::kDataOffset)); __ SmiToInteger32(rax, FieldOperand(rcx, JSRegExp::kIrregexpCaptureCountOffset)); // Calculate number of capture registers (number_of_captures + 1) * 2. __ leal(rdx, Operand(rax, rax, times_1, 2)); // rdx: Number of capture registers // Load last_match_info which is still known to be a fast case JSArray. __ movq(rax, Operand(rsp, kLastMatchInfoOffset)); __ movq(rbx, FieldOperand(rax, JSArray::kElementsOffset)); // rbx: last_match_info backing store (FixedArray) // rdx: number of capture registers // Store the capture count. __ Integer32ToSmi(kScratchRegister, rdx); __ movq(FieldOperand(rbx, RegExpImpl::kLastCaptureCountOffset), kScratchRegister); // Store last subject and last input. __ movq(rax, Operand(rsp, kSubjectOffset)); __ movq(FieldOperand(rbx, RegExpImpl::kLastSubjectOffset), rax); __ movq(rcx, rbx); __ RecordWrite(rcx, RegExpImpl::kLastSubjectOffset, rax, rdi); __ movq(rax, Operand(rsp, kSubjectOffset)); __ movq(FieldOperand(rbx, RegExpImpl::kLastInputOffset), rax); __ movq(rcx, rbx); __ RecordWrite(rcx, RegExpImpl::kLastInputOffset, rax, rdi); // Get the static offsets vector filled by the native regexp code. __ movq(rcx, ExternalReference::address_of_static_offsets_vector()); // rbx: last_match_info backing store (FixedArray) // rcx: offsets vector // rdx: number of capture registers NearLabel next_capture, done; // Capture register counter starts from number of capture registers and // counts down until wraping after zero. __ bind(&next_capture); __ subq(rdx, Immediate(1)); __ j(negative, &done); // Read the value from the static offsets vector buffer and make it a smi. __ movl(rdi, Operand(rcx, rdx, times_int_size, 0)); __ Integer32ToSmi(rdi, rdi); // Store the smi value in the last match info. __ movq(FieldOperand(rbx, rdx, times_pointer_size, RegExpImpl::kFirstCaptureOffset), rdi); __ jmp(&next_capture); __ bind(&done); // Return last match info. __ movq(rax, Operand(rsp, kLastMatchInfoOffset)); __ ret(4 * kPointerSize); // Do the runtime call to execute the regexp. __ bind(&runtime); __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); #endif // V8_INTERPRETED_REGEXP } void RegExpConstructResultStub::Generate(MacroAssembler* masm) { const int kMaxInlineLength = 100; Label slowcase; Label done; __ movq(r8, Operand(rsp, kPointerSize * 3)); __ JumpIfNotSmi(r8, &slowcase); __ SmiToInteger32(rbx, r8); __ cmpl(rbx, Immediate(kMaxInlineLength)); __ j(above, &slowcase); // Smi-tagging is equivalent to multiplying by 2. STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagSize == 1); // Allocate RegExpResult followed by FixedArray with size in ebx. // JSArray: [Map][empty properties][Elements][Length-smi][index][input] // Elements: [Map][Length][..elements..] __ AllocateInNewSpace(JSRegExpResult::kSize + FixedArray::kHeaderSize, times_pointer_size, rbx, // In: Number of elements. rax, // Out: Start of allocation (tagged). rcx, // Out: End of allocation. rdx, // Scratch register &slowcase, TAG_OBJECT); // rax: Start of allocated area, object-tagged. // rbx: Number of array elements as int32. // r8: Number of array elements as smi. // Set JSArray map to global.regexp_result_map(). __ movq(rdx, ContextOperand(rsi, Context::GLOBAL_INDEX)); __ movq(rdx, FieldOperand(rdx, GlobalObject::kGlobalContextOffset)); __ movq(rdx, ContextOperand(rdx, Context::REGEXP_RESULT_MAP_INDEX)); __ movq(FieldOperand(rax, HeapObject::kMapOffset), rdx); // Set empty properties FixedArray. __ Move(FieldOperand(rax, JSObject::kPropertiesOffset), Factory::empty_fixed_array()); // Set elements to point to FixedArray allocated right after the JSArray. __ lea(rcx, Operand(rax, JSRegExpResult::kSize)); __ movq(FieldOperand(rax, JSObject::kElementsOffset), rcx); // Set input, index and length fields from arguments. __ movq(r8, Operand(rsp, kPointerSize * 1)); __ movq(FieldOperand(rax, JSRegExpResult::kInputOffset), r8); __ movq(r8, Operand(rsp, kPointerSize * 2)); __ movq(FieldOperand(rax, JSRegExpResult::kIndexOffset), r8); __ movq(r8, Operand(rsp, kPointerSize * 3)); __ movq(FieldOperand(rax, JSArray::kLengthOffset), r8); // Fill out the elements FixedArray. // rax: JSArray. // rcx: FixedArray. // rbx: Number of elements in array as int32. // Set map. __ Move(FieldOperand(rcx, HeapObject::kMapOffset), Factory::fixed_array_map()); // Set length. __ Integer32ToSmi(rdx, rbx); __ movq(FieldOperand(rcx, FixedArray::kLengthOffset), rdx); // Fill contents of fixed-array with the-hole. __ Move(rdx, Factory::the_hole_value()); __ lea(rcx, FieldOperand(rcx, FixedArray::kHeaderSize)); // Fill fixed array elements with hole. // rax: JSArray. // rbx: Number of elements in array that remains to be filled, as int32. // rcx: Start of elements in FixedArray. // rdx: the hole. Label loop; __ testl(rbx, rbx); __ bind(&loop); __ j(less_equal, &done); // Jump if ecx is negative or zero. __ subl(rbx, Immediate(1)); __ movq(Operand(rcx, rbx, times_pointer_size, 0), rdx); __ jmp(&loop); __ bind(&done); __ ret(3 * kPointerSize); __ bind(&slowcase); __ TailCallRuntime(Runtime::kRegExpConstructResult, 3, 1); } void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm, Register object, Register result, Register scratch1, Register scratch2, bool object_is_smi, Label* not_found) { // Use of registers. Register result is used as a temporary. Register number_string_cache = result; Register mask = scratch1; Register scratch = scratch2; // Load the number string cache. __ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex); // Make the hash mask from the length of the number string cache. It // contains two elements (number and string) for each cache entry. __ SmiToInteger32( mask, FieldOperand(number_string_cache, FixedArray::kLengthOffset)); __ shrl(mask, Immediate(1)); __ subq(mask, Immediate(1)); // Make mask. // Calculate the entry in the number string cache. The hash value in the // number string cache for smis is just the smi value, and the hash for // doubles is the xor of the upper and lower words. See // Heap::GetNumberStringCache. Label is_smi; Label load_result_from_cache; if (!object_is_smi) { __ JumpIfSmi(object, &is_smi); __ CheckMap(object, Factory::heap_number_map(), not_found, true); STATIC_ASSERT(8 == kDoubleSize); __ movl(scratch, FieldOperand(object, HeapNumber::kValueOffset + 4)); __ xor_(scratch, FieldOperand(object, HeapNumber::kValueOffset)); GenerateConvertHashCodeToIndex(masm, scratch, mask); Register index = scratch; Register probe = mask; __ movq(probe, FieldOperand(number_string_cache, index, times_1, FixedArray::kHeaderSize)); __ JumpIfSmi(probe, not_found); ASSERT(CpuFeatures::IsSupported(SSE2)); CpuFeatures::Scope fscope(SSE2); __ movsd(xmm0, FieldOperand(object, HeapNumber::kValueOffset)); __ movsd(xmm1, FieldOperand(probe, HeapNumber::kValueOffset)); __ ucomisd(xmm0, xmm1); __ j(parity_even, not_found); // Bail out if NaN is involved. __ j(not_equal, not_found); // The cache did not contain this value. __ jmp(&load_result_from_cache); } __ bind(&is_smi); __ SmiToInteger32(scratch, object); GenerateConvertHashCodeToIndex(masm, scratch, mask); Register index = scratch; // Check if the entry is the smi we are looking for. __ cmpq(object, FieldOperand(number_string_cache, index, times_1, FixedArray::kHeaderSize)); __ j(not_equal, not_found); // Get the result from the cache. __ bind(&load_result_from_cache); __ movq(result, FieldOperand(number_string_cache, index, times_1, FixedArray::kHeaderSize + kPointerSize)); __ IncrementCounter(&Counters::number_to_string_native, 1); } void NumberToStringStub::GenerateConvertHashCodeToIndex(MacroAssembler* masm, Register hash, Register mask) { __ and_(hash, mask); // Each entry in string cache consists of two pointer sized fields, // but times_twice_pointer_size (multiplication by 16) scale factor // is not supported by addrmode on x64 platform. // So we have to premultiply entry index before lookup. __ shl(hash, Immediate(kPointerSizeLog2 + 1)); } void NumberToStringStub::Generate(MacroAssembler* masm) { Label runtime; __ movq(rbx, Operand(rsp, kPointerSize)); // Generate code to lookup number in the number string cache. GenerateLookupNumberStringCache(masm, rbx, rax, r8, r9, false, &runtime); __ ret(1 * kPointerSize); __ bind(&runtime); // Handle number to string in the runtime system if not found in the cache. __ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1); } static int NegativeComparisonResult(Condition cc) { ASSERT(cc != equal); ASSERT((cc == less) || (cc == less_equal) || (cc == greater) || (cc == greater_equal)); return (cc == greater || cc == greater_equal) ? LESS : GREATER; } void CompareStub::Generate(MacroAssembler* masm) { ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg)); Label check_unequal_objects, done; // Compare two smis if required. if (include_smi_compare_) { Label non_smi, smi_done; __ JumpIfNotBothSmi(rax, rdx, &non_smi); __ subq(rdx, rax); __ j(no_overflow, &smi_done); __ not_(rdx); // Correct sign in case of overflow. rdx cannot be 0 here. __ bind(&smi_done); __ movq(rax, rdx); __ ret(0); __ bind(&non_smi); } else if (FLAG_debug_code) { Label