// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include #include "src/v8.h" #include "src/compilation-cache.h" #include "src/execution.h" #include "src/factory.h" #include "src/global-handles.h" #include "src/ic/ic.h" #include "src/macro-assembler.h" #include "test/cctest/cctest.h" using namespace v8::base; using namespace v8::internal; #if (V8_DOUBLE_FIELDS_UNBOXING) // // Helper functions. // static void InitializeVerifiedMapDescriptors( Map* map, DescriptorArray* descriptors, LayoutDescriptor* layout_descriptor) { map->InitializeDescriptors(descriptors, layout_descriptor); CHECK(layout_descriptor->IsConsistentWithMap(map)); } static Handle MakeString(const char* str) { Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); return factory->InternalizeUtf8String(str); } static Handle MakeName(const char* str, int suffix) { EmbeddedVector buffer; SNPrintF(buffer, "%s%d", str, suffix); return MakeString(buffer.start()); } Handle GetObject(const char* name) { return v8::Utils::OpenHandle( *v8::Handle::Cast(CcTest::global()->Get(v8_str(name)))); } static double GetDoubleFieldValue(JSObject* obj, FieldIndex field_index) { if (obj->IsUnboxedDoubleField(field_index)) { return obj->RawFastDoublePropertyAt(field_index); } else { Object* value = obj->RawFastPropertyAt(field_index); DCHECK(value->IsMutableHeapNumber()); return HeapNumber::cast(value)->value(); } } const int kNumberOfBits = 32; enum TestPropertyKind { PROP_CONSTANT, PROP_SMI, PROP_DOUBLE, PROP_TAGGED, PROP_KIND_NUMBER }; static Representation representations[PROP_KIND_NUMBER] = { Representation::None(), Representation::Smi(), Representation::Double(), Representation::Tagged()}; static Handle CreateDescriptorArray(Isolate* isolate, TestPropertyKind* props, int kPropsCount) { Factory* factory = isolate->factory(); Handle func_name = factory->InternalizeUtf8String("func"); Handle func = factory->NewFunction(func_name); Handle descriptors = DescriptorArray::Allocate(isolate, 0, kPropsCount); int next_field_offset = 0; for (int i = 0; i < kPropsCount; i++) { EmbeddedVector buffer; SNPrintF(buffer, "prop%d", i); Handle name = factory->InternalizeUtf8String(buffer.start()); TestPropertyKind kind = props[i]; if (kind == PROP_CONSTANT) { DataConstantDescriptor d(name, func, NONE); descriptors->Append(&d); } else { DataDescriptor f(name, next_field_offset, NONE, representations[kind]); next_field_offset += f.GetDetails().field_width_in_words(); descriptors->Append(&f); } } return descriptors; } TEST(LayoutDescriptorBasicFast) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); LayoutDescriptor* layout_desc = LayoutDescriptor::FastPointerLayout(); CHECK(!layout_desc->IsSlowLayout()); CHECK(layout_desc->IsFastPointerLayout()); CHECK_EQ(kSmiValueSize, layout_desc->capacity()); for (int i = 0; i < kSmiValueSize + 13; i++) { CHECK_EQ(true, layout_desc->IsTagged(i)); } CHECK_EQ(true, layout_desc->IsTagged(-1)); CHECK_EQ(true, layout_desc->IsTagged(-12347)); CHECK_EQ(true, layout_desc->IsTagged(15635)); CHECK(layout_desc->IsFastPointerLayout()); for (int i = 0; i < kSmiValueSize; i++) { layout_desc = layout_desc->SetTaggedForTesting(i, false); CHECK_EQ(false, layout_desc->IsTagged(i)); layout_desc = layout_desc->SetTaggedForTesting(i, true); CHECK_EQ(true, layout_desc->IsTagged(i)); } CHECK(layout_desc->IsFastPointerLayout()); int sequence_length; CHECK_EQ(true, layout_desc->IsTagged(0, std::numeric_limits::max(), &sequence_length)); CHECK_EQ(std::numeric_limits::max(), sequence_length); CHECK_EQ(true, layout_desc->IsTagged(0, 7, &sequence_length)); CHECK_EQ(7, sequence_length); } TEST(LayoutDescriptorBasicSlow) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); v8::HandleScope scope(CcTest::isolate()); Handle layout_descriptor; const int kPropsCount = kSmiValueSize * 3; TestPropertyKind props[kPropsCount]; for (int i = 0; i < kPropsCount; i++) { // All properties tagged. props[i] = PROP_TAGGED; } { Handle descriptors = CreateDescriptorArray(isolate, props, kPropsCount); Handle map = Map::Create(isolate, kPropsCount); layout_descriptor = LayoutDescriptor::New(map, descriptors, kPropsCount); CHECK_EQ(LayoutDescriptor::FastPointerLayout(), *layout_descriptor); CHECK_EQ(kSmiValueSize, layout_descriptor->capacity()); InitializeVerifiedMapDescriptors(*map, *descriptors, *layout_descriptor); } props[0] = PROP_DOUBLE; props[kPropsCount - 1] = PROP_DOUBLE; Handle descriptors = CreateDescriptorArray(isolate, props, kPropsCount); { int inobject_properties = kPropsCount - 1; Handle map = Map::Create(isolate, inobject_properties); // Should be fast as the only double property is the first one. layout_descriptor = LayoutDescriptor::New(map, descriptors, kPropsCount); CHECK_NE(LayoutDescriptor::FastPointerLayout(), *layout_descriptor); CHECK(!layout_descriptor->IsSlowLayout()); CHECK(!layout_descriptor->IsFastPointerLayout()); CHECK_EQ(false, layout_descriptor->IsTagged(0)); for (int i = 1; i < kPropsCount; i++) { CHECK_EQ(true, layout_descriptor->IsTagged(i)); } InitializeVerifiedMapDescriptors(*map, *descriptors, *layout_descriptor); } { int inobject_properties = kPropsCount; Handle map = Map::Create(isolate, inobject_properties); layout_descriptor = LayoutDescriptor::New(map, descriptors, kPropsCount); CHECK_NE(LayoutDescriptor::FastPointerLayout(), *layout_descriptor); CHECK(layout_descriptor->IsSlowLayout()); CHECK(!layout_descriptor->IsFastPointerLayout()); CHECK(layout_descriptor->capacity() > kSmiValueSize); CHECK_EQ(false, layout_descriptor->IsTagged(0)); CHECK_EQ(false, layout_descriptor->IsTagged(kPropsCount - 1)); for (int i = 1; i < kPropsCount - 1; i++) { CHECK_EQ(true, layout_descriptor->IsTagged(i)); } InitializeVerifiedMapDescriptors(*map, *descriptors, *layout_descriptor); // Here we have truly slow layout descriptor, so play with the bits. CHECK_EQ(true, layout_descriptor->IsTagged(-1)); CHECK_EQ(true, layout_descriptor->IsTagged(-12347)); CHECK_EQ(true, layout_descriptor->IsTagged(15635)); LayoutDescriptor* layout_desc = *layout_descriptor; // Play with the bits but leave it in consistent state with map at the end. for (int i = 1; i < kPropsCount - 1; i++) { layout_desc = layout_desc->SetTaggedForTesting(i, false); CHECK_EQ(false, layout_desc->IsTagged(i)); layout_desc = layout_desc->SetTaggedForTesting(i, true); CHECK_EQ(true, layout_desc->IsTagged(i)); } CHECK(layout_desc->IsSlowLayout()); CHECK(!layout_desc->IsFastPointerLayout()); CHECK(layout_descriptor->IsConsistentWithMap(*map)); } } static void TestLayoutDescriptorQueries(int layout_descriptor_length, int* bit_flip_positions, int max_sequence_length) { Handle layout_descriptor = LayoutDescriptor::NewForTesting( CcTest::i_isolate(), layout_descriptor_length); layout_descriptor_length = layout_descriptor->capacity(); LayoutDescriptor* layout_desc = *layout_descriptor; { // Fill in the layout descriptor. int cur_bit_flip_index = 0; bool tagged = true; for (int i = 0; i < layout_descriptor_length; i++) { if (i == bit_flip_positions[cur_bit_flip_index]) { tagged = !tagged; ++cur_bit_flip_index; CHECK(i < bit_flip_positions[cur_bit_flip_index]); // check test data } layout_desc = layout_desc->SetTaggedForTesting(i, tagged); } } if (layout_desc->IsFastPointerLayout()) { return; } { // Check queries. int cur_bit_flip_index = 0; bool tagged = true; for (int i = 0; i < layout_descriptor_length; i++) { if (i == bit_flip_positions[cur_bit_flip_index]) { tagged = !tagged; ++cur_bit_flip_index; } CHECK_EQ(tagged, layout_desc->IsTagged(i)); int next_bit_flip_position = bit_flip_positions[cur_bit_flip_index]; int expected_sequence_length; if (next_bit_flip_position < layout_desc->capacity()) { expected_sequence_length = next_bit_flip_position - i; } else { expected_sequence_length = tagged ? std::numeric_limits::max() : (layout_desc->capacity() - i); } expected_sequence_length = Min(expected_sequence_length, max_sequence_length); int sequence_length; CHECK_EQ(tagged, layout_desc->IsTagged(i, max_sequence_length, &sequence_length)); CHECK(sequence_length > 0); CHECK_EQ(expected_sequence_length, sequence_length); } int sequence_length; CHECK_EQ(true, layout_desc->IsTagged(layout_descriptor_length, max_sequence_length, &sequence_length)); CHECK_EQ(max_sequence_length, sequence_length); } } static void TestLayoutDescriptorQueriesFast(int max_sequence_length) { { LayoutDescriptor* layout_desc = LayoutDescriptor::FastPointerLayout(); int sequence_length; for (int i = 0; i < kNumberOfBits; i++) { CHECK_EQ(true, layout_desc->IsTagged(i, max_sequence_length, &sequence_length)); CHECK(sequence_length > 0); CHECK_EQ(max_sequence_length, sequence_length); } } { int bit_flip_positions[] = {1000}; TestLayoutDescriptorQueries(kSmiValueSize, bit_flip_positions, max_sequence_length); } { int bit_flip_positions[] = {0, 1000}; TestLayoutDescriptorQueries(kSmiValueSize, bit_flip_positions, max_sequence_length); } { int bit_flip_positions[kNumberOfBits + 1]; for (int i = 0; i <= kNumberOfBits; i++) { bit_flip_positions[i] = i; } TestLayoutDescriptorQueries(kSmiValueSize, bit_flip_positions, max_sequence_length); } { int bit_flip_positions[] = {3, 7, 8, 10, 15, 21, 30, 1000}; TestLayoutDescriptorQueries(kSmiValueSize, bit_flip_positions, max_sequence_length); } { int bit_flip_positions[] = {0, 1, 2, 3, 5, 7, 9, 12, 15, 18, 22, 26, 29, 1000}; TestLayoutDescriptorQueries(kSmiValueSize, bit_flip_positions, max_sequence_length); } } TEST(LayoutDescriptorQueriesFastLimited7) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); TestLayoutDescriptorQueriesFast(7); } TEST(LayoutDescriptorQueriesFastLimited13) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); TestLayoutDescriptorQueriesFast(13); } TEST(LayoutDescriptorQueriesFastUnlimited) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); TestLayoutDescriptorQueriesFast(std::numeric_limits::max()); } static void TestLayoutDescriptorQueriesSlow(int max_sequence_length) { { int bit_flip_positions[] = {10000}; TestLayoutDescriptorQueries(kMaxNumberOfDescriptors, bit_flip_positions, max_sequence_length); } { int bit_flip_positions[] = {0, 10000}; TestLayoutDescriptorQueries(kMaxNumberOfDescriptors, bit_flip_positions, max_sequence_length); } { int bit_flip_positions[kMaxNumberOfDescriptors + 1]; for (int i = 0; i < kMaxNumberOfDescriptors; i++) { bit_flip_positions[i] = i; } bit_flip_positions[kMaxNumberOfDescriptors] = 10000; TestLayoutDescriptorQueries(kMaxNumberOfDescriptors, bit_flip_positions, max_sequence_length); } { int bit_flip_positions[] = {3, 7, 8, 10, 15, 21, 30, 37, 54, 80, 99, 383, 10000}; TestLayoutDescriptorQueries(kMaxNumberOfDescriptors, bit_flip_positions, max_sequence_length); } { int bit_flip_positions[] = {0, 10, 20, 30, 50, 70, 90, 120, 150, 180, 220, 260, 290, 10000}; TestLayoutDescriptorQueries(kMaxNumberOfDescriptors, bit_flip_positions, max_sequence_length); } { int bit_flip_positions[kMaxNumberOfDescriptors + 1]; int cur = 0; for (int i = 0; i < kMaxNumberOfDescriptors; i++) { bit_flip_positions[i] = cur; cur = (cur + 1) * 2; } CHECK(cur < 10000); bit_flip_positions[kMaxNumberOfDescriptors] = 10000; TestLayoutDescriptorQueries(kMaxNumberOfDescriptors, bit_flip_positions, max_sequence_length); } { int bit_flip_positions[kMaxNumberOfDescriptors + 1]; int cur = 3; for (int i = 0; i < kMaxNumberOfDescriptors; i++) { bit_flip_positions[i] = cur; cur = (cur + 1) * 2; } CHECK(cur < 10000); bit_flip_positions[kMaxNumberOfDescriptors] = 10000; TestLayoutDescriptorQueries(kMaxNumberOfDescriptors, bit_flip_positions, max_sequence_length); } } TEST(LayoutDescriptorQueriesSlowLimited7) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); TestLayoutDescriptorQueriesSlow(7); } TEST(LayoutDescriptorQueriesSlowLimited13) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); TestLayoutDescriptorQueriesSlow(13); } TEST(LayoutDescriptorQueriesSlowLimited42) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); TestLayoutDescriptorQueriesSlow(42); } TEST(LayoutDescriptorQueriesSlowUnlimited) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); TestLayoutDescriptorQueriesSlow(std::numeric_limits::max()); } TEST(LayoutDescriptorCreateNewFast) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); v8::HandleScope scope(CcTest::isolate()); Handle layout_descriptor; TestPropertyKind props[] = { PROP_CONSTANT, PROP_TAGGED, // field #0 PROP_CONSTANT, PROP_DOUBLE, // field #1 PROP_CONSTANT, PROP_TAGGED, // field #2 PROP_CONSTANT, }; const int kPropsCount = arraysize(props); Handle descriptors = CreateDescriptorArray(isolate, props, kPropsCount); { Handle map = Map::Create(isolate, 0); layout_descriptor = LayoutDescriptor::New(map, descriptors, kPropsCount); CHECK_EQ(LayoutDescriptor::FastPointerLayout(), *layout_descriptor); InitializeVerifiedMapDescriptors(*map, *descriptors, *layout_descriptor); } { Handle map = Map::Create(isolate, 1); layout_descriptor = LayoutDescriptor::New(map, descriptors, kPropsCount); CHECK_EQ(LayoutDescriptor::FastPointerLayout(), *layout_descriptor); InitializeVerifiedMapDescriptors(*map, *descriptors, *layout_descriptor); } { Handle map = Map::Create(isolate, 2); layout_descriptor = LayoutDescriptor::New(map, descriptors, kPropsCount); CHECK_NE(LayoutDescriptor::FastPointerLayout(), *layout_descriptor); CHECK(!layout_descriptor->IsSlowLayout()); CHECK_EQ(true, layout_descriptor->IsTagged(0)); CHECK_EQ(false, layout_descriptor->IsTagged(1)); CHECK_EQ(true, layout_descriptor->IsTagged(2)); CHECK_EQ(true, layout_descriptor->IsTagged(125)); InitializeVerifiedMapDescriptors(*map, *descriptors, *layout_descriptor); } } TEST(LayoutDescriptorCreateNewSlow) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); v8::HandleScope scope(CcTest::isolate()); Handle layout_descriptor; const int kPropsCount = kSmiValueSize * 3; TestPropertyKind props[kPropsCount]; for (int i = 0; i < kPropsCount; i++) { props[i] = static_cast(i % PROP_KIND_NUMBER); } Handle descriptors = CreateDescriptorArray(isolate, props, kPropsCount); { Handle map = Map::Create(isolate, 0); layout_descriptor = LayoutDescriptor::New(map, descriptors, kPropsCount); CHECK_EQ(LayoutDescriptor::FastPointerLayout(), *layout_descriptor); InitializeVerifiedMapDescriptors(*map, *descriptors, *layout_descriptor); } { Handle map = Map::Create(isolate, 1); layout_descriptor = LayoutDescriptor::New(map, descriptors, kPropsCount); CHECK_EQ(LayoutDescriptor::FastPointerLayout(), *layout_descriptor); InitializeVerifiedMapDescriptors(*map, *descriptors, *layout_descriptor); } { Handle map = Map::Create(isolate, 2); layout_descriptor = LayoutDescriptor::New(map, descriptors, kPropsCount); CHECK_NE(LayoutDescriptor::FastPointerLayout(), *layout_descriptor); CHECK(!layout_descriptor->IsSlowLayout()); CHECK_EQ(true, layout_descriptor->IsTagged(0)); CHECK_EQ(false, layout_descriptor->IsTagged(1)); CHECK_EQ(true, layout_descriptor->IsTagged(2)); CHECK_EQ(true, layout_descriptor->IsTagged(125)); InitializeVerifiedMapDescriptors(*map, *descriptors, *layout_descriptor); } { int inobject_properties = kPropsCount / 2; Handle map = Map::Create(isolate, inobject_properties); layout_descriptor = LayoutDescriptor::New(map, descriptors, kPropsCount); CHECK_NE(LayoutDescriptor::FastPointerLayout(), *layout_descriptor); CHECK(layout_descriptor->IsSlowLayout()); for (int i = 0; i < inobject_properties; i++) { // PROP_DOUBLE has index 1 among DATA properties. const bool tagged = (i % (PROP_KIND_NUMBER - 1)) != 1; CHECK_EQ(tagged, layout_descriptor->IsTagged(i)); } // Every property after inobject_properties must be tagged. for (int i = inobject_properties; i < kPropsCount; i++) { CHECK_EQ(true, layout_descriptor->IsTagged(i)); } InitializeVerifiedMapDescriptors(*map, *descriptors, *layout_descriptor); // Now test LayoutDescriptor::cast_gc_safe(). Handle layout_descriptor_copy = LayoutDescriptor::New(map, descriptors, kPropsCount); LayoutDescriptor* layout_desc = *layout_descriptor; CHECK_EQ(layout_desc, LayoutDescriptor::cast(layout_desc)); CHECK_EQ(layout_desc, LayoutDescriptor::cast_gc_safe(layout_desc)); CHECK(layout_descriptor->IsFixedTypedArrayBase()); // Now make it look like a forwarding pointer to layout_descriptor_copy. MapWord map_word = layout_desc->map_word(); CHECK(!map_word.IsForwardingAddress()); layout_desc->set_map_word( MapWord::FromForwardingAddress(*layout_descriptor_copy)); CHECK(layout_desc->map_word().IsForwardingAddress()); CHECK_EQ(*layout_descriptor_copy, LayoutDescriptor::cast_gc_safe(layout_desc)); // Restore it back. layout_desc->set_map_word(map_word); CHECK_EQ(layout_desc, LayoutDescriptor::cast(layout_desc)); } } static Handle TestLayoutDescriptorAppend( Isolate* isolate, int inobject_properties, TestPropertyKind* props, int kPropsCount) { Factory* factory = isolate->factory(); Handle func_name = factory->InternalizeUtf8String("func"); Handle func = factory->NewFunction(func_name); Handle descriptors = DescriptorArray::Allocate(isolate, 0, kPropsCount); Handle map = Map::Create(isolate, inobject_properties); map->InitializeDescriptors(*descriptors, LayoutDescriptor::FastPointerLayout()); int next_field_offset = 0; for (int i = 0; i < kPropsCount; i++) { EmbeddedVector buffer; SNPrintF(buffer, "prop%d", i); Handle name = factory->InternalizeUtf8String(buffer.start()); Handle layout_descriptor; TestPropertyKind kind = props[i]; if (kind == PROP_CONSTANT) { DataConstantDescriptor d(name, func, NONE); layout_descriptor = LayoutDescriptor::ShareAppend(map, d.GetDetails()); descriptors->Append(&d); } else { DataDescriptor f(name, next_field_offset, NONE, representations[kind]); int field_width_in_words = f.GetDetails().field_width_in_words(); next_field_offset += field_width_in_words; layout_descriptor = LayoutDescriptor::ShareAppend(map, f.GetDetails()); descriptors->Append(&f); int field_index = f.GetDetails().field_index(); bool is_inobject = field_index < map->inobject_properties(); for (int bit = 0; bit < field_width_in_words; bit++) { CHECK_EQ(is_inobject && (kind == PROP_DOUBLE), !layout_descriptor->IsTagged(field_index + bit)); } CHECK(layout_descriptor->IsTagged(next_field_offset)); } map->InitializeDescriptors(*descriptors, *layout_descriptor); } Handle layout_descriptor(map->layout_descriptor(), isolate); CHECK(layout_descriptor->IsConsistentWithMap(*map)); return layout_descriptor; } TEST(LayoutDescriptorAppend) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); v8::HandleScope scope(CcTest::isolate()); Handle layout_descriptor; const int kPropsCount = kSmiValueSize * 3; TestPropertyKind props[kPropsCount]; for (int i = 0; i < kPropsCount; i++) { props[i] = static_cast(i % PROP_KIND_NUMBER); } layout_descriptor = TestLayoutDescriptorAppend(isolate, 0, props, kPropsCount); CHECK(!layout_descriptor->IsSlowLayout()); layout_descriptor = TestLayoutDescriptorAppend(isolate, 13, props, kPropsCount); CHECK(!layout_descriptor->IsSlowLayout()); layout_descriptor = TestLayoutDescriptorAppend(isolate, kSmiValueSize, props, kPropsCount); CHECK(!layout_descriptor->IsSlowLayout()); layout_descriptor = TestLayoutDescriptorAppend(isolate, kSmiValueSize * 2, props, kPropsCount); CHECK(layout_descriptor->IsSlowLayout()); layout_descriptor = TestLayoutDescriptorAppend(isolate, kPropsCount, props, kPropsCount); CHECK(layout_descriptor->IsSlowLayout()); } TEST(LayoutDescriptorAppendAllDoubles) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); v8::HandleScope scope(CcTest::isolate()); Handle layout_descriptor; const int kPropsCount = kSmiValueSize * 3; TestPropertyKind props[kPropsCount]; for (int i = 0; i < kPropsCount; i++) { props[i] = PROP_DOUBLE; } layout_descriptor = TestLayoutDescriptorAppend(isolate, 0, props, kPropsCount); CHECK(!layout_descriptor->IsSlowLayout()); layout_descriptor = TestLayoutDescriptorAppend(isolate, 13, props, kPropsCount); CHECK(!layout_descriptor->IsSlowLayout()); layout_descriptor = TestLayoutDescriptorAppend(isolate, kSmiValueSize, props, kPropsCount); CHECK(!layout_descriptor->IsSlowLayout()); layout_descriptor = TestLayoutDescriptorAppend(isolate, kSmiValueSize + 1, props, kPropsCount); CHECK(layout_descriptor->IsSlowLayout()); layout_descriptor = TestLayoutDescriptorAppend(isolate, kSmiValueSize * 2, props, kPropsCount); CHECK(layout_descriptor->IsSlowLayout()); layout_descriptor = TestLayoutDescriptorAppend(isolate, kPropsCount, props, kPropsCount); CHECK(layout_descriptor->IsSlowLayout()); { // Ensure layout descriptor switches into slow mode at the right moment. layout_descriptor = TestLayoutDescriptorAppend(isolate, kPropsCount, props, kSmiValueSize); CHECK(!layout_descriptor->IsSlowLayout()); layout_descriptor = TestLayoutDescriptorAppend(isolate, kPropsCount, props, kSmiValueSize + 1); CHECK(layout_descriptor->IsSlowLayout()); } } static Handle TestLayoutDescriptorAppendIfFastOrUseFull( Isolate* isolate, int inobject_properties, Handle descriptors, int number_of_descriptors) { Handle map = Map::Create(isolate, inobject_properties); Handle full_layout_descriptor = LayoutDescriptor::New( map, descriptors, descriptors->number_of_descriptors()); int nof = 0; bool switched_to_slow_mode = false; for (int i = 0; i < number_of_descriptors; i++) { PropertyDetails details = descriptors->GetDetails(i); // This method calls LayoutDescriptor::AppendIfFastOrUseFull() internally // and does all the required map-descriptors related book keeping. map = Map::CopyInstallDescriptorsForTesting(map, i, descriptors, full_layout_descriptor); LayoutDescriptor* layout_desc = map->layout_descriptor(); if (layout_desc->IsSlowLayout()) { switched_to_slow_mode = true; CHECK_EQ(*full_layout_descriptor, layout_desc); } else { CHECK(!switched_to_slow_mode); if (details.type() == DATA) { nof++; int field_index = details.field_index(); int field_width_in_words = details.field_width_in_words(); bool is_inobject = field_index < map->inobject_properties(); for (int bit = 0; bit < field_width_in_words; bit++) { CHECK_EQ(is_inobject && details.representation().IsDouble(), !layout_desc->IsTagged(field_index + bit)); } CHECK(layout_desc->IsTagged(field_index + field_width_in_words)); } } CHECK(map->layout_descriptor()->IsConsistentWithMap(*map)); } Handle layout_descriptor(map->GetLayoutDescriptor(), isolate); CHECK(layout_descriptor->IsConsistentWithMap(*map)); return layout_descriptor; } TEST(LayoutDescriptorAppendIfFastOrUseFull) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); v8::HandleScope scope(CcTest::isolate()); Handle layout_descriptor; const int kPropsCount = kSmiValueSize * 3; TestPropertyKind props[kPropsCount]; for (int i = 0; i < kPropsCount; i++) { props[i] = static_cast(i % PROP_KIND_NUMBER); } Handle descriptors = CreateDescriptorArray(isolate, props, kPropsCount); layout_descriptor = TestLayoutDescriptorAppendIfFastOrUseFull( isolate, 0, descriptors, kPropsCount); CHECK(!layout_descriptor->IsSlowLayout()); layout_descriptor = TestLayoutDescriptorAppendIfFastOrUseFull( isolate, 13, descriptors, kPropsCount); CHECK(!layout_descriptor->IsSlowLayout()); layout_descriptor = TestLayoutDescriptorAppendIfFastOrUseFull( isolate, kSmiValueSize, descriptors, kPropsCount); CHECK(!layout_descriptor->IsSlowLayout()); layout_descriptor = TestLayoutDescriptorAppendIfFastOrUseFull( isolate, kSmiValueSize * 2, descriptors, kPropsCount); CHECK(layout_descriptor->IsSlowLayout()); layout_descriptor = TestLayoutDescriptorAppendIfFastOrUseFull( isolate, kPropsCount, descriptors, kPropsCount); CHECK(layout_descriptor->IsSlowLayout()); } TEST(LayoutDescriptorAppendIfFastOrUseFullAllDoubles) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); v8::HandleScope scope(CcTest::isolate()); Handle layout_descriptor; const int kPropsCount = kSmiValueSize * 3; TestPropertyKind props[kPropsCount]; for (int i = 0; i < kPropsCount; i++) { props[i] = PROP_DOUBLE; } Handle descriptors = CreateDescriptorArray(isolate, props, kPropsCount); layout_descriptor = TestLayoutDescriptorAppendIfFastOrUseFull( isolate, 0, descriptors, kPropsCount); CHECK(!layout_descriptor->IsSlowLayout()); layout_descriptor = TestLayoutDescriptorAppendIfFastOrUseFull( isolate, 13, descriptors, kPropsCount); CHECK(!layout_descriptor->IsSlowLayout()); layout_descriptor = TestLayoutDescriptorAppendIfFastOrUseFull( isolate, kSmiValueSize, descriptors, kPropsCount); CHECK(!layout_descriptor->IsSlowLayout()); layout_descriptor = TestLayoutDescriptorAppendIfFastOrUseFull( isolate, kSmiValueSize + 1, descriptors, kPropsCount); CHECK(layout_descriptor->IsSlowLayout()); layout_descriptor = TestLayoutDescriptorAppendIfFastOrUseFull( isolate, kSmiValueSize * 2, descriptors, kPropsCount); CHECK(layout_descriptor->IsSlowLayout()); layout_descriptor = TestLayoutDescriptorAppendIfFastOrUseFull( isolate, kPropsCount, descriptors, kPropsCount); CHECK(layout_descriptor->IsSlowLayout()); { // Ensure layout descriptor switches into slow mode at the right moment. layout_descriptor = TestLayoutDescriptorAppendIfFastOrUseFull( isolate, kPropsCount, descriptors, kSmiValueSize); CHECK(!layout_descriptor->IsSlowLayout()); layout_descriptor = TestLayoutDescriptorAppendIfFastOrUseFull( isolate, kPropsCount, descriptors, kSmiValueSize + 1); CHECK(layout_descriptor->IsSlowLayout()); } } TEST(Regress436816) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); const int kPropsCount = kSmiValueSize * 3; TestPropertyKind props[kPropsCount]; for (int i = 0; i < kPropsCount; i++) { props[i] = PROP_DOUBLE; } Handle descriptors = CreateDescriptorArray(isolate, props, kPropsCount); Handle map = Map::Create(isolate, kPropsCount); Handle layout_descriptor = LayoutDescriptor::New(map, descriptors, kPropsCount); map->InitializeDescriptors(*descriptors, *layout_descriptor); Handle object = factory->NewJSObjectFromMap(map, TENURED); Address fake_address = reinterpret_cast
(~kHeapObjectTagMask); HeapObject* fake_object = HeapObject::FromAddress(fake_address); CHECK(fake_object->IsHeapObject()); double boom_value = bit_cast(fake_object); for (int i = 0; i < kPropsCount; i++) { FieldIndex index = FieldIndex::ForDescriptor(*map, i); CHECK(map->IsUnboxedDoubleField(index)); object->RawFastDoublePropertyAtPut(index, boom_value); } CHECK(object->HasFastProperties()); CHECK(!object->map()->HasFastPointerLayout()); Handle normalized_map = Map::Normalize(map, KEEP_INOBJECT_PROPERTIES, "testing"); JSObject::MigrateToMap(object, normalized_map); CHECK(!object->HasFastProperties()); CHECK(object->map()->HasFastPointerLayout()); // Trigger GCs and heap verification. CcTest::heap()->CollectAllGarbage(i::Heap::kNoGCFlags); } TEST(DoScavenge) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); CompileRun( "function A() {" " this.x = 42.5;" " this.o = {};" "};" "var o = new A();"); Handle obj_name = factory->InternalizeUtf8String("o"); Handle obj_value = Object::GetProperty(isolate->global_object(), obj_name).ToHandleChecked(); CHECK(obj_value->IsJSObject()); Handle obj = Handle::cast(obj_value); { // Ensure the object is properly set up. Map* map = obj->map(); DescriptorArray* descriptors = map->instance_descriptors(); CHECK(map->NumberOfOwnDescriptors() == 2); CHECK(descriptors->GetDetails(0).representation().IsDouble()); CHECK(descriptors->GetDetails(1).representation().IsHeapObject()); FieldIndex field_index = FieldIndex::ForDescriptor(map, 0); CHECK(field_index.is_inobject() && field_index.is_double()); CHECK_EQ(FLAG_unbox_double_fields, map->IsUnboxedDoubleField(field_index)); CHECK_EQ(42.5, GetDoubleFieldValue(*obj, field_index)); } CHECK(isolate->heap()->new_space()->Contains(*obj)); // Trigger GCs so that the newly allocated object moves to old gen. CcTest::heap()->CollectGarbage(i::NEW_SPACE); // in survivor space now // Create temp object in the new space. Handle temp = factory->NewJSArray(FAST_ELEMENTS, NOT_TENURED); CHECK(isolate->heap()->new_space()->Contains(*temp)); // Construct a double value that looks like a pointer to the new space object // and store it into the obj. Address fake_object = reinterpret_cast
(*temp) + kPointerSize; double boom_value = bit_cast(fake_object); FieldIndex field_index = FieldIndex::ForDescriptor(obj->map(), 0); Handle boom_number = factory->NewHeapNumber(boom_value, MUTABLE); obj->FastPropertyAtPut(field_index, *boom_number); // Now the object moves to old gen and it has a double field that looks like // a pointer to a from semi-space. CcTest::heap()->CollectGarbage(i::NEW_SPACE); // in old gen now CHECK(isolate->heap()->old_pointer_space()->Contains(*obj)); CHECK_EQ(boom_value, GetDoubleFieldValue(*obj, field_index)); } static void TestLayoutDescriptorHelper(Isolate* isolate, int inobject_properties, Handle descriptors, int number_of_descriptors) { Handle map = Map::Create(isolate, inobject_properties); Handle layout_descriptor = LayoutDescriptor::New( map, descriptors, descriptors->number_of_descriptors()); InitializeVerifiedMapDescriptors(*map, *descriptors, *layout_descriptor); LayoutDescriptorHelper helper(*map); bool all_fields_tagged = true; int instance_size = map->instance_size(); int end_offset = instance_size * 2; int first_non_tagged_field_offset = end_offset; for (int i = 0; i < number_of_descriptors; i++) { PropertyDetails details = descriptors->GetDetails(i); if (details.type() != DATA) continue; FieldIndex index = FieldIndex::ForDescriptor(*map, i); if (!index.is_inobject()) continue; all_fields_tagged &= !details.representation().IsDouble(); bool expected_tagged = !index.is_double(); if (!expected_tagged) { first_non_tagged_field_offset = Min(first_non_tagged_field_offset, index.offset()); } int end_of_region_offset; CHECK_EQ(expected_tagged, helper.IsTagged(index.offset())); CHECK_EQ(expected_tagged, helper.IsTagged(index.offset(), instance_size, &end_of_region_offset)); CHECK(end_of_region_offset > 0); CHECK(end_of_region_offset % kPointerSize == 0); CHECK(end_of_region_offset <= instance_size); for (int offset = index.offset(); offset < end_of_region_offset; offset += kPointerSize) { CHECK_EQ(expected_tagged, helper.IsTagged(index.offset())); } if (end_of_region_offset < instance_size) { CHECK_EQ(!expected_tagged, helper.IsTagged(end_of_region_offset)); } else { CHECK_EQ(true, helper.IsTagged(end_of_region_offset)); } } for (int offset = 0; offset < JSObject::kHeaderSize; offset += kPointerSize) { // Header queries CHECK_EQ(true, helper.IsTagged(offset)); int end_of_region_offset; CHECK_EQ(true, helper.IsTagged(offset, end_offset, &end_of_region_offset)); CHECK_EQ(first_non_tagged_field_offset, end_of_region_offset); // Out of bounds queries CHECK_EQ(true, helper.IsTagged(offset + instance_size)); } CHECK_EQ(all_fields_tagged, helper.all_fields_tagged()); } TEST(LayoutDescriptorHelperMixed) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); v8::HandleScope scope(CcTest::isolate()); Handle layout_descriptor; const int kPropsCount = kSmiValueSize * 3; TestPropertyKind props[kPropsCount]; for (int i = 0; i < kPropsCount; i++) { props[i] = static_cast(i % PROP_KIND_NUMBER); } Handle descriptors = CreateDescriptorArray(isolate, props, kPropsCount); TestLayoutDescriptorHelper(isolate, 0, descriptors, kPropsCount); TestLayoutDescriptorHelper(isolate, 13, descriptors, kPropsCount); TestLayoutDescriptorHelper(isolate, kSmiValueSize, descriptors, kPropsCount); TestLayoutDescriptorHelper(isolate, kSmiValueSize * 2, descriptors, kPropsCount); TestLayoutDescriptorHelper(isolate, kPropsCount, descriptors, kPropsCount); } TEST(LayoutDescriptorHelperAllTagged) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); v8::HandleScope scope(CcTest::isolate()); Handle layout_descriptor; const int kPropsCount = kSmiValueSize * 3; TestPropertyKind props[kPropsCount]; for (int i = 0; i < kPropsCount; i++) { props[i] = PROP_TAGGED; } Handle descriptors = CreateDescriptorArray(isolate, props, kPropsCount); TestLayoutDescriptorHelper(isolate, 0, descriptors, kPropsCount); TestLayoutDescriptorHelper(isolate, 13, descriptors, kPropsCount); TestLayoutDescriptorHelper(isolate, kSmiValueSize, descriptors, kPropsCount); TestLayoutDescriptorHelper(isolate, kSmiValueSize * 2, descriptors, kPropsCount); TestLayoutDescriptorHelper(isolate, kPropsCount, descriptors, kPropsCount); } TEST(LayoutDescriptorHelperAllDoubles) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); v8::HandleScope scope(CcTest::isolate()); Handle layout_descriptor; const int kPropsCount = kSmiValueSize * 3; TestPropertyKind props[kPropsCount]; for (int i = 0; i < kPropsCount; i++) { props[i] = PROP_DOUBLE; } Handle descriptors = CreateDescriptorArray(isolate, props, kPropsCount); TestLayoutDescriptorHelper(isolate, 0, descriptors, kPropsCount); TestLayoutDescriptorHelper(isolate, 13, descriptors, kPropsCount); TestLayoutDescriptorHelper(isolate, kSmiValueSize, descriptors, kPropsCount); TestLayoutDescriptorHelper(isolate, kSmiValueSize * 2, descriptors, kPropsCount); TestLayoutDescriptorHelper(isolate, kPropsCount, descriptors, kPropsCount); } TEST(LayoutDescriptorSharing) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Isolate* isolate = CcTest::i_isolate(); Handle any_type = HeapType::Any(isolate); Handle split_map; { Handle map = Map::Create(isolate, 64); for (int i = 0; i < 32; i++) { Handle name = MakeName("prop", i); map = Map::CopyWithField(map, name, any_type, NONE, Representation::Smi(), INSERT_TRANSITION).ToHandleChecked(); } split_map = Map::CopyWithField(map, MakeString("dbl"), any_type, NONE, Representation::Double(), INSERT_TRANSITION).ToHandleChecked(); } Handle split_layout_descriptor( split_map->layout_descriptor(), isolate); CHECK(split_layout_descriptor->IsConsistentWithMap(*split_map)); CHECK(split_layout_descriptor->IsSlowLayout()); CHECK(split_map->owns_descriptors()); Handle map1 = Map::CopyWithField(split_map, MakeString("foo"), any_type, NONE, Representation::Double(), INSERT_TRANSITION).ToHandleChecked(); CHECK(!split_map->owns_descriptors()); CHECK_EQ(*split_layout_descriptor, split_map->layout_descriptor()); // Layout descriptors should be shared with |split_map|. CHECK(map1->owns_descriptors()); CHECK_EQ(*split_layout_descriptor, map1->layout_descriptor()); CHECK(map1->layout_descriptor()->IsConsistentWithMap(*map1)); Handle map2 = Map::CopyWithField(split_map, MakeString("bar"), any_type, NONE, Representation::Tagged(), INSERT_TRANSITION).ToHandleChecked(); // Layout descriptors should not be shared with |split_map|. CHECK(map2->owns_descriptors()); CHECK_NE(*split_layout_descriptor, map2->layout_descriptor()); CHECK(map2->layout_descriptor()->IsConsistentWithMap(*map2)); } TEST(StoreBufferScanOnScavenge) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); CompileRun( "function A() {" " this.x = 42.5;" " this.o = {};" "};" "var o = new A();"); Handle obj_name = factory->InternalizeUtf8String("o"); Handle obj_value = Object::GetProperty(isolate->global_object(), obj_name).ToHandleChecked(); CHECK(obj_value->IsJSObject()); Handle obj = Handle::cast(obj_value); { // Ensure the object is properly set up. Map* map = obj->map(); DescriptorArray* descriptors = map->instance_descriptors(); CHECK(map->NumberOfOwnDescriptors() == 2); CHECK(descriptors->GetDetails(0).representation().IsDouble()); CHECK(descriptors->GetDetails(1).representation().IsHeapObject()); FieldIndex field_index = FieldIndex::ForDescriptor(map, 0); CHECK(field_index.is_inobject() && field_index.is_double()); CHECK_EQ(FLAG_unbox_double_fields, map->IsUnboxedDoubleField(field_index)); CHECK_EQ(42.5, GetDoubleFieldValue(*obj, field_index)); } CHECK(isolate->heap()->new_space()->Contains(*obj)); // Trigger GCs so that the newly allocated object moves to old gen. CcTest::heap()->CollectGarbage(i::NEW_SPACE); // in survivor space now CcTest::heap()->CollectGarbage(i::NEW_SPACE); // in old gen now CHECK(isolate->heap()->old_pointer_space()->Contains(*obj)); // Create temp object in the new space. Handle temp = factory->NewJSArray(FAST_ELEMENTS, NOT_TENURED); CHECK(isolate->heap()->new_space()->Contains(*temp)); // Construct a double value that looks like a pointer to the new space object // and store it into the obj. Address fake_object = reinterpret_cast
(*temp) + kPointerSize; double boom_value = bit_cast(fake_object); FieldIndex field_index = FieldIndex::ForDescriptor(obj->map(), 0); Handle boom_number = factory->NewHeapNumber(boom_value, MUTABLE); obj->FastPropertyAtPut(field_index, *boom_number); // Enforce scan on scavenge for the obj's page. MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address()); chunk->set_scan_on_scavenge(true); // Trigger GCs and force evacuation. Should not crash there. CcTest::heap()->CollectAllGarbage(i::Heap::kNoGCFlags); CHECK_EQ(boom_value, GetDoubleFieldValue(*obj, field_index)); } static int LenFromSize(int size) { return (size - FixedArray::kHeaderSize) / kPointerSize; } TEST(WriteBarriersInCopyJSObject) { FLAG_max_semi_space_size = 1; // Ensure new space is not growing. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); TestHeap* heap = CcTest::test_heap(); v8::HandleScope scope(CcTest::isolate()); // The plan: create JSObject which contains unboxed double value that looks // like a reference to an object in new space. // Then clone this object (forcing it to go into old space) and check // that the value of the unboxed double property of the cloned object has // was not corrupted by GC. // Step 1: prepare a map for the object. We add unboxed double property to it. // Create a map with single inobject property. Handle my_map = Map::Create(isolate, 1); Handle name = isolate->factory()->InternalizeUtf8String("foo"); my_map = Map::CopyWithField(my_map, name, HeapType::Any(isolate), NONE, Representation::Double(), INSERT_TRANSITION).ToHandleChecked(); my_map->set_pre_allocated_property_fields(1); int n_properties = my_map->InitialPropertiesLength(); CHECK_GE(n_properties, 0); int object_size = my_map->instance_size(); // Step 2: allocate a lot of objects so to almost fill new space: we need // just enough room to allocate JSObject and thus fill the newspace. int allocation_amount = Min(FixedArray::kMaxSize, Page::kMaxRegularHeapObjectSize + kPointerSize); int allocation_len = LenFromSize(allocation_amount); NewSpace* new_space = heap->new_space(); Address* top_addr = new_space->allocation_top_address(); Address* limit_addr = new_space->allocation_limit_address(); while ((*limit_addr - *top_addr) > allocation_amount) { CHECK(!heap->always_allocate()); Object* array = heap->AllocateFixedArray(allocation_len).ToObjectChecked(); CHECK(new_space->Contains(array)); } // Step 3: now allocate fixed array and JSObject to fill the whole new space. int to_fill = static_cast(*limit_addr - *top_addr - object_size); int fixed_array_len = LenFromSize(to_fill); CHECK(fixed_array_len < FixedArray::kMaxLength); CHECK(!heap->always_allocate()); Object* array = heap->AllocateFixedArray(fixed_array_len).ToObjectChecked(); CHECK(new_space->Contains(array)); Object* object = heap->AllocateJSObjectFromMap(*my_map).ToObjectChecked(); CHECK(new_space->Contains(object)); JSObject* jsobject = JSObject::cast(object); CHECK_EQ(0, FixedArray::cast(jsobject->elements())->length()); CHECK_EQ(0, jsobject->properties()->length()); // Construct a double value that looks like a pointer to the new space object // and store it into the obj. Address fake_object = reinterpret_cast
(array) + kPointerSize; double boom_value = bit_cast(fake_object); FieldIndex index = FieldIndex::ForDescriptor(*my_map, 0); jsobject->RawFastDoublePropertyAtPut(index, boom_value); CHECK_EQ(0, static_cast(*limit_addr - *top_addr)); // Step 4: clone jsobject, but force always allocate first to create a clone // in old pointer space. AlwaysAllocateScope aa_scope(isolate); Object* clone_obj = heap->CopyJSObject(jsobject).ToObjectChecked(); Handle clone(JSObject::cast(clone_obj)); CHECK(heap->old_pointer_space()->Contains(clone->address())); CcTest::heap()->CollectGarbage(NEW_SPACE, "boom"); // The value in cloned object should not be corrupted by GC. CHECK_EQ(boom_value, clone->RawFastDoublePropertyAt(index)); } static void TestWriteBarrier(Handle map, Handle new_map, int tagged_descriptor, int double_descriptor, bool check_tagged_value = true) { FLAG_stress_compaction = true; FLAG_manual_evacuation_candidates_selection = true; Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); Heap* heap = CcTest::heap(); PagedSpace* old_pointer_space = heap->old_pointer_space(); // The plan: create |obj| by |map| in old space, create |obj_value| in // new space and ensure that write barrier is triggered when |obj_value| is // written to property |tagged_descriptor| of |obj|. // Then migrate object to |new_map| and set proper value for property // |double_descriptor|. Call GC and ensure that it did not crash during // store buffer entries updating. Handle obj; Handle obj_value; { AlwaysAllocateScope always_allocate(isolate); obj = factory->NewJSObjectFromMap(map, TENURED, false); CHECK(old_pointer_space->Contains(*obj)); obj_value = factory->NewJSArray(32 * KB, FAST_HOLEY_ELEMENTS); } CHECK(heap->InNewSpace(*obj_value)); StoreBuffer* store_buffer = heap->store_buffer(); USE(store_buffer); Address slot; { FieldIndex index = FieldIndex::ForDescriptor(*map, tagged_descriptor); int offset = index.offset(); slot = reinterpret_cast
(HeapObject::RawField(*obj, offset)); USE(slot); DCHECK(!store_buffer->CellIsInStoreBuffer(slot)); const int n = 153; for (int i = 0; i < n; i++) { obj->FastPropertyAtPut(index, *obj_value); } // Ensure that the slot was actually added to the store buffer. DCHECK(store_buffer->CellIsInStoreBuffer(slot)); } // Migrate |obj| to |new_map| which should shift fields and put the // |boom_value| to the slot that was earlier recorded by write barrier. JSObject::MigrateToMap(obj, new_map); // Ensure that invalid entries were removed from the store buffer. DCHECK(!store_buffer->CellIsInStoreBuffer(slot)); Address fake_object = reinterpret_cast
(*obj_value) + kPointerSize; double boom_value = bit_cast(fake_object); FieldIndex double_field_index = FieldIndex::ForDescriptor(*new_map, double_descriptor); CHECK(obj->IsUnboxedDoubleField(double_field_index)); obj->RawFastDoublePropertyAtPut(double_field_index, boom_value); // Trigger GC to evacuate all candidates. CcTest::heap()->CollectGarbage(NEW_SPACE, "boom"); if (check_tagged_value) { FieldIndex tagged_field_index = FieldIndex::ForDescriptor(*new_map, tagged_descriptor); CHECK_EQ(*obj_value, obj->RawFastPropertyAt(tagged_field_index)); } CHECK_EQ(boom_value, obj->RawFastDoublePropertyAt(double_field_index)); } static void TestIncrementalWriteBarrier(Handle map, Handle new_map, int tagged_descriptor, int double_descriptor, bool check_tagged_value = true) { if (FLAG_never_compact || !FLAG_incremental_marking) return; FLAG_stress_compaction = true; FLAG_manual_evacuation_candidates_selection = true; Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); Heap* heap = CcTest::heap(); PagedSpace* old_pointer_space = heap->old_pointer_space(); // The plan: create |obj| by |map| in old space, create |obj_value| in // old space and ensure it end up in evacuation candidate page. Start // incremental marking and ensure that incremental write barrier is triggered // when |obj_value| is written to property |tagged_descriptor| of |obj|. // Then migrate object to |new_map| and set proper value for property // |double_descriptor|. Call GC and ensure that it did not crash during // slots buffer entries updating. Handle obj; Handle obj_value; Page* ec_page; { AlwaysAllocateScope always_allocate(isolate); obj = factory->NewJSObjectFromMap(map, TENURED, false); CHECK(old_pointer_space->Contains(*obj)); // Make sure |obj_value| is placed on an old-space evacuation candidate. SimulateFullSpace(old_pointer_space); obj_value = factory->NewJSArray(32 * KB, FAST_HOLEY_ELEMENTS, TENURED); ec_page = Page::FromAddress(obj_value->address()); CHECK_NE(ec_page, Page::FromAddress(obj->address())); } // Heap is ready, force |ec_page| to become an evacuation candidate and // simulate incremental marking. ec_page->SetFlag(MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING); SimulateIncrementalMarking(heap); // Check that everything is ready for triggering incremental write barrier // (i.e. that both |obj| and |obj_value| are black and the marking phase is // still active and |obj_value|'s page is indeed an evacuation candidate). IncrementalMarking* marking = heap->incremental_marking(); CHECK(marking->IsMarking()); CHECK(Marking::IsBlack(Marking::MarkBitFrom(*obj))); CHECK(Marking::IsBlack(Marking::MarkBitFrom(*obj_value))); CHECK(MarkCompactCollector::IsOnEvacuationCandidate(*obj_value)); // Trigger incremental write barrier, which should add a slot to |ec_page|'s // slots buffer. { int slots_buffer_len = SlotsBuffer::SizeOfChain(ec_page->slots_buffer()); FieldIndex index = FieldIndex::ForDescriptor(*map, tagged_descriptor); const int n = SlotsBuffer::kNumberOfElements + 10; for (int i = 0; i < n; i++) { obj->FastPropertyAtPut(index, *obj_value); } // Ensure that the slot was actually added to the |ec_page|'s slots buffer. CHECK_EQ(slots_buffer_len + n, SlotsBuffer::SizeOfChain(ec_page->slots_buffer())); } // Migrate |obj| to |new_map| which should shift fields and put the // |boom_value| to the slot that was earlier recorded by incremental write // barrier. JSObject::MigrateToMap(obj, new_map); double boom_value = bit_cast(UINT64_C(0xbaad0176a37c28e1)); FieldIndex double_field_index = FieldIndex::ForDescriptor(*new_map, double_descriptor); CHECK(obj->IsUnboxedDoubleField(double_field_index)); obj->RawFastDoublePropertyAtPut(double_field_index, boom_value); // Trigger GC to evacuate all candidates. CcTest::heap()->CollectGarbage(OLD_POINTER_SPACE, "boom"); // Ensure that the values are still there and correct. CHECK(!MarkCompactCollector::IsOnEvacuationCandidate(*obj_value)); if (check_tagged_value) { FieldIndex tagged_field_index = FieldIndex::ForDescriptor(*new_map, tagged_descriptor); CHECK_EQ(*obj_value, obj->RawFastPropertyAt(tagged_field_index)); } CHECK_EQ(boom_value, obj->RawFastDoublePropertyAt(double_field_index)); } enum WriteBarrierKind { OLD_TO_OLD_WRITE_BARRIER, OLD_TO_NEW_WRITE_BARRIER }; static void TestWriteBarrierObjectShiftFieldsRight( WriteBarrierKind write_barrier_kind) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); v8::HandleScope scope(CcTest::isolate()); Handle any_type = HeapType::Any(isolate); CompileRun("function func() { return 1; }"); Handle func = GetObject("func"); Handle map = Map::Create(isolate, 10); map = Map::CopyWithConstant(map, MakeName("prop", 0), func, NONE, INSERT_TRANSITION).ToHandleChecked(); map = Map::CopyWithField(map, MakeName("prop", 1), any_type, NONE, Representation::Double(), INSERT_TRANSITION).ToHandleChecked(); map = Map::CopyWithField(map, MakeName("prop", 2), any_type, NONE, Representation::Tagged(), INSERT_TRANSITION).ToHandleChecked(); // Shift fields right by turning constant property to a field. Handle new_map = Map::ReconfigureProperty( map, 0, kData, NONE, Representation::Tagged(), any_type, FORCE_FIELD); if (write_barrier_kind == OLD_TO_NEW_WRITE_BARRIER) { TestWriteBarrier(map, new_map, 2, 1); } else { CHECK_EQ(OLD_TO_OLD_WRITE_BARRIER, write_barrier_kind); TestIncrementalWriteBarrier(map, new_map, 2, 1); } } TEST(WriteBarrierObjectShiftFieldsRight) { TestWriteBarrierObjectShiftFieldsRight(OLD_TO_NEW_WRITE_BARRIER); } TEST(IncrementalWriteBarrierObjectShiftFieldsRight) { TestWriteBarrierObjectShiftFieldsRight(OLD_TO_OLD_WRITE_BARRIER); } // TODO(ishell): add respective tests for property kind reconfiguring from // accessor field to double, once accessor fields are supported by // Map::ReconfigureProperty(). // TODO(ishell): add respective tests for fast property removal case once // Map::ReconfigureProperty() supports that. #endif