// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/frames.h" #include #include "src/ast/ast.h" #include "src/ast/scopeinfo.h" #include "src/base/bits.h" #include "src/deoptimizer.h" #include "src/frames-inl.h" #include "src/full-codegen/full-codegen.h" #include "src/register-configuration.h" #include "src/safepoint-table.h" #include "src/string-stream.h" #include "src/vm-state-inl.h" namespace v8 { namespace internal { ReturnAddressLocationResolver StackFrame::return_address_location_resolver_ = NULL; // Iterator that supports traversing the stack handlers of a // particular frame. Needs to know the top of the handler chain. class StackHandlerIterator BASE_EMBEDDED { public: StackHandlerIterator(const StackFrame* frame, StackHandler* handler) : limit_(frame->fp()), handler_(handler) { // Make sure the handler has already been unwound to this frame. DCHECK(frame->sp() <= handler->address()); } StackHandler* handler() const { return handler_; } bool done() { return handler_ == NULL || handler_->address() > limit_; } void Advance() { DCHECK(!done()); handler_ = handler_->next(); } private: const Address limit_; StackHandler* handler_; }; // ------------------------------------------------------------------------- #define INITIALIZE_SINGLETON(type, field) field##_(this), StackFrameIteratorBase::StackFrameIteratorBase(Isolate* isolate, bool can_access_heap_objects) : isolate_(isolate), STACK_FRAME_TYPE_LIST(INITIALIZE_SINGLETON) frame_(NULL), handler_(NULL), can_access_heap_objects_(can_access_heap_objects) { } #undef INITIALIZE_SINGLETON StackFrameIterator::StackFrameIterator(Isolate* isolate) : StackFrameIteratorBase(isolate, true) { Reset(isolate->thread_local_top()); } StackFrameIterator::StackFrameIterator(Isolate* isolate, ThreadLocalTop* t) : StackFrameIteratorBase(isolate, true) { Reset(t); } void StackFrameIterator::Advance() { DCHECK(!done()); // Compute the state of the calling frame before restoring // callee-saved registers and unwinding handlers. This allows the // frame code that computes the caller state to access the top // handler and the value of any callee-saved register if needed. StackFrame::State state; StackFrame::Type type = frame_->GetCallerState(&state); // Unwind handlers corresponding to the current frame. StackHandlerIterator it(frame_, handler_); while (!it.done()) it.Advance(); handler_ = it.handler(); // Advance to the calling frame. frame_ = SingletonFor(type, &state); // When we're done iterating over the stack frames, the handler // chain must have been completely unwound. DCHECK(!done() || handler_ == NULL); } void StackFrameIterator::Reset(ThreadLocalTop* top) { StackFrame::State state; StackFrame::Type type = ExitFrame::GetStateForFramePointer( Isolate::c_entry_fp(top), &state); handler_ = StackHandler::FromAddress(Isolate::handler(top)); if (SingletonFor(type) == NULL) return; frame_ = SingletonFor(type, &state); } StackFrame* StackFrameIteratorBase::SingletonFor(StackFrame::Type type, StackFrame::State* state) { if (type == StackFrame::NONE) return NULL; StackFrame* result = SingletonFor(type); DCHECK(result != NULL); result->state_ = *state; return result; } StackFrame* StackFrameIteratorBase::SingletonFor(StackFrame::Type type) { #define FRAME_TYPE_CASE(type, field) \ case StackFrame::type: \ return &field##_; switch (type) { case StackFrame::NONE: return NULL; STACK_FRAME_TYPE_LIST(FRAME_TYPE_CASE) default: break; } return NULL; #undef FRAME_TYPE_CASE } // ------------------------------------------------------------------------- JavaScriptFrameIterator::JavaScriptFrameIterator( Isolate* isolate, StackFrame::Id id) : iterator_(isolate) { while (!done()) { Advance(); if (frame()->id() == id) return; } } void JavaScriptFrameIterator::Advance() { do { iterator_.Advance(); } while (!iterator_.done() && !iterator_.frame()->is_java_script()); } void JavaScriptFrameIterator::AdvanceToArgumentsFrame() { if (!frame()->has_adapted_arguments()) return; iterator_.Advance(); DCHECK(iterator_.frame()->is_arguments_adaptor()); } // ------------------------------------------------------------------------- StackTraceFrameIterator::StackTraceFrameIterator(Isolate* isolate) : JavaScriptFrameIterator(isolate) { if (!done() && !IsValidFrame()) Advance(); } void StackTraceFrameIterator::Advance() { while (true) { JavaScriptFrameIterator::Advance(); if (done()) return; if (IsValidFrame()) return; } } bool StackTraceFrameIterator::IsValidFrame() { if (!frame()->function()->IsJSFunction()) return false; Object* script = frame()->function()->shared()->script(); // Don't show functions from native scripts to user. return (script->IsScript() && Script::TYPE_NATIVE != Script::cast(script)->type()); } // ------------------------------------------------------------------------- SafeStackFrameIterator::SafeStackFrameIterator( Isolate* isolate, Address fp, Address sp, Address js_entry_sp) : StackFrameIteratorBase(isolate, false), low_bound_(sp), high_bound_(js_entry_sp), top_frame_type_(StackFrame::NONE), external_callback_scope_(isolate->external_callback_scope()) { StackFrame::State state; StackFrame::Type type; ThreadLocalTop* top = isolate->thread_local_top(); if (IsValidTop(top)) { type = ExitFrame::GetStateForFramePointer(Isolate::c_entry_fp(top), &state); top_frame_type_ = type; } else if (IsValidStackAddress(fp)) { DCHECK(fp != NULL); state.fp = fp; state.sp = sp; state.pc_address = StackFrame::ResolveReturnAddressLocation( reinterpret_cast(StandardFrame::ComputePCAddress(fp))); // StackFrame::ComputeType will read both kContextOffset and kMarkerOffset, // we check only that kMarkerOffset is within the stack bounds and do // compile time check that kContextOffset slot is pushed on the stack before // kMarkerOffset. STATIC_ASSERT(StandardFrameConstants::kMarkerOffset < StandardFrameConstants::kContextOffset); Address frame_marker = fp + StandardFrameConstants::kMarkerOffset; if (IsValidStackAddress(frame_marker)) { type = StackFrame::ComputeType(this, &state); top_frame_type_ = type; } else { // Mark the frame as JAVA_SCRIPT if we cannot determine its type. // The frame anyways will be skipped. type = StackFrame::JAVA_SCRIPT; // Top frame is incomplete so we cannot reliably determine its type. top_frame_type_ = StackFrame::NONE; } } else { return; } if (SingletonFor(type) == NULL) return; frame_ = SingletonFor(type, &state); DCHECK(frame_); Advance(); if (frame_ != NULL && !frame_->is_exit() && external_callback_scope_ != NULL && external_callback_scope_->scope_address() < frame_->fp()) { // Skip top ExternalCallbackScope if we already advanced to a JS frame // under it. Sampler will anyways take this top external callback. external_callback_scope_ = external_callback_scope_->previous(); } } bool SafeStackFrameIterator::IsValidTop(ThreadLocalTop* top) const { Address c_entry_fp = Isolate::c_entry_fp(top); if (!IsValidExitFrame(c_entry_fp)) return false; // There should be at least one JS_ENTRY stack handler. Address handler = Isolate::handler(top); if (handler == NULL) return false; // Check that there are no js frames on top of the native frames. return c_entry_fp < handler; } void SafeStackFrameIterator::AdvanceOneFrame() { DCHECK(!done()); StackFrame* last_frame = frame_; Address last_sp = last_frame->sp(), last_fp = last_frame->fp(); // Before advancing to the next stack frame, perform pointer validity tests. if (!IsValidFrame(last_frame) || !IsValidCaller(last_frame)) { frame_ = NULL; return; } // Advance to the previous frame. StackFrame::State state; StackFrame::Type type = frame_->GetCallerState(&state); if (SingletonFor(type) == NULL) { frame_ = NULL; return; } frame_ = SingletonFor(type, &state); DCHECK(frame_); // Check that we have actually moved to the previous frame in the stack. if (frame_->sp() < last_sp || frame_->fp() < last_fp) { frame_ = NULL; } } bool SafeStackFrameIterator::IsValidFrame(StackFrame* frame) const { return IsValidStackAddress(frame->sp()) && IsValidStackAddress(frame->fp()); } bool SafeStackFrameIterator::IsValidCaller(StackFrame* frame) { StackFrame::State state; if (frame->is_entry() || frame->is_entry_construct()) { // See EntryFrame::GetCallerState. It computes the caller FP address // and calls ExitFrame::GetStateForFramePointer on it. We need to be // sure that caller FP address is valid. Address caller_fp = Memory::Address_at( frame->fp() + EntryFrameConstants::kCallerFPOffset); if (!IsValidExitFrame(caller_fp)) return false; } else if (frame->is_arguments_adaptor()) { // See ArgumentsAdaptorFrame::GetCallerStackPointer. It assumes that // the number of arguments is stored on stack as Smi. We need to check // that it really an Smi. Object* number_of_args = reinterpret_cast(frame)-> GetExpression(0); if (!number_of_args->IsSmi()) { return false; } } frame->ComputeCallerState(&state); return IsValidStackAddress(state.sp) && IsValidStackAddress(state.fp) && SingletonFor(frame->GetCallerState(&state)) != NULL; } bool SafeStackFrameIterator::IsValidExitFrame(Address fp) const { if (!IsValidStackAddress(fp)) return false; Address sp = ExitFrame::ComputeStackPointer(fp); if (!IsValidStackAddress(sp)) return false; StackFrame::State state; ExitFrame::FillState(fp, sp, &state); return *state.pc_address != NULL; } void SafeStackFrameIterator::Advance() { while (true) { AdvanceOneFrame(); if (done()) return; if (frame_->is_java_script()) return; if (frame_->is_exit() && external_callback_scope_) { // Some of the EXIT frames may have ExternalCallbackScope allocated on // top of them. In that case the scope corresponds to the first EXIT // frame beneath it. There may be other EXIT frames on top of the // ExternalCallbackScope, just skip them as we cannot collect any useful // information about them. if (external_callback_scope_->scope_address() < frame_->fp()) { frame_->state_.pc_address = external_callback_scope_->callback_entrypoint_address(); external_callback_scope_ = external_callback_scope_->previous(); DCHECK(external_callback_scope_ == NULL || external_callback_scope_->scope_address() > frame_->fp()); return; } } } } // ------------------------------------------------------------------------- Code* StackFrame::GetSafepointData(Isolate* isolate, Address inner_pointer, SafepointEntry* safepoint_entry, unsigned* stack_slots) { InnerPointerToCodeCache::InnerPointerToCodeCacheEntry* entry = isolate->inner_pointer_to_code_cache()->GetCacheEntry(inner_pointer); if (!entry->safepoint_entry.is_valid()) { entry->safepoint_entry = entry->code->GetSafepointEntry(inner_pointer); DCHECK(entry->safepoint_entry.is_valid()); } else { DCHECK(entry->safepoint_entry.Equals( entry->code->GetSafepointEntry(inner_pointer))); } // Fill in the results and return the code. Code* code = entry->code; *safepoint_entry = entry->safepoint_entry; *stack_slots = code->stack_slots(); return code; } #ifdef DEBUG static bool GcSafeCodeContains(HeapObject* object, Address addr); #endif void StackFrame::IteratePc(ObjectVisitor* v, Address* pc_address, Address* constant_pool_address, Code* holder) { Address pc = *pc_address; DCHECK(GcSafeCodeContains(holder, pc)); unsigned pc_offset = static_cast(pc - holder->instruction_start()); Object* code = holder; v->VisitPointer(&code); if (code != holder) { holder = reinterpret_cast(code); pc = holder->instruction_start() + pc_offset; *pc_address = pc; if (FLAG_enable_embedded_constant_pool && constant_pool_address) { *constant_pool_address = holder->constant_pool(); } } } void StackFrame::SetReturnAddressLocationResolver( ReturnAddressLocationResolver resolver) { DCHECK(return_address_location_resolver_ == NULL); return_address_location_resolver_ = resolver; } StackFrame::Type StackFrame::ComputeType(const StackFrameIteratorBase* iterator, State* state) { DCHECK(state->fp != NULL); if (!iterator->can_access_heap_objects_) { // TODO(titzer): "can_access_heap_objects" is kind of bogus. It really // means that we are being called from the profiler, which can interrupt // the VM with a signal at any arbitrary instruction, with essentially // anything on the stack. So basically none of these checks are 100% // reliable. if (StandardFrame::IsArgumentsAdaptorFrame(state->fp)) { // An adapter frame has a special SMI constant for the context and // is not distinguished through the marker. return ARGUMENTS_ADAPTOR; } Object* marker = Memory::Object_at(state->fp + StandardFrameConstants::kMarkerOffset); if (marker->IsSmi()) { return static_cast(Smi::cast(marker)->value()); } else { return JAVA_SCRIPT; } } // Look up the code object to figure out the type of the stack frame. Code* code_obj = GetContainingCode(iterator->isolate(), *(state->pc_address)); Object* marker = Memory::Object_at(state->fp + StandardFrameConstants::kMarkerOffset); if (code_obj != nullptr) { switch (code_obj->kind()) { case Code::FUNCTION: return JAVA_SCRIPT; case Code::OPTIMIZED_FUNCTION: return OPTIMIZED; case Code::WASM_FUNCTION: return STUB; case Code::BUILTIN: if (!marker->IsSmi()) { if (StandardFrame::IsArgumentsAdaptorFrame(state->fp)) { // An adapter frame has a special SMI constant for the context and // is not distinguished through the marker. return ARGUMENTS_ADAPTOR; } else { // The interpreter entry trampoline has a non-SMI marker. DCHECK(code_obj->is_interpreter_entry_trampoline() || code_obj->is_interpreter_enter_bytecode_dispatch()); return INTERPRETED; } } break; // Marker encodes the frame type. case Code::HANDLER: if (!marker->IsSmi()) { // Only hydrogen code stub handlers can have a non-SMI marker. DCHECK(code_obj->is_hydrogen_stub()); return OPTIMIZED; } break; // Marker encodes the frame type. default: break; // Marker encodes the frame type. } } // Didn't find a code object, or the code kind wasn't specific enough. // The marker should encode the frame type. return static_cast(Smi::cast(marker)->value()); } #ifdef DEBUG bool StackFrame::can_access_heap_objects() const { return iterator_->can_access_heap_objects_; } #endif StackFrame::Type StackFrame::GetCallerState(State* state) const { ComputeCallerState(state); return ComputeType(iterator_, state); } Address StackFrame::UnpaddedFP() const { #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87 if (!is_optimized()) return fp(); int32_t alignment_state = Memory::int32_at( fp() + JavaScriptFrameConstants::kDynamicAlignmentStateOffset); return (alignment_state == kAlignmentPaddingPushed) ? (fp() + kPointerSize) : fp(); #else return fp(); #endif } Code* EntryFrame::unchecked_code() const { return isolate()->heap()->js_entry_code(); } void EntryFrame::ComputeCallerState(State* state) const { GetCallerState(state); } void EntryFrame::SetCallerFp(Address caller_fp) { const int offset = EntryFrameConstants::kCallerFPOffset; Memory::Address_at(this->fp() + offset) = caller_fp; } StackFrame::Type EntryFrame::GetCallerState(State* state) const { const int offset = EntryFrameConstants::kCallerFPOffset; Address fp = Memory::Address_at(this->fp() + offset); return ExitFrame::GetStateForFramePointer(fp, state); } Code* EntryConstructFrame::unchecked_code() const { return isolate()->heap()->js_construct_entry_code(); } Object*& ExitFrame::code_slot() const { const int offset = ExitFrameConstants::kCodeOffset; return Memory::Object_at(fp() + offset); } Code* ExitFrame::unchecked_code() const { return reinterpret_cast(code_slot()); } void ExitFrame::ComputeCallerState(State* state) const { // Set up the caller state. state->sp = caller_sp(); state->fp = Memory::Address_at(fp() + ExitFrameConstants::kCallerFPOffset); state->pc_address = ResolveReturnAddressLocation( reinterpret_cast(fp() + ExitFrameConstants::kCallerPCOffset)); if (FLAG_enable_embedded_constant_pool) { state->constant_pool_address = reinterpret_cast( fp() + ExitFrameConstants::kConstantPoolOffset); } } void ExitFrame::SetCallerFp(Address caller_fp) { Memory::Address_at(fp() + ExitFrameConstants::kCallerFPOffset) = caller_fp; } void ExitFrame::Iterate(ObjectVisitor* v) const { // The arguments are traversed as part of the expression stack of // the calling frame. IteratePc(v, pc_address(), constant_pool_address(), LookupCode()); v->VisitPointer(&code_slot()); } Address ExitFrame::GetCallerStackPointer() const { return fp() + ExitFrameConstants::kCallerSPDisplacement; } StackFrame::Type ExitFrame::GetStateForFramePointer(Address fp, State* state) { if (fp == 0) return NONE; Address sp = ComputeStackPointer(fp); FillState(fp, sp, state); DCHECK(*state->pc_address != NULL); return EXIT; } Address ExitFrame::ComputeStackPointer(Address fp) { return Memory::Address_at(fp + ExitFrameConstants::kSPOffset); } void ExitFrame::FillState(Address fp, Address sp, State* state) { state->sp = sp; state->fp = fp; state->pc_address = ResolveReturnAddressLocation( reinterpret_cast(sp - 1 * kPCOnStackSize)); // The constant pool recorded in the exit frame is not associated // with the pc in this state (the return address into a C entry // stub). ComputeCallerState will retrieve the constant pool // together with the associated caller pc. state->constant_pool_address = NULL; } Address StandardFrame::GetExpressionAddress(int n) const { const int offset = StandardFrameConstants::kExpressionsOffset; return fp() + offset - n * kPointerSize; } Object* StandardFrame::GetExpression(Address fp, int index) { return Memory::Object_at(GetExpressionAddress(fp, index)); } Address StandardFrame::GetExpressionAddress(Address fp, int n) { const int offset = StandardFrameConstants::kExpressionsOffset; return fp + offset - n * kPointerSize; } int StandardFrame::ComputeExpressionsCount() const { const int offset = StandardFrameConstants::kExpressionsOffset + kPointerSize; Address base = fp() + offset; Address limit = sp(); DCHECK(base >= limit); // stack grows downwards // Include register-allocated locals in number of expressions. return static_cast((base - limit) / kPointerSize); } void StandardFrame::ComputeCallerState(State* state) const { state->sp = caller_sp(); state->fp = caller_fp(); state->pc_address = ResolveReturnAddressLocation( reinterpret_cast(ComputePCAddress(fp()))); state->constant_pool_address = reinterpret_cast(ComputeConstantPoolAddress(fp())); } void StandardFrame::SetCallerFp(Address caller_fp) { Memory::Address_at(fp() + StandardFrameConstants::kCallerFPOffset) = caller_fp; } void StandardFrame::IterateCompiledFrame(ObjectVisitor* v) const { // Make sure that we're not doing "safe" stack frame iteration. We cannot // possibly find pointers in optimized frames in that state. DCHECK(can_access_heap_objects()); // Compute the safepoint information. unsigned stack_slots = 0; SafepointEntry safepoint_entry; Code* code = StackFrame::GetSafepointData( isolate(), pc(), &safepoint_entry, &stack_slots); unsigned slot_space = stack_slots * kPointerSize; // Visit the outgoing parameters. Object** parameters_base = &Memory::Object_at(sp()); Object** parameters_limit = &Memory::Object_at( fp() + JavaScriptFrameConstants::kFunctionOffset - slot_space); // Visit the parameters that may be on top of the saved registers. if (safepoint_entry.argument_count() > 0) { v->VisitPointers(parameters_base, parameters_base + safepoint_entry.argument_count()); parameters_base += safepoint_entry.argument_count(); } // Skip saved double registers. if (safepoint_entry.has_doubles()) { // Number of doubles not known at snapshot time. DCHECK(!isolate()->serializer_enabled()); parameters_base += RegisterConfiguration::ArchDefault(RegisterConfiguration::CRANKSHAFT) ->num_allocatable_double_registers() * kDoubleSize / kPointerSize; } // Visit the registers that contain pointers if any. if (safepoint_entry.HasRegisters()) { for (int i = kNumSafepointRegisters - 1; i >=0; i--) { if (safepoint_entry.HasRegisterAt(i)) { int reg_stack_index = MacroAssembler::SafepointRegisterStackIndex(i); v->VisitPointer(parameters_base + reg_stack_index); } } // Skip the words containing the register values. parameters_base += kNumSafepointRegisters; } // We're done dealing with the register bits. uint8_t* safepoint_bits = safepoint_entry.bits(); safepoint_bits += kNumSafepointRegisters >> kBitsPerByteLog2; // Visit the rest of the parameters. v->VisitPointers(parameters_base, parameters_limit); // Visit pointer spill slots and locals. for (unsigned index = 0; index < stack_slots; index++) { int byte_index = index >> kBitsPerByteLog2; int bit_index = index & (kBitsPerByte - 1); if ((safepoint_bits[byte_index] & (1U << bit_index)) != 0) { v->VisitPointer(parameters_limit + index); } } // Visit the return address in the callee and incoming arguments. IteratePc(v, pc_address(), constant_pool_address(), code); // Visit the context in stub frame and JavaScript frame. // Visit the function in JavaScript frame. Object** fixed_base = &Memory::Object_at( fp() + StandardFrameConstants::kMarkerOffset); Object** fixed_limit = &Memory::Object_at(fp()); v->VisitPointers(fixed_base, fixed_limit); } void StubFrame::Iterate(ObjectVisitor* v) const { IterateCompiledFrame(v); } Code* StubFrame::unchecked_code() const { return static_cast(isolate()->FindCodeObject(pc())); } Address StubFrame::GetCallerStackPointer() const { return fp() + ExitFrameConstants::kCallerSPDisplacement; } int StubFrame::GetNumberOfIncomingArguments() const { return 0; } void OptimizedFrame::Iterate(ObjectVisitor* v) const { IterateCompiledFrame(v); } void JavaScriptFrame::SetParameterValue(int index, Object* value) const { Memory::Object_at(GetParameterSlot(index)) = value; } bool JavaScriptFrame::IsConstructor() const { Address fp = caller_fp(); if (has_adapted_arguments()) { // Skip the arguments adaptor frame and look at the real caller. fp = Memory::Address_at(fp + StandardFrameConstants::kCallerFPOffset); } return IsConstructFrame(fp); } bool JavaScriptFrame::HasInlinedFrames() const { List functions(1); GetFunctions(&functions); return functions.length() > 1; } int JavaScriptFrame::GetArgumentsLength() const { // If there is an arguments adaptor frame get the arguments length from it. if (has_adapted_arguments()) { STATIC_ASSERT(ArgumentsAdaptorFrameConstants::kLengthOffset == StandardFrameConstants::kExpressionsOffset); return Smi::cast(GetExpression(caller_fp(), 0))->value(); } else { return GetNumberOfIncomingArguments(); } } Code* JavaScriptFrame::unchecked_code() const { return function()->code(); } int JavaScriptFrame::GetNumberOfIncomingArguments() const { DCHECK(can_access_heap_objects() && isolate()->heap()->gc_state() == Heap::NOT_IN_GC); return function()->shared()->internal_formal_parameter_count(); } Address JavaScriptFrame::GetCallerStackPointer() const { return fp() + StandardFrameConstants::kCallerSPOffset; } void JavaScriptFrame::GetFunctions(List* functions) const { DCHECK(functions->length() == 0); functions->Add(function()); } void JavaScriptFrame::Summarize(List* functions) { DCHECK(functions->length() == 0); Code* code = LookupCode(); int offset = static_cast(pc() - code->instruction_start()); AbstractCode* abstract_code = AbstractCode::cast(code); FrameSummary summary(receiver(), function(), abstract_code, offset, IsConstructor()); functions->Add(summary); } int JavaScriptFrame::LookupExceptionHandlerInTable( int* stack_slots, HandlerTable::CatchPrediction* prediction) { Code* code = LookupCode(); DCHECK(!code->is_optimized_code()); HandlerTable* table = HandlerTable::cast(code->handler_table()); int pc_offset = static_cast(pc() - code->entry()); return table->LookupRange(pc_offset, stack_slots, prediction); } void JavaScriptFrame::PrintFunctionAndOffset(JSFunction* function, Code* code, Address pc, FILE* file, bool print_line_number) { PrintF(file, "%s", function->IsOptimized() ? "*" : "~"); function->PrintName(file); int code_offset = static_cast(pc - code->instruction_start()); PrintF(file, "+%d", code_offset); if (print_line_number) { SharedFunctionInfo* shared = function->shared(); int source_pos = code->SourcePosition(code_offset); Object* maybe_script = shared->script(); if (maybe_script->IsScript()) { Script* script = Script::cast(maybe_script); int line = script->GetLineNumber(source_pos) + 1; Object* script_name_raw = script->name(); if (script_name_raw->IsString()) { String* script_name = String::cast(script->name()); base::SmartArrayPointer c_script_name = script_name->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL); PrintF(file, " at %s:%d", c_script_name.get(), line); } else { PrintF(file, " at :%d", line); } } else { PrintF(file, " at :"); } } } void JavaScriptFrame::PrintTop(Isolate* isolate, FILE* file, bool print_args, bool print_line_number) { // constructor calls DisallowHeapAllocation no_allocation; JavaScriptFrameIterator it(isolate); while (!it.done()) { if (it.frame()->is_java_script()) { JavaScriptFrame* frame = it.frame(); if (frame->IsConstructor()) PrintF(file, "new "); PrintFunctionAndOffset(frame->function(), frame->unchecked_code(), frame->pc(), file, print_line_number); if (print_args) { // function arguments // (we are intentionally only printing the actually // supplied parameters, not all parameters required) PrintF(file, "(this="); frame->receiver()->ShortPrint(file); const int length = frame->ComputeParametersCount(); for (int i = 0; i < length; i++) { PrintF(file, ", "); frame->GetParameter(i)->ShortPrint(file); } PrintF(file, ")"); } break; } it.Advance(); } } void JavaScriptFrame::SaveOperandStack(FixedArray* store) const { int operands_count = store->length(); DCHECK_LE(operands_count, ComputeOperandsCount()); for (int i = 0; i < operands_count; i++) { store->set(i, GetOperand(i)); } } void JavaScriptFrame::RestoreOperandStack(FixedArray* store) { int operands_count = store->length(); DCHECK_LE(operands_count, ComputeOperandsCount()); for (int i = 0; i < operands_count; i++) { DCHECK_EQ(GetOperand(i), isolate()->heap()->the_hole_value()); Memory::Object_at(GetOperandSlot(i)) = store->get(i); } } FrameSummary::FrameSummary(Object* receiver, JSFunction* function, AbstractCode* abstract_code, int code_offset, bool is_constructor) : receiver_(receiver, function->GetIsolate()), function_(function), abstract_code_(abstract_code), code_offset_(code_offset), is_constructor_(is_constructor) {} void FrameSummary::Print() { PrintF("receiver: "); receiver_->ShortPrint(); PrintF("\nfunction: "); function_->shared()->DebugName()->ShortPrint(); PrintF("\ncode: "); abstract_code_->ShortPrint(); if (abstract_code_->IsCode()) { Code* code = abstract_code_->GetCode(); if (code->kind() == Code::FUNCTION) PrintF(" UNOPT "); if (code->kind() == Code::OPTIMIZED_FUNCTION) PrintF(" OPT "); } else { PrintF(" BYTECODE "); } PrintF("\npc: %d\n", code_offset_); } void OptimizedFrame::Summarize(List* frames) { DCHECK(frames->length() == 0); DCHECK(is_optimized()); // Delegate to JS frame in absence of turbofan deoptimization. // TODO(turbofan): Revisit once we support deoptimization across the board. if (LookupCode()->is_turbofanned() && function()->shared()->asm_function() && !FLAG_turbo_asm_deoptimization) { return JavaScriptFrame::Summarize(frames); } DisallowHeapAllocation no_gc; int deopt_index = Safepoint::kNoDeoptimizationIndex; DeoptimizationInputData* const data = GetDeoptimizationData(&deopt_index); FixedArray* const literal_array = data->LiteralArray(); TranslationIterator it(data->TranslationByteArray(), data->TranslationIndex(deopt_index)->value()); Translation::Opcode frame_opcode = static_cast(it.Next()); DCHECK_EQ(Translation::BEGIN, frame_opcode); it.Next(); // Drop frame count. int jsframe_count = it.Next(); // We create the summary in reverse order because the frames // in the deoptimization translation are ordered bottom-to-top. bool is_constructor = IsConstructor(); while (jsframe_count != 0) { frame_opcode = static_cast(it.Next()); if (frame_opcode == Translation::JS_FRAME || frame_opcode == Translation::INTERPRETED_FRAME) { jsframe_count--; BailoutId const ast_id = BailoutId(it.Next()); SharedFunctionInfo* const shared_info = SharedFunctionInfo::cast(literal_array->get(it.Next())); it.Next(); // Skip height. // The translation commands are ordered and the function is always // at the first position, and the receiver is next. Translation::Opcode opcode = static_cast(it.Next()); // Get the correct function in the optimized frame. JSFunction* function; if (opcode == Translation::LITERAL) { function = JSFunction::cast(literal_array->get(it.Next())); } else if (opcode == Translation::STACK_SLOT) { function = JSFunction::cast(StackSlotAt(it.Next())); } else { CHECK_EQ(Translation::JS_FRAME_FUNCTION, opcode); function = this->function(); } DCHECK_EQ(shared_info, function->shared()); // If we are at a call, the receiver is always in a stack slot. // Otherwise we are not guaranteed to get the receiver value. opcode = static_cast(it.Next()); // Get the correct receiver in the optimized frame. Object* receiver; if (opcode == Translation::LITERAL) { receiver = literal_array->get(it.Next()); } else if (opcode == Translation::STACK_SLOT) { receiver = StackSlotAt(it.Next()); } else if (opcode == Translation::JS_FRAME_FUNCTION) { receiver = this->function(); } else { // The receiver is not in a stack slot nor in a literal. We give up. it.Skip(Translation::NumberOfOperandsFor(opcode)); // TODO(3029): Materializing a captured object (or duplicated // object) is hard, we return undefined for now. This breaks the // produced stack trace, as constructor frames aren't marked as // such anymore. receiver = isolate()->heap()->undefined_value(); } AbstractCode* abstract_code; unsigned code_offset; if (frame_opcode == Translation::JS_FRAME) { Code* code = shared_info->code(); DeoptimizationOutputData* const output_data = DeoptimizationOutputData::cast(code->deoptimization_data()); unsigned const entry = Deoptimizer::GetOutputInfo(output_data, ast_id, shared_info); code_offset = FullCodeGenerator::PcField::decode(entry); abstract_code = AbstractCode::cast(code); } else { // TODO(rmcilroy): Modify FrameSummary to enable us to summarize // based on the BytecodeArray and bytecode offset. DCHECK_EQ(frame_opcode, Translation::INTERPRETED_FRAME); code_offset = 0; abstract_code = AbstractCode::cast(shared_info->bytecode_array()); } FrameSummary summary(receiver, function, abstract_code, code_offset, is_constructor); frames->Add(summary); is_constructor = false; } else if (frame_opcode == Translation::CONSTRUCT_STUB_FRAME) { // The next encountered JS_FRAME will be marked as a constructor call. it.Skip(Translation::NumberOfOperandsFor(frame_opcode)); DCHECK(!is_constructor); is_constructor = true; } else { // Skip over operands to advance to the next opcode. it.Skip(Translation::NumberOfOperandsFor(frame_opcode)); } } DCHECK(!is_constructor); } int OptimizedFrame::LookupExceptionHandlerInTable( int* stack_slots, HandlerTable::CatchPrediction* prediction) { Code* code = LookupCode(); DCHECK(code->is_optimized_code()); HandlerTable* table = HandlerTable::cast(code->handler_table()); int pc_offset = static_cast(pc() - code->entry()); *stack_slots = code->stack_slots(); return table->LookupReturn(pc_offset, prediction); } DeoptimizationInputData* OptimizedFrame::GetDeoptimizationData( int* deopt_index) const { DCHECK(is_optimized()); JSFunction* opt_function = function(); Code* code = opt_function->code(); // The code object may have been replaced by lazy deoptimization. Fall // back to a slow search in this case to find the original optimized // code object. if (!code->contains(pc())) { code = isolate()->inner_pointer_to_code_cache()-> GcSafeFindCodeForInnerPointer(pc()); } DCHECK(code != NULL); DCHECK(code->kind() == Code::OPTIMIZED_FUNCTION); SafepointEntry safepoint_entry = code->GetSafepointEntry(pc()); *deopt_index = safepoint_entry.deoptimization_index(); DCHECK(*deopt_index != Safepoint::kNoDeoptimizationIndex); return DeoptimizationInputData::cast(code->deoptimization_data()); } void OptimizedFrame::GetFunctions(List* functions) const { DCHECK(functions->length() == 0); DCHECK(is_optimized()); // Delegate to JS frame in absence of turbofan deoptimization. // TODO(turbofan): Revisit once we support deoptimization across the board. if (LookupCode()->is_turbofanned() && function()->shared()->asm_function() && !FLAG_turbo_asm_deoptimization) { return JavaScriptFrame::GetFunctions(functions); } DisallowHeapAllocation no_gc; int deopt_index = Safepoint::kNoDeoptimizationIndex; DeoptimizationInputData* const data = GetDeoptimizationData(&deopt_index); FixedArray* const literal_array = data->LiteralArray(); TranslationIterator it(data->TranslationByteArray(), data->TranslationIndex(deopt_index)->value()); Translation::Opcode opcode = static_cast(it.Next()); DCHECK_EQ(Translation::BEGIN, opcode); it.Next(); // Skip frame count. int jsframe_count = it.Next(); // We insert the frames in reverse order because the frames // in the deoptimization translation are ordered bottom-to-top. while (jsframe_count != 0) { opcode = static_cast(it.Next()); // Skip over operands to advance to the next opcode. it.Skip(Translation::NumberOfOperandsFor(opcode)); if (opcode == Translation::JS_FRAME || opcode == Translation::INTERPRETED_FRAME) { jsframe_count--; // The translation commands are ordered and the function is always at the // first position. opcode = static_cast(it.Next()); // Get the correct function in the optimized frame. Object* function; if (opcode == Translation::LITERAL) { function = literal_array->get(it.Next()); } else if (opcode == Translation::STACK_SLOT) { function = StackSlotAt(it.Next()); } else { CHECK_EQ(Translation::JS_FRAME_FUNCTION, opcode); function = this->function(); } functions->Add(JSFunction::cast(function)); } } } int OptimizedFrame::StackSlotOffsetRelativeToFp(int slot_index) { return StandardFrameConstants::kCallerSPOffset - ((slot_index + 1) * kPointerSize); } Object* OptimizedFrame::StackSlotAt(int index) const { return Memory::Object_at(fp() + StackSlotOffsetRelativeToFp(index)); } int InterpretedFrame::LookupExceptionHandlerInTable( int* stack_slots, HandlerTable::CatchPrediction* prediction) { BytecodeArray* bytecode = function()->shared()->bytecode_array(); HandlerTable* table = HandlerTable::cast(bytecode->handler_table()); int pc_offset = GetBytecodeOffset() + 1; // Point after current bytecode. return table->LookupRange(pc_offset, stack_slots, prediction); } int InterpretedFrame::GetBytecodeOffset() const { const int index = InterpreterFrameConstants::kBytecodeOffsetExpressionIndex; DCHECK_EQ(InterpreterFrameConstants::kBytecodeOffsetFromFp, StandardFrameConstants::kExpressionsOffset - index * kPointerSize); int raw_offset = Smi::cast(GetExpression(index))->value(); return raw_offset - BytecodeArray::kHeaderSize + kHeapObjectTag; } void InterpretedFrame::PatchBytecodeOffset(int new_offset) { const int index = InterpreterFrameConstants::kBytecodeOffsetExpressionIndex; DCHECK_EQ(InterpreterFrameConstants::kBytecodeOffsetFromFp, StandardFrameConstants::kExpressionsOffset - index * kPointerSize); int raw_offset = new_offset + BytecodeArray::kHeaderSize - kHeapObjectTag; SetExpression(index, Smi::FromInt(raw_offset)); } void InterpretedFrame::Summarize(List* functions) { DCHECK(functions->length() == 0); AbstractCode* abstract_code = AbstractCode::cast(function()->shared()->bytecode_array()); FrameSummary summary(receiver(), function(), abstract_code, GetBytecodeOffset(), IsConstructor()); functions->Add(summary); } int ArgumentsAdaptorFrame::GetNumberOfIncomingArguments() const { return Smi::cast(GetExpression(0))->value(); } Address ArgumentsAdaptorFrame::GetCallerStackPointer() const { return fp() + StandardFrameConstants::kCallerSPOffset; } Address InternalFrame::GetCallerStackPointer() const { // Internal frames have no arguments. The stack pointer of the // caller is at a fixed offset from the frame pointer. return fp() + StandardFrameConstants::kCallerSPOffset; } Code* ArgumentsAdaptorFrame::unchecked_code() const { return isolate()->builtins()->builtin( Builtins::kArgumentsAdaptorTrampoline); } Code* InternalFrame::unchecked_code() const { const int offset = InternalFrameConstants::kCodeOffset; Object* code = Memory::Object_at(fp() + offset); DCHECK(code != NULL); return reinterpret_cast(code); } void StackFrame::PrintIndex(StringStream* accumulator, PrintMode mode, int index) { accumulator->Add((mode == OVERVIEW) ? "%5d: " : "[%d]: ", index); } namespace { void PrintFunctionSource(StringStream* accumulator, SharedFunctionInfo* shared, Code* code) { if (FLAG_max_stack_trace_source_length != 0 && code != NULL) { std::ostringstream os; os << "--------- s o u r c e c o d e ---------\n" << SourceCodeOf(shared, FLAG_max_stack_trace_source_length) << "\n-----------------------------------------\n"; accumulator->Add(os.str().c_str()); } } } // namespace void JavaScriptFrame::Print(StringStream* accumulator, PrintMode mode, int index) const { DisallowHeapAllocation no_gc; Object* receiver = this->receiver(); JSFunction* function = this->function(); accumulator->PrintSecurityTokenIfChanged(function); PrintIndex(accumulator, mode, index); Code* code = NULL; if (IsConstructor()) accumulator->Add("new "); accumulator->PrintFunction(function, receiver, &code); // Get scope information for nicer output, if possible. If code is NULL, or // doesn't contain scope info, scope_info will return 0 for the number of // parameters, stack local variables, context local variables, stack slots, // or context slots. SharedFunctionInfo* shared = function->shared(); ScopeInfo* scope_info = shared->scope_info(); Object* script_obj = shared->script(); if (script_obj->IsScript()) { Script* script = Script::cast(script_obj); accumulator->Add(" ["); accumulator->PrintName(script->name()); Address pc = this->pc(); if (code != NULL && code->kind() == Code::FUNCTION && pc >= code->instruction_start() && pc < code->instruction_end()) { int offset = static_cast(pc - code->instruction_start()); int source_pos = code->SourcePosition(offset); int line = script->GetLineNumber(source_pos) + 1; accumulator->Add(":%d", line); } else { int function_start_pos = shared->start_position(); int line = script->GetLineNumber(function_start_pos) + 1; accumulator->Add(":~%d", line); } accumulator->Add("] [pc=%p] ", pc); } accumulator->Add("(this=%o", receiver); // Print the parameters. int parameters_count = ComputeParametersCount(); for (int i = 0; i < parameters_count; i++) { accumulator->Add(","); // If we have a name for the parameter we print it. Nameless // parameters are either because we have more actual parameters // than formal parameters or because we have no scope information. if (i < scope_info->ParameterCount()) { accumulator->PrintName(scope_info->ParameterName(i)); accumulator->Add("="); } accumulator->Add("%o", GetParameter(i)); } accumulator->Add(")"); if (mode == OVERVIEW) { accumulator->Add("\n"); return; } if (is_optimized()) { accumulator->Add(" {\n// optimized frame\n"); PrintFunctionSource(accumulator, shared, code); accumulator->Add("}\n"); return; } accumulator->Add(" {\n"); // Compute the number of locals and expression stack elements. int stack_locals_count = scope_info->StackLocalCount(); int heap_locals_count = scope_info->ContextLocalCount(); int expressions_count = ComputeExpressionsCount(); // Print stack-allocated local variables. if (stack_locals_count > 0) { accumulator->Add(" // stack-allocated locals\n"); } for (int i = 0; i < stack_locals_count; i++) { accumulator->Add(" var "); accumulator->PrintName(scope_info->StackLocalName(i)); accumulator->Add(" = "); if (i < expressions_count) { accumulator->Add("%o", GetExpression(i)); } else { accumulator->Add("// no expression found - inconsistent frame?"); } accumulator->Add("\n"); } // Try to get hold of the context of this frame. Context* context = NULL; if (this->context() != NULL && this->context()->IsContext()) { context = Context::cast(this->context()); } while (context->IsWithContext()) { context = context->previous(); DCHECK(context != NULL); } // Print heap-allocated local variables. if (heap_locals_count > 0) { accumulator->Add(" // heap-allocated locals\n"); } for (int i = 0; i < heap_locals_count; i++) { accumulator->Add(" var "); accumulator->PrintName(scope_info->ContextLocalName(i)); accumulator->Add(" = "); if (context != NULL) { int index = Context::MIN_CONTEXT_SLOTS + i; if (index < context->length()) { accumulator->Add("%o", context->get(index)); } else { accumulator->Add( "// warning: missing context slot - inconsistent frame?"); } } else { accumulator->Add("// warning: no context found - inconsistent frame?"); } accumulator->Add("\n"); } // Print the expression stack. int expressions_start = stack_locals_count; if (expressions_start < expressions_count) { accumulator->Add(" // expression stack (top to bottom)\n"); } for (int i = expressions_count - 1; i >= expressions_start; i--) { accumulator->Add(" [%02d] : %o\n", i, GetExpression(i)); } PrintFunctionSource(accumulator, shared, code); accumulator->Add("}\n\n"); } void ArgumentsAdaptorFrame::Print(StringStream* accumulator, PrintMode mode, int index) const { int actual = ComputeParametersCount(); int expected = -1; JSFunction* function = this->function(); expected = function->shared()->internal_formal_parameter_count(); PrintIndex(accumulator, mode, index); accumulator->Add("arguments adaptor frame: %d->%d", actual, expected); if (mode == OVERVIEW) { accumulator->Add("\n"); return; } accumulator->Add(" {\n"); // Print actual arguments. if (actual > 0) accumulator->Add(" // actual arguments\n"); for (int i = 0; i < actual; i++) { accumulator->Add(" [%02d] : %o", i, GetParameter(i)); if (expected != -1 && i >= expected) { accumulator->Add(" // not passed to callee"); } accumulator->Add("\n"); } accumulator->Add("}\n\n"); } void EntryFrame::Iterate(ObjectVisitor* v) const { IteratePc(v, pc_address(), constant_pool_address(), LookupCode()); } void StandardFrame::IterateExpressions(ObjectVisitor* v) const { const int offset = StandardFrameConstants::kLastObjectOffset; Object** base = &Memory::Object_at(sp()); Object** limit = &Memory::Object_at(fp() + offset) + 1; v->VisitPointers(base, limit); } void JavaScriptFrame::Iterate(ObjectVisitor* v) const { IterateExpressions(v); IteratePc(v, pc_address(), constant_pool_address(), LookupCode()); } void InternalFrame::Iterate(ObjectVisitor* v) const { // Internal frames only have object pointers on the expression stack // as they never have any arguments. IterateExpressions(v); IteratePc(v, pc_address(), constant_pool_address(), LookupCode()); } void StubFailureTrampolineFrame::Iterate(ObjectVisitor* v) const { Object** base = &Memory::Object_at(sp()); Object** limit = &Memory::Object_at(fp() + kFirstRegisterParameterFrameOffset); v->VisitPointers(base, limit); base = &Memory::Object_at(fp() + StandardFrameConstants::kMarkerOffset); const int offset = StandardFrameConstants::kLastObjectOffset; limit = &Memory::Object_at(fp() + offset) + 1; v->VisitPointers(base, limit); IteratePc(v, pc_address(), constant_pool_address(), LookupCode()); } Address StubFailureTrampolineFrame::GetCallerStackPointer() const { return fp() + StandardFrameConstants::kCallerSPOffset; } Code* StubFailureTrampolineFrame::unchecked_code() const { Code* trampoline; StubFailureTrampolineStub(isolate(), NOT_JS_FUNCTION_STUB_MODE). FindCodeInCache(&trampoline); if (trampoline->contains(pc())) { return trampoline; } StubFailureTrampolineStub(isolate(), JS_FUNCTION_STUB_MODE). FindCodeInCache(&trampoline); if (trampoline->contains(pc())) { return trampoline; } UNREACHABLE(); return NULL; } // ------------------------------------------------------------------------- JavaScriptFrame* StackFrameLocator::FindJavaScriptFrame(int n) { DCHECK(n >= 0); for (int i = 0; i <= n; i++) { while (!iterator_.frame()->is_java_script()) iterator_.Advance(); if (i == n) return JavaScriptFrame::cast(iterator_.frame()); iterator_.Advance(); } UNREACHABLE(); return NULL; } // ------------------------------------------------------------------------- static Map* GcSafeMapOfCodeSpaceObject(HeapObject* object) { MapWord map_word = object->map_word(); return map_word.IsForwardingAddress() ? map_word.ToForwardingAddress()->map() : map_word.ToMap(); } static int GcSafeSizeOfCodeSpaceObject(HeapObject* object) { return object->SizeFromMap(GcSafeMapOfCodeSpaceObject(object)); } #ifdef DEBUG static bool GcSafeCodeContains(HeapObject* code, Address addr) { Map* map = GcSafeMapOfCodeSpaceObject(code); DCHECK(map == code->GetHeap()->code_map()); Address start = code->address(); Address end = code->address() + code->SizeFromMap(map); return start <= addr && addr < end; } #endif Code* InnerPointerToCodeCache::GcSafeCastToCode(HeapObject* object, Address inner_pointer) { Code* code = reinterpret_cast(object); DCHECK(code != NULL && GcSafeCodeContains(code, inner_pointer)); return code; } Code* InnerPointerToCodeCache::GcSafeFindCodeForInnerPointer( Address inner_pointer) { Heap* heap = isolate_->heap(); if (!heap->code_space()->Contains(inner_pointer) && !heap->lo_space()->Contains(inner_pointer)) { return nullptr; } // Check if the inner pointer points into a large object chunk. LargePage* large_page = heap->lo_space()->FindPage(inner_pointer); if (large_page != NULL) { return GcSafeCastToCode(large_page->GetObject(), inner_pointer); } // Iterate through the page until we reach the end or find an object starting // after the inner pointer. Page* page = Page::FromAddress(inner_pointer); DCHECK_EQ(page->owner(), heap->code_space()); heap->mark_compact_collector()->SweepOrWaitUntilSweepingCompleted(page); Address addr = page->skip_list()->StartFor(inner_pointer); Address top = heap->code_space()->top(); Address limit = heap->code_space()->limit(); while (true) { if (addr == top && addr != limit) { addr = limit; continue; } HeapObject* obj = HeapObject::FromAddress(addr); int obj_size = GcSafeSizeOfCodeSpaceObject(obj); Address next_addr = addr + obj_size; if (next_addr > inner_pointer) return GcSafeCastToCode(obj, inner_pointer); addr = next_addr; } } InnerPointerToCodeCache::InnerPointerToCodeCacheEntry* InnerPointerToCodeCache::GetCacheEntry(Address inner_pointer) { isolate_->counters()->pc_to_code()->Increment(); DCHECK(base::bits::IsPowerOfTwo32(kInnerPointerToCodeCacheSize)); uint32_t hash = ComputeIntegerHash(ObjectAddressForHashing(inner_pointer), v8::internal::kZeroHashSeed); uint32_t index = hash & (kInnerPointerToCodeCacheSize - 1); InnerPointerToCodeCacheEntry* entry = cache(index); if (entry->inner_pointer == inner_pointer) { isolate_->counters()->pc_to_code_cached()->Increment(); DCHECK(entry->code == GcSafeFindCodeForInnerPointer(inner_pointer)); } else { // Because this code may be interrupted by a profiling signal that // also queries the cache, we cannot update inner_pointer before the code // has been set. Otherwise, we risk trying to use a cache entry before // the code has been computed. entry->code = GcSafeFindCodeForInnerPointer(inner_pointer); entry->safepoint_entry.Reset(); entry->inner_pointer = inner_pointer; } return entry; } // ------------------------------------------------------------------------- int NumRegs(RegList reglist) { return base::bits::CountPopulation(reglist); } struct JSCallerSavedCodeData { int reg_code[kNumJSCallerSaved]; }; JSCallerSavedCodeData caller_saved_code_data; void SetUpJSCallerSavedCodeData() { int i = 0; for (int r = 0; r < kNumRegs; r++) if ((kJSCallerSaved & (1 << r)) != 0) caller_saved_code_data.reg_code[i++] = r; DCHECK(i == kNumJSCallerSaved); } int JSCallerSavedCode(int n) { DCHECK(0 <= n && n < kNumJSCallerSaved); return caller_saved_code_data.reg_code[n]; } #define DEFINE_WRAPPER(type, field) \ class field##_Wrapper : public ZoneObject { \ public: /* NOLINT */ \ field##_Wrapper(const field& original) : frame_(original) { \ } \ field frame_; \ }; STACK_FRAME_TYPE_LIST(DEFINE_WRAPPER) #undef DEFINE_WRAPPER static StackFrame* AllocateFrameCopy(StackFrame* frame, Zone* zone) { #define FRAME_TYPE_CASE(type, field) \ case StackFrame::type: { \ field##_Wrapper* wrapper = \ new(zone) field##_Wrapper(*(reinterpret_cast(frame))); \ return &wrapper->frame_; \ } switch (frame->type()) { STACK_FRAME_TYPE_LIST(FRAME_TYPE_CASE) default: UNREACHABLE(); } #undef FRAME_TYPE_CASE return NULL; } Vector CreateStackMap(Isolate* isolate, Zone* zone) { ZoneList list(10, zone); for (StackFrameIterator it(isolate); !it.done(); it.Advance()) { StackFrame* frame = AllocateFrameCopy(it.frame(), zone); list.Add(frame, zone); } return list.ToVector(); } } // namespace internal } // namespace v8