// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // Review notes: // // - The use of macros in these inline functions may seem superfluous // but it is absolutely needed to make sure gcc generates optimal // code. gcc is not happy when attempting to inline too deep. // #ifndef V8_OBJECTS_INL_H_ #define V8_OBJECTS_INL_H_ #include "src/base/atomicops.h" #include "src/base/bits.h" #include "src/contexts-inl.h" #include "src/conversions-inl.h" #include "src/factory.h" #include "src/field-index-inl.h" #include "src/heap/heap-inl.h" #include "src/heap/heap.h" #include "src/isolate.h" #include "src/layout-descriptor-inl.h" #include "src/lookup.h" #include "src/objects.h" #include "src/property.h" #include "src/prototype.h" #include "src/transitions-inl.h" #include "src/type-feedback-vector-inl.h" #include "src/types-inl.h" #include "src/v8memory.h" namespace v8 { namespace internal { PropertyDetails::PropertyDetails(Smi* smi) { value_ = smi->value(); } Smi* PropertyDetails::AsSmi() const { // Ensure the upper 2 bits have the same value by sign extending it. This is // necessary to be able to use the 31st bit of the property details. int value = value_ << 1; return Smi::FromInt(value >> 1); } int PropertyDetails::field_width_in_words() const { DCHECK(location() == kField); if (!FLAG_unbox_double_fields) return 1; if (kDoubleSize == kPointerSize) return 1; return representation().IsDouble() ? kDoubleSize / kPointerSize : 1; } #define TYPE_CHECKER(type, instancetype) \ bool Object::Is##type() const { \ return Object::IsHeapObject() && \ HeapObject::cast(this)->map()->instance_type() == instancetype; \ } #define CAST_ACCESSOR(type) \ type* type::cast(Object* object) { \ SLOW_DCHECK(object->Is##type()); \ return reinterpret_cast(object); \ } \ const type* type::cast(const Object* object) { \ SLOW_DCHECK(object->Is##type()); \ return reinterpret_cast(object); \ } #define INT_ACCESSORS(holder, name, offset) \ int holder::name() const { return READ_INT_FIELD(this, offset); } \ void holder::set_##name(int value) { WRITE_INT_FIELD(this, offset, value); } #define ACCESSORS(holder, name, type, offset) \ type* holder::name() const { return type::cast(READ_FIELD(this, offset)); } \ void holder::set_##name(type* value, WriteBarrierMode mode) { \ WRITE_FIELD(this, offset, value); \ CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, value, mode); \ } // Getter that returns a Smi as an int and writes an int as a Smi. #define SMI_ACCESSORS(holder, name, offset) \ int holder::name() const { \ Object* value = READ_FIELD(this, offset); \ return Smi::cast(value)->value(); \ } \ void holder::set_##name(int value) { \ WRITE_FIELD(this, offset, Smi::FromInt(value)); \ } #define SYNCHRONIZED_SMI_ACCESSORS(holder, name, offset) \ int holder::synchronized_##name() const { \ Object* value = ACQUIRE_READ_FIELD(this, offset); \ return Smi::cast(value)->value(); \ } \ void holder::synchronized_set_##name(int value) { \ RELEASE_WRITE_FIELD(this, offset, Smi::FromInt(value)); \ } #define NOBARRIER_SMI_ACCESSORS(holder, name, offset) \ int holder::nobarrier_##name() const { \ Object* value = NOBARRIER_READ_FIELD(this, offset); \ return Smi::cast(value)->value(); \ } \ void holder::nobarrier_set_##name(int value) { \ NOBARRIER_WRITE_FIELD(this, offset, Smi::FromInt(value)); \ } #define BOOL_GETTER(holder, field, name, offset) \ bool holder::name() const { \ return BooleanBit::get(field(), offset); \ } \ #define BOOL_ACCESSORS(holder, field, name, offset) \ bool holder::name() const { \ return BooleanBit::get(field(), offset); \ } \ void holder::set_##name(bool value) { \ set_##field(BooleanBit::set(field(), offset, value)); \ } bool Object::IsFixedArrayBase() const { return IsFixedArray() || IsFixedDoubleArray() || IsFixedTypedArrayBase(); } // External objects are not extensible, so the map check is enough. bool Object::IsExternal() const { return Object::IsHeapObject() && HeapObject::cast(this)->map() == HeapObject::cast(this)->GetHeap()->external_map(); } bool Object::IsAccessorInfo() const { return IsExecutableAccessorInfo(); } TYPE_CHECKER(HeapNumber, HEAP_NUMBER_TYPE) TYPE_CHECKER(MutableHeapNumber, MUTABLE_HEAP_NUMBER_TYPE) TYPE_CHECKER(Symbol, SYMBOL_TYPE) TYPE_CHECKER(Simd128Value, SIMD128_VALUE_TYPE) #define SIMD128_TYPE_CHECKER(TYPE, Type, type, lane_count, lane_type) \ bool Object::Is##Type() const { \ return Object::IsHeapObject() && \ HeapObject::cast(this)->map() == \ HeapObject::cast(this)->GetHeap()->type##_map(); \ } SIMD128_TYPES(SIMD128_TYPE_CHECKER) #undef SIMD128_TYPE_CHECKER bool Object::IsString() const { return Object::IsHeapObject() && HeapObject::cast(this)->map()->instance_type() < FIRST_NONSTRING_TYPE; } bool Object::IsName() const { STATIC_ASSERT(FIRST_NAME_TYPE == FIRST_TYPE); return Object::IsHeapObject() && HeapObject::cast(this)->map()->instance_type() <= LAST_NAME_TYPE; } bool Object::IsUniqueName() const { return IsInternalizedString() || IsSymbol(); } bool Object::IsCallable() const { return Object::IsHeapObject() && HeapObject::cast(this)->map()->is_callable(); } bool Object::IsConstructor() const { return Object::IsHeapObject() && HeapObject::cast(this)->map()->is_constructor(); } bool Object::IsSpecObject() const { return Object::IsHeapObject() && HeapObject::cast(this)->map()->instance_type() >= FIRST_SPEC_OBJECT_TYPE; } bool Object::IsTemplateInfo() const { return IsObjectTemplateInfo() || IsFunctionTemplateInfo(); } bool Object::IsInternalizedString() const { if (!this->IsHeapObject()) return false; uint32_t type = HeapObject::cast(this)->map()->instance_type(); STATIC_ASSERT(kNotInternalizedTag != 0); return (type & (kIsNotStringMask | kIsNotInternalizedMask)) == (kStringTag | kInternalizedTag); } bool Object::IsConsString() const { if (!IsString()) return false; return StringShape(String::cast(this)).IsCons(); } bool Object::IsSlicedString() const { if (!IsString()) return false; return StringShape(String::cast(this)).IsSliced(); } bool Object::IsSeqString() const { if (!IsString()) return false; return StringShape(String::cast(this)).IsSequential(); } bool Object::IsSeqOneByteString() const { if (!IsString()) return false; return StringShape(String::cast(this)).IsSequential() && String::cast(this)->IsOneByteRepresentation(); } bool Object::IsSeqTwoByteString() const { if (!IsString()) return false; return StringShape(String::cast(this)).IsSequential() && String::cast(this)->IsTwoByteRepresentation(); } bool Object::IsExternalString() const { if (!IsString()) return false; return StringShape(String::cast(this)).IsExternal(); } bool Object::IsExternalOneByteString() const { if (!IsString()) return false; return StringShape(String::cast(this)).IsExternal() && String::cast(this)->IsOneByteRepresentation(); } bool Object::IsExternalTwoByteString() const { if (!IsString()) return false; return StringShape(String::cast(this)).IsExternal() && String::cast(this)->IsTwoByteRepresentation(); } bool Object::HasValidElements() { // Dictionary is covered under FixedArray. return IsFixedArray() || IsFixedDoubleArray() || IsFixedTypedArrayBase(); } bool Object::KeyEquals(Object* second) { Object* first = this; if (second->IsNumber()) { if (first->IsNumber()) return first->Number() == second->Number(); Object* temp = first; first = second; second = temp; } if (first->IsNumber()) { DCHECK_LE(0, first->Number()); uint32_t expected = static_cast(first->Number()); uint32_t index; return Name::cast(second)->AsArrayIndex(&index) && index == expected; } return Name::cast(first)->Equals(Name::cast(second)); } bool Object::FilterKey(PropertyAttributes filter) { if ((filter & SYMBOLIC) && IsSymbol()) { return true; } if ((filter & PRIVATE_SYMBOL) && IsSymbol() && Symbol::cast(this)->is_private()) { return true; } if ((filter & STRING) && !IsSymbol()) { return true; } return false; } Handle Object::NewStorageFor(Isolate* isolate, Handle object, Representation representation) { if (representation.IsSmi() && object->IsUninitialized()) { return handle(Smi::FromInt(0), isolate); } if (!representation.IsDouble()) return object; double value; if (object->IsUninitialized()) { value = 0; } else if (object->IsMutableHeapNumber()) { value = HeapNumber::cast(*object)->value(); } else { value = object->Number(); } return isolate->factory()->NewHeapNumber(value, MUTABLE); } Handle Object::WrapForRead(Isolate* isolate, Handle object, Representation representation) { DCHECK(!object->IsUninitialized()); if (!representation.IsDouble()) { DCHECK(object->FitsRepresentation(representation)); return object; } return isolate->factory()->NewHeapNumber(HeapNumber::cast(*object)->value()); } StringShape::StringShape(const String* str) : type_(str->map()->instance_type()) { set_valid(); DCHECK((type_ & kIsNotStringMask) == kStringTag); } StringShape::StringShape(Map* map) : type_(map->instance_type()) { set_valid(); DCHECK((type_ & kIsNotStringMask) == kStringTag); } StringShape::StringShape(InstanceType t) : type_(static_cast(t)) { set_valid(); DCHECK((type_ & kIsNotStringMask) == kStringTag); } bool StringShape::IsInternalized() { DCHECK(valid()); STATIC_ASSERT(kNotInternalizedTag != 0); return (type_ & (kIsNotStringMask | kIsNotInternalizedMask)) == (kStringTag | kInternalizedTag); } bool String::IsOneByteRepresentation() const { uint32_t type = map()->instance_type(); return (type & kStringEncodingMask) == kOneByteStringTag; } bool String::IsTwoByteRepresentation() const { uint32_t type = map()->instance_type(); return (type & kStringEncodingMask) == kTwoByteStringTag; } bool String::IsOneByteRepresentationUnderneath() { uint32_t type = map()->instance_type(); STATIC_ASSERT(kIsIndirectStringTag != 0); STATIC_ASSERT((kIsIndirectStringMask & kStringEncodingMask) == 0); DCHECK(IsFlat()); switch (type & (kIsIndirectStringMask | kStringEncodingMask)) { case kOneByteStringTag: return true; case kTwoByteStringTag: return false; default: // Cons or sliced string. Need to go deeper. return GetUnderlying()->IsOneByteRepresentation(); } } bool String::IsTwoByteRepresentationUnderneath() { uint32_t type = map()->instance_type(); STATIC_ASSERT(kIsIndirectStringTag != 0); STATIC_ASSERT((kIsIndirectStringMask & kStringEncodingMask) == 0); DCHECK(IsFlat()); switch (type & (kIsIndirectStringMask | kStringEncodingMask)) { case kOneByteStringTag: return false; case kTwoByteStringTag: return true; default: // Cons or sliced string. Need to go deeper. return GetUnderlying()->IsTwoByteRepresentation(); } } bool String::HasOnlyOneByteChars() { uint32_t type = map()->instance_type(); return (type & kOneByteDataHintMask) == kOneByteDataHintTag || IsOneByteRepresentation(); } bool StringShape::IsCons() { return (type_ & kStringRepresentationMask) == kConsStringTag; } bool StringShape::IsSliced() { return (type_ & kStringRepresentationMask) == kSlicedStringTag; } bool StringShape::IsIndirect() { return (type_ & kIsIndirectStringMask) == kIsIndirectStringTag; } bool StringShape::IsExternal() { return (type_ & kStringRepresentationMask) == kExternalStringTag; } bool StringShape::IsSequential() { return (type_ & kStringRepresentationMask) == kSeqStringTag; } StringRepresentationTag StringShape::representation_tag() { uint32_t tag = (type_ & kStringRepresentationMask); return static_cast(tag); } uint32_t StringShape::encoding_tag() { return type_ & kStringEncodingMask; } uint32_t StringShape::full_representation_tag() { return (type_ & (kStringRepresentationMask | kStringEncodingMask)); } STATIC_ASSERT((kStringRepresentationMask | kStringEncodingMask) == Internals::kFullStringRepresentationMask); STATIC_ASSERT(static_cast(kStringEncodingMask) == Internals::kStringEncodingMask); bool StringShape::IsSequentialOneByte() { return full_representation_tag() == (kSeqStringTag | kOneByteStringTag); } bool StringShape::IsSequentialTwoByte() { return full_representation_tag() == (kSeqStringTag | kTwoByteStringTag); } bool StringShape::IsExternalOneByte() { return full_representation_tag() == (kExternalStringTag | kOneByteStringTag); } STATIC_ASSERT((kExternalStringTag | kOneByteStringTag) == Internals::kExternalOneByteRepresentationTag); STATIC_ASSERT(v8::String::ONE_BYTE_ENCODING == kOneByteStringTag); bool StringShape::IsExternalTwoByte() { return full_representation_tag() == (kExternalStringTag | kTwoByteStringTag); } STATIC_ASSERT((kExternalStringTag | kTwoByteStringTag) == Internals::kExternalTwoByteRepresentationTag); STATIC_ASSERT(v8::String::TWO_BYTE_ENCODING == kTwoByteStringTag); uc32 FlatStringReader::Get(int index) { if (is_one_byte_) { return Get(index); } else { return Get(index); } } template Char FlatStringReader::Get(int index) { DCHECK_EQ(is_one_byte_, sizeof(Char) == 1); DCHECK(0 <= index && index <= length_); if (sizeof(Char) == 1) { return static_cast(static_cast(start_)[index]); } else { return static_cast(static_cast(start_)[index]); } } Handle StringTableShape::AsHandle(Isolate* isolate, HashTableKey* key) { return key->AsHandle(isolate); } Handle CompilationCacheShape::AsHandle(Isolate* isolate, HashTableKey* key) { return key->AsHandle(isolate); } Handle CodeCacheHashTableShape::AsHandle(Isolate* isolate, HashTableKey* key) { return key->AsHandle(isolate); } template class SequentialStringKey : public HashTableKey { public: explicit SequentialStringKey(Vector string, uint32_t seed) : string_(string), hash_field_(0), seed_(seed) { } uint32_t Hash() override { hash_field_ = StringHasher::HashSequentialString(string_.start(), string_.length(), seed_); uint32_t result = hash_field_ >> String::kHashShift; DCHECK(result != 0); // Ensure that the hash value of 0 is never computed. return result; } uint32_t HashForObject(Object* other) override { return String::cast(other)->Hash(); } Vector string_; uint32_t hash_field_; uint32_t seed_; }; class OneByteStringKey : public SequentialStringKey { public: OneByteStringKey(Vector str, uint32_t seed) : SequentialStringKey(str, seed) { } bool IsMatch(Object* string) override { return String::cast(string)->IsOneByteEqualTo(string_); } Handle AsHandle(Isolate* isolate) override; }; class SeqOneByteSubStringKey : public HashTableKey { public: SeqOneByteSubStringKey(Handle string, int from, int length) : string_(string), from_(from), length_(length) { DCHECK(string_->IsSeqOneByteString()); } uint32_t