ok; __ JumpIfNotSmi(rdx, &ok); __ JumpIfNotSmi(rax, &ok); __ Abort("CompareStub: smi operands"); __ bind(&ok); } // The compare stub returns a positive, negative, or zero 64-bit integer // value in rax, corresponding to result of comparing the two inputs. // NOTICE! This code is only reached after a smi-fast-case check, so // it is certain that at least one operand isn't a smi. // Two identical objects are equal unless they are both NaN or undefined. { NearLabel not_identical; __ cmpq(rax, rdx); __ j(not_equal, ¬_identical); if (cc_ != equal) { // Check for undefined. undefined OP undefined is false even though // undefined == undefined. NearLabel check_for_nan; __ CompareRoot(rdx, Heap::kUndefinedValueRootIndex); __ j(not_equal, &check_for_nan); __ Set(rax, NegativeComparisonResult(cc_)); __ ret(0); __ bind(&check_for_nan); } // Test for NaN. Sadly, we can't just compare to Factory::nan_value(), // so we do the second best thing - test it ourselves. // Note: if cc_ != equal, never_nan_nan_ is not used. // We cannot set rax to EQUAL until just before return because // rax must be unchanged on jump to not_identical. if (never_nan_nan_ && (cc_ == equal)) { __ Set(rax, EQUAL); __ ret(0); } else { NearLabel heap_number; // If it's not a heap number, then return equal for (in)equality operator. __ Cmp(FieldOperand(rdx, HeapObject::kMapOffset), Factory::heap_number_map()); __ j(equal, &heap_number); if (cc_ != equal) { // Call runtime on identical JSObjects. Otherwise return equal. __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx); __ j(above_equal, ¬_identical); } __ Set(rax, EQUAL); __ ret(0); __ bind(&heap_number); // It is a heap number, so return equal if it's not NaN. // For NaN, return 1 for every condition except greater and // greater-equal. Return -1 for them, so the comparison yields // false for all conditions except not-equal. __ Set(rax, EQUAL); __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset)); __ ucomisd(xmm0, xmm0); __ setcc(parity_even, rax); // rax is 0 for equal non-NaN heapnumbers, 1 for NaNs. if (cc_ == greater_equal || cc_ == greater) { __ neg(rax); } __ ret(0); } __ bind(¬_identical); } if (cc_ == equal) { // Both strict and non-strict. Label slow; // Fallthrough label. // If we're doing a strict equality comparison, we don't have to do // type conversion, so we generate code to do fast comparison for objects // and oddballs. Non-smi numbers and strings still go through the usual // slow-case code. if (strict_) { // If either is a Smi (we know that not both are), then they can only // be equal if the other is a HeapNumber. If so, use the slow case. { Label not_smis; __ SelectNonSmi(rbx, rax, rdx, ¬_smis); // Check if the non-smi operand is a heap number. __ Cmp(FieldOperand(rbx, HeapObject::kMapOffset), Factory::heap_number_map()); // If heap number, handle it in the slow case. __ j(equal, &slow); // Return non-equal. ebx (the lower half of rbx) is not zero. __ movq(rax, rbx); __ ret(0); __ bind(¬_smis); } // If either operand is a JSObject or an oddball value, then they are not // equal since their pointers are different // There is no test for undetectability in strict equality. // If the first object is a JS object, we have done pointer comparison. STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); NearLabel first_non_object; __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx); __ j(below, &first_non_object); // Return non-zero (eax (not rax) is not zero) Label return_not_equal; STATIC_ASSERT(kHeapObjectTag != 0); __ bind(&return_not_equal); __ ret(0); __ bind(&first_non_object); // Check for oddballs: true, false, null, undefined. __ CmpInstanceType(rcx, ODDBALL_TYPE); __ j(equal, &return_not_equal); __ CmpObjectType(rdx, FIRST_JS_OBJECT_TYPE, rcx); __ j(above_equal, &return_not_equal); // Check for oddballs: true, false, null, undefined. __ CmpInstanceType(rcx, ODDBALL_TYPE); __ j(equal, &return_not_equal); // Fall through to the general case. } __ bind(&slow); } // Generate the number comparison code. if (include_number_compare_) { Label non_number_comparison; NearLabel unordered; FloatingPointHelper::LoadSSE2UnknownOperands(masm, &non_number_comparison); __ xorl(rax, rax); __ xorl(rcx, rcx); __ ucomisd(xmm0, xmm1); // Don't base result on EFLAGS when a NaN is involved. __ j(parity_even, &unordered); // Return a result of -1, 0, or 1, based on EFLAGS. __ setcc(above, rax); __ setcc(below, rcx); __ subq(rax, rcx); __ ret(0); // If one of the numbers was NaN, then the result is always false. // The cc is never not-equal. __ bind(&unordered); ASSERT(cc_ != not_equal); if (cc_ == less || cc_ == less_equal) { __ Set(rax, 1); } else { __ Set(rax, -1); } __ ret(0); // The number comparison code did not provide a valid result. __ bind(&non_number_comparison); } // Fast negative check for symbol-to-symbol equality. Label check_for_strings; if (cc_ == equal) { BranchIfNonSymbol(masm, &check_for_strings, rax, kScratchRegister); BranchIfNonSymbol(masm, &check_for_strings, rdx, kScratchRegister); // We've already checked for object identity, so if both operands // are symbols they aren't equal. Register eax (not rax) already holds a // non-zero value, which indicates not equal, so just return. __ ret(0); } __ bind(&check_for_strings); __ JumpIfNotBothSequentialAsciiStrings( rdx, rax, rcx, rbx, &check_unequal_objects); // Inline comparison of ascii strings. StringCompareStub::GenerateCompareFlatAsciiStrings(masm, rdx, rax, rcx, rbx, rdi, r8); #ifdef DEBUG __ Abort("Unexpected fall-through from string comparison"); #endif __ bind(&check_unequal_objects); if (cc_ == equal && !strict_) { // Not strict equality. Objects are unequal if // they are both JSObjects and not undetectable, // and their pointers are different. NearLabel not_both_objects, return_unequal; // At most one is a smi, so we can test for smi by adding the two. // A smi plus a heap object has the low bit set, a heap object plus // a heap object has the low bit clear. STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagMask == 1); __ lea(rcx, Operand(rax, rdx, times_1, 0)); __ testb(rcx, Immediate(kSmiTagMask)); __ j(not_zero, ¬_both_objects); __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rbx); __ j(below, ¬_both_objects); __ CmpObjectType(rdx, FIRST_JS_OBJECT_TYPE, rcx); __ j(below, ¬_both_objects); __ testb(FieldOperand(rbx, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); __ j(zero, &return_unequal); __ testb(FieldOperand(rcx, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); __ j(zero, &return_unequal); // The objects are both undetectable, so they both compare as the value // undefined, and are equal. __ Set(rax, EQUAL); __ bind(&return_unequal); // Return non-equal by returning the non-zero object pointer in eax, // or return equal if we fell through to here. __ ret(0); __ bind(¬_both_objects); } // Push arguments below the return address to prepare jump to builtin. __ pop(rcx); __ push(rdx); __ push(rax); // Figure out which native to call and setup the arguments. Builtins::JavaScript builtin; if (cc_ == equal) { builtin = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS; } else { builtin = Builtins::COMPARE; __ Push(Smi::FromInt(NegativeComparisonResult(cc_))); } // Restore return address on the stack. __ push(rcx); // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) // tagged as a small integer. __ InvokeBuiltin(builtin, JUMP_FUNCTION); } void CompareStub::BranchIfNonSymbol(MacroAssembler* masm, Label* label, Register object, Register scratch) { __ JumpIfSmi(object, label); __ movq(scratch, FieldOperand(object, HeapObject::kMapOffset)); __ movzxbq(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset)); // Ensure that no non-strings have the symbol bit set. STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask); STATIC_ASSERT(kSymbolTag != 0); __ testb(scratch, Immediate(kIsSymbolMask)); __ j(zero, label); } void StackCheckStub::Generate(MacroAssembler* masm) { __ TailCallRuntime(Runtime::kStackGuard, 0, 1); } void CallFunctionStub::Generate(MacroAssembler* masm) { Label slow; // If the receiver might be a value (string, number or boolean) check for this // and box it if it is. if (ReceiverMightBeValue()) { // Get the receiver from the stack. // +1 ~ return address Label receiver_is_value, receiver_is_js_object; __ movq(rax, Operand(rsp, (argc_ + 1) * kPointerSize)); // Check if receiver is a smi (which is a number value). __ JumpIfSmi(rax, &receiver_is_value); // Check if the receiver is a valid JS object. __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rdi); __ j(above_equal, &receiver_is_js_object); // Call the runtime to box the value. __ bind(&receiver_is_value); __ EnterInternalFrame(); __ push(rax); __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); __ LeaveInternalFrame(); __ movq(Operand(rsp, (argc_ + 1) * kPointerSize), rax); __ bind(&receiver_is_js_object); } // Get the function to call from the stack. // +2 ~ receiver, return address __ movq(rdi, Operand(rsp, (argc_ + 2) * kPointerSize)); // Check that the function really is a JavaScript function. __ JumpIfSmi(rdi, &slow); // Goto slow case if we do not have a function. __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx); __ j(not_equal, &slow); // Fast-case: Just invoke the function. ParameterCount actual(argc_); __ InvokeFunction(rdi, actual, JUMP_FUNCTION); // Slow-case: Non-function called. __ bind(&slow); // CALL_NON_FUNCTION expects the non-function callee as receiver (instead // of the original receiver from the call site). __ movq(Operand(rsp, (argc_ + 1) * kPointerSize), rdi); __ Set(rax, argc_); __ Set(rbx, 0); __ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION); Handle adaptor(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline)); __ Jump(adaptor, RelocInfo::CODE_TARGET); } void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) { // Check that stack should contain next handler, frame pointer, state and // return address in that order. STATIC_ASSERT(StackHandlerConstants::kFPOffset + kPointerSize == StackHandlerConstants::kStateOffset); STATIC_ASSERT(StackHandlerConstants::kStateOffset + kPointerSize == StackHandlerConstants::kPCOffset); ExternalReference handler_address(Top::k_handler_address); __ movq(kScratchRegister, handler_address); __ movq(rsp, Operand(kScratchRegister, 0)); // get next in chain __ pop(rcx); __ movq(Operand(kScratchRegister, 0), rcx); __ pop(rbp); // pop frame pointer __ pop(rdx); // remove state // Before returning we restore the context from the frame pointer if not NULL. // The frame pointer is NULL in the exception handler of a JS entry frame. __ Set(rsi, 0); // Tentatively set context pointer to NULL NearLabel skip; __ cmpq(rbp, Immediate(0)); __ j(equal, &skip); __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); __ bind(&skip); __ ret(0); } void CEntryStub::GenerateCore(MacroAssembler* masm, Label* throw_normal_exception, Label* throw_termination_exception, Label* throw_out_of_memory_exception, bool do_gc, bool always_allocate_scope) { // rax: result parameter for PerformGC, if any. // rbx: pointer to C function (C callee-saved). // rbp: frame pointer (restored after C call). // rsp: stack pointer (restored after C call). // r14: number of arguments including receiver (C callee-saved). // r12: pointer to the first argument (C callee-saved). // This pointer is reused in LeaveExitFrame(), so it is stored in a // callee-saved register. // Simple results returned in rax (both AMD64 and Win64 calling conventions). // Complex results must be written to address passed as first argument. // AMD64 calling convention: a struct of two pointers in rax+rdx // Check stack alignment. if (FLAG_debug_code) { __ CheckStackAlignment(); } if (do_gc) { // Pass failure code returned from last attempt as first argument to // PerformGC. No need to use PrepareCallCFunction/CallCFunction here as the // stack is known to be aligned. This function takes one argument which is // passed in register. #ifdef _WIN64 __ movq(rcx, rax); #else // _WIN64 __ movq(rdi, rax); #endif __ movq(kScratchRegister, FUNCTION_ADDR(Runtime::PerformGC), RelocInfo::RUNTIME_ENTRY); __ call(kScratchRegister); } ExternalReference scope_depth = ExternalReference::heap_always_allocate_scope_depth(); if (always_allocate_scope) { __ movq(kScratchRegister, scope_depth); __ incl(Operand(kScratchRegister, 0)); } // Call C function. #ifdef _WIN64 // Windows 64-bit ABI passes arguments in rcx, rdx, r8, r9 // Store Arguments object on stack, below the 4 WIN64 ABI parameter slots. __ movq(StackSpaceOperand(0), r14); // argc. __ movq(StackSpaceOperand(1), r12); // argv. if (result_size_ < 2) { // Pass a pointer to the Arguments object as the first argument. // Return result in single register (rax). __ lea(rcx, StackSpaceOperand(0)); } else { ASSERT_EQ(2, result_size_); // Pass a pointer to the result location as the first argument. __ lea(rcx, StackSpaceOperand(2)); // Pass a pointer to the Arguments object as the second argument. __ lea(rdx, StackSpaceOperand(0)); } #else // _WIN64 // GCC passes arguments in rdi, rsi, rdx, rcx, r8, r9. __ movq(rdi, r14); // argc. __ movq(rsi, r12); // argv. #endif __ call(rbx); // Result is in rax - do not destroy this register! if (always_allocate_scope) { __ movq(kScratchRegister, scope_depth); __ decl(Operand(kScratchRegister, 0)); } // Check for failure result. Label failure_returned; STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0); #ifdef _WIN64 // If return value is on the stack, pop it to registers. if (result_size_ > 1) { ASSERT_EQ(2, result_size_); // Read result values stored on stack. Result is stored // above the four argument mirror slots and the two // Arguments object slots. __ movq(rax, Operand(rsp, 6 * kPointerSize)); __ movq(rdx, Operand(rsp, 7 * kPointerSize)); } #endif __ lea(rcx, Operand(rax, 1)); // Lower 2 bits of rcx are 0 iff rax has failure tag. __ testl(rcx, Immediate(kFailureTagMask)); __ j(zero, &failure_returned); // Exit the JavaScript to C++ exit frame. __ LeaveExitFrame(save_doubles_); __ ret(0); // Handling of failure. __ bind(&failure_returned); NearLabel retry; // If the returned exception is RETRY_AFTER_GC continue at retry label STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0); __ testl(rax, Immediate(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize)); __ j(zero, &retry); // Special handling of out of memory exceptions. __ movq(kScratchRegister, Failure::OutOfMemoryException(), RelocInfo::NONE); __ cmpq(rax, kScratchRegister); __ j(equal, throw_out_of_memory_exception); // Retrieve the pending exception and clear the variable. ExternalReference pending_exception_address(Top::k_pending_exception_address); __ movq(kScratchRegister, pending_exception_address); __ movq(rax, Operand(kScratchRegister, 0)); __ movq(rdx, ExternalReference::the_hole_value_location()); __ movq(rdx, Operand(rdx, 0)); __ movq(Operand(kScratchRegister, 0), rdx); // Special handling of termination exceptions which are uncatchable // by javascript code. __ CompareRoot(rax, Heap::kTerminationExceptionRootIndex); __ j(equal, throw_termination_exception); // Handle normal exception. __ jmp(throw_normal_exception); // Retry. __ bind(&retry); } void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm, UncatchableExceptionType type) { // Fetch top stack handler. ExternalReference handler_address(Top::k_handler_address); __ movq(kScratchRegister, handler_address); __ movq(rsp, Operand(kScratchRegister, 0)); // Unwind the handlers until the ENTRY handler is found. NearLabel loop, done; __ bind(&loop); // Load the type of the current stack handler. const int kStateOffset = StackHandlerConstants::kStateOffset; __ cmpq(Operand(rsp, kStateOffset), Immediate(StackHandler::ENTRY)); __ j(equal, &done); // Fetch the next handler in the list. const int kNextOffset = StackHandlerConstants::kNextOffset; __ movq(rsp, Operand(rsp, kNextOffset)); __ jmp(&loop); __ bind(&done); // Set the top handler address to next handler past the current ENTRY handler. __ movq(kScratchRegister, handler_address); __ pop(Operand(kScratchRegister, 0)); if (type == OUT_OF_MEMORY) { // Set external caught exception to false. ExternalReference external_caught(Top::k_external_caught_exception_address); __ movq(rax, Immediate(false)); __ store_rax(external_caught); // Set pending exception and rax to out of memory exception. ExternalReference pending_exception(Top::k_pending_exception_address); __ movq(rax, Failure::OutOfMemoryException(), RelocInfo::NONE); __ store_rax(pending_exception); } // Clear the context pointer. __ Set(rsi, 0); // Restore registers from handler. STATIC_ASSERT(StackHandlerConstants::kNextOffset + kPointerSize == StackHandlerConstants::kFPOffset); __ pop(rbp); // FP STATIC_ASSERT(StackHandlerConstants::kFPOffset + kPointerSize == StackHandlerConstants::kStateOffset); __ pop(rdx); // State STATIC_ASSERT(StackHandlerConstants::kStateOffset + kPointerSize == StackHandlerConstants::kPCOffset); __ ret(0); } void CEntryStub::Generate(MacroAssembler* masm) { // rax: number of arguments including receiver // rbx: pointer to C function (C callee-saved) // rbp: frame pointer of calling JS frame (restored after C call) // rsp: stack pointer (restored after C call) // rsi: current context (restored) // NOTE: Invocations of builtins may return failure objects // instead of a proper result. The builtin entry handles // this by performing a garbage collection and retrying the // builtin once. // Enter the exit frame that transitions from JavaScript to C++. #ifdef _WIN64 int arg_stack_space = (result_size_ < 2 ? 2 : 4); #else int arg_stack_space = 0; #endif __ EnterExitFrame(arg_stack_space, save_doubles_); // rax: Holds the context at this point, but should not be used. // On entry to code generated by GenerateCore, it must hold // a failure result if the collect_garbage argument to GenerateCore // is true. This failure result can be the result of code // generated by a previous call to GenerateCore. The value // of rax is then passed to Runtime::PerformGC. // rbx: pointer to builtin function (C callee-saved). // rbp: frame pointer of exit frame (restored after C call). // rsp: stack pointer (restored after C call). // r14: number of arguments including receiver (C callee-saved). // r12: argv pointer (C callee-saved). Label throw_normal_exception; Label throw_termination_exception; Label throw_out_of_memory_exception; // Call into the runtime system. GenerateCore(masm, &throw_normal_exception, &throw_termination_exception, &throw_out_of_memory_exception, false, false); // Do space-specific GC and retry runtime call. GenerateCore(masm, &throw_normal_exception, &throw_termination_exception, &throw_out_of_memory_exception, true, false); // Do full GC and retry runtime call one final time. Failure* failure = Failure::InternalError(); __ movq(rax, failure, RelocInfo::NONE); GenerateCore(masm, &throw_normal_exception, &throw_termination_exception, &throw_out_of_memory_exception, true, true); __ bind(&throw_out_of_memory_exception); GenerateThrowUncatchable(masm, OUT_OF_MEMORY); __ bind(&throw_termination_exception); GenerateThrowUncatchable(masm, TERMINATION); __ bind(&throw_normal_exception); GenerateThrowTOS(masm); } void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) { Label invoke, exit; #ifdef ENABLE_LOGGING_AND_PROFILING Label not_outermost_js, not_outermost_js_2; #endif // Setup frame. __ push(rbp); __ movq(rbp, rsp); // Push the stack frame type marker twice. int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY; // Scratch register is neither callee-save, nor an argument register on any // platform. It's free to use at this point. // Cannot use smi-register for loading yet. __ movq(kScratchRegister, reinterpret_cast(Smi::FromInt(marker)), RelocInfo::NONE); __ push(kScratchRegister); // context slot __ push(kScratchRegister); // function slot // Save callee-saved registers (X64/Win64 calling conventions). __ push(r12); __ push(r13); __ push(r14); __ push(r15); #ifdef _WIN64 __ push(rdi); // Only callee save in Win64 ABI, argument in AMD64 ABI. __ push(rsi); // Only callee save in Win64 ABI, argument in AMD64 ABI. #endif __ push(rbx); // TODO(X64): On Win64, if we ever use XMM6-XMM15, the low low 64 bits are // callee save as well. // Save copies of the top frame descriptor on the stack. ExternalReference c_entry_fp(Top::k_c_entry_fp_address); __ load_rax(c_entry_fp); __ push(rax); // Set up the roots and smi constant registers. // Needs to be done before any further smi loads. ExternalReference roots_address = ExternalReference::roots_address(); __ movq(kRootRegister, roots_address); __ InitializeSmiConstantRegister(); #ifdef ENABLE_LOGGING_AND_PROFILING // If this is the outermost JS call, set js_entry_sp value. ExternalReference js_entry_sp(Top::k_js_entry_sp_address); __ load_rax(js_entry_sp); __ testq(rax, rax); __ j(not_zero, ¬_outermost_js); __ movq(rax, rbp); __ store_rax(js_entry_sp); __ bind(¬_outermost_js); #endif // Call a faked try-block that does the invoke. __ call(&invoke); // Caught exception: Store result (exception) in the pending // exception field in the JSEnv and return a failure sentinel. ExternalReference pending_exception(Top::k_pending_exception_address); __ store_rax(pending_exception); __ movq(rax, Failure::Exception(), RelocInfo::NONE); __ jmp(&exit); // Invoke: Link this frame into the handler chain. __ bind(&invoke); __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER); // Clear any pending exceptions. __ load_rax(ExternalReference::the_hole_value_location()); __ store_rax(pending_exception); // Fake a receiver (NULL). __ push(Immediate(0)); // receiver // Invoke the function by calling through JS entry trampoline // builtin and pop the faked function when we return. We load the address // from an external reference instead of inlining the call target address // directly in the code, because the builtin stubs may not have been // generated yet at the time this code is generated. if (is_construct) { ExternalReference construct_entry(Builtins::JSConstructEntryTrampoline); __ load_rax(construct_entry); } else { ExternalReference entry(Builtins::JSEntryTrampoline); __ load_rax(entry); } __ lea(kScratchRegister, FieldOperand(rax, Code::kHeaderSize)); __ call(kScratchRegister); // Unlink this frame from the handler chain. __ movq(kScratchRegister, ExternalReference(Top::k_handler_address)); __ pop(Operand(kScratchRegister, 0)); // Pop next_sp. __ addq(rsp, Immediate(StackHandlerConstants::kSize - kPointerSize)); #ifdef ENABLE_LOGGING_AND_PROFILING // If current EBP value is the same as js_entry_sp value, it means that // the current function is the outermost. __ movq(kScratchRegister, js_entry_sp); __ cmpq(rbp, Operand(kScratchRegister, 0)); __ j(not_equal, ¬_outermost_js_2); __ movq(Operand(kScratchRegister, 0), Immediate(0)); __ bind(¬_outermost_js_2); #endif // Restore the top frame descriptor from the stack. __ bind(&exit); __ movq(kScratchRegister, ExternalReference(Top::k_c_entry_fp_address)); __ pop(Operand(kScratchRegister, 0)); // Restore callee-saved registers (X64 conventions). __ pop(rbx); #ifdef _WIN64 // Callee save on in Win64 ABI, arguments/volatile in AMD64 ABI. __ pop(rsi); __ pop(rdi); #endif __ pop(r15); __ pop(r14); __ pop(r13); __ pop(r12); __ addq(rsp, Immediate(2 * kPointerSize)); // remove markers // Restore frame pointer and return. __ pop(rbp); __ ret(0); } void InstanceofStub::Generate(MacroAssembler* masm) { // Implements "value instanceof function" operator. // Expected input state: // rsp[0] : return address // rsp[1] : function pointer // rsp[2] : value // Returns a bitwise zero to indicate that the value // is and instance of the function and anything else to // indicate that the value is not an instance. // Get the object - go slow case if it's a smi. Label slow; __ movq(rax, Operand(rsp, 2 * kPointerSize)); __ JumpIfSmi(rax, &slow); // Check that the left hand is a JS object. Leave its map in rax. __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rax); __ j(below, &slow); __ CmpInstanceType(rax, LAST_JS_OBJECT_TYPE); __ j(above, &slow); // Get the prototype of the function. __ movq(rdx, Operand(rsp, 1 * kPointerSize)); // rdx is function, rax is map. // Look up the function and the map in the instanceof cache. NearLabel miss; __ CompareRoot(rdx, Heap::kInstanceofCacheFunctionRootIndex); __ j(not_equal, &miss); __ CompareRoot(rax, Heap::kInstanceofCacheMapRootIndex); __ j(not_equal, &miss); __ LoadRoot(rax, Heap::kInstanceofCacheAnswerRootIndex); __ ret(2 * kPointerSize); __ bind(&miss); __ TryGetFunctionPrototype(rdx, rbx, &slow); // Check that the function prototype is a JS object. __ JumpIfSmi(rbx, &slow); __ CmpObjectType(rbx, FIRST_JS_OBJECT_TYPE, kScratchRegister); __ j(below, &slow); __ CmpInstanceType(kScratchRegister, LAST_JS_OBJECT_TYPE); __ j(above, &slow); // Register mapping: // rax is object map. // rdx is function. // rbx is function prototype. __ StoreRoot(rdx, Heap::kInstanceofCacheFunctionRootIndex); __ StoreRoot(rax, Heap::kInstanceofCacheMapRootIndex); __ movq(rcx, FieldOperand(rax, Map::kPrototypeOffset)); // Loop through the prototype chain looking for the function prototype. NearLabel loop, is_instance, is_not_instance; __ LoadRoot(kScratchRegister, Heap::kNullValueRootIndex); __ bind(&loop); __ cmpq(rcx, rbx); __ j(equal, &is_instance); __ cmpq(rcx, kScratchRegister); // The code at is_not_instance assumes that kScratchRegister contains a // non-zero GCable value (the null object in this case). __ j(equal, &is_not_instance); __ movq(rcx, FieldOperand(rcx, HeapObject::kMapOffset)); __ movq(rcx, FieldOperand(rcx, Map::kPrototypeOffset)); __ jmp(&loop); __ bind(&is_instance); __ xorl(rax, rax); // Store bitwise zero in the cache. This is a Smi in GC terms. STATIC_ASSERT(kSmiTag == 0); __ StoreRoot(rax, Heap::kInstanceofCacheAnswerRootIndex); __ ret(2 * kPointerSize); __ bind(&is_not_instance); // We have to store a non-zero value in the cache. __ StoreRoot(kScratchRegister, Heap::kInstanceofCacheAnswerRootIndex); __ ret(2 * kPointerSize); // Slow-case: Go through the JavaScript implementation. __ bind(&slow); __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION); } Register InstanceofStub::left() { return rax; } Register InstanceofStub::right() { return rdx; } int CompareStub::MinorKey() { // Encode the three parameters in a unique 16 bit value. To avoid duplicate // stubs the never NaN NaN condition is only taken into account if the // condition is equals. ASSERT(static_cast(cc_) < (1 << 12)); ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg)); return ConditionField::encode(static_cast(cc_)) | RegisterField::encode(false) // lhs_ and rhs_ are not used | StrictField::encode(strict_) | NeverNanNanField::encode(cc_ == equal ? never_nan_nan_ : false) | IncludeNumberCompareField::encode(include_number_compare_) | IncludeSmiCompareField::encode(include_smi_compare_); } // Unfortunately you have to run without snapshots to see most of these // names in the profile since most compare stubs end up in the snapshot. const char* CompareStub::GetName() { ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg)); if (name_ != NULL) return name_; const int kMaxNameLength = 100; name_ = Bootstrapper::AllocateAutoDeletedArray(kMaxNameLength); if (name_ == NULL) return "OOM"; const char* cc_name; switch (cc_) { case less: cc_name = "LT"; break; case greater: cc_name = "GT"; break; case less_equal: cc_name = "LE"; break; case greater_equal: cc_name = "GE"; break; case equal: cc_name = "EQ"; break; case not_equal: cc_name = "NE"; break; default: cc_name = "UnknownCondition"; break; } const char* strict_name = ""; if (strict_ && (cc_ == equal || cc_ == not_equal)) { strict_name = "_STRICT"; } const char* never_nan_nan_name = ""; if (never_nan_nan_ && (cc_ == equal || cc_ == not_equal)) { never_nan_nan_name = "_NO_NAN"; } const char* include_number_compare_name = ""; if (!include_number_compare_) { include_number_compare_name = "_NO_NUMBER"; } const char* include_smi_compare_name = ""; if (!include_smi_compare_) { include_smi_compare_name = "_NO_SMI"; } OS::SNPrintF(Vector(name_, kMaxNameLength), "CompareStub_%s%s%s%s", cc_name, strict_name, never_nan_nan_name, include_number_compare_name, include_smi_compare_name); return name_; } // ------------------------------------------------------------------------- // StringCharCodeAtGenerator void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { Label flat_string; Label ascii_string; Label got_char_code; // If the receiver is a smi trigger the non-string case. __ JumpIfSmi(object_, receiver_not_string_); // Fetch the instance type of the receiver into result register. __ movq(result_, FieldOperand(object_, HeapObject::kMapOffset)); __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); // If the receiver is not a string trigger the non-string case. __ testb(result_, Immediate(kIsNotStringMask)); __ j(not_zero, receiver_not_string_); // If the index is non-smi trigger the non-smi case. __ JumpIfNotSmi(index_, &index_not_smi_); // Put smi-tagged index into scratch register. __ movq(scratch_, index_); __ bind(&got_smi_index_); // Check for index out of range. __ SmiCompare(scratch_, FieldOperand(object_, String::kLengthOffset)); __ j(above_equal, index_out_of_range_); // We need special handling for non-flat strings. STATIC_ASSERT(kSeqStringTag == 0); __ testb(result_, Immediate(kStringRepresentationMask)); __ j(zero, &flat_string); // Handle non-flat strings. __ testb(result_, Immediate(kIsConsStringMask)); __ j(zero, &call_runtime_); // ConsString. // Check whether the right hand side is the empty string (i.e. if // this is really a flat string in a cons string). If that is not // the case we would rather go to the runtime system now to flatten // the string. __ CompareRoot(FieldOperand(object_, ConsString::kSecondOffset), Heap::kEmptyStringRootIndex); __ j(not_equal, &call_runtime_); // Get the first of the two strings and load its instance type. __ movq(object_, FieldOperand(object_, ConsString::kFirstOffset)); __ movq(result_, FieldOperand(object_, HeapObject::kMapOffset)); __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); // If the first cons component is also non-flat, then go to runtime. STATIC_ASSERT(kSeqStringTag == 0); __ testb(result_, Immediate(kStringRepresentationMask)); __ j(not_zero, &call_runtime_); // Check for 1-byte or 2-byte string. __ bind(&flat_string); STATIC_ASSERT(kAsciiStringTag != 0); __ testb(result_, Immediate(kStringEncodingMask)); __ j(not_zero, &ascii_string); // 2-byte string. // Load the 2-byte character code into the result register. __ SmiToInteger32(scratch_, scratch_); __ movzxwl(result_, FieldOperand(object_, scratch_, times_2, SeqTwoByteString::kHeaderSize)); __ jmp(&got_char_code); // ASCII string. // Load the byte into the result register. __ bind(&ascii_string); __ SmiToInteger32(scratch_, scratch_); __ movzxbl(result_, FieldOperand(object_, scratch_, times_1, SeqAsciiString::kHeaderSize)); __ bind(&got_char_code); __ Integer32ToSmi(result_, result_); __ bind(&exit_); } void StringCharCodeAtGenerator::GenerateSlow( MacroAssembler* masm, const RuntimeCallHelper& call_helper) { __ Abort("Unexpected fallthrough to CharCodeAt slow case"); // Index is not a smi. __ bind(&index_not_smi_); // If index is a heap number, try converting it to an integer. __ CheckMap(index_, Factory::heap_number_map(), index_not_number_, true); call_helper.BeforeCall(masm); __ push(object_); __ push(index_); __ push(index_); // Consumed by runtime conversion function. if (index_flags_ == STRING_INDEX_IS_NUMBER) { __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1); } else { ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX); // NumberToSmi discards numbers that are not exact integers. __ CallRuntime(Runtime::kNumberToSmi, 1); } if (!scratch_.is(rax)) { // Save the conversion result before the pop instructions below // have a chance to overwrite it. __ movq(scratch_, rax); } __ pop(index_); __ pop(object_); // Reload the instance type. __ movq(result_, FieldOperand(object_, HeapObject::kMapOffset)); __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); call_helper.AfterCall(masm); // If index is still not a smi, it must be out of range. __ JumpIfNotSmi(scratch_, index_out_of_range_); // Otherwise, return to the fast path. __ jmp(&got_smi_index_); // Call runtime. We get here when the receiver is a string and the // index is a number, but the code of getting the actual character // is too complex (e.g., when the string needs to be flattened). __ bind(&call_runtime_); call_helper.BeforeCall(masm); __ push(object_); __ push(index_); __ CallRuntime(Runtime::kStringCharCodeAt, 2); if (!result_.is(rax)) { __ movq(result_, rax); } call_helper.AfterCall(masm); __ jmp(&exit_); __ Abort("Unexpected fallthrough from CharCodeAt slow case"); } // ------------------------------------------------------------------------- // StringCharFromCodeGenerator void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) { // Fast case of Heap::LookupSingleCharacterStringFromCode. __ JumpIfNotSmi(code_, &slow_case_); __ SmiCompare(code_, Smi::FromInt(String::kMaxAsciiCharCode)); __ j(above, &slow_case_); __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex); SmiIndex index = masm->SmiToIndex(kScratchRegister, code_, kPointerSizeLog2); __ movq(result_, FieldOperand(result_, index.reg, index.scale, FixedArray::kHeaderSize)); __ CompareRoot(result_, Heap::kUndefinedValueRootIndex); __ j(equal, &slow_case_); __ bind(&exit_); } void StringCharFromCodeGenerator::GenerateSlow( MacroAssembler* masm, const RuntimeCallHelper& call_helper) { __ Abort("Unexpected fallthrough to CharFromCode slow case"); __ bind(&slow_case_); call_helper.BeforeCall(masm); __ push(code_); __ CallRuntime(Runtime::kCharFromCode, 1); if (!result_.is(rax)) { __ movq(result_, rax); } call_helper.AfterCall(masm); __ jmp(&exit_); __ Abort("Unexpected fallthrough from CharFromCode slow case"); } // ------------------------------------------------------------------------- // StringCharAtGenerator void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) { char_code_at_generator_.GenerateFast(masm); char_from_code_generator_.GenerateFast(masm); } void StringCharAtGenerator::GenerateSlow( MacroAssembler* masm, const RuntimeCallHelper& call_helper) { char_code_at_generator_.GenerateSlow(masm, call_helper); char_from_code_generator_.GenerateSlow(masm, call_helper); } void StringAddStub::Generate(MacroAssembler* masm) { Label string_add_runtime; // Load the two arguments. __ movq(rax, Operand(rsp, 2 * kPointerSize)); // First argument. __ movq(rdx, Operand(rsp, 1 * kPointerSize)); // Second argument. // Make sure that both arguments are strings if not known in advance. if (string_check_) { Condition is_smi; is_smi = masm->CheckSmi(rax); __ j(is_smi, &string_add_runtime); __ CmpObjectType(rax, FIRST_NONSTRING_TYPE, r8); __ j(above_equal, &string_add_runtime); // First argument is a a string, test second. is_smi = masm->CheckSmi(rdx); __ j(is_smi, &string_add_runtime); __ CmpObjectType(rdx, FIRST_NONSTRING_TYPE, r9); __ j(above_equal, &string_add_runtime); } // Both arguments are strings. // rax: first string // rdx: second string // Check if either of the strings are empty. In that case return the other. NearLabel second_not_zero_length, both_not_zero_length; __ movq(rcx, FieldOperand(rdx, String::kLengthOffset)); __ SmiTest(rcx); __ j(not_zero, &second_not_zero_length); // Second string is empty, result is first string which is already in rax. __ IncrementCounter(&Counters::string_add_native, 1); __ ret(2 * kPointerSize); __ bind(&second_not_zero_length); __ movq(rbx, FieldOperand(rax, String::kLengthOffset)); __ SmiTest(rbx); __ j(not_zero, &both_not_zero_length); // First string is empty, result is second string which is in rdx. __ movq(rax, rdx); __ IncrementCounter(&Counters::string_add_native, 1); __ ret(2 * kPointerSize); // Both strings are non-empty. // rax: first string // rbx: length of first string // rcx: length of second string // rdx: second string // r8: map of first string if string check was performed above // r9: map of second string if string check was performed above Label string_add_flat_result, longer_than_two; __ bind(&both_not_zero_length); // If arguments where known to be strings, maps are not loaded to r8 and r9 // by the code above. if (!string_check_) { __ movq(r8, FieldOperand(rax, HeapObject::kMapOffset)); __ movq(r9, FieldOperand(rdx, HeapObject::kMapOffset)); } // Get the instance types of the two strings as they will be needed soon. __ movzxbl(r8, FieldOperand(r8, Map::kInstanceTypeOffset)); __ movzxbl(r9, FieldOperand(r9, Map::kInstanceTypeOffset)); // Look at the length of the result of adding the two strings. STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue / 2); __ SmiAdd(rbx, rbx, rcx); // Use the runtime system when adding two one character strings, as it // contains optimizations for this specific case using the symbol table. __ SmiCompare(rbx, Smi::FromInt(2)); __ j(not_equal, &longer_than_two); // Check that both strings are non-external ascii strings. __ JumpIfBothInstanceTypesAreNotSequentialAscii(r8, r9, rbx, rcx, &string_add_runtime); // Get the two characters forming the sub string. __ movzxbq(rbx, FieldOperand(rax, SeqAsciiString::kHeaderSize)); __ movzxbq(rcx, FieldOperand(rdx, SeqAsciiString::kHeaderSize)); // Try to lookup two character string in symbol table. If it is not found // just allocate a new one. Label make_two_character_string, make_flat_ascii_string; StringHelper::GenerateTwoCharacterSymbolTableProbe( masm, rbx, rcx, r14, r11, rdi, r12, &make_two_character_string); __ IncrementCounter(&Counters::string_add_native, 1); __ ret(2 * kPointerSize); __ bind(&make_two_character_string); __ Set(rbx, 2); __ jmp(&make_flat_ascii_string); __ bind(&longer_than_two); // Check if resulting string will be flat. __ SmiCompare(rbx, Smi::FromInt(String::kMinNonFlatLength)); __ j(below, &string_add_flat_result); // Handle exceptionally long strings in the runtime system. STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0); __ SmiCompare(rbx, Smi::FromInt(String::kMaxLength)); __ j(above, &string_add_runtime); // If result is not supposed to be flat, allocate a cons string object. If // both strings are ascii the result is an ascii cons string. // rax: first string // rbx: length of resulting flat string // rdx: second string // r8: instance type of first string // r9: instance type of second string Label non_ascii, allocated, ascii_data; __ movl(rcx, r8); __ and_(rcx, r9); STATIC_ASSERT(kStringEncodingMask == kAsciiStringTag); __ testl(rcx, Immediate(kAsciiStringTag)); __ j(zero, &non_ascii); __ bind(&ascii_data); // Allocate an acsii cons string. __ AllocateAsciiConsString(rcx, rdi, no_reg, &string_add_runtime); __ bind(&allocated); // Fill the fields of the cons string. __ movq(FieldOperand(rcx, ConsString::kLengthOffset), rbx); __ movq(FieldOperand(rcx, ConsString::kHashFieldOffset), Immediate(String::kEmptyHashField)); __ movq(FieldOperand(rcx, ConsString::kFirstOffset), rax); __ movq(FieldOperand(rcx, ConsString::kSecondOffset), rdx); __ movq(rax, rcx); __ IncrementCounter(&Counters::string_add_native, 1); __ ret(2 * kPointerSize); __ bind(&non_ascii); // At least one of the strings is two-byte. Check whether it happens // to contain only ascii characters. // rcx: first instance type AND second instance type. // r8: first instance type. // r9: second instance type. __ testb(rcx, Immediate(kAsciiDataHintMask)); __ j(not_zero, &ascii_data); __ xor_(r8, r9); STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0); __ andb(r8, Immediate(kAsciiStringTag | kAsciiDataHintTag)); __ cmpb(r8, Immediate(kAsciiStringTag | kAsciiDataHintTag)); __ j(equal, &ascii_data); // Allocate a two byte cons string. __ AllocateConsString(rcx, rdi, no_reg, &string_add_runtime); __ jmp(&allocated); // Handle creating a flat result. First check that both strings are not // external strings. // rax: first string // rbx: length of resulting flat string as smi // rdx: second string // r8: instance type of first string // r9: instance type of first string __ bind(&string_add_flat_result); __ SmiToInteger32(rbx, rbx); __ movl(rcx, r8); __ and_(rcx, Immediate(kStringRepresentationMask)); __ cmpl(rcx, Immediate(kExternalStringTag)); __ j(equal, &string_add_runtime); __ movl(rcx, r9); __ and_(rcx, Immediate(kStringRepresentationMask)); __ cmpl(rcx, Immediate(kExternalStringTag)); __ j(equal, &string_add_runtime); // Now check if both strings are ascii strings. // rax: first string // rbx: length of resulting flat string // rdx: second string // r8: instance type of first string // r9: instance type of second string Label non_ascii_string_add_flat_result; STATIC_ASSERT(kStringEncodingMask == kAsciiStringTag); __ testl(r8, Immediate(kAsciiStringTag)); __ j(zero, &non_ascii_string_add_flat_result); __ testl(r9, Immediate(kAsciiStringTag)); __ j(zero, &string_add_runtime); __ bind(&make_flat_ascii_string); // Both strings are ascii strings. As they are short they are both flat. __ AllocateAsciiString(rcx, rbx, rdi, r14, r11, &string_add_runtime); // rcx: result string __ movq(rbx, rcx); // Locate first character of result. __ addq(rcx, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); // Locate first character of first argument __ SmiToInteger32(rdi, FieldOperand(rax, String::kLengthOffset)); __ addq(rax, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); // rax: first char of first argument // rbx: result string // rcx: first character of result // rdx: second string // rdi: length of first argument StringHelper::GenerateCopyCharacters(masm, rcx, rax, rdi, true); // Locate first character of second argument. __ SmiToInteger32(rdi, FieldOperand(rdx, String::kLengthOffset)); __ addq(rdx, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); // rbx: result string // rcx: next character of result // rdx: first char of second argument // rdi: length of second argument StringHelper::GenerateCopyCharacters(masm, rcx, rdx, rdi, true); __ movq(rax, rbx); __ IncrementCounter(&Counters::string_add_native, 1); __ ret(2 * kPointerSize); // Handle creating a flat two byte result. // rax: first string - known to be two byte // rbx: length of resulting flat string // rdx: second string // r8: instance type of first string // r9: instance type of first string __ bind(&non_ascii_string_add_flat_result); __ and_(r9, Immediate(kAsciiStringTag)); __ j(not_zero, &string_add_runtime); // Both strings are two byte strings. As they are short they are both // flat. __ AllocateTwoByteString(rcx, rbx, rdi, r14, r11, &string_add_runtime); // rcx: result string __ movq(rbx, rcx); // Locate first character of result. __ addq(rcx, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); // Locate first character of first argument. __ SmiToInteger32(rdi, FieldOperand(rax, String::kLengthOffset)); __ addq(rax, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); // rax: first char of first argument // rbx: result string // rcx: first character of result // rdx: second argument // rdi: length of first argument StringHelper::GenerateCopyCharacters(masm, rcx, rax, rdi, false); // Locate first character of second argument. __ SmiToInteger32(rdi, FieldOperand(rdx, String::kLengthOffset)); __ addq(rdx, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); // rbx: result string // rcx: next character of result // rdx: first char of second argument // rdi: length of second argument StringHelper::GenerateCopyCharacters(masm, rcx, rdx, rdi, false); __ movq(rax, rbx); __ IncrementCounter(&Counters::string_add_native, 1); __ ret(2 * kPointerSize); // Just jump to runtime to add the two strings. __ bind(&string_add_runtime); __ TailCallRuntime(Runtime::kStringAdd, 2, 1); } void StringHelper::GenerateCopyCharacters(MacroAssembler* masm, Register dest, Register src, Register count, bool ascii) { Label loop; __ bind(&loop); // This loop just copies one character at a time, as it is only used for very // short strings. if (ascii) { __ movb(kScratchRegister, Operand(src, 0)); __ movb(Operand(dest, 0), kScratchRegister); __ incq(src); __ incq(dest); } else { __ movzxwl(kScratchRegister, Operand(src, 0)); __ movw(Operand(dest, 0), kScratchRegister); __ addq(src, Immediate(2)); __ addq(dest, Immediate(2)); } __ decl(count); __ j(not_zero, &loop); } void StringHelper::GenerateCopyCharactersREP(MacroAssembler* masm, Register dest, Register src, Register count, bool ascii) { // Copy characters using rep movs of doublewords. Align destination on 4 byte // boundary before starting rep movs. Copy remaining characters after running // rep movs. // Count is positive int32, dest and src are character pointers. ASSERT(dest.is(rdi)); // rep movs destination ASSERT(src.is(rsi)); // rep movs source ASSERT(count.is(rcx)); // rep movs count // Nothing to do for zero characters. NearLabel done; __ testl(count, count); __ j(zero, &done); // Make count the number of bytes to copy. if (!ascii) { STATIC_ASSERT(2 == sizeof(uc16)); __ addl(count, count); } // Don't enter the rep movs if there are less than 4 bytes to copy. NearLabel last_bytes; __ testl(count, Immediate(~7)); __ j(zero, &last_bytes); // Copy from edi to esi using rep movs instruction. __ movl(kScratchRegister, count); __ shr(count, Immediate(3)); // Number of doublewords to copy. __ repmovsq(); // Find number of bytes left. __ movl(count, kScratchRegister); __ and_(count, Immediate(7)); // Check if there are more bytes to copy. __ bind(&last_bytes); __ testl(count, count); __ j(zero, &done); // Copy remaining characters. Label loop; __ bind(&loop); __ movb(kScratchRegister, Operand(src, 0)); __ movb(Operand(dest, 0), kScratchRegister); __ incq(src); __ incq(dest); __ decl(count); __ j(not_zero, &loop); __ bind(&done); } void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm, Register c1, Register c2, Register scratch1, Register scratch2, Register scratch3, Register scratch4, Label* not_found) { // Register scratch3 is the general scratch register in this function. Register scratch = scratch3; // Make sure that both characters are not digits as such strings has a // different hash algorithm. Don't try to look for these in the symbol table. NearLabel not_array_index; __ leal(scratch, Operand(c1, -'0')); __ cmpl(scratch, Immediate(static_cast('9' - '0'))); __ j(above, ¬_array_index); __ leal(scratch, Operand(c2, -'0')); __ cmpl(scratch, Immediate(static_cast('9' - '0'))); __ j(below_equal, not_found); __ bind(¬_array_index); // Calculate the two character string hash. Register hash = scratch1; GenerateHashInit(masm, hash, c1, scratch); GenerateHashAddCharacter(masm, hash, c2, scratch); GenerateHashGetHash(masm, hash, scratch); // Collect the two characters in a register. Register chars = c1; __ shl(c2, Immediate(kBitsPerByte)); __ orl(chars, c2); // chars: two character string, char 1 in byte 0 and char 2 in byte 1. // hash: hash of two character string. // Load the symbol table. Register symbol_table = c2; __ LoadRoot(symbol_table, Heap::kSymbolTableRootIndex); // Calculate capacity mask from the symbol table capacity. Register mask = scratch2; __ SmiToInteger32(mask, FieldOperand(symbol_table, SymbolTable::kCapacityOffset)); __ decl(mask); Register undefined = scratch4; __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex); // Registers // chars: two character string, char 1 in byte 0 and char 2 in byte 1. // hash: hash of two character string (32-bit int) // symbol_table: symbol table // mask: capacity mask (32-bit int) // undefined: undefined value // scratch: - // Perform a number of probes in the symbol table. static const int kProbes = 4; Label found_in_symbol_table; Label next_probe[kProbes]; for (int i = 0; i < kProbes; i++) { // Calculate entry in symbol table. __ movl(scratch, hash); if (i > 0) { __ addl(scratch, Immediate(SymbolTable::GetProbeOffset(i))); } __ andl(scratch, mask); // Load the entry from the symble table. Register candidate = scratch; // Scratch register contains candidate. STATIC_ASSERT(SymbolTable::kEntrySize == 1); __ movq(candidate, FieldOperand(symbol_table, scratch, times_pointer_size, SymbolTable::kElementsStartOffset)); // If entry is undefined no string with this hash can be found. __ cmpq(candidate, undefined); __ j(equal, not_found); // If length is not 2 the string is not a candidate. __ SmiCompare(FieldOperand(candidate, String::kLengthOffset), Smi::FromInt(2)); __ j(not_equal, &next_probe[i]); // We use kScratchRegister as a temporary register in assumption that // JumpIfInstanceTypeIsNotSequentialAscii does not use it implicitly Register temp = kScratchRegister; // Check that the candidate is a non-external ascii string. __ movq(temp, FieldOperand(candidate, HeapObject::kMapOffset)); __ movzxbl(temp, FieldOperand(temp, Map::kInstanceTypeOffset)); __ JumpIfInstanceTypeIsNotSequentialAscii( temp, temp, &next_probe[i]); // Check if the two characters match. __ movl(temp, FieldOperand(candidate, SeqAsciiString::kHeaderSize)); __ andl(temp, Immediate(0x0000ffff)); __ cmpl(chars, temp); __ j(equal, &found_in_symbol_table); __ bind(&next_probe[i]); } // No matching 2 character string found by probing. __ jmp(not_found); // Scratch register contains result when we fall through to here. Register result = scratch; __ bind(&found_in_symbol_table); if (!result.is(rax)) { __ movq(rax, result); } } void StringHelper::GenerateHashInit(MacroAssembler* masm, Register hash, Register character, Register scratch) { // hash = character + (character << 10); __ movl(hash, character); __ shll(hash, Immediate(10)); __ addl(hash, character); // hash ^= hash >> 6; __ movl(scratch, hash); __ sarl(scratch, Immediate(6)); __ xorl(hash, scratch); } void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm, Register hash, Register character, Register scratch) { // hash += character; __ addl(hash, character); // hash += hash << 10; __ movl(scratch, hash); __ shll(scratch, Immediate(10)); __ addl(hash, scratch); // hash ^= hash >> 6; __ movl(scratch, hash); __ sarl(scratch, Immediate(6)); __ xorl(hash, scratch); } void StringHelper::GenerateHashGetHash(MacroAssembler* masm, Register hash, Register scratch) { // hash += hash << 3; __ leal(hash, Operand(hash, hash, times_8, 0)); // hash ^= hash >> 11; __ movl(scratch, hash); __ sarl(scratch, Immediate(11)); __ xorl(hash, scratch); // hash += hash << 15; __ movl(scratch, hash); __ shll(scratch, Immediate(15)); __ addl(hash, scratch); // if (hash == 0) hash = 27; Label hash_not_zero; __ j(not_zero, &hash_not_zero); __ movl(hash, Immediate(27)); __ bind(&hash_not_zero); } void SubStringStub::Generate(MacroAssembler* masm) { Label runtime; // Stack frame on entry. // rsp[0]: return address // rsp[8]: to // rsp[16]: from // rsp[24]: string const int kToOffset = 1 * kPointerSize; const int kFromOffset = kToOffset + kPointerSize; const int kStringOffset = kFromOffset + kPointerSize; const int kArgumentsSize = (kStringOffset + kPointerSize) - kToOffset; // Make sure first argument is a string. __ movq(rax, Operand(rsp, kStringOffset)); STATIC_ASSERT(kSmiTag == 0); __ testl(rax, Immediate(kSmiTagMask)); __ j(zero, &runtime); Condition is_string = masm->IsObjectStringType(rax, rbx, rbx); __ j(NegateCondition(is_string), &runtime); // rax: string // rbx: instance type // Calculate length of sub string using the smi values. Label result_longer_than_two; __ movq(rcx, Operand(rsp, kToOffset)); __ movq(rdx, Operand(rsp, kFromOffset)); __ JumpUnlessBothNonNegativeSmi(rcx, rdx, &runtime); __ SmiSub(rcx, rcx, rdx); // Overflow doesn't happen. __ cmpq(FieldOperand(rax, String::kLengthOffset), rcx); Label return_rax; __ j(equal, &return_rax); // Special handling of sub-strings of length 1 and 2. One character strings // are handled in the runtime system (looked up in the single character // cache). Two character strings are looked for in the symbol cache. __ SmiToInteger32(rcx, rcx); __ cmpl(rcx, Immediate(2)); __ j(greater, &result_longer_than_two); __ j(less, &runtime); // Sub string of length 2 requested. // rax: string // rbx: instance type // rcx: sub string length (value is 2) // rdx: from index (smi) __ JumpIfInstanceTypeIsNotSequentialAscii(rbx, rbx, &runtime); // Get the two characters forming the sub string. __ SmiToInteger32(rdx, rdx); // From index is no longer smi. __ movzxbq(rbx, FieldOperand(rax, rdx, times_1, SeqAsciiString::kHeaderSize)); __ movzxbq(rcx, FieldOperand(rax, rdx, times_1, SeqAsciiString::kHeaderSize + 1)); // Try to lookup two character string in symbol table. Label make_two_character_string; StringHelper::GenerateTwoCharacterSymbolTableProbe( masm, rbx, rcx, rax, rdx, rdi, r14, &make_two_character_string); __ ret(3 * kPointerSize); __ bind(&make_two_character_string); // Setup registers for allocating the two character string. __ movq(rax, Operand(rsp, kStringOffset)); __ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset)); __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset)); __ Set(rcx, 2); __ bind(&result_longer_than_two); // rax: string // rbx: instance type // rcx: result string length // Check for flat ascii string Label non_ascii_flat; __ JumpIfInstanceTypeIsNotSequentialAscii(rbx, rbx, &non_ascii_flat); // Allocate the result. __ AllocateAsciiString(rax, rcx, rbx, rdx, rdi, &runtime); // rax: result string // rcx: result string length __ movq(rdx, rsi); // esi used by following code. // Locate first character of result. __ lea(rdi, FieldOperand(rax, SeqAsciiString::kHeaderSize)); // Load string argument and locate character of sub string start. __ movq(rsi, Operand(rsp, kStringOffset)); __ movq(rbx, Operand(rsp, kFromOffset)); { SmiIndex smi_as_index = masm->SmiToIndex(rbx, rbx, times_1); __ lea(rsi, Operand(rsi, smi_as_index.reg, smi_as_index.scale, SeqAsciiString::kHeaderSize - kHeapObjectTag)); } // rax: result string // rcx: result length // rdx: original value of rsi // rdi: first character of result // rsi: character of sub string start StringHelper::GenerateCopyCharactersREP(masm, rdi, rsi, rcx, true); __ movq(rsi, rdx); // Restore rsi. __ IncrementCounter(&Counters::sub_string_native, 1); __ ret(kArgumentsSize); __ bind(&non_ascii_flat); // rax: string // rbx: instance type & kStringRepresentationMask | kStringEncodingMask // rcx: result string length // Check for sequential two byte string __ cmpb(rbx, Immediate(kSeqStringTag | kTwoByteStringTag)); __ j(not_equal, &runtime); // Allocate the result. __ AllocateTwoByteString(rax, rcx, rbx, rdx, rdi, &runtime); // rax: result string // rcx: result string length __ movq(rdx, rsi); // esi used by following code. // Locate first character of result. __ lea(rdi, FieldOperand(rax, SeqTwoByteString::kHeaderSize)); // Load string argument and locate character of sub string start. __ movq(rsi, Operand(rsp, kStringOffset)); __ movq(rbx, Operand(rsp, kFromOffset)); { SmiIndex smi_as_index = masm->SmiToIndex(rbx, rbx, times_2); __ lea(rsi, Operand(rsi, smi_as_index.reg, smi_as_index.scale, SeqAsciiString::kHeaderSize - kHeapObjectTag)); } // rax: result string // rcx: result length // rdx: original value of rsi // rdi: first character of result // rsi: character of sub string start StringHelper::GenerateCopyCharactersREP(masm, rdi, rsi, rcx, false); __ movq(rsi, rdx); // Restore esi. __ bind(&return_rax); __ IncrementCounter(&Counters::sub_string_native, 1); __ ret(kArgumentsSize); // Just jump to runtime to create the sub string. __ bind(&runtime); __ TailCallRuntime(Runtime::kSubString, 3, 1); } void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm, Register left, Register right, Register scratch1, Register scratch2, Register scratch3, Register scratch4) { // Ensure that you can always subtract a string length from a non-negative // number (e.g. another length). STATIC_ASSERT(String::kMaxLength < 0x7fffffff); // Find minimum length and length difference. __ movq(scratch1, FieldOperand(left, String::kLengthOffset)); __ movq(scratch4, scratch1); __ SmiSub(scratch4, scratch4, FieldOperand(right, String::kLengthOffset)); // Register scratch4 now holds left.length - right.length. const Register length_difference = scratch4; NearLabel left_shorter; __ j(less, &left_shorter); // The right string isn't longer that the left one. // Get the right string's length by subtracting the (non-negative) difference // from the left string's length. __ SmiSub(scratch1, scratch1, length_difference); __ bind(&left_shorter); // Register scratch1 now holds Min(left.length, right.length). const Register min_length = scratch1; NearLabel compare_lengths; // If min-length is zero, go directly to comparing lengths. __ SmiTest(min_length); __ j(zero, &compare_lengths); __ SmiToInteger32(min_length, min_length); // Registers scratch2 and scratch3 are free. NearLabel result_not_equal; Label loop; { // Check characters 0 .. min_length - 1 in a loop. // Use scratch3 as loop index, min_length as limit and scratch2 // for computation. const Register index = scratch3; __ movl(index, Immediate(0)); // Index into strings. __ bind(&loop); // Compare characters. // TODO(lrn): Could we load more than one character at a time? __ movb(scratch2, FieldOperand(left, index, times_1, SeqAsciiString::kHeaderSize)); // Increment index and use -1 modifier on next load to give // the previous load extra time to complete. __ addl(index, Immediate(1)); __ cmpb(scratch2, FieldOperand(right, index, times_1, SeqAsciiString::kHeaderSize - 1)); __ j(not_equal, &result_not_equal); __ cmpl(index, min_length); __ j(not_equal, &loop); } // Completed loop without finding different characters. // Compare lengths (precomputed). __ bind(&compare_lengths); __ SmiTest(length_difference); __ j(not_zero, &result_not_equal); // Result is EQUAL. __ Move(rax, Smi::FromInt(EQUAL)); __ ret(0); NearLabel result_greater; __ bind(&result_not_equal); // Unequal comparison of left to right, either character or length. __ j(greater, &result_greater); // Result is LESS. __ Move(rax, Smi::FromInt(LESS)); __ ret(0); // Result is GREATER. __ bind(&result_greater); __ Move(rax, Smi::FromInt(GREATER)); __ ret(0); } void StringCompareStub::Generate(MacroAssembler* masm) { Label runtime; // Stack frame on entry. // rsp[0]: return address // rsp[8]: right string // rsp[16]: left string __ movq(rdx, Operand(rsp, 2 * kPointerSize)); // left __ movq(rax, Operand(rsp, 1 * kPointerSize)); // right // Check for identity. NearLabel not_same; __ cmpq(rdx, rax); __ j(not_equal, ¬_same); __ Move(rax, Smi::FromInt(EQUAL)); __ IncrementCounter(&Counters::string_compare_native, 1); __ ret(2 * kPointerSize); __ bind(¬_same); // Check that both are sequential ASCII strings. __ JumpIfNotBothSequentialAsciiStrings(rdx, rax, rcx, rbx, &runtime); // Inline comparison of ascii strings. __ IncrementCounter(&Counters::string_compare_native, 1); // Drop arguments from the stack __ pop(rcx); __ addq(rsp, Immediate(2 * kPointerSize)); __ push(rcx); GenerateCompareFlatAsciiStrings(masm, rdx, rax, rcx, rbx, rdi, r8); // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater) // tagged as a small integer. __ bind(&runtime); __ TailCallRuntime(Runtime::kStringCompare, 2, 1); } void ICCompareStub::GenerateSmis(MacroAssembler* masm) { ASSERT(state_ == CompareIC::SMIS); NearLabel miss; __ JumpIfNotBothSmi(rdx, rax, &miss); if (GetCondition() == equal) { // For equality we do not care about the sign of the result. __ SmiSub(rax, rax, rdx); } else { NearLabel done; __ SmiSub(rdx, rdx, rax); __ j(no_overflow, &done); // Correct sign of result in case of overflow. __ SmiNot(rdx, rdx); __ bind(&done); __ movq(rax, rdx); } __ ret(0); __ bind(&miss); GenerateMiss(masm); } void ICCompareStub::GenerateHeapNumbers(MacroAssembler* masm) { ASSERT(state_ == CompareIC::HEAP_NUMBERS); NearLabel generic_stub; NearLabel unordered; NearLabel miss; Condition either_smi = masm->CheckEitherSmi(rax, rdx); __ j(either_smi, &generic_stub); __ CmpObjectType(rax, HEAP_NUMBER_TYPE, rcx); __ j(not_equal, &miss); __ CmpObjectType(rdx, HEAP_NUMBER_TYPE, rcx); __ j(not_equal, &miss); // Load left and right operand __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset)); __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset)); // Compare operands __ ucomisd(xmm0, xmm1); // Don't base result on EFLAGS when a NaN is involved. __ j(parity_even, &unordered); // Return a result of -1, 0, or 1, based on EFLAGS. // Performing mov, because xor would destroy the flag register. __ movl(rax, Immediate(0)); __ movl(rcx, Immediate(0)); __ setcc(above, rax); // Add one to zero if carry clear and not equal. __ sbbq(rax, rcx); // Subtract one if below (aka. carry set). __ ret(0); __ bind(&unordered); CompareStub stub(GetCondition(), strict(), NO_COMPARE_FLAGS); __ bind(&generic_stub); __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET); __ bind(&miss); GenerateMiss(masm); } void ICCompareStub::GenerateObjects(MacroAssembler* masm) { ASSERT(state_ == CompareIC::OBJECTS); NearLabel miss; Condition either_smi = masm->CheckEitherSmi(rdx, rax); __ j(either_smi, &miss); __ CmpObjectType(rax, JS_OBJECT_TYPE, rcx); __ j(not_equal, &miss, not_taken); __ CmpObjectType(rdx, JS_OBJECT_TYPE, rcx); __ j(not_equal, &miss, not_taken); ASSERT(GetCondition() == equal); __ subq(rax, rdx); __ ret(0); __ bind(&miss); GenerateMiss(masm); } void ICCompareStub::GenerateMiss(MacroAssembler* masm) { // Save the registers. __ pop(rcx); __ push(rdx); __ push(rax); __ push(rcx); // Call the runtime system in a fresh internal frame. ExternalReference miss = ExternalReference(IC_Utility(IC::kCompareIC_Miss)); __ EnterInternalFrame(); __ push(rdx); __ push(rax); __ Push(Smi::FromInt(op_)); __ CallExternalReference(miss, 3); __ LeaveInternalFrame(); // Compute the entry point of the rewritten stub. __ lea(rdi, FieldOperand(rax, Code::kHeaderSize)); // Restore registers. __ pop(rcx); __ pop(rax); __ pop(rdx); __ push(rcx); // Do a tail call to the rewritten stub. __ jmp(rdi); } void GenerateFastPixelArrayLoad(MacroAssembler* masm, Register receiver, Register key, Register elements, Register untagged_key, Register result, Label* not_pixel_array, Label* key_not_smi, Label* out_of_range) { // Register use: // receiver - holds the receiver and is unchanged. // key - holds the key and is unchanged (must be a smi). // elements - is set to the the receiver's element if // the receiver doesn't have a pixel array or the // key is not a smi, otherwise it's the elements' // external pointer. // untagged_key - is set to the untagged key // Some callers already have verified that the key is a smi. key_not_smi is // set to NULL as a sentinel for that case. Otherwise, add an explicit check // to ensure the key is a smi must be added. if (key_not_smi != NULL) { __ JumpIfNotSmi(key, key_not_smi); } else { if (FLAG_debug_code) { __ AbortIfNotSmi(key); } } __ SmiToInteger32(untagged_key, key); // Verify that the receiver has pixel array elements. __ movq(elements, FieldOperand(receiver, JSObject::kElementsOffset)); __ CheckMap(elements, Factory::pixel_array_map(), not_pixel_array, true); // Check that the smi is in range. __ cmpl(untagged_key, FieldOperand(elements, PixelArray::kLengthOffset)); __ j(above_equal, out_of_range); // unsigned check handles negative keys. // Load and tag the element as a smi. __ movq(elements, FieldOperand(elements, PixelArray::kExternalPointerOffset)); __ movzxbq(result, Operand(elements, untagged_key, times_1, 0)); __ Integer32ToSmi(result, result); __ ret(0); } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_X64