// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "assembler.h" #include "isolate.h" #include "elements.h" #include "bootstrapper.h" #include "debug.h" #include "deoptimizer.h" #include "frames.h" #include "heap-profiler.h" #include "hydrogen.h" #include "lithium-allocator.h" #include "objects.h" #include "once.h" #include "platform.h" #include "sampler.h" #include "runtime-profiler.h" #include "serialize.h" #include "store-buffer.h" namespace v8 { namespace internal { V8_DECLARE_ONCE(init_once); bool V8::is_running_ = false; bool V8::has_been_set_up_ = false; bool V8::has_been_disposed_ = false; bool V8::has_fatal_error_ = false; bool V8::use_crankshaft_ = true; List* V8::call_completed_callbacks_ = NULL; v8::ArrayBuffer::Allocator* V8::array_buffer_allocator_ = NULL; static LazyMutex entropy_mutex = LAZY_MUTEX_INITIALIZER; static EntropySource entropy_source; bool V8::Initialize(Deserializer* des) { InitializeOncePerProcess(); // The current thread may not yet had entered an isolate to run. // Note the Isolate::Current() may be non-null because for various // initialization purposes an initializing thread may be assigned an isolate // but not actually enter it. if (i::Isolate::CurrentPerIsolateThreadData() == NULL) { i::Isolate::EnterDefaultIsolate(); } ASSERT(i::Isolate::CurrentPerIsolateThreadData() != NULL); ASSERT(i::Isolate::CurrentPerIsolateThreadData()->thread_id().Equals( i::ThreadId::Current())); ASSERT(i::Isolate::CurrentPerIsolateThreadData()->isolate() == i::Isolate::Current()); if (IsDead()) return false; Isolate* isolate = Isolate::Current(); if (isolate->IsInitialized()) return true; is_running_ = true; has_been_set_up_ = true; has_fatal_error_ = false; has_been_disposed_ = false; return isolate->Init(des); } void V8::SetFatalError() { is_running_ = false; has_fatal_error_ = true; } void V8::TearDown() { Isolate* isolate = Isolate::Current(); ASSERT(isolate->IsDefaultIsolate()); if (!has_been_set_up_ || has_been_disposed_) return; // The isolate has to be torn down before clearing the LOperand // caches so that the optimizing compiler thread (if running) // doesn't see an inconsistent view of the lithium instructions. isolate->TearDown(); delete isolate; ElementsAccessor::TearDown(); LOperand::TearDownCaches(); ExternalReference::TearDownMathExpData(); RegisteredExtension::UnregisterAll(); Isolate::GlobalTearDown(); is_running_ = false; has_been_disposed_ = true; delete call_completed_callbacks_; call_completed_callbacks_ = NULL; Sampler::TearDown(); OS::TearDown(); } static void seed_random(uint32_t* state) { for (int i = 0; i < 2; ++i) { if (FLAG_random_seed != 0) { state[i] = FLAG_random_seed; } else if (entropy_source != NULL) { uint32_t val; ScopedLock lock(entropy_mutex.Pointer()); entropy_source(reinterpret_cast(&val), sizeof(uint32_t)); state[i] = val; } else { state[i] = random(); } } } // Random number generator using George Marsaglia's MWC algorithm. static uint32_t random_base(uint32_t* state) { // Initialize seed using the system random(). // No non-zero seed will ever become zero again. if (state[0] == 0) seed_random(state); // Mix the bits. Never replaces state[i] with 0 if it is nonzero. state[0] = 18273 * (state[0] & 0xFFFF) + (state[0] >> 16); state[1] = 36969 * (state[1] & 0xFFFF) + (state[1] >> 16); return (state[0] << 14) + (state[1] & 0x3FFFF); } void V8::SetEntropySource(EntropySource source) { entropy_source = source; } void V8::SetReturnAddressLocationResolver( ReturnAddressLocationResolver resolver) { StackFrame::SetReturnAddressLocationResolver(resolver); } // Used by JavaScript APIs uint32_t V8::Random(Context* context) { ASSERT(context->IsNativeContext()); ByteArray* seed = context->random_seed(); return random_base(reinterpret_cast(seed->GetDataStartAddress())); } // Used internally by the JIT and memory allocator for security // purposes. So, we keep a different state to prevent informations // leaks that could be used in an exploit. uint32_t V8::RandomPrivate(Isolate* isolate) { ASSERT(isolate == Isolate::Current()); return random_base(isolate->private_random_seed()); } bool V8::IdleNotification(int hint) { // Returning true tells the caller that there is no need to call // IdleNotification again. if (!FLAG_use_idle_notification) return true; // Tell the heap that it may want to adjust. return HEAP->IdleNotification(hint); } void V8::AddCallCompletedCallback(CallCompletedCallback callback) { if (call_completed_callbacks_ == NULL) { // Lazy init. call_completed_callbacks_ = new List(); } for (int i = 0; i < call_completed_callbacks_->length(); i++) { if (callback == call_completed_callbacks_->at(i)) return; } call_completed_callbacks_->Add(callback); } void V8::RemoveCallCompletedCallback(CallCompletedCallback callback) { if (call_completed_callbacks_ == NULL) return; for (int i = 0; i < call_completed_callbacks_->length(); i++) { if (callback == call_completed_callbacks_->at(i)) { call_completed_callbacks_->Remove(i); } } } void V8::FireCallCompletedCallback(Isolate* isolate) { bool has_call_completed_callbacks = call_completed_callbacks_ != NULL; bool observer_delivery_pending = FLAG_harmony_observation && isolate->observer_delivery_pending(); if (!has_call_completed_callbacks && !observer_delivery_pending) return; HandleScopeImplementer* handle_scope_implementer = isolate->handle_scope_implementer(); if (!handle_scope_implementer->CallDepthIsZero()) return; // Fire callbacks. Increase call depth to prevent recursive callbacks. handle_scope_implementer->IncrementCallDepth(); if (observer_delivery_pending) { JSObject::DeliverChangeRecords(isolate); } if (has_call_completed_callbacks) { for (int i = 0; i < call_completed_callbacks_->length(); i++) { call_completed_callbacks_->at(i)(); } } handle_scope_implementer->DecrementCallDepth(); } // Use a union type to avoid type-aliasing optimizations in GCC. typedef union { double double_value; uint64_t uint64_t_value; } double_int_union; Object* V8::FillHeapNumberWithRandom(Object* heap_number, Context* context) { double_int_union r; uint64_t random_bits = Random(context); // Convert 32 random bits to 0.(32 random bits) in a double // by computing: // ( 1.(20 0s)(32 random bits) x 2^20 ) - (1.0 x 2^20)). static const double binary_million = 1048576.0; r.double_value = binary_million; r.uint64_t_value |= random_bits; r.double_value -= binary_million; HeapNumber::cast(heap_number)->set_value(r.double_value); return heap_number; } void V8::InitializeOncePerProcessImpl() { FlagList::EnforceFlagImplications(); if (FLAG_stress_compaction) { FLAG_force_marking_deque_overflows = true; FLAG_gc_global = true; FLAG_max_new_space_size = (1 << (kPageSizeBits - 10)) * 2; } if (FLAG_parallel_recompilation && (FLAG_trace_hydrogen || FLAG_trace_hydrogen_stubs)) { FLAG_parallel_recompilation = false; PrintF("Parallel recompilation has been disabled for tracing.\n"); } if (FLAG_sweeper_threads <= 0) { if (FLAG_concurrent_sweeping) { FLAG_sweeper_threads = SystemThreadManager:: NumberOfParallelSystemThreads( SystemThreadManager::CONCURRENT_SWEEPING); } else if (FLAG_parallel_sweeping) { FLAG_sweeper_threads = SystemThreadManager:: NumberOfParallelSystemThreads( SystemThreadManager::PARALLEL_SWEEPING); } if (FLAG_sweeper_threads == 0) { FLAG_concurrent_sweeping = false; FLAG_parallel_sweeping = false; } } else if (!FLAG_concurrent_sweeping && !FLAG_parallel_sweeping) { FLAG_sweeper_threads = 0; } if (FLAG_parallel_marking) { if (FLAG_marking_threads <= 0) { FLAG_marking_threads = SystemThreadManager:: NumberOfParallelSystemThreads( SystemThreadManager::PARALLEL_MARKING); } if (FLAG_marking_threads == 0) { FLAG_parallel_marking = false; } } else { FLAG_marking_threads = 0; } if (FLAG_parallel_recompilation && SystemThreadManager::NumberOfParallelSystemThreads( SystemThreadManager::PARALLEL_RECOMPILATION) == 0) { FLAG_parallel_recompilation = false; } OS::SetUp(); Sampler::SetUp(); CPU::SetUp(); use_crankshaft_ = FLAG_crankshaft && !Serializer::enabled() && CPU::SupportsCrankshaft(); OS::PostSetUp(); ElementsAccessor::InitializeOncePerProcess(); LOperand::SetUpCaches(); SetUpJSCallerSavedCodeData(); ExternalReference::SetUp(); Bootstrapper::InitializeOncePerProcess(); } void V8::InitializeOncePerProcess() { CallOnce(&init_once, &InitializeOncePerProcessImpl); } } } // namespace v8::internal