Hash() override { DCHECK(length_ >= 0); DCHECK(from_ + length_ <= string_->length()); const uint8_t* chars = string_->GetChars() + from_; hash_field_ = StringHasher::HashSequentialString( chars, length_, string_->GetHeap()->HashSeed()); uint32_t result = hash_field_ >> String::kHashShift; DCHECK(result != 0); // Ensure that the hash value of 0 is never computed. return result; } uint32_t HashForObject(Object* other) override { return String::cast(other)->Hash(); } bool IsMatch(Object* string) override; Handle AsHandle(Isolate* isolate) override; private: Handle string_; int from_; int length_; uint32_t hash_field_; }; class TwoByteStringKey : public SequentialStringKey { public: explicit TwoByteStringKey(Vector str, uint32_t seed) : SequentialStringKey(str, seed) { } bool IsMatch(Object* string) override { return String::cast(string)->IsTwoByteEqualTo(string_); } Handle AsHandle(Isolate* isolate) override; }; // Utf8StringKey carries a vector of chars as key. class Utf8StringKey : public HashTableKey { public: explicit Utf8StringKey(Vector string, uint32_t seed) : string_(string), hash_field_(0), seed_(seed) { } bool IsMatch(Object* string) override { return String::cast(string)->IsUtf8EqualTo(string_); } uint32_t Hash() override { if (hash_field_ != 0) return hash_field_ >> String::kHashShift; hash_field_ = StringHasher::ComputeUtf8Hash(string_, seed_, &chars_); uint32_t result = hash_field_ >> String::kHashShift; DCHECK(result != 0); // Ensure that the hash value of 0 is never computed. return result; } uint32_t HashForObject(Object* other) override { return String::cast(other)->Hash(); } Handle AsHandle(Isolate* isolate) override { if (hash_field_ == 0) Hash(); return isolate->factory()->NewInternalizedStringFromUtf8( string_, chars_, hash_field_); } Vector string_; uint32_t hash_field_; int chars_; // Caches the number of characters when computing the hash code. uint32_t seed_; }; bool Object::IsNumber() const { return IsSmi() || IsHeapNumber(); } TYPE_CHECKER(ByteArray, BYTE_ARRAY_TYPE) TYPE_CHECKER(BytecodeArray, BYTECODE_ARRAY_TYPE) TYPE_CHECKER(FreeSpace, FREE_SPACE_TYPE) bool Object::IsFiller() const { if (!Object::IsHeapObject()) return false; InstanceType instance_type = HeapObject::cast(this)->map()->instance_type(); return instance_type == FREE_SPACE_TYPE || instance_type == FILLER_TYPE; } #define TYPED_ARRAY_TYPE_CHECKER(Type, type, TYPE, ctype, size) \ TYPE_CHECKER(Fixed##Type##Array, FIXED_##TYPE##_ARRAY_TYPE) TYPED_ARRAYS(TYPED_ARRAY_TYPE_CHECKER) #undef TYPED_ARRAY_TYPE_CHECKER bool Object::IsFixedTypedArrayBase() const { if (!Object::IsHeapObject()) return false; InstanceType instance_type = HeapObject::cast(this)->map()->instance_type(); return (instance_type >= FIRST_FIXED_TYPED_ARRAY_TYPE && instance_type <= LAST_FIXED_TYPED_ARRAY_TYPE); } bool Object::IsJSReceiver() const { STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); return IsHeapObject() && HeapObject::cast(this)->map()->instance_type() >= FIRST_JS_RECEIVER_TYPE; } bool Object::IsJSObject() const { STATIC_ASSERT(LAST_JS_OBJECT_TYPE == LAST_TYPE); return IsHeapObject() && HeapObject::cast(this)->map()->IsJSObjectMap(); } bool Object::IsJSProxy() const { if (!Object::IsHeapObject()) return false; return HeapObject::cast(this)->map()->IsJSProxyMap(); } TYPE_CHECKER(JSFunctionProxy, JS_FUNCTION_PROXY_TYPE) TYPE_CHECKER(JSSet, JS_SET_TYPE) TYPE_CHECKER(JSMap, JS_MAP_TYPE) TYPE_CHECKER(JSSetIterator, JS_SET_ITERATOR_TYPE) TYPE_CHECKER(JSMapIterator, JS_MAP_ITERATOR_TYPE) TYPE_CHECKER(JSIteratorResult, JS_ITERATOR_RESULT_TYPE) TYPE_CHECKER(JSWeakMap, JS_WEAK_MAP_TYPE) TYPE_CHECKER(JSWeakSet, JS_WEAK_SET_TYPE) TYPE_CHECKER(JSContextExtensionObject, JS_CONTEXT_EXTENSION_OBJECT_TYPE) TYPE_CHECKER(Map, MAP_TYPE) TYPE_CHECKER(FixedArray, FIXED_ARRAY_TYPE) TYPE_CHECKER(FixedDoubleArray, FIXED_DOUBLE_ARRAY_TYPE) TYPE_CHECKER(WeakFixedArray, FIXED_ARRAY_TYPE) bool Object::IsJSWeakCollection() const { return IsJSWeakMap() || IsJSWeakSet(); } bool Object::IsDescriptorArray() const { return IsFixedArray(); } bool Object::IsArrayList() const { return IsFixedArray(); } bool Object::IsLayoutDescriptor() const { return IsSmi() || IsFixedTypedArrayBase(); } bool Object::IsTransitionArray() const { return IsFixedArray(); } bool Object::IsTypeFeedbackVector() const { return IsFixedArray(); } bool Object::IsTypeFeedbackMetadata() const { return IsFixedArray(); } bool Object::IsLiteralsArray() const { return IsFixedArray(); } bool Object::IsBindingsArray() const { return IsFixedArray(); } bool Object::IsDeoptimizationInputData() const { // Must be a fixed array. if (!IsFixedArray()) return false; // There's no sure way to detect the difference between a fixed array and // a deoptimization data array. Since this is used for asserts we can // check that the length is zero or else the fixed size plus a multiple of // the entry size. int length = FixedArray::cast(this)->length(); if (length == 0) return true; length -= DeoptimizationInputData::kFirstDeoptEntryIndex; return length >= 0 && length % DeoptimizationInputData::kDeoptEntrySize == 0; } bool Object::IsDeoptimizationOutputData() const { if (!IsFixedArray()) return false; // There's actually no way to see the difference between a fixed array and // a deoptimization data array. Since this is used for asserts we can check // that the length is plausible though. if (FixedArray::cast(this)->length() % 2 != 0) return false; return true; } bool Object::IsHandlerTable() const { if (!IsFixedArray()) return false; // There's actually no way to see the difference between a fixed array and // a handler table array. return true; } bool Object::IsDependentCode() const { if (!IsFixedArray()) return false; // There's actually no way to see the difference between a fixed array and // a dependent codes array. return true; } bool Object::IsContext() const { if (!Object::IsHeapObject()) return false; Map* map = HeapObject::cast(this)->map(); Heap* heap = map->GetHeap(); return (map == heap->function_context_map() || map == heap->catch_context_map() || map == heap->with_context_map() || map == heap->native_context_map() || map == heap->block_context_map() || map == heap->module_context_map() || map == heap->script_context_map()); } bool Object::IsNativeContext() const { return Object::IsHeapObject() && HeapObject::cast(this)->map() == HeapObject::cast(this)->GetHeap()->native_context_map(); } bool Object::IsScriptContextTable() const { if (!Object::IsHeapObject()) return false; Map* map = HeapObject::cast(this)->map(); Heap* heap = map->GetHeap(); return map == heap->script_context_table_map(); } bool Object::IsScopeInfo() const { return Object::IsHeapObject() && HeapObject::cast(this)->map() == HeapObject::cast(this)->GetHeap()->scope_info_map(); } TYPE_CHECKER(JSFunction, JS_FUNCTION_TYPE) template <> inline bool Is(Object* obj) { return obj->IsJSFunction(); } TYPE_CHECKER(Code, CODE_TYPE) TYPE_CHECKER(Oddball, ODDBALL_TYPE) TYPE_CHECKER(Cell, CELL_TYPE) TYPE_CHECKER(PropertyCell, PROPERTY_CELL_TYPE) TYPE_CHECKER(WeakCell, WEAK_CELL_TYPE) TYPE_CHECKER(SharedFunctionInfo, SHARED_FUNCTION_INFO_TYPE) TYPE_CHECKER(JSGeneratorObject, JS_GENERATOR_OBJECT_TYPE) TYPE_CHECKER(JSModule, JS_MODULE_TYPE) TYPE_CHECKER(JSValue, JS_VALUE_TYPE) TYPE_CHECKER(JSDate, JS_DATE_TYPE) TYPE_CHECKER(JSMessageObject, JS_MESSAGE_OBJECT_TYPE) bool Object::IsStringWrapper() const { return IsJSValue() && JSValue::cast(this)->value()->IsString(); } TYPE_CHECKER(Foreign, FOREIGN_TYPE) bool Object::IsBoolean() const { return IsOddball() && ((Oddball::cast(this)->kind() & Oddball::kNotBooleanMask) == 0); } TYPE_CHECKER(JSArray, JS_ARRAY_TYPE) TYPE_CHECKER(JSArrayBuffer, JS_ARRAY_BUFFER_TYPE) TYPE_CHECKER(JSTypedArray, JS_TYPED_ARRAY_TYPE) TYPE_CHECKER(JSDataView, JS_DATA_VIEW_TYPE) bool Object::IsJSArrayBufferView() const { return IsJSDataView() || IsJSTypedArray(); } TYPE_CHECKER(JSRegExp, JS_REGEXP_TYPE) template <> inline bool Is(Object* obj) { return obj->IsJSArray(); } bool Object::IsHashTable() const { return Object::IsHeapObject() && HeapObject::cast(this)->map() == HeapObject::cast(this)->GetHeap()->hash_table_map(); } bool Object::IsWeakHashTable() const { return IsHashTable(); } bool Object::IsDictionary() const { return IsHashTable() && this != HeapObject::cast(this)->GetHeap()->string_table(); } bool Object::IsNameDictionary() const { return IsDictionary(); } bool Object::IsGlobalDictionary() const { return IsDictionary(); } bool Object::IsSeededNumberDictionary() const { return IsDictionary(); } bool Object::IsUnseededNumberDictionary() const { return IsDictionary(); } bool Object::IsStringTable() const { return IsHashTable(); } bool Object::IsNormalizedMapCache() const { return NormalizedMapCache::IsNormalizedMapCache(this); } int NormalizedMapCache::GetIndex(Handle map) { return map->Hash() % NormalizedMapCache::kEntries; } bool NormalizedMapCache::IsNormalizedMapCache(const Object* obj) { if (!obj->IsFixedArray()) return false; if (FixedArray::cast(obj)->length() != NormalizedMapCache::kEntries) { return false; } #ifdef VERIFY_HEAP if (FLAG_verify_heap) { reinterpret_cast(const_cast(obj))-> NormalizedMapCacheVerify(); } #endif return true; } bool Object::IsCompilationCacheTable() const { return IsHashTable(); } bool Object::IsCodeCacheHashTable() const { return IsHashTable(); } bool Object::IsPolymorphicCodeCacheHashTable() const { return IsHashTable(); } bool Object::IsMapCache() const { return IsHashTable(); } bool Object::IsObjectHashTable() const { return IsHashTable(); } bool Object::IsOrderedHashTable() const { return IsHeapObject() && HeapObject::cast(this)->map() == HeapObject::cast(this)->GetHeap()->ordered_hash_table_map(); } bool Object::IsOrderedHashSet() const { return IsOrderedHashTable(); } bool Object::IsOrderedHashMap() const { return IsOrderedHashTable(); } bool Object::IsPrimitive() const { return IsSmi() || HeapObject::cast(this)->map()->IsPrimitiveMap(); } bool Object::IsJSGlobalProxy() const { bool result = IsHeapObject() && (HeapObject::cast(this)->map()->instance_type() == JS_GLOBAL_PROXY_TYPE); DCHECK(!result || HeapObject::cast(this)->map()->is_access_check_needed()); return result; } bool Object::IsGlobalObject() const { if (!IsHeapObject()) return false; return HeapObject::cast(this)->map()->IsGlobalObjectMap(); } TYPE_CHECKER(JSGlobalObject, JS_GLOBAL_OBJECT_TYPE) TYPE_CHECKER(JSBuiltinsObject, JS_BUILTINS_OBJECT_TYPE) bool Object::IsUndetectableObject() const { return IsHeapObject() && HeapObject::cast(this)->map()->is_undetectable(); } bool Object::IsAccessCheckNeeded() const { if (!IsHeapObject()) return false; if (IsJSGlobalProxy()) { const JSGlobalProxy* proxy = JSGlobalProxy::cast(this); GlobalObject* global = proxy->GetIsolate()->context()->global_object(); return proxy->IsDetachedFrom(global); } return HeapObject::cast(this)->map()->is_access_check_needed(); } bool Object::IsStruct() const { if (!IsHeapObject()) return false; switch (HeapObject::cast(this)->map()->instance_type()) { #define MAKE_STRUCT_CASE(NAME, Name, name) case NAME##_TYPE: return true; STRUCT_LIST(MAKE_STRUCT_CASE) #undef MAKE_STRUCT_CASE default: return false; } } #define MAKE_STRUCT_PREDICATE(NAME, Name, name) \ bool Object::Is##Name() const { \ return Object::IsHeapObject() \ && HeapObject::cast(this)->map()->instance_type() == NAME##_TYPE; \ } STRUCT_LIST(MAKE_STRUCT_PREDICATE) #undef MAKE_STRUCT_PREDICATE bool Object::IsUndefined() const { return IsOddball() && Oddball::cast(this)->kind() == Oddball::kUndefined; } bool Object::IsNull() const { return IsOddball() && Oddball::cast(this)->kind() == Oddball::kNull; } bool Object::IsTheHole() const { return IsOddball() && Oddball::cast(this)->kind() == Oddball::kTheHole; } bool Object::IsException() const { return IsOddball() && Oddball::cast(this)->kind() == Oddball::kException; } bool Object::IsUninitialized() const { return IsOddball() && Oddball::cast(this)->kind() == Oddball::kUninitialized; } bool Object::IsTrue() const { return IsOddball() && Oddball::cast(this)->kind() == Oddball::kTrue; } bool Object::IsFalse() const { return IsOddball() && Oddball::cast(this)->kind() == Oddball::kFalse; } bool Object::IsArgumentsMarker() const { return IsOddball() && Oddball::cast(this)->kind() == Oddball::kArgumentMarker; } double Object::Number() const { DCHECK(IsNumber()); return IsSmi() ? static_cast(reinterpret_cast(this)->value()) : reinterpret_cast(this)->value(); } bool Object::IsNaN() const { return this->IsHeapNumber() && std::isnan(HeapNumber::cast(this)->value()); } bool Object::IsMinusZero() const { return this->IsHeapNumber() && i::IsMinusZero(HeapNumber::cast(this)->value()); } Representation Object::OptimalRepresentation() { if (!FLAG_track_fields) return Representation::Tagged(); if (IsSmi()) { return Representation::Smi(); } else if (FLAG_track_double_fields && IsHeapNumber()) { return Representation::Double(); } else if (FLAG_track_computed_fields && IsUninitialized()) { return Representation::None(); } else if (FLAG_track_heap_object_fields) { DCHECK(IsHeapObject()); return Representation::HeapObject(); } else { return Representation::Tagged(); } } ElementsKind Object::OptimalElementsKind() { if (IsSmi()) return FAST_SMI_ELEMENTS; if (IsNumber()) return FAST_DOUBLE_ELEMENTS; return FAST_ELEMENTS; } bool Object::FitsRepresentation(Representation representation) { if (FLAG_track_fields && representation.IsNone()) { return false; } else if (FLAG_track_fields && representation.IsSmi()) { return IsSmi(); } else if (FLAG_track_double_fields && representation.IsDouble()) { return IsMutableHeapNumber() || IsNumber(); } else if (FLAG_track_heap_object_fields && representation.IsHeapObject()) { return IsHeapObject(); } return true; } // static MaybeHandle Object::ToObject(Isolate* isolate, Handle object) { return ToObject( isolate, object, handle(isolate->context()->native_context(), isolate)); } // static MaybeHandle Object::ToPrimitive(Handle input, ToPrimitiveHint hint) { if (input->IsPrimitive()) return input; return JSReceiver::ToPrimitive(Handle::cast(input), hint); } bool Object::HasSpecificClassOf(String* name) { return this->IsJSObject() && (JSObject::cast(this)->class_name() == name); } MaybeHandle Object::GetProperty(Handle object, Handle name, LanguageMode language_mode) { LookupIterator it(object, name); return GetProperty(&it, language_mode); } MaybeHandle Object::GetElement(Isolate* isolate, Handle object, uint32_t index, LanguageMode language_mode) { LookupIterator it(isolate, object, index); return GetProperty(&it, language_mode); } MaybeHandle Object::SetElement(Isolate* isolate, Handle object, uint32_t index, Handle value, LanguageMode language_mode) { LookupIterator it(isolate, object, index); return SetProperty(&it, value, language_mode, MAY_BE_STORE_FROM_KEYED); } Handle Object::GetPrototypeSkipHiddenPrototypes( Isolate* isolate, Handle receiver) { PrototypeIterator iter(isolate, receiver); while (!iter.IsAtEnd(PrototypeIterator::END_AT_NON_HIDDEN)) { if (PrototypeIterator::GetCurrent(iter)->IsJSProxy()) { return PrototypeIterator::GetCurrent(iter); } iter.Advance(); } return PrototypeIterator::GetCurrent(iter); } MaybeHandle Object::GetProperty(Isolate* isolate, Handle object, const char* name, LanguageMode language_mode) { Handle str = isolate->factory()->InternalizeUtf8String(name); return GetProperty(object, str, language_mode); } #define FIELD_ADDR(p, offset) \ (reinterpret_cast(p) + offset - kHeapObjectTag) #define FIELD_ADDR_CONST(p, offset) \ (reinterpret_cast(p) + offset - kHeapObjectTag) #define READ_FIELD(p, offset) \ (*reinterpret_cast(FIELD_ADDR_CONST(p, offset))) #define ACQUIRE_READ_FIELD(p, offset) \ reinterpret_cast(base::Acquire_Load( \ reinterpret_cast(FIELD_ADDR_CONST(p, offset)))) #define NOBARRIER_READ_FIELD(p, offset) \ reinterpret_cast(base::NoBarrier_Load( \ reinterpret_cast(FIELD_ADDR_CONST(p, offset)))) #define WRITE_FIELD(p, offset, value) \ (*reinterpret_cast(FIELD_ADDR(p, offset)) = value) #define RELEASE_WRITE_FIELD(p, offset, value) \ base::Release_Store( \ reinterpret_cast(FIELD_ADDR(p, offset)), \ reinterpret_cast(value)); #define NOBARRIER_WRITE_FIELD(p, offset, value) \ base::NoBarrier_Store( \ reinterpret_cast(FIELD_ADDR(p, offset)), \ reinterpret_cast(value)); #define WRITE_BARRIER(heap, object, offset, value) \ heap->incremental_marking()->RecordWrite( \ object, HeapObject::RawField(object, offset), value); \ if (heap->InNewSpace(value)) { \ heap->RecordWrite(object->address(), offset); \ } #define CONDITIONAL_WRITE_BARRIER(heap, object, offset, value, mode) \ if (mode != SKIP_WRITE_BARRIER) { \ if (mode == UPDATE_WRITE_BARRIER) { \ heap->incremental_marking()->RecordWrite( \ object, HeapObject::RawField(object, offset), value); \ } \ if (heap->InNewSpace(value)) { \ heap->RecordWrite(object->address(), offset); \ } \ } #define READ_DOUBLE_FIELD(p, offset) \ ReadDoubleValue(FIELD_ADDR_CONST(p, offset)) #define WRITE_DOUBLE_FIELD(p, offset, value) \ WriteDoubleValue(FIELD_ADDR(p, offset), value) #define READ_INT_FIELD(p, offset) \ (*reinterpret_cast(FIELD_ADDR_CONST(p, offset))) #define WRITE_INT_FIELD(p, offset, value) \ (*reinterpret_cast(FIELD_ADDR(p, offset)) = value) #define READ_INTPTR_FIELD(p, offset) \ (*reinterpret_cast(FIELD_ADDR_CONST(p, offset))) #define WRITE_INTPTR_FIELD(p, offset, value) \ (*reinterpret_cast(FIELD_ADDR(p, offset)) = value) #define READ_UINT8_FIELD(p, offset) \ (*reinterpret_cast(FIELD_ADDR_CONST(p, offset))) #define WRITE_UINT8_FIELD(p, offset, value) \ (*reinterpret_cast(FIELD_ADDR(p, offset)) = value) #define READ_INT8_FIELD(p, offset) \ (*reinterpret_cast(FIELD_ADDR_CONST(p, offset))) #define WRITE_INT8_FIELD(p, offset, value) \ (*reinterpret_cast(FIELD_ADDR(p, offset)) = value) #define READ_UINT16_FIELD(p, offset) \ (*reinterpret_cast(FIELD_ADDR_CONST(p, offset))) #define WRITE_UINT16_FIELD(p, offset, value) \ (*reinterpret_cast(FIELD_ADDR(p, offset)) = value) #define READ_INT16_FIELD(p, offset) \ (*reinterpret_cast(FIELD_ADDR_CONST(p, offset))) #define WRITE_INT16_FIELD(p, offset, value) \ (*reinterpret_cast(FIELD_ADDR(p, offset)) = value) #define READ_UINT32_FIELD(p, offset) \ (*reinterpret_cast(FIELD_ADDR_CONST(p, offset))) #define WRITE_UINT32_FIELD(p, offset, value) \ (*reinterpret_cast(FIELD_ADDR(p, offset)) = value) #define READ_INT32_FIELD(p, offset) \ (*reinterpret_cast(FIELD_ADDR_CONST(p, offset))) #define WRITE_INT32_FIELD(p, offset, value) \ (*reinterpret_cast(FIELD_ADDR(p, offset)) = value) #define READ_FLOAT_FIELD(p, offset) \ (*reinterpret_cast(FIELD_ADDR_CONST(p, offset))) #define WRITE_FLOAT_FIELD(p, offset, value) \ (*reinterpret_cast(FIELD_ADDR(p, offset)) = value) #define READ_UINT64_FIELD(p, offset) \ (*reinterpret_cast(FIELD_ADDR_CONST(p, offset))) #define WRITE_UINT64_FIELD(p, offset, value) \ (*reinterpret_cast(FIELD_ADDR(p, offset)) = value) #define READ_INT64_FIELD(p, offset) \ (*reinterpret_cast(FIELD_ADDR_CONST(p, offset))) #define WRITE_INT64_FIELD(p, offset, value) \ (*reinterpret_cast(FIELD_ADDR(p, offset)) = value) #define READ_BYTE_FIELD(p, offset) \ (*reinterpret_cast(FIELD_ADDR_CONST(p, offset))) #define NOBARRIER_READ_BYTE_FIELD(p, offset) \ static_cast(base::NoBarrier_Load( \ reinterpret_cast(FIELD_ADDR(p, offset)))) #define WRITE_BYTE_FIELD(p, offset, value) \ (*reinterpret_cast(FIELD_ADDR(p, offset)) = value) #define NOBARRIER_WRITE_BYTE_FIELD(p, offset, value) \ base::NoBarrier_Store( \ reinterpret_cast(FIELD_ADDR(p, offset)), \ static_cast(value)); Object** HeapObject::RawField(HeapObject* obj, int byte_offset) { return reinterpret_cast(FIELD_ADDR(obj, byte_offset)); } MapWord MapWord::FromMap(const Map* map) { return MapWord(reinterpret_cast(map)); } Map* MapWord::ToMap() { return reinterpret_cast(value_); } bool MapWord::IsForwardingAddress() { return HAS_SMI_TAG(reinterpret_cast(value_)); } MapWord MapWord::FromForwardingAddress(HeapObject* object) { Address raw = reinterpret_cast
(object) - kHeapObjectTag; return MapWord(reinterpret_cast(raw)); } HeapObject* MapWord::ToForwardingAddress() { DCHECK(IsForwardingAddress()); return HeapObject::FromAddress(reinterpret_cast
(value_)); } #ifdef VERIFY_HEAP void HeapObject::VerifyObjectField(int offset) { VerifyPointer(READ_FIELD(this, offset)); } void HeapObject::VerifySmiField(int offset) { CHECK(READ_FIELD(this, offset)->IsSmi()); } #endif Heap* HeapObject::GetHeap() const { Heap* heap = MemoryChunk::FromAddress(reinterpret_cast(this))->heap(); SLOW_DCHECK(heap != NULL); return heap; } Isolate* HeapObject::GetIsolate() const { return GetHeap()->isolate(); } Map* HeapObject::map() const { #ifdef DEBUG // Clear mark potentially added by PathTracer. uintptr_t raw_value = map_word().ToRawValue() & ~static_cast(PathTracer::kMarkTag); return MapWord::FromRawValue(raw_value).ToMap(); #else return map_word().ToMap(); #endif } void HeapObject::set_map(Map* value) { set_map_word(MapWord::FromMap(value)); if (value != NULL) { // TODO(1600) We are passing NULL as a slot because maps can never be on // evacuation candidate. value->GetHeap()->incremental_marking()->RecordWrite(this, NULL, value); } } Map* HeapObject::synchronized_map() { return synchronized_map_word().ToMap(); } void HeapObject::synchronized_set_map(Map* value) { synchronized_set_map_word(MapWord::FromMap(value)); if (value != NULL) { // TODO(1600) We are passing NULL as a slot because maps can never be on // evacuation candidate. value->GetHeap()->incremental_marking()->RecordWrite(this, NULL, value); } } void HeapObject::synchronized_set_map_no_write_barrier(Map* value) { synchronized_set_map_word(MapWord::FromMap(value)); } // Unsafe accessor omitting write barrier. void HeapObject::set_map_no_write_barrier(Map* value) { set_map_word(MapWord::FromMap(value)); } MapWord HeapObject::map_word() const { return MapWord( reinterpret_cast(NOBARRIER_READ_FIELD(this, kMapOffset))); } void HeapObject::set_map_word(MapWord map_word) { NOBARRIER_WRITE_FIELD( this, kMapOffset, reinterpret_cast(map_word.value_)); } MapWord HeapObject::synchronized_map_word() const { return MapWord( reinterpret_cast(ACQUIRE_READ_FIELD(this, kMapOffset))); } void HeapObject::synchronized_set_map_word(MapWord map_word) { RELEASE_WRITE_FIELD( this, kMapOffset, reinterpret_cast(map_word.value_)); } int HeapObject::Size() { return SizeFromMap(map()); } HeapObjectContents HeapObject::ContentType() { InstanceType type = map()->instance_type(); if (type <= LAST_NAME_TYPE) { if (type == SYMBOL_TYPE) { return HeapObjectContents::kTaggedValues; } DCHECK(type < FIRST_NONSTRING_TYPE); // There are four string representations: sequential strings, external // strings, cons strings, and sliced strings. // Only the former two contain raw values and no heap pointers (besides the // map-word). if (((type & kIsIndirectStringMask) != kIsIndirectStringTag)) return HeapObjectContents::kRawValues; else return HeapObjectContents::kTaggedValues; #if 0 // TODO(jochen): Enable eventually. } else if (type == JS_FUNCTION_TYPE) { return HeapObjectContents::kMixedValues; #endif } else if (type == BYTECODE_ARRAY_TYPE) { return HeapObjectContents::kMixedValues; } else if (type >= FIRST_FIXED_TYPED_ARRAY_TYPE && type <= LAST_FIXED_TYPED_ARRAY_TYPE) { return HeapObjectContents::kMixedValues; } else if (type == JS_ARRAY_BUFFER_TYPE) { return HeapObjectContents::kMixedValues; } else if (type <= LAST_DATA_TYPE) { // TODO(jochen): Why do we claim that Code and Map contain only raw values? return HeapObjectContents::kRawValues; } else { if (FLAG_unbox_double_fields) { LayoutDescriptorHelper helper(map()); if (!helper.all_fields_tagged()) return HeapObjectContents::kMixedValues; } return HeapObjectContents::kTaggedValues; } } void HeapObject::IteratePointers(ObjectVisitor* v, int start, int end) { v->VisitPointers(reinterpret_cast(FIELD_ADDR(this, start)), reinterpret_cast(FIELD_ADDR(this, end))); } void HeapObject::IteratePointer(ObjectVisitor* v, int offset) { v->VisitPointer(reinterpret_cast(FIELD_ADDR(this, offset))); } void HeapObject::IterateNextCodeLink(ObjectVisitor* v, int offset) { v->VisitNextCodeLink(reinterpret_cast(FIELD_ADDR(this, offset))); } double HeapNumber::value() const { return READ_DOUBLE_FIELD(this, kValueOffset); } void HeapNumber::set_value(double value) { WRITE_DOUBLE_FIELD(this, kValueOffset, value); } int HeapNumber::get_exponent() { return ((READ_INT_FIELD(this, kExponentOffset) & kExponentMask) >> kExponentShift) - kExponentBias; } int HeapNumber::get_sign() { return READ_INT_FIELD(this, kExponentOffset) & kSignMask; } bool Simd128Value::Equals(Simd128Value* that) { #define SIMD128_VALUE(TYPE, Type, type, lane_count, lane_type) \ if (this->Is##Type()) { \ if (!that->Is##Type()) return false; \ return Type::cast(this)->Equals(Type::cast(that)); \ } SIMD128_TYPES(SIMD128_VALUE) #undef SIMD128_VALUE return false; } // static bool Simd128Value::Equals(Handle one, Handle two) { return one->Equals(*two); } #define SIMD128_VALUE_EQUALS(TYPE, Type, type, lane_count, lane_type) \ bool Type::Equals(Type* that) { \ for (int lane = 0; lane < lane_count; ++lane) { \ if (this->get_lane(lane) != that->get_lane(lane)) return false; \ } \ return true; \ } SIMD128_TYPES(SIMD128_VALUE_EQUALS) #undef SIMD128_VALUE_EQUALS #if defined(V8_TARGET_LITTLE_ENDIAN) #define SIMD128_READ_LANE(lane_type, lane_count, field_type, field_size) \ lane_type value = \ READ_##field_type##_FIELD(this, kValueOffset + lane * field_size); #elif defined(V8_TARGET_BIG_ENDIAN) #define SIMD128_READ_LANE(lane_type, lane_count, field_type, field_size) \ lane_type value = READ_##field_type##_FIELD( \ this, kValueOffset + (lane_count - lane - 1) * field_size); #else #error Unknown byte ordering #endif #if defined(V8_TARGET_LITTLE_ENDIAN) #define SIMD128_WRITE_LANE(lane_count, field_type, field_size, value) \ WRITE_##field_type##_FIELD(this, kValueOffset + lane * field_size, value); #elif defined(V8_TARGET_BIG_ENDIAN) #define SIMD128_WRITE_LANE(lane_count, field_type, field_size, value) \ WRITE_##field_type##_FIELD( \ this, kValueOffset + (lane_count - lane - 1) * field_size, value); #else #error Unknown byte ordering #endif #define SIMD128_NUMERIC_LANE_FNS(type, lane_type, lane_count, field_type, \ field_size) \ lane_type type::get_lane(int lane) const { \ DCHECK(lane < lane_count && lane >= 0); \ SIMD128_READ_LANE(lane_type, lane_count, field_type, field_size) \ return value; \ } \ \ void type::set_lane(int lane, lane_type value) { \ DCHECK(lane < lane_count && lane >= 0); \ SIMD128_WRITE_LANE(lane_count, field_type, field_size, value) \ } SIMD128_NUMERIC_LANE_FNS(Float32x4, float, 4, FLOAT, kFloatSize) SIMD128_NUMERIC_LANE_FNS(Int32x4, int32_t, 4, INT32, kInt32Size) SIMD128_NUMERIC_LANE_FNS(Uint32x4, uint32_t, 4, UINT32, kInt32Size) SIMD128_NUMERIC_LANE_FNS(Int16x8, int16_t, 8, INT16, kShortSize) SIMD128_NUMERIC_LANE_FNS(Uint16x8, uint16_t, 8, UINT16, kShortSize) SIMD128_NUMERIC_LANE_FNS(Int8x16, int8_t, 16, INT8, kCharSize) SIMD128_NUMERIC_LANE_FNS(Uint8x16, uint8_t, 16, UINT8, kCharSize) #undef SIMD128_NUMERIC_LANE_FNS #define SIMD128_BOOLEAN_LANE_FNS(type, lane_type, lane_count, field_type, \ field_size) \ bool type::get_lane(int lane) const { \ DCHECK(lane < lane_count && lane >= 0); \ SIMD128_READ_LANE(lane_type, lane_count, field_type, field_size) \ DCHECK(value == 0 || value == -1); \ return value != 0; \ } \ \ void type::set_lane(int lane, bool value) { \ DCHECK(lane < lane_count && lane >= 0); \ int32_t int_val = value ? -1 : 0; \ SIMD128_WRITE_LANE(lane_count, field_type, field_size, int_val) \ } SIMD128_BOOLEAN_LANE_FNS(Bool32x4, int32_t, 4, INT32, kInt32Size) SIMD128_BOOLEAN_LANE_FNS(Bool16x8, int16_t, 8, INT16, kShortSize) SIMD128_BOOLEAN_LANE_FNS(Bool8x16, int8_t, 16, INT8, kCharSize) #undef SIMD128_BOOLEAN_LANE_FNS #undef SIMD128_READ_LANE #undef SIMD128_WRITE_LANE ACCESSORS(JSObject, properties, FixedArray, kPropertiesOffset) Object** FixedArray::GetFirstElementAddress() { return reinterpret_cast(FIELD_ADDR(this, OffsetOfElementAt(0))); } bool FixedArray::ContainsOnlySmisOrHoles() { Object* the_hole = GetHeap()->the_hole_value(); Object** current = GetFirstElementAddress(); for (int i = 0; i < length(); ++i) { Object* candidate = *current++; if (!candidate->IsSmi() && candidate != the_hole) return false; } return true; } FixedArrayBase* JSObject::elements() const { Object* array = READ_FIELD(this, kElementsOffset); return static_cast(array); } void AllocationSite::Initialize() { set_transition_info(Smi::FromInt(0)); SetElementsKind(GetInitialFastElementsKind()); set_nested_site(Smi::FromInt(0)); set_pretenure_data(0); set_pretenure_create_count(0); set_dependent_code(DependentCode::cast(GetHeap()->empty_fixed_array()), SKIP_WRITE_BARRIER); } bool AllocationSite::IsZombie() { return pretenure_decision() == kZombie; } bool AllocationSite::IsMaybeTenure() { return pretenure_decision() == kMaybeTenure; } bool AllocationSite::PretenuringDecisionMade() { return pretenure_decision() != kUndecided; } void AllocationSite::MarkZombie() { DCHECK(!IsZombie()); Initialize(); set_pretenure_decision(kZombie); } ElementsKind AllocationSite::GetElementsKind() { DCHECK(!SitePointsToLiteral()); int value = Smi::cast(transition_info())->value(); return ElementsKindBits::decode(value); } void AllocationSite::SetElementsKind(ElementsKind kind) { int value = Smi::cast(transition_info())->value(); set_transition_info(Smi::FromInt(ElementsKindBits::update(value, kind)), SKIP_WRITE_BARRIER); } bool AllocationSite::CanInlineCall() { int value = Smi::cast(transition_info())->value(); return DoNotInlineBit::decode(value) == 0; } void AllocationSite::SetDoNotInlineCall() { int value = Smi::cast(transition_info())->value(); set_transition_info(Smi::FromInt(DoNotInlineBit::update(value, true)), SKIP_WRITE_BARRIER); } bool AllocationSite::SitePointsToLiteral() { // If transition_info is a smi, then it represents an ElementsKind // for a constructed array. Otherwise, it must be a boilerplate // for an object or array literal. return transition_info()->IsJSArray() || transition_info()->IsJSObject(); } // Heuristic: We only need to create allocation site info if the boilerplate // elements kind is the initial elements kind. AllocationSiteMode AllocationSite::GetMode( ElementsKind boilerplate_elements_kind) { if (IsFastSmiElementsKind(boilerplate_elements_kind)) { return TRACK_ALLOCATION_SITE; } return DONT_TRACK_ALLOCATION_SITE; } AllocationSiteMode AllocationSite::GetMode(ElementsKind from, ElementsKind to) { if (IsFastSmiElementsKind(from) && IsMoreGeneralElementsKindTransition(from, to)) { return TRACK_ALLOCATION_SITE; } return DONT_TRACK_ALLOCATION_SITE; } inline bool AllocationSite::CanTrack(InstanceType type) { if (FLAG_allocation_site_pretenuring) { return type == JS_ARRAY_TYPE || type == JS_OBJECT_TYPE || type < FIRST_NONSTRING_TYPE; } return type == JS_ARRAY_TYPE; } AllocationSite::PretenureDecision AllocationSite::pretenure_decision() { int value = pretenure_data(); return PretenureDecisionBits::decode(value); } void AllocationSite::set_pretenure_decision(PretenureDecision decision) { int value = pretenure_data(); set_pretenure_data(PretenureDecisionBits::update(value, decision)); } bool AllocationSite::deopt_dependent_code() { int value = pretenure_data(); return DeoptDependentCodeBit::decode(value); } void AllocationSite::set_deopt_dependent_code(bool deopt) { int value = pretenure_data(); set_pretenure_data(DeoptDependentCodeBit::update(value, deopt)); } int AllocationSite::memento_found_count() { int value = pretenure_data(); return MementoFoundCountBits::decode(value); } inline void AllocationSite::set_memento_found_count(int count) { int value = pretenure_data(); // Verify that we can count more mementos than we can possibly find in one // new space collection. DCHECK((GetHeap()->MaxSemiSpaceSize() / (Heap::kMinObjectSizeInWords * kPointerSize + AllocationMemento::kSize)) < MementoFoundCountBits::kMax); DCHECK(count < MementoFoundCountBits::kMax); set_pretenure_data(MementoFoundCountBits::update(value, count)); } int AllocationSite::memento_create_count() { return pretenure_create_count(); } void AllocationSite::set_memento_create_count(int count) { set_pretenure_create_count(count); } inline bool AllocationSite::IncrementMementoFoundCount() { if (IsZombie()) return false; int value = memento_found_count(); set_memento_found_count(value + 1); return memento_found_count() == kPretenureMinimumCreated; } inline void AllocationSite::IncrementMementoCreateCount() { DCHECK(FLAG_allocation_site_pretenuring); int value = memento_create_count(); set_memento_create_count(value + 1); } inline bool AllocationSite::MakePretenureDecision( PretenureDecision current_decision, double ratio, bool maximum_size_scavenge) { // Here we just allow state transitions from undecided or maybe tenure // to don't tenure, maybe tenure, or tenure. if ((current_decision == kUndecided || current_decision == kMaybeTenure)) { if (ratio >= kPretenureRatio) { // We just transition into tenure state when the semi-space was at // maximum capacity. if (maximum_size_scavenge) { set_deopt_dependent_code(true); set_pretenure_decision(kTenure); // Currently we just need to deopt when we make a state transition to // tenure. return true; } set_pretenure_decision(kMaybeTenure); } else { set_pretenure_decision(kDontTenure); } } return false; } inline bool AllocationSite::DigestPretenuringFeedback( bool maximum_size_scavenge) { bool deopt = false; int create_count = memento_create_count(); int found_count = memento_found_count(); bool minimum_mementos_created = create_count >= kPretenureMinimumCreated; double ratio = minimum_mementos_created || FLAG_trace_pretenuring_statistics ? static_cast(found_count) / create_count : 0.0; PretenureDecision current_decision = pretenure_decision(); if (minimum_mementos_created) { deopt = MakePretenureDecision( current_decision, ratio, maximum_size_scavenge); } if (FLAG_trace_pretenuring_statistics) { PrintF( "AllocationSite(%p): (created, found, ratio) (%d, %d, %f) %s => %s\n", static_cast(this), create_count, found_count, ratio, PretenureDecisionName(current_decision), PretenureDecisionName(pretenure_decision())); } // Clear feedback calculation fields until the next gc. set_memento_found_count(0); set_memento_create_count(0); return deopt; } bool AllocationMemento::IsValid() { return allocation_site()->IsAllocationSite() && !AllocationSite::cast(allocation_site())->IsZombie(); } AllocationSite* AllocationMemento::GetAllocationSite() { DCHECK(IsValid()); return AllocationSite::cast(allocation_site()); } void JSObject::EnsureCanContainHeapObjectElements(Handle object) { JSObject::ValidateElements(object); ElementsKind elements_kind = object->map()->elements_kind(); if (!IsFastObjectElementsKind(elements_kind)) { if (IsFastHoleyElementsKind(elements_kind)) { TransitionElementsKind(object, FAST_HOLEY_ELEMENTS); } else { TransitionElementsKind(object, FAST_ELEMENTS); } } } void JSObject::EnsureCanContainElements(Handle object, Object** objects, uint32_t count, EnsureElementsMode mode) { ElementsKind current_kind = object->map()->elements_kind(); ElementsKind target_kind = current_kind; { DisallowHeapAllocation no_allocation; DCHECK(mode != ALLOW_COPIED_DOUBLE_ELEMENTS); bool is_holey = IsFastHoleyElementsKind(current_kind); if (current_kind == FAST_HOLEY_ELEMENTS) return; Heap* heap = object->GetHeap(); Object* the_hole = heap->the_hole_value(); for (uint32_t i = 0; i < count; ++i) { Object* current = *objects++; if (current == the_hole) { is_holey = true; target_kind = GetHoleyElementsKind(target_kind); } else if (!current->IsSmi()) { if (mode == ALLOW_CONVERTED_DOUBLE_ELEMENTS && current->IsNumber()) { if (IsFastSmiElementsKind(target_kind)) { if (is_holey) { target_kind = FAST_HOLEY_DOUBLE_ELEMENTS; } else { target_kind = FAST_DOUBLE_ELEMENTS; } } } else if (is_holey) { target_kind = FAST_HOLEY_ELEMENTS; break; } else { target_kind = FAST_ELEMENTS; } } } } if (target_kind != current_kind) { TransitionElementsKind(object, target_kind); } } void JSObject::EnsureCanContainElements(Handle object, Handle elements, uint32_t length, EnsureElementsMode mode) { Heap* heap = object->GetHeap(); if (elements->map() != heap->fixed_double_array_map()) { DCHECK(elements->map() == heap->fixed_array_map() || elements->map() == heap->fixed_cow_array_map()); if (mode == ALLOW_COPIED_DOUBLE_ELEMENTS) { mode = DONT_ALLOW_DOUBLE_ELEMENTS; } Object** objects = Handle::cast(elements)->GetFirstElementAddress(); EnsureCanContainElements(object, objects, length, mode); return; } DCHECK(mode == ALLOW_COPIED_DOUBLE_ELEMENTS); if (object->GetElementsKind() == FAST_HOLEY_SMI_ELEMENTS) { TransitionElementsKind(object, FAST_HOLEY_DOUBLE_ELEMENTS); } else if (object->GetElementsKind() == FAST_SMI_ELEMENTS) { Handle double_array = Handle::cast(elements); for (uint32_t i = 0; i < length; ++i) { if (double_array->is_the_hole(i)) { TransitionElementsKind(object, FAST_HOLEY_DOUBLE_ELEMENTS); return; } } TransitionElementsKind(object, FAST_DOUBLE_ELEMENTS); } } void JSObject::SetMapAndElements(Handle object, Handle new_map, Handle value) { JSObject::MigrateToMap(object, new_map); DCHECK((object->map()->has_fast_smi_or_object_elements() || (*value == object->GetHeap()->empty_fixed_array())) == (value->map() == object->GetHeap()->fixed_array_map() || value->map() == object->GetHeap()->fixed_cow_array_map())); DCHECK((*value == object->GetHeap()->empty_fixed_array()) || (object->map()->has_fast_double_elements() == value->IsFixedDoubleArray())); object->set_elements(*value); } void JSObject::set_elements(FixedArrayBase* value, WriteBarrierMode mode) { WRITE_FIELD(this, kElementsOffset, value); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kElementsOffset, value, mode); } void JSObject::initialize_properties() { DCHECK(!GetHeap()->InNewSpace(GetHeap()->empty_fixed_array())); WRITE_FIELD(this, kPropertiesOffset, GetHeap()->empty_fixed_array()); } void JSObject::initialize_elements() { FixedArrayBase* elements = map()->GetInitialElements(); WRITE_FIELD(this, kElementsOffset, elements); } ACCESSORS(Oddball, to_string, String, kToStringOffset) ACCESSORS(Oddball, to_number, Object, kToNumberOffset) ACCESSORS(Oddball, type_of, String, kTypeOfOffset) byte Oddball::kind() const { return Smi::cast(READ_FIELD(this, kKindOffset))->value(); } void Oddball::set_kind(byte value) { WRITE_FIELD(this, kKindOffset, Smi::FromInt(value)); } // static Handle Oddball::ToNumber(Handle input) { return handle(input->to_number(), input->GetIsolate()); } ACCESSORS(Cell, value, Object, kValueOffset) ACCESSORS(PropertyCell, dependent_code, DependentCode, kDependentCodeOffset) ACCESSORS(PropertyCell, property_details_raw, Object, kDetailsOffset) ACCESSORS(PropertyCell, value, Object, kValueOffset) PropertyDetails PropertyCell::property_details() { return PropertyDetails(Smi::cast(property_details_raw())); } void PropertyCell::set_property_details(PropertyDetails details) { set_property_details_raw(details.AsSmi()); } Object* WeakCell::value() const { return READ_FIELD(this, kValueOffset); } void WeakCell::clear() { DCHECK(GetHeap()->gc_state() == Heap::MARK_COMPACT); WRITE_FIELD(this, kValueOffset, Smi::FromInt(0)); } void WeakCell::initialize(HeapObject* val) { WRITE_FIELD(this, kValueOffset, val); Heap* heap = GetHeap(); // We just have to execute the generational barrier here because we never // mark through a weak cell and collect evacuation candidates when we process // all weak cells. if (heap->InNewSpace(val)) { heap->RecordWrite(address(), kValueOffset); } } bool WeakCell::cleared() const { return value() == Smi::FromInt(0); } Object* WeakCell::next() const { return READ_FIELD(this, kNextOffset); } void WeakCell::set_next(Object* val, WriteBarrierMode mode) { WRITE_FIELD(this, kNextOffset, val); if (mode == UPDATE_WRITE_BARRIER) { WRITE_BARRIER(GetHeap(), this, kNextOffset, val); } } void WeakCell::clear_next(Heap* heap) { set_next(heap->the_hole_value(), SKIP_WRITE_BARRIER); } bool WeakCell::next_cleared() { return next()->IsTheHole(); } int JSObject::GetHeaderSize() { InstanceType type = map()->instance_type(); // Check for the most common kind of JavaScript object before // falling into the generic switch. This speeds up the internal // field operations considerably on average. if (type == JS_OBJECT_TYPE) return JSObject::kHeaderSize; switch (type) { case JS_GENERATOR_OBJECT_TYPE: return JSGeneratorObject::kSize; case JS_MODULE_TYPE: return JSModule::kSize; case JS_GLOBAL_PROXY_TYPE: return JSGlobalProxy::kSize; case JS_GLOBAL_OBJECT_TYPE: return JSGlobalObject::kSize; case JS_BUILTINS_OBJECT_TYPE: return JSBuiltinsObject::kSize; case JS_FUNCTION_TYPE: return JSFunction::kSize; case JS_VALUE_TYPE: return JSValue::kSize; case JS_DATE_TYPE: return JSDate::kSize; case JS_ARRAY_TYPE: return JSArray::kSize; case JS_ARRAY_BUFFER_TYPE: return JSArrayBuffer::kSize; case JS_TYPED_ARRAY_TYPE: return JSTypedArray::kSize; case JS_DATA_VIEW_TYPE: return JSDataView::kSize; case JS_SET_TYPE: return JSSet::kSize; case JS_MAP_TYPE: return JSMap::kSize; case JS_SET_ITERATOR_TYPE: return JSSetIterator::kSize; case JS_MAP_ITERATOR_TYPE: return JSMapIterator::kSize; case JS_ITERATOR_RESULT_TYPE: return JSIteratorResult::kSize; case JS_WEAK_MAP_TYPE: return JSWeakMap::kSize; case JS_WEAK_SET_TYPE: return JSWeakSet::kSize; case JS_REGEXP_TYPE: return JSRegExp::kSize; case JS_CONTEXT_EXTENSION_OBJECT_TYPE: return JSObject::kHeaderSize; case JS_MESSAGE_OBJECT_TYPE: return JSMessageObject::kSize; default: UNREACHABLE(); return 0; } } int JSObject::GetInternalFieldCount() { DCHECK(1 << kPointerSizeLog2 == kPointerSize); // Make sure to adjust for the number of in-object properties. These // properties do contribute to the size, but are not internal fields. return ((Size() - GetHeaderSize()) >> kPointerSizeLog2) - map()->GetInObjectProperties(); } int JSObject::GetInternalFieldOffset(int index) { DCHECK(index < GetInternalFieldCount() && index >= 0); return GetHeaderSize() + (kPointerSize * index); } Object* JSObject::GetInternalField(int index) { DCHECK(index < GetInternalFieldCount() && index >= 0); // Internal objects do follow immediately after the header, whereas in-object // properties are at the end of the object. Therefore there is no need // to adjust the index here. return READ_FIELD(this, GetHeaderSize() + (kPointerSize * index)); } void JSObject::SetInternalField(int index, Object* value) { DCHECK(index < GetInternalFieldCount() && index >= 0); // Internal objects do follow immediately after the header, whereas in-object // properties are at the end of the object. Therefore there is no need // to adjust the index here. int offset = GetHeaderSize() + (kPointerSize * index); WRITE_FIELD(this, offset, value); WRITE_BARRIER(GetHeap(), this, offset, value); } void JSObject::SetInternalField(int index, Smi* value) { DCHECK(index < GetInternalFieldCount() && index >= 0); // Internal objects do follow immediately after the header, whereas in-object // properties are at the end of the object. Therefore there is no need // to adjust the index here. int offset = GetHeaderSize() + (kPointerSize * index); WRITE_FIELD(this, offset, value); } bool JSObject::IsUnboxedDoubleField(FieldIndex index) { if (!FLAG_unbox_double_fields) return false; return map()->IsUnboxedDoubleField(index); } bool Map::IsUnboxedDoubleField(FieldIndex index) { if (!FLAG_unbox_double_fields) return false; if (index.is_hidden_field() || !index.is_inobject()) return false; return !layout_descriptor()->IsTagged(index.property_index()); } // Access fast-case object properties at index. The use of these routines // is needed to correctly distinguish between properties stored in-object and // properties stored in the properties array. Object* JSObject::RawFastPropertyAt(FieldIndex index) { DCHECK(!IsUnboxedDoubleField(index)); if (index.is_inobject()) { return READ_FIELD(this, index.offset()); } else { return properties()->get(index.outobject_array_index()); } } double JSObject::RawFastDoublePropertyAt(FieldIndex index) { DCHECK(IsUnboxedDoubleField(index)); return READ_DOUBLE_FIELD(this, index.offset()); } void JSObject::RawFastPropertyAtPut(FieldIndex index, Object* value) { if (index.is_inobject()) { int offset = index.offset(); WRITE_FIELD(this, offset, value); WRITE_BARRIER(GetHeap(), this, offset, value); } else { properties()->set(index.outobject_array_index(), value); } } void JSObject::RawFastDoublePropertyAtPut(FieldIndex index, double value) { WRITE_DOUBLE_FIELD(this, index.offset(), value); } void JSObject::FastPropertyAtPut(FieldIndex index, Object* value) { if (IsUnboxedDoubleField(index)) { DCHECK(value->IsMutableHeapNumber()); RawFastDoublePropertyAtPut(index, HeapNumber::cast(value)->value()); } else { RawFastPropertyAtPut(index, value); } } void JSObject::WriteToField(int descriptor, Object* value) { DisallowHeapAllocation no_gc; DescriptorArray* desc = map()->instance_descriptors(); PropertyDetails details = desc->GetDetails(descriptor); DCHECK(details.type() == DATA); FieldIndex index = FieldIndex::ForDescriptor(map(), descriptor); if (details.representation().IsDouble()) { // Nothing more to be done. if (value->IsUninitialized()) return; if (IsUnboxedDoubleField(index)) { RawFastDoublePropertyAtPut(index, value->Number()); } else { HeapNumber* box = HeapNumber::cast(RawFastPropertyAt(index)); DCHECK(box->IsMutableHeapNumber()); box->set_value(value->Number()); } } else { RawFastPropertyAtPut(index, value); } } int JSObject::GetInObjectPropertyOffset(int index) { return map()->GetInObjectPropertyOffset(index); } Object* JSObject::InObjectPropertyAt(int index) { int offset = GetInObjectPropertyOffset(index); return READ_FIELD(this, offset); } Object* JSObject::InObjectPropertyAtPut(int index, Object* value, WriteBarrierMode mode) { // Adjust for the number of properties stored in the object. int offset = GetInObjectPropertyOffset(index); WRITE_FIELD(this, offset, value); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, value, mode); return value; } void JSObject::InitializeBody(Map* map, Object* pre_allocated_value, Object* filler_value) { DCHECK(!filler_value->IsHeapObject() || !GetHeap()->InNewSpace(filler_value)); DCHECK(!pre_allocated_value->IsHeapObject() || !GetHeap()->InNewSpace(pre_allocated_value)); int size = map->instance_size(); int offset = kHeaderSize; if (filler_value != pre_allocated_value) { int pre_allocated = map->GetInObjectProperties() - map->unused_property_fields(); DCHECK(pre_allocated * kPointerSize + kHeaderSize <= size); for (int i = 0; i < pre_allocated; i++) { WRITE_FIELD(this, offset, pre_allocated_value); offset += kPointerSize; } } while (offset < size) { WRITE_FIELD(this, offset, filler_value); offset += kPointerSize; } } bool JSObject::HasFastProperties() { DCHECK(properties()->IsDictionary() == map()->is_dictionary_map()); return !properties()->IsDictionary(); } bool Map::TooManyFastProperties(StoreFromKeyed store_mode) { if (unused_property_fields() != 0) return false; if (is_prototype_map()) return false; int minimum = store_mode == CERTAINLY_NOT_STORE_FROM_KEYED ? 128 : 12; int limit = Max(minimum, GetInObjectProperties()); int external = NumberOfFields() - GetInObjectProperties(); return external > limit; } void Struct::InitializeBody(int object_size) { Object* value = GetHeap()->undefined_value(); for (int offset = kHeaderSize; offset < object_size; offset += kPointerSize) { WRITE_FIELD(this, offset, value); } } bool Object::ToArrayLength(uint32_t* index) { return Object::ToUint32(index); } bool Object::ToArrayIndex(uint32_t* index) { return Object::ToUint32(index) && *index != kMaxUInt32; } bool Object::IsStringObjectWithCharacterAt(uint32_t index) { if (!this->IsJSValue()) return false; JSValue* js_value = JSValue::cast(this); if (!js_value->value()->IsString()) return false; String* str = String::cast(js_value->value()); if (index >= static_cast(str->length())) return false; return true; } void Object::VerifyApiCallResultType() { #if DEBUG if (!(IsSmi() || IsString() || IsSymbol() || IsSpecObject() || IsHeapNumber() || IsSimd128Value() || IsUndefined() || IsTrue() || IsFalse() || IsNull())) { FATAL("API call returned invalid object"); } #endif // DEBUG } Object* FixedArray::get(int index) const { SLOW_DCHECK(index >= 0 && index < this->length()); return READ_FIELD(this, kHeaderSize + index * kPointerSize); } Handle FixedArray::get(Handle array, int index) { return handle(array->get(index), array->GetIsolate()); } bool FixedArray::is_the_hole(int index) { return get(index) == GetHeap()->the_hole_value(); } void FixedArray::set(int index, Smi* value) { DCHECK(map() != GetHeap()->fixed_cow_array_map()); DCHECK(index >= 0 && index < this->length()); DCHECK(reinterpret_cast(value)->IsSmi()); int offset = kHeaderSize + index * kPointerSize; WRITE_FIELD(this, offset, value); } void FixedArray::set(int index, Object* value) { DCHECK_NE(GetHeap()->fixed_cow_array_map(), map()); DCHECK_EQ(FIXED_ARRAY_TYPE, map()->instance_type()); DCHECK(index >= 0 && index < this->length()); int offset = kHeaderSize + index * kPointerSize; WRITE_FIELD(this, offset, value); WRITE_BARRIER(GetHeap(), this, offset, value); } double FixedDoubleArray::get_scalar(int index) { DCHECK(map() != GetHeap()->fixed_cow_array_map() && map() != GetHeap()->fixed_array_map()); DCHECK(index >= 0 && index < this->length()); DCHECK(!is_the_hole(index)); return READ_DOUBLE_FIELD(this, kHeaderSize + index * kDoubleSize); } uint64_t FixedDoubleArray::get_representation(int index) { DCHECK(map() != GetHeap()->fixed_cow_array_map() && map() != GetHeap()->fixed_array_map()); DCHECK(index >= 0 && index < this->length()); int offset = kHeaderSize + index * kDoubleSize; return READ_UINT64_FIELD(this, offset); } Handle FixedDoubleArray::get(Handle array, int index) { if (array->is_the_hole(index)) { return array->GetIsolate()->factory()->the_hole_value(); } else { return array->GetIsolate()->factory()->NewNumber(array->get_scalar(index)); } } void FixedDoubleArray::set(int index, double value) { DCHECK(map() != GetHeap()->fixed_cow_array_map() && map() != GetHeap()->fixed_array_map()); int offset = kHeaderSize + index * kDoubleSize; if (std::isnan(value)) { WRITE_DOUBLE_FIELD(this, offset, std::numeric_limits::quiet_NaN()); } else { WRITE_DOUBLE_FIELD(this, offset, value); } DCHECK(!is_the_hole(index)); } void FixedDoubleArray::set_the_hole(int index) { DCHECK(map() != GetHeap()->fixed_cow_array_map() && map() != GetHeap()->fixed_array_map()); int offset = kHeaderSize + index * kDoubleSize; WRITE_UINT64_FIELD(this, offset, kHoleNanInt64); } bool FixedDoubleArray::is_the_hole(int index) { return get_representation(index) == kHoleNanInt64; } double* FixedDoubleArray::data_start() { return reinterpret_cast(FIELD_ADDR(this, kHeaderSize)); } void FixedDoubleArray::FillWithHoles(int from, int to) { for (int i = from; i < to; i++) { set_the_hole(i); } } Object* WeakFixedArray::Get(int index) const { Object* raw = FixedArray::cast(this)->get(index + kFirstIndex); if (raw->IsSmi()) return raw; DCHECK(raw->IsWeakCell()); return WeakCell::cast(raw)->value(); } bool WeakFixedArray::IsEmptySlot(int index) const { DCHECK(index < Length()); return Get(index)->IsSmi(); } void WeakFixedArray::Clear(int index) { FixedArray::cast(this)->set(index + kFirstIndex, Smi::FromInt(0)); } int WeakFixedArray::Length() const { return FixedArray::cast(this)->length() - kFirstIndex; } int WeakFixedArray::last_used_index() const { return Smi::cast(FixedArray::cast(this)->get(kLastUsedIndexIndex))->value(); } void WeakFixedArray::set_last_used_index(int index) { FixedArray::cast(this)->set(kLastUsedIndexIndex, Smi::FromInt(index)); } template T* WeakFixedArray::Iterator::Next() { if (list_ != NULL) { // Assert that list did not change during iteration. DCHECK_EQ(last_used_index_, list_->last_used_index()); while (index_ < list_->Length()) { Object* item = list_->Get(index_++); if (item != Empty()) return T::cast(item); } list_ = NULL; } return NULL; } int ArrayList::Length() { if (FixedArray::cast(this)->length() == 0) return 0; return Smi::cast(FixedArray::cast(this)->get(kLengthIndex))->value(); } void ArrayList::SetLength(int length) { return FixedArray::cast(this)->set(kLengthIndex, Smi::FromInt(length)); } Object* ArrayList::Get(int index) { return FixedArray::cast(this)->get(kFirstIndex + index); } Object** ArrayList::Slot(int index) { return data_start() + kFirstIndex + index; } void ArrayList::Set(int index, Object* obj) { FixedArray::cast(this)->set(kFirstIndex + index, obj); } void ArrayList::Clear(int index, Object* undefined) { DCHECK(undefined->IsUndefined()); FixedArray::cast(this) ->set(kFirstIndex + index, undefined, SKIP_WRITE_BARRIER); } WriteBarrierMode HeapObject::GetWriteBarrierMode( const DisallowHeapAllocation& promise) { Heap* heap = GetHeap(); if (heap->incremental_marking()->IsMarking()) return UPDATE_WRITE_BARRIER; if (heap->InNewSpace(this)) return SKIP_WRITE_BARRIER; return UPDATE_WRITE_BARRIER; } AllocationAlignment HeapObject::RequiredAlignment() { #ifdef V8_HOST_ARCH_32_BIT if ((IsFixedFloat64Array() || IsFixedDoubleArray()) && FixedArrayBase::cast(this)->length() != 0) { return kDoubleAligned; } if (IsHeapNumber()) return kDoubleUnaligned; if (IsSimd128Value()) return kSimd128Unaligned; #endif // V8_HOST_ARCH_32_BIT return kWordAligned; } void FixedArray::set(int index, Object* value, WriteBarrierMode mode) { DCHECK(map() != GetHeap()->fixed_cow_array_map()); DCHECK(index >= 0 && index < this->length()); int offset = kHeaderSize + index * kPointerSize; WRITE_FIELD(this, offset, value); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, value, mode); } void FixedArray::NoIncrementalWriteBarrierSet(FixedArray* array, int index, Object* value) { DCHECK(array->map() != array->GetHeap()->fixed_cow_array_map()); DCHECK(index >= 0 && index < array->length()); int offset = kHeaderSize + index * kPointerSize; WRITE_FIELD(array, offset, value); Heap* heap = array->GetHeap(); if (heap->InNewSpace(value)) { heap->RecordWrite(array->address(), offset); } } void FixedArray::NoWriteBarrierSet(FixedArray* array, int index, Object* value) { DCHECK(array->map() != array->GetHeap()->fixed_cow_array_map()); DCHECK(index >= 0 && index < array->length()); DCHECK(!array->GetHeap()->InNewSpace(value)); WRITE_FIELD(array, kHeaderSize + index * kPointerSize, value); } void FixedArray::set_undefined(int index) { DCHECK(map() != GetHeap()->fixed_cow_array_map()); DCHECK(index >= 0 && index < this->length()); DCHECK(!GetHeap()->InNewSpace(GetHeap()->undefined_value())); WRITE_FIELD(this, kHeaderSize + index * kPointerSize, GetHeap()->undefined_value()); } void FixedArray::set_null(int index) { DCHECK(index >= 0 && index < this->length()); DCHECK(!GetHeap()->InNewSpace(GetHeap()->null_value())); WRITE_FIELD(this, kHeaderSize + index * kPointerSize, GetHeap()->null_value()); } void FixedArray::set_the_hole(int index) { DCHECK(map() != GetHeap()->fixed_cow_array_map()); DCHECK(index >= 0 && index < this->length()); DCHECK(!GetHeap()->InNewSpace(GetHeap()->the_hole_value())); WRITE_FIELD(this, kHeaderSize + index * kPointerSize, GetHeap()->the_hole_value()); } void FixedArray::FillWithHoles(int from, int to) { for (int i = from; i < to; i++) { set_the_hole(i); } } Object** FixedArray::data_start() { return HeapObject::RawField(this, kHeaderSize); } Object** FixedArray::RawFieldOfElementAt(int index) { return HeapObject::RawField(this, OffsetOfElementAt(index)); } bool DescriptorArray::IsEmpty() { DCHECK(length() >= kFirstIndex || this == GetHeap()->empty_descriptor_array()); return length() < kFirstIndex; } int DescriptorArray::number_of_descriptors() { DCHECK(length() >= kFirstIndex || IsEmpty()); int len = length(); return len == 0 ? 0 : Smi::cast(get(kDescriptorLengthIndex))->value(); } int DescriptorArray::number_of_descriptors_storage() { int len = length(); return len == 0 ? 0 : (len - kFirstIndex) / kDescriptorSize; } int DescriptorArray::NumberOfSlackDescriptors() { return number_of_descriptors_storage() - number_of_descriptors(); } void DescriptorArray::SetNumberOfDescriptors(int number_of_descriptors) { WRITE_FIELD( this, kDescriptorLengthOffset, Smi::FromInt(number_of_descriptors)); } inline int DescriptorArray::number_of_entries() { return number_of_descriptors(); } bool DescriptorArray::HasEnumCache() { return !IsEmpty() && !get(kEnumCacheIndex)->IsSmi(); } void DescriptorArray::CopyEnumCacheFrom(DescriptorArray* array) { set(kEnumCacheIndex, array->get(kEnumCacheIndex)); } FixedArray* DescriptorArray::GetEnumCache() { DCHECK(HasEnumCache()); FixedArray* bridge = FixedArray::cast(get(kEnumCacheIndex)); return FixedArray::cast(bridge->get(kEnumCacheBridgeCacheIndex)); } bool DescriptorArray::HasEnumIndicesCache() { if (IsEmpty()) return false; Object* object = get(kEnumCacheIndex); if (object->IsSmi()) return false; FixedArray* bridge = FixedArray::cast(object); return !bridge->get(kEnumCacheBridgeIndicesCacheIndex)->IsSmi(); } FixedArray* DescriptorArray::GetEnumIndicesCache() { DCHECK(HasEnumIndicesCache()); FixedArray* bridge = FixedArray::cast(get(kEnumCacheIndex)); return FixedArray::cast(bridge->get(kEnumCacheBridgeIndicesCacheIndex)); } Object** DescriptorArray::GetEnumCacheSlot() { DCHECK(HasEnumCache()); return HeapObject::RawField(reinterpret_cast(this), kEnumCacheOffset); } // Perform a binary search in a fixed array. Low and high are entry indices. If // there are three entries in this array it should be called with low=0 and // high=2. template int BinarySearch(T* array, Name* name, int low, int high, int valid_entries, int* out_insertion_index) { DCHECK(search_mode == ALL_ENTRIES || out_insertion_index == NULL); uint32_t hash = name->Hash(); int limit = high; DCHECK(low <= high); while (low != high) { int mid = low + (high - low) / 2; Name* mid_name = array->GetSortedKey(mid); uint32_t mid_hash = mid_name->Hash(); if (mid_hash >= hash) { high = mid; } else { low = mid + 1; } } for (; low <= limit; ++low) { int sort_index = array->GetSortedKeyIndex(low); Name* entry = array->GetKey(sort_index); uint32_t current_hash = entry->Hash(); if (current_hash != hash) { if (out_insertion_index != NULL) { *out_insertion_index = sort_index + (current_hash > hash ? 0 : 1); } return T::kNotFound; } if (entry->Equals(name)) { if (search_mode == ALL_ENTRIES || sort_index < valid_entries) { return sort_index; } return T::kNotFound; } } if (out_insertion_index != NULL) *out_insertion_index = limit + 1; return T::kNotFound; } // Perform a linear search in this fixed array. len is the number of entry // indices that are valid. template int LinearSearch(T* array, Name* name, int len, int valid_entries, int* out_insertion_index) { uint32_t hash = name->Hash(); if (search_mode == ALL_ENTRIES) { for (int number = 0; number < len; number++) { int sorted_index = array->GetSortedKeyIndex(number); Name* entry = array->GetKey(sorted_index); uint32_t current_hash = entry->Hash(); if (current_hash > hash) { if (out_insertion_index != NULL) *out_insertion_index = sorted_index; return T::kNotFound; } if (current_hash == hash && entry->Equals(name)) return sorted_index; } if (out_insertion_index != NULL) *out_insertion_index = len; return T::kNotFound; } else { DCHECK(len >= valid_entries); DCHECK_NULL(out_insertion_index); // Not supported here. for (int number = 0; number < valid_entries; number++) { Name* entry = array->GetKey(number); uint32_t current_hash = entry->Hash(); if (current_hash == hash && entry->Equals(name)) return number; } return T::kNotFound; } } template int Search(T* array, Name* name, int valid_entries, int* out_insertion_index) { if (search_mode == VALID_ENTRIES) { SLOW_DCHECK(array->IsSortedNoDuplicates(valid_entries)); } else { SLOW_DCHECK(array->IsSortedNoDuplicates()); } int nof = array->number_of_entries(); if (nof == 0) { if (out_insertion_index != NULL) *out_insertion_index = 0; return T::kNotFound; } // Fast case: do linear search for small arrays. const int kMaxElementsForLinearSearch = 8; if ((search_mode == ALL_ENTRIES && nof <= kMaxElementsForLinearSearch) || (search_mode == VALID_ENTRIES && valid_entries <= (kMaxElementsForLinearSearch * 3))) { return LinearSearch(array, name, nof, valid_entries, out_insertion_index); } // Slow case: perform binary search. return BinarySearch(array, name, 0, nof - 1, valid_entries, out_insertion_index); } int DescriptorArray::Search(Name* name, int valid_descriptors) { return internal::Search(this, name, valid_descriptors, NULL); } int DescriptorArray::SearchWithCache(Name* name, Map* map) { int number_of_own_descriptors = map->NumberOfOwnDescriptors(); if (number_of_own_descriptors == 0) return kNotFound; DescriptorLookupCache* cache = GetIsolate()->descriptor_lookup_cache(); int number = cache->Lookup(map, name); if (number == DescriptorLookupCache::kAbsent) { number = Search(name, number_of_own_descriptors); cache->Update(map, name, number); } return number; } PropertyDetails Map::GetLastDescriptorDetails() { return instance_descriptors()->GetDetails(LastAdded()); } int Map::LastAdded() { int number_of_own_descriptors = NumberOfOwnDescriptors(); DCHECK(number_of_own_descriptors > 0); return number_of_own_descriptors - 1; } int Map::NumberOfOwnDescriptors() { return NumberOfOwnDescriptorsBits::decode(bit_field3()); } void Map::SetNumberOfOwnDescriptors(int number) { DCHECK(number <= instance_descriptors()->number_of_descriptors()); set_bit_field3(NumberOfOwnDescriptorsBits::update(bit_field3(), number)); } int Map::EnumLength() { return EnumLengthBits::decode(bit_field3()); } void Map::SetEnumLength(int length) { if (length != kInvalidEnumCacheSentinel) { DCHECK(length >= 0); DCHECK(length == 0 || instance_descriptors()->HasEnumCache()); DCHECK(length <= NumberOfOwnDescriptors()); } set_bit_field3(EnumLengthBits::update(bit_field3(), length)); } FixedArrayBase* Map::GetInitialElements() { if (has_fast_smi_or_object_elements() || has_fast_double_elements()) { DCHECK(!GetHeap()->InNewSpace(GetHeap()->empty_fixed_array())); return GetHeap()->empty_fixed_array(); } else if (has_fixed_typed_array_elements()) { FixedTypedArrayBase* empty_array = GetHeap()->EmptyFixedTypedArrayForMap(this); DCHECK(!GetHeap()->InNewSpace(empty_array)); return empty_array; } else { UNREACHABLE(); } return NULL; } Object** DescriptorArray::GetKeySlot(int descriptor_number) { DCHECK(descriptor_number < number_of_descriptors()); return RawFieldOfElementAt(ToKeyIndex(descriptor_number)); } Object** DescriptorArray::GetDescriptorStartSlot(int descriptor_number) { return GetKeySlot(descriptor_number); } Object** DescriptorArray::GetDescriptorEndSlot(int descriptor_number) { return GetValueSlot(descriptor_number - 1) + 1; } Name* DescriptorArray::GetKey(int descriptor_number) { DCHECK(descriptor_number < number_of_descriptors()); return Name::cast(get(ToKeyIndex(descriptor_number))); } int DescriptorArray::GetSortedKeyIndex(int descriptor_number) { return GetDetails(descriptor_number).pointer(); } Name* DescriptorArray::GetSortedKey(int descriptor_number) { return GetKey(GetSortedKeyIndex(descriptor_number)); } void DescriptorArray::SetSortedKey(int descriptor_index, int pointer) { PropertyDetails details = GetDetails(descriptor_index); set(ToDetailsIndex(descriptor_index), details.set_pointer(pointer).AsSmi()); } void DescriptorArray::SetRepresentation(int descriptor_index, Representation representation) { DCHECK(!representation.IsNone()); PropertyDetails details = GetDetails(descriptor_index); set(ToDetailsIndex(descriptor_index), details.CopyWithRepresentation(representation).AsSmi()); } Object** DescriptorArray::GetValueSlot(int descriptor_number) { DCHECK(descriptor_number < number_of_descriptors()); return RawFieldOfElementAt(ToValueIndex(descriptor_number)); } int DescriptorArray::GetValueOffset(int descriptor_number) { return OffsetOfElementAt(ToValueIndex(descriptor_number)); } Object* DescriptorArray::GetValue(int descriptor_number) { DCHECK(descriptor_number < number_of_descriptors()); return get(ToValueIndex(descriptor_number)); } void DescriptorArray::SetValue(int descriptor_index, Object* value) { set(ToValueIndex(descriptor_index), value); } PropertyDetails DescriptorArray::GetDetails(int descriptor_number) { DCHECK(descriptor_number < number_of_descriptors()); Object* details = get(ToDetailsIndex(descriptor_number)); return PropertyDetails(Smi::cast(details)); } PropertyType DescriptorArray::GetType(int descriptor_number) { return GetDetails(descriptor_number).type(); } int DescriptorArray::GetFieldIndex(int descriptor_number) { DCHECK(GetDetails(descriptor_number).location() == kField); return GetDetails(descriptor_number).field_index(); } HeapType* DescriptorArray::GetFieldType(int descriptor_number) { DCHECK(GetDetails(descriptor_number).location() == kField); Object* value = GetValue(descriptor_number); if (value->IsWeakCell()) { if (WeakCell::cast(value)->cleared()) return HeapType::None(); value = WeakCell::cast(value)->value(); } return HeapType::cast(value); } Object* DescriptorArray::GetConstant(int descriptor_number) { return GetValue(descriptor_number); } Object* DescriptorArray::GetCallbacksObject(int descriptor_number) { DCHECK(GetType(descriptor_number) == ACCESSOR_CONSTANT); return GetValue(descriptor_number); } AccessorDescriptor* DescriptorArray::GetCallbacks(int descriptor_number) { DCHECK(GetType(descriptor_number) == ACCESSOR_CONSTANT); Foreign* p = Foreign::cast(GetCallbacksObject(descriptor_number)); return reinterpret_cast(p->foreign_address()); } void DescriptorArray::Get(int descriptor_number, Descriptor* desc) { desc->Init(handle(GetKey(descriptor_number), GetIsolate()), handle(GetValue(descriptor_number), GetIsolate()), GetDetails(descriptor_number)); } void DescriptorArray::Set(int descriptor_number, Descriptor* desc, const WhitenessWitness&) { // Range check. DCHECK(descriptor_number < number_of_descriptors()); NoIncrementalWriteBarrierSet(this, ToKeyIndex(descriptor_number), *desc->GetKey()); NoIncrementalWriteBarrierSet(this, ToValueIndex(descriptor_number), *desc->GetValue()); NoIncrementalWriteBarrierSet(this, ToDetailsIndex(descriptor_number), desc->GetDetails().AsSmi()); } void DescriptorArray::Set(int descriptor_number, Descriptor* desc) { // Range check. DCHECK(descriptor_number < number_of_descriptors()); set(ToKeyIndex(descriptor_number), *desc->GetKey()); set(ToValueIndex(descriptor_number), *desc->GetValue()); set(ToDetailsIndex(descriptor_number), desc->GetDetails().AsSmi()); } void DescriptorArray::Append(Descriptor* desc) { DisallowHeapAllocation no_gc; int descriptor_number = number_of_descriptors(); SetNumberOfDescriptors(descriptor_number + 1); Set(descriptor_number, desc); uint32_t hash = desc->GetKey()->Hash(); int insertion; for (insertion = descriptor_number; insertion > 0; --insertion) { Name* key = GetSortedKey(insertion - 1); if (key->Hash() <= hash) break; SetSortedKey(insertion, GetSortedKeyIndex(insertion - 1)); } SetSortedKey(insertion, descriptor_number); } void DescriptorArray::SwapSortedKeys(int first, int second) { int first_key = GetSortedKeyIndex(first); SetSortedKey(first, GetSortedKeyIndex(second)); SetSortedKey(second, first_key); } DescriptorArray::WhitenessWitness::WhitenessWitness(DescriptorArray* array) : marking_(array->GetHeap()->incremental_marking()) { marking_->EnterNoMarkingScope(); DCHECK(!marking_->IsMarking() || Marking::Color(array) == Marking::WHITE_OBJECT); } DescriptorArray::WhitenessWitness::~WhitenessWitness() { marking_->LeaveNoMarkingScope(); } PropertyType DescriptorArray::Entry::type() { return descs_->GetType(index_); } Object* DescriptorArray::Entry::GetCallbackObject() { return descs_->GetValue(index_); } int HashTableBase::NumberOfElements() { return Smi::cast(get(kNumberOfElementsIndex))->value(); } int HashTableBase::NumberOfDeletedElements() { return Smi::cast(get(kNumberOfDeletedElementsIndex))->value(); } int HashTableBase::Capacity() { return Smi::cast(get(kCapacityIndex))->value(); } void HashTableBase::ElementAdded() { SetNumberOfElements(NumberOfElements() + 1); } void HashTableBase::ElementRemoved() { SetNumberOfElements(NumberOfElements() - 1); SetNumberOfDeletedElements(NumberOfDeletedElements() + 1); } void HashTableBase::ElementsRemoved(int n) { SetNumberOfElements(NumberOfElements() - n); SetNumberOfDeletedElements(NumberOfDeletedElements() + n); } // static int HashTableBase::ComputeCapacity(int at_least_space_for) { const int kMinCapacity = 4; int capacity = base::bits::RoundUpToPowerOfTwo32(at_least_space_for * 2); return Max(capacity, kMinCapacity); } bool HashTableBase::IsKey(Object* k) { return !k->IsTheHole() && !k->IsUndefined(); } void HashTableBase::SetNumberOfElements(int nof) { set(kNumberOfElementsIndex, Smi::FromInt(nof)); } void HashTableBase::SetNumberOfDeletedElements(int nod) { set(kNumberOfDeletedElementsIndex, Smi::FromInt(nod)); } template int HashTable::FindEntry(Key key) { return FindEntry(GetIsolate(), key); } template int HashTable::FindEntry(Isolate* isolate, Key key) { return FindEntry(isolate, key, HashTable::Hash(key)); } // Find entry for key otherwise return kNotFound. template int HashTable::FindEntry(Isolate* isolate, Key key, int32_t hash) { uint32_t capacity = Capacity(); uint32_t entry = FirstProbe(hash, capacity); uint32_t count = 1; // EnsureCapacity will guarantee the hash table is never full. while (true) { Object* element = KeyAt(entry); // Empty entry. Uses raw unchecked accessors because it is called by the // string table during bootstrapping. if (element == isolate->heap()->root(Heap::kUndefinedValueRootIndex)) break; if (element != isolate->heap()->root(Heap::kTheHoleValueRootIndex) && Shape::IsMatch(key, element)) return entry; entry = NextProbe(entry, count++, capacity); } return kNotFound; } bool SeededNumberDictionary::requires_slow_elements() { Object* max_index_object = get(kMaxNumberKeyIndex); if (!max_index_object->IsSmi()) return false; return 0 != (Smi::cast(max_index_object)->value() & kRequiresSlowElementsMask); } uint32_t SeededNumberDictionary::max_number_key() { DCHECK(!requires_slow_elements()); Object* max_index_object = get(kMaxNumberKeyIndex); if (!max_index_object->IsSmi()) return 0; uint32_t value = static_cast(Smi::cast(max_index_object)->value()); return value >> kRequiresSlowElementsTagSize; } void SeededNumberDictionary::set_requires_slow_elements() { set(kMaxNumberKeyIndex, Smi::FromInt(kRequiresSlowElementsMask)); } // ------------------------------------ // Cast operations CAST_ACCESSOR(AccessorInfo) CAST_ACCESSOR(ArrayList) CAST_ACCESSOR(Bool16x8) CAST_ACCESSOR(Bool32x4) CAST_ACCESSOR(Bool8x16) CAST_ACCESSOR(ByteArray) CAST_ACCESSOR(BytecodeArray) CAST_ACCESSOR(Cell) CAST_ACCESSOR(Code) CAST_ACCESSOR(CodeCacheHashTable) CAST_ACCESSOR(CompilationCacheTable) CAST_ACCESSOR(ConsString) CAST_ACCESSOR(DeoptimizationInputData) CAST_ACCESSOR(DeoptimizationOutputData) CAST_ACCESSOR(DependentCode) CAST_ACCESSOR(DescriptorArray) CAST_ACCESSOR(ExternalOneByteString) CAST_ACCESSOR(ExternalString) CAST_ACCESSOR(ExternalTwoByteString) CAST_ACCESSOR(FixedArray) CAST_ACCESSOR(FixedArrayBase) CAST_ACCESSOR(FixedDoubleArray) CAST_ACCESSOR(FixedTypedArrayBase) CAST_ACCESSOR(Float32x4) CAST_ACCESSOR(Foreign) CAST_ACCESSOR(GlobalDictionary) CAST_ACCESSOR(GlobalObject) CAST_ACCESSOR(HandlerTable) CAST_ACCESSOR(HeapObject) CAST_ACCESSOR(Int16x8) CAST_ACCESSOR(Int32x4) CAST_ACCESSOR(Int8x16) CAST_ACCESSOR(JSArray) CAST_ACCESSOR(JSArrayBuffer) CAST_ACCESSOR(JSArrayBufferView) CAST_ACCESSOR(JSBuiltinsObject) CAST_ACCESSOR(JSDataView) CAST_ACCESSOR(JSDate) CAST_ACCESSOR(JSFunction) CAST_ACCESSOR(JSFunctionProxy) CAST_ACCESSOR(JSGeneratorObject) CAST_ACCESSOR(JSGlobalObject) CAST_ACCESSOR(JSGlobalProxy) CAST_ACCESSOR(JSMap) CAST_ACCESSOR(JSMapIterator) CAST_ACCESSOR(JSMessageObject) CAST_ACCESSOR(JSModule) CAST_ACCESSOR(JSObject) CAST_ACCESSOR(JSProxy) CAST_ACCESSOR(JSReceiver) CAST_ACCESSOR(JSRegExp) CAST_ACCESSOR(JSSet) CAST_ACCESSOR(JSSetIterator) CAST_ACCESSOR(JSIteratorResult) CAST_ACCESSOR(JSTypedArray) CAST_ACCESSOR(JSValue) CAST_ACCESSOR(JSWeakMap) CAST_ACCESSOR(JSWeakSet) CAST_ACCESSOR(LayoutDescriptor) CAST_ACCESSOR(Map) CAST_ACCESSOR(Name) CAST_ACCESSOR(NameDictionary) CAST_ACCESSOR(NormalizedMapCache) CAST_ACCESSOR(Object) CAST_ACCESSOR(ObjectHashTable) CAST_ACCESSOR(Oddball) CAST_ACCESSOR(OrderedHashMap) CAST_ACCESSOR(OrderedHashSet) CAST_ACCESSOR(PolymorphicCodeCacheHashTable) CAST_ACCESSOR(PropertyCell) CAST_ACCESSOR(ScopeInfo) CAST_ACCESSOR(SeededNumberDictionary) CAST_ACCESSOR(SeqOneByteString) CAST_ACCESSOR(SeqString) CAST_ACCESSOR(SeqTwoByteString) CAST_ACCESSOR(SharedFunctionInfo) CAST_ACCESSOR(Simd128Value) CAST_ACCESSOR(SlicedString) CAST_ACCESSOR(Smi) CAST_ACCESSOR(String) CAST_ACCESSOR(StringTable) CAST_ACCESSOR(Struct) CAST_ACCESSOR(Symbol) CAST_ACCESSOR(Uint16x8) CAST_ACCESSOR(Uint32x4) CAST_ACCESSOR(Uint8x16) CAST_ACCESSOR(UnseededNumberDictionary) CAST_ACCESSOR(WeakCell) CAST_ACCESSOR(WeakFixedArray) CAST_ACCESSOR(WeakHashTable) // static template STATIC_CONST_MEMBER_DEFINITION const InstanceType FixedTypedArray::kInstanceType; template FixedTypedArray* FixedTypedArray::cast(Object* object) { SLOW_DCHECK(object->IsHeapObject() && HeapObject::cast(object)->map()->instance_type() == Traits::kInstanceType); return reinterpret_cast*>(object); } template const FixedTypedArray* FixedTypedArray::cast(const Object* object) { SLOW_DCHECK(object->IsHeapObject() && HeapObject::cast(object)->map()->instance_type() == Traits::kInstanceType); return reinterpret_cast*>(object); } #define DEFINE_DEOPT_ELEMENT_ACCESSORS(name, type) \ type* DeoptimizationInputData::name() { \ return type::cast(get(k##name##Index)); \ } \ void DeoptimizationInputData::Set##name(type* value) { \ set(k##name##Index, value); \ } DEFINE_DEOPT_ELEMENT_ACCESSORS(TranslationByteArray, ByteArray) DEFINE_DEOPT_ELEMENT_ACCESSORS(InlinedFunctionCount, Smi) DEFINE_DEOPT_ELEMENT_ACCESSORS(LiteralArray, FixedArray) DEFINE_DEOPT_ELEMENT_ACCESSORS(OsrAstId, Smi) DEFINE_DEOPT_ELEMENT_ACCESSORS(OsrPcOffset, Smi) DEFINE_DEOPT_ELEMENT_ACCESSORS(OptimizationId, Smi) DEFINE_DEOPT_ELEMENT_ACCESSORS(SharedFunctionInfo, Object) DEFINE_DEOPT_ELEMENT_ACCESSORS(WeakCellCache, Object) #undef DEFINE_DEOPT_ELEMENT_ACCESSORS #define DEFINE_DEOPT_ENTRY_ACCESSORS(name, type) \ type* DeoptimizationInputData::name(int i) { \ return type::cast(get(IndexForEntry(i) + k##name##Offset)); \ } \ void DeoptimizationInputData::Set##name(int i, type* value) { \ set(IndexForEntry(i) + k##name##Offset, value); \ } DEFINE_DEOPT_ENTRY_ACCESSORS(AstIdRaw, Smi) DEFINE_DEOPT_ENTRY_ACCESSORS(TranslationIndex, Smi) DEFINE_DEOPT_ENTRY_ACCESSORS(ArgumentsStackHeight, Smi) DEFINE_DEOPT_ENTRY_ACCESSORS(Pc, Smi) #undef DEFINE_DEOPT_ENTRY_ACCESSORS BailoutId DeoptimizationInputData::AstId(int i) { return BailoutId(AstIdRaw(i)->value()); } void DeoptimizationInputData::SetAstId(int i, BailoutId value) { SetAstIdRaw(i, Smi::FromInt(value.ToInt())); } int DeoptimizationInputData::DeoptCount() { return (length() - kFirstDeoptEntryIndex) / kDeoptEntrySize; } int DeoptimizationOutputData::DeoptPoints() { return length() / 2; } BailoutId DeoptimizationOutputData::AstId(int index) { return BailoutId(Smi::cast(get(index * 2))->value()); } void DeoptimizationOutputData::SetAstId(int index, BailoutId id) { set(index * 2, Smi::FromInt(id.ToInt())); } Smi* DeoptimizationOutputData::PcAndState(int index) { return Smi::cast(get(1 + index * 2)); } void DeoptimizationOutputData::SetPcAndState(int index, Smi* offset) { set(1 + index * 2, offset); } Object* LiteralsArray::get(int index) const { return FixedArray::get(index); } void LiteralsArray::set(int index, Object* value) { FixedArray::set(index, value); } void LiteralsArray::set(int index, Smi* value) { FixedArray::set(index, value); } void LiteralsArray::set(int index, Object* value, WriteBarrierMode mode) { FixedArray::set(index, value, mode); } LiteralsArray* LiteralsArray::cast(Object* object) { SLOW_DCHECK(object->IsLiteralsArray()); return reinterpret_cast(object); } TypeFeedbackVector* LiteralsArray::feedback_vector() const { return TypeFeedbackVector::cast(get(kVectorIndex)); } void LiteralsArray::set_feedback_vector(TypeFeedbackVector* vector) { set(kVectorIndex, vector); } Object* LiteralsArray::literal(int literal_index) const { return get(kFirstLiteralIndex + literal_index); } void LiteralsArray::set_literal(int literal_index, Object* literal) { set(kFirstLiteralIndex + literal_index, literal); } int LiteralsArray::literals_count() const { return length() - kFirstLiteralIndex; } Object* BindingsArray::get(int index) const { return FixedArray::get(index); } void BindingsArray::set(int index, Object* value) { FixedArray::set(index, value); } void BindingsArray::set(int index, Smi* value) { FixedArray::set(index, value); } void BindingsArray::set(int index, Object* value, WriteBarrierMode mode) { FixedArray::set(index, value, mode); } int BindingsArray::length() const { return FixedArray::length(); } BindingsArray* BindingsArray::cast(Object* object) { SLOW_DCHECK(object->IsBindingsArray()); return reinterpret_cast(object); } void BindingsArray::set_feedback_vector(TypeFeedbackVector* vector) { set(kVectorIndex, vector); } TypeFeedbackVector* BindingsArray::feedback_vector() const { return TypeFeedbackVector::cast(get(kVectorIndex)); } JSReceiver* BindingsArray::bound_function() const { return JSReceiver::cast(get(kBoundFunctionIndex)); } void BindingsArray::set_bound_function(JSReceiver* function) { set(kBoundFunctionIndex, function); } Object* BindingsArray::bound_this() const { return get(kBoundThisIndex); } void BindingsArray::set_bound_this(Object* bound_this) { set(kBoundThisIndex, bound_this); } Object* BindingsArray::binding(int binding_index) const { return get(kFirstBindingIndex + binding_index); } void BindingsArray::set_binding(int binding_index, Object* binding) { set(kFirstBindingIndex + binding_index, binding); } int BindingsArray::bindings_count() const { return length() - kFirstBindingIndex; } void HandlerTable::SetRangeStart(int index, int value) { set(index * kRangeEntrySize + kRangeStartIndex, Smi::FromInt(value)); } void HandlerTable::SetRangeEnd(int index, int value) { set(index * kRangeEntrySize + kRangeEndIndex, Smi::FromInt(value)); } void HandlerTable::SetRangeHandler(int index, int offset, CatchPrediction prediction) { int value = HandlerOffsetField::encode(offset) | HandlerPredictionField::encode(prediction); set(index * kRangeEntrySize + kRangeHandlerIndex, Smi::FromInt(value)); } void HandlerTable::SetRangeDepth(int index, int value) { set(index * kRangeEntrySize + kRangeDepthIndex, Smi::FromInt(value)); } void HandlerTable::SetReturnOffset(int index, int value) { set(index * kReturnEntrySize + kReturnOffsetIndex, Smi::FromInt(value)); } void HandlerTable::SetReturnHandler(int index, int offset, CatchPrediction prediction) { int value = HandlerOffsetField::encode(offset) | HandlerPredictionField::encode(prediction); set(index * kReturnEntrySize + kReturnHandlerIndex, Smi::FromInt(value)); } #define MAKE_STRUCT_CAST(NAME, Name, name) CAST_ACCESSOR(Name) STRUCT_LIST(MAKE_STRUCT_CAST) #undef MAKE_STRUCT_CAST template HashTable* HashTable::cast(Object* obj) { SLOW_DCHECK(obj->IsHashTable()); return reinterpret_cast(obj); } template const HashTable* HashTable::cast(const Object* obj) { SLOW_DCHECK(obj->IsHashTable()); return reinterpret_cast(obj); } SMI_ACCESSORS(FixedArrayBase, length, kLengthOffset) SYNCHRONIZED_SMI_ACCESSORS(FixedArrayBase, length, kLengthOffset) SMI_ACCESSORS(FreeSpace, size, kSizeOffset) NOBARRIER_SMI_ACCESSORS(FreeSpace, size, kSizeOffset) SMI_ACCESSORS(String, length, kLengthOffset) SYNCHRONIZED_SMI_ACCESSORS(String, length, kLengthOffset) int FreeSpace::Size() { return size(); } FreeSpace* FreeSpace::next() { DCHECK(map() == GetHeap()->root(Heap::kFreeSpaceMapRootIndex) || (!GetHeap()->deserialization_complete() && map() == NULL)); DCHECK_LE(kNextOffset + kPointerSize, nobarrier_size()); return reinterpret_cast( Memory::Address_at(address() + kNextOffset)); } FreeSpace** FreeSpace::next_address() { DCHECK(map() == GetHeap()->root(Heap::kFreeSpaceMapRootIndex) || (!GetHeap()->deserialization_complete() && map() == NULL)); DCHECK_LE(kNextOffset + kPointerSize, nobarrier_size()); return reinterpret_cast(address() + kNextOffset); } void FreeSpace::set_next(FreeSpace* next) { DCHECK(map() == GetHeap()->root(Heap::kFreeSpaceMapRootIndex) || (!GetHeap()->deserialization_complete() && map() == NULL)); DCHECK_LE(kNextOffset + kPointerSize, nobarrier_size()); base::NoBarrier_Store( reinterpret_cast(address() + kNextOffset), reinterpret_cast(next)); } FreeSpace* FreeSpace::cast(HeapObject* o) { SLOW_DCHECK(!o->GetHeap()->deserialization_complete() || o->IsFreeSpace()); return reinterpret_cast(o); } uint32_t Name::hash_field() { return READ_UINT32_FIELD(this, kHashFieldOffset); } void Name::set_hash_field(uint32_t value) { WRITE_UINT32_FIELD(this, kHashFieldOffset, value); #if V8_HOST_ARCH_64_BIT #if V8_TARGET_LITTLE_ENDIAN WRITE_UINT32_FIELD(this, kHashFieldSlot + kIntSize, 0); #else WRITE_UINT32_FIELD(this, kHashFieldSlot, 0); #endif #endif } bool Name::Equals(Name* other) { if (other == this) return true; if ((this->IsInternalizedString() && other->IsInternalizedString()) || this->IsSymbol() || other->IsSymbol()) { return false; } return String::cast(this)->SlowEquals(String::cast(other)); } bool Name::Equals(Handle one, Handle two) { if (one.is_identical_to(two)) return true; if ((one->IsInternalizedString() && two->IsInternalizedString()) || one->IsSymbol() || two->IsSymbol()) { return false; } return String::SlowEquals(Handle::cast(one), Handle::cast(two)); } ACCESSORS(Symbol, name, Object, kNameOffset) SMI_ACCESSORS(Symbol, flags, kFlagsOffset) BOOL_ACCESSORS(Symbol, flags, is_private, kPrivateBit) BOOL_ACCESSORS(Symbol, flags, is_well_known_symbol, kWellKnownSymbolBit) bool String::Equals(String* other) { if (other == this) return true; if (this->IsInternalizedString() && other->IsInternalizedString()) { return false; } return SlowEquals(other); } bool String::Equals(Handle one, Handle two) { if (one.is_identical_to(two)) return true; if (one->IsInternalizedString() && two->IsInternalizedString()) { return false; } return SlowEquals(one, two); } Handle String::Flatten(Handle string, PretenureFlag pretenure) { if (!string->IsConsString()) return string; Handle cons = Handle::cast(string); if (cons->IsFlat()) return handle(cons->first()); return SlowFlatten(cons, pretenure); } Handle Name::Flatten(Handle name, PretenureFlag pretenure) { if (name->IsSymbol()) return name; return String::Flatten(Handle::cast(name)); } uint16_t String::Get(int index) { DCHECK(index >= 0 && index < length()); switch (StringShape(this).full_representation_tag()) { case kSeqStringTag | kOneByteStringTag: return SeqOneByteString::cast(this)->SeqOneByteStringGet(index); case kSeqStringTag | kTwoByteStringTag: return SeqTwoByteString::cast(this)->SeqTwoByteStringGet(index); case kConsStringTag | kOneByteStringTag: case kConsStringTag | kTwoByteStringTag: return ConsString::cast(this)->ConsStringGet(index); case kExternalStringTag | kOneByteStringTag: return ExternalOneByteString::cast(this)->ExternalOneByteStringGet(index); case kExternalStringTag | kTwoByteStringTag: return ExternalTwoByteString::cast(this)->ExternalTwoByteStringGet(index); case kSlicedStringTag | kOneByteStringTag: case kSlicedStringTag | kTwoByteStringTag: return SlicedString::cast(this)->SlicedStringGet(index); default: break; } UNREACHABLE(); return 0; } void String::Set(int index, uint16_t value) { DCHECK(index >= 0 && index < length()); DCHECK(StringShape(this).IsSequential()); return this->IsOneByteRepresentation() ? SeqOneByteString::cast(this)->SeqOneByteStringSet(index, value) : SeqTwoByteString::cast(this)->SeqTwoByteStringSet(index, value); } bool String::IsFlat() { if (!StringShape(this).IsCons()) return true; return ConsString::cast(this)->second()->length() == 0; } String* String::GetUnderlying() { // Giving direct access to underlying string only makes sense if the // wrapping string is already flattened. DCHECK(this->IsFlat()); DCHECK(StringShape(this).IsIndirect()); STATIC_ASSERT(ConsString::kFirstOffset == SlicedString::kParentOffset); const int kUnderlyingOffset = SlicedString::kParentOffset; return String::cast(READ_FIELD(this, kUnderlyingOffset)); } template ConsString* String::VisitFlat(Visitor* visitor, String* string, const int offset) { int slice_offset = offset; const int length = string->length(); DCHECK(offset <= length); while (true) { int32_t type = string->map()->instance_type(); switch (type & (kStringRepresentationMask | kStringEncodingMask)) { case kSeqStringTag | kOneByteStringTag: visitor->VisitOneByteString( SeqOneByteString::cast(string)->GetChars() + slice_offset, length - offset); return NULL; case kSeqStringTag | kTwoByteStringTag: visitor->VisitTwoByteString( SeqTwoByteString::cast(string)->GetChars() + slice_offset, length - offset); return NULL; case kExternalStringTag | kOneByteStringTag: visitor->VisitOneByteString( ExternalOneByteString::cast(string)->GetChars() + slice_offset, length - offset); return NULL; case kExternalStringTag | kTwoByteStringTag: visitor->VisitTwoByteString( ExternalTwoByteString::cast(string)->GetChars() + slice_offset, length - offset); return NULL; case kSlicedStringTag | kOneByteStringTag: case kSlicedStringTag | kTwoByteStringTag: { SlicedString* slicedString = SlicedString::cast(string); slice_offset += slicedString->offset(); string = slicedString->parent(); continue; } case kConsStringTag | kOneByteStringTag: case kConsStringTag | kTwoByteStringTag: return ConsString::cast(string); default: UNREACHABLE(); return NULL; } } } template <> inline Vector String::GetCharVector() { String::FlatContent flat = GetFlatContent(); DCHECK(flat.IsOneByte()); return flat.ToOneByteVector(); } template <> inline Vector String::GetCharVector() { String::FlatContent flat = GetFlatContent(); DCHECK(flat.IsTwoByte()); return flat.ToUC16Vector(); } uint16_t SeqOneByteString::SeqOneByteStringGet(int index) { DCHECK(index >= 0 && index < length()); return READ_BYTE_FIELD(this, kHeaderSize + index * kCharSize); } void SeqOneByteString::SeqOneByteStringSet(int index, uint16_t value) { DCHECK(index >= 0 && index < length() && value <= kMaxOneByteCharCode); WRITE_BYTE_FIELD(this, kHeaderSize + index * kCharSize, static_cast(value)); } Address SeqOneByteString::GetCharsAddress() { return FIELD_ADDR(this, kHeaderSize); } uint8_t* SeqOneByteString::GetChars() { return reinterpret_cast(GetCharsAddress()); } Address SeqTwoByteString::GetCharsAddress() { return FIELD_ADDR(this, kHeaderSize); } uc16* SeqTwoByteString::GetChars() { return reinterpret_cast(FIELD_ADDR(this, kHeaderSize)); } uint16_t SeqTwoByteString::SeqTwoByteStringGet(int index) { DCHECK(index >= 0 && index < length()); return READ_UINT16_FIELD(this, kHeaderSize + index * kShortSize); } void SeqTwoByteString::SeqTwoByteStringSet(int index, uint16_t value) { DCHECK(index >= 0 && index < length()); WRITE_UINT16_FIELD(this, kHeaderSize + index * kShortSize, value); } int SeqTwoByteString::SeqTwoByteStringSize(InstanceType instance_type) { return SizeFor(length()); } int SeqOneByteString::SeqOneByteStringSize(InstanceType instance_type) { return SizeFor(length()); } String* SlicedString::parent() { return String::cast(READ_FIELD(this, kParentOffset)); } void SlicedString::set_parent(String* parent, WriteBarrierMode mode) { DCHECK(parent->IsSeqString() || parent->IsExternalString()); WRITE_FIELD(this, kParentOffset, parent); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kParentOffset, parent, mode); } SMI_ACCESSORS(SlicedString, offset, kOffsetOffset) String* ConsString::first() { return String::cast(READ_FIELD(this, kFirstOffset)); } Object* ConsString::unchecked_first() { return READ_FIELD(this, kFirstOffset); } void ConsString::set_first(String* value, WriteBarrierMode mode) { WRITE_FIELD(this, kFirstOffset, value); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kFirstOffset, value, mode); } String* ConsString::second() { return String::cast(READ_FIELD(this, kSecondOffset)); } Object* ConsString::unchecked_second() { return READ_FIELD(this, kSecondOffset); } void ConsString::set_second(String* value, WriteBarrierMode mode) { WRITE_FIELD(this, kSecondOffset, value); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kSecondOffset, value, mode); } bool ExternalString::is_short() { InstanceType type = map()->instance_type(); return (type & kShortExternalStringMask) == kShortExternalStringTag; } const ExternalOneByteString::Resource* ExternalOneByteString::resource() { return *reinterpret_cast(FIELD_ADDR(this, kResourceOffset)); } void ExternalOneByteString::update_data_cache() { if (is_short()) return; const char** data_field = reinterpret_cast(FIELD_ADDR(this, kResourceDataOffset)); *data_field = resource()->data(); } void ExternalOneByteString::set_resource( const ExternalOneByteString::Resource* resource) { DCHECK(IsAligned(reinterpret_cast(resource), kPointerSize)); *reinterpret_cast( FIELD_ADDR(this, kResourceOffset)) = resource; if (resource != NULL) update_data_cache(); } const uint8_t* ExternalOneByteString::GetChars() { return reinterpret_cast(resource()->data()); } uint16_t ExternalOneByteString::ExternalOneByteStringGet(int index) { DCHECK(index >= 0 && index < length()); return GetChars()[index]; } const ExternalTwoByteString::Resource* ExternalTwoByteString::resource() { return *reinterpret_cast(FIELD_ADDR(this, kResourceOffset)); } void ExternalTwoByteString::update_data_cache() { if (is_short()) return; const uint16_t** data_field = reinterpret_cast(FIELD_ADDR(this, kResourceDataOffset)); *data_field = resource()->data(); } void ExternalTwoByteString::set_resource( const ExternalTwoByteString::Resource* resource) { *reinterpret_cast( FIELD_ADDR(this, kResourceOffset)) = resource; if (resource != NULL) update_data_cache(); } const uint16_t* ExternalTwoByteString::GetChars() { return resource()->data(); } uint16_t ExternalTwoByteString::ExternalTwoByteStringGet(int index) { DCHECK(index >= 0 && index < length()); return GetChars()[index]; } const uint16_t* ExternalTwoByteString::ExternalTwoByteStringGetData( unsigned start) { return GetChars() + start; } int ConsStringIterator::OffsetForDepth(int depth) { return depth & kDepthMask; } void ConsStringIterator::PushLeft(ConsString* string) { frames_[depth_++ & kDepthMask] = string; } void ConsStringIterator::PushRight(ConsString* string) { // Inplace update. frames_[(depth_-1) & kDepthMask] = string; } void ConsStringIterator::AdjustMaximumDepth() { if (depth_ > maximum_depth_) maximum_depth_ = depth_; } void ConsStringIterator::Pop() { DCHECK(depth_ > 0); DCHECK(depth_ <= maximum_depth_); depth_--; } uint16_t StringCharacterStream::GetNext() { DCHECK(buffer8_ != NULL && end_ != NULL); // Advance cursor if needed. if (buffer8_ == end_) HasMore(); DCHECK(buffer8_ < end_); return is_one_byte_ ? *buffer8_++ : *buffer16_++; } StringCharacterStream::StringCharacterStream(String* string, int offset) : is_one_byte_(false) { Reset(string, offset); } void StringCharacterStream::Reset(String* string, int offset) { buffer8_ = NULL; end_ = NULL; ConsString* cons_string = String::VisitFlat(this, string, offset); iter_.Reset(cons_string, offset); if (cons_string != NULL) { string = iter_.Next(&offset); if (string != NULL) String::VisitFlat(this, string, offset); } } bool StringCharacterStream::HasMore() { if (buffer8_ != end_) return true; int offset; String* string = iter_.Next(&offset); DCHECK_EQ(offset, 0); if (string == NULL) return false; String::VisitFlat(this, string); DCHECK(buffer8_ != end_); return true; } void StringCharacterStream::VisitOneByteString( const uint8_t* chars, int length) { is_one_byte_ = true; buffer8_ = chars; end_ = chars + length; } void StringCharacterStream::VisitTwoByteString( const uint16_t* chars, int length) { is_one_byte_ = false; buffer16_ = chars; end_ = reinterpret_cast(chars + length); } int ByteArray::Size() { return RoundUp(length() + kHeaderSize, kPointerSize); } byte ByteArray::get(int index) { DCHECK(index >= 0 && index < this->length()); return READ_BYTE_FIELD(this, kHeaderSize + index * kCharSize); } void ByteArray::set(int index, byte value) { DCHECK(index >= 0 && index < this->length()); WRITE_BYTE_FIELD(this, kHeaderSize + index * kCharSize, value); } int ByteArray::get_int(int index) { DCHECK(index >= 0 && (index * kIntSize) < this->length()); return READ_INT_FIELD(this, kHeaderSize + index * kIntSize); } ByteArray* ByteArray::FromDataStartAddress(Address address) { DCHECK_TAG_ALIGNED(address); return reinterpret_cast(address - kHeaderSize + kHeapObjectTag); } int ByteArray::ByteArraySize() { return SizeFor(this->length()); } Address ByteArray::GetDataStartAddress() { return reinterpret_cast
(this) - kHeapObjectTag + kHeaderSize; } void BytecodeArray::BytecodeArrayIterateBody(ObjectVisitor* v) { IteratePointer(v, kConstantPoolOffset); } byte BytecodeArray::get(int index) { DCHECK(index >= 0 && index < this->length()); return READ_BYTE_FIELD(this, kHeaderSize + index * kCharSize); } void BytecodeArray::set(int index, byte value) { DCHECK(index >= 0 && index < this->length()); WRITE_BYTE_FIELD(this, kHeaderSize + index * kCharSize, value); } void BytecodeArray::set_frame_size(int frame_size) { DCHECK_GE(frame_size, 0); DCHECK(IsAligned(frame_size, static_cast(kPointerSize))); WRITE_INT_FIELD(this, kFrameSizeOffset, frame_size); } int BytecodeArray::frame_size() const { return READ_INT_FIELD(this, kFrameSizeOffset); } int BytecodeArray::register_count() const { return frame_size() / kPointerSize; } void BytecodeArray::set_parameter_count(int number_of_parameters) { DCHECK_GE(number_of_parameters, 0); // Parameter count is stored as the size on stack of the parameters to allow // it to be used directly by generated code. WRITE_INT_FIELD(this, kParameterSizeOffset, (number_of_parameters << kPointerSizeLog2)); } int BytecodeArray::parameter_count() const { // Parameter count is stored as the size on stack of the parameters to allow // it to be used directly by generated code. return READ_INT_FIELD(this, kParameterSizeOffset) >> kPointerSizeLog2; } ACCESSORS(BytecodeArray, constant_pool, FixedArray, kConstantPoolOffset) Address BytecodeArray::GetFirstBytecodeAddress() { return reinterpret_cast
(this) - kHeapObjectTag + kHeaderSize; } int BytecodeArray::BytecodeArraySize() { return SizeFor(this->length()); } ACCESSORS(FixedTypedArrayBase, base_pointer, Object, kBasePointerOffset) void* FixedTypedArrayBase::external_pointer() const { intptr_t ptr = READ_INTPTR_FIELD(this, kExternalPointerOffset); return reinterpret_cast(ptr); } void FixedTypedArrayBase::set_external_pointer(void* value, WriteBarrierMode mode) { intptr_t ptr = reinterpret_cast(value); WRITE_INTPTR_FIELD(this, kExternalPointerOffset, ptr); } void* FixedTypedArrayBase::DataPtr() { return reinterpret_cast( reinterpret_cast(base_pointer()) + reinterpret_cast(external_pointer())); } int FixedTypedArrayBase::ElementSize(InstanceType type) { int element_size; switch (type) { #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \ case FIXED_##TYPE##_ARRAY_TYPE: \ element_size = size; \ break; TYPED_ARRAYS(TYPED_ARRAY_CASE) #undef TYPED_ARRAY_CASE default: UNREACHABLE(); return 0; } return element_size; } int FixedTypedArrayBase::DataSize(InstanceType type) { if (base_pointer() == Smi::FromInt(0)) return 0; return length() * ElementSize(type); } int FixedTypedArrayBase::DataSize() { return DataSize(map()->instance_type()); } int FixedTypedArrayBase::size() { return OBJECT_POINTER_ALIGN(kDataOffset + DataSize()); } int FixedTypedArrayBase::TypedArraySize(InstanceType type) { return OBJECT_POINTER_ALIGN(kDataOffset + DataSize(type)); } int FixedTypedArrayBase::TypedArraySize(InstanceType type, int length) { return OBJECT_POINTER_ALIGN(kDataOffset + length * ElementSize(type)); } uint8_t Uint8ArrayTraits::defaultValue() { return 0; } uint8_t Uint8ClampedArrayTraits::defaultValue() { return 0; } int8_t Int8ArrayTraits::defaultValue() { return 0; } uint16_t Uint16ArrayTraits::defaultValue() { return 0; } int16_t Int16ArrayTraits::defaultValue() { return 0; } uint32_t Uint32ArrayTraits::defaultValue() { return 0; } int32_t Int32ArrayTraits::defaultValue() { return 0; } float Float32ArrayTraits::defaultValue() { return std::numeric_limits::quiet_NaN(); } double Float64ArrayTraits::defaultValue() { return std::numeric_limits::quiet_NaN(); } template typename Traits::ElementType FixedTypedArray::get_scalar(int index) { DCHECK((index >= 0) && (index < this->length())); ElementType* ptr = reinterpret_cast(DataPtr()); return ptr[index]; } template void FixedTypedArray::set(int index, ElementType value) { DCHECK((index >= 0) && (index < this->length())); ElementType* ptr = reinterpret_cast(DataPtr()); ptr[index] = value; } template typename Traits::ElementType FixedTypedArray::from_int(int value) { return static_cast(value); } template <> inline uint8_t FixedTypedArray::from_int(int value) { if (value < 0) return 0; if (value > 0xFF) return 0xFF; return static_cast(value); } template typename Traits::ElementType FixedTypedArray::from_double( double value) { return static_cast(DoubleToInt32(value)); } template<> inline uint8_t FixedTypedArray::from_double(double value) { // Handle NaNs and less than zero values which clamp to zero. if (!(value > 0)) return 0; if (value > 0xFF) return 0xFF; return static_cast(lrint(value)); } template<> inline float FixedTypedArray::from_double(double value) { return static_cast(value); } template<> inline double FixedTypedArray::from_double(double value) { return value; } template Handle FixedTypedArray::get( Handle > array, int index) { return Traits::ToHandle(array->GetIsolate(), array->get_scalar(index)); } template void FixedTypedArray::SetValue(uint32_t index, Object* value) { ElementType cast_value = Traits::defaultValue(); if (value->IsSmi()) { int int_value = Smi::cast(value)->value(); cast_value = from_int(int_value); } else if (value->IsHeapNumber()) { double double_value = HeapNumber::cast(value)->value(); cast_value = from_double(double_value); } else { // Clamp undefined to the default value. All other types have been // converted to a number type further up in the call chain. DCHECK(value->IsUndefined()); } set(index, cast_value); } Handle Uint8ArrayTraits::ToHandle(Isolate* isolate, uint8_t scalar) { return handle(Smi::FromInt(scalar), isolate); } Handle Uint8ClampedArrayTraits::ToHandle(Isolate* isolate, uint8_t scalar) { return handle(Smi::FromInt(scalar), isolate); } Handle Int8ArrayTraits::ToHandle(Isolate* isolate, int8_t scalar) { return handle(Smi::FromInt(scalar), isolate); } Handle Uint16ArrayTraits::ToHandle(Isolate* isolate, uint16_t scalar) { return handle(Smi::FromInt(scalar), isolate); } Handle Int16ArrayTraits::ToHandle(Isolate* isolate, int16_t scalar) { return handle(Smi::FromInt(scalar), isolate); } Handle Uint32ArrayTraits::ToHandle(Isolate* isolate, uint32_t scalar) { return isolate->factory()->NewNumberFromUint(scalar); } Handle Int32ArrayTraits::ToHandle(Isolate* isolate, int32_t scalar) { return isolate->factory()->NewNumberFromInt(scalar); } Handle Float32ArrayTraits::ToHandle(Isolate* isolate, float scalar) { return isolate->factory()->NewNumber(scalar); } Handle Float64ArrayTraits::ToHandle(Isolate* isolate, double scalar) { return isolate->factory()->NewNumber(scalar); } int Map::visitor_id() { return READ_BYTE_FIELD(this, kVisitorIdOffset); } void Map::set_visitor_id(int id) { DCHECK(0 <= id && id < 256); WRITE_BYTE_FIELD(this, kVisitorIdOffset, static_cast(id)); } int Map::instance_size() { return NOBARRIER_READ_BYTE_FIELD( this, kInstanceSizeOffset) << kPointerSizeLog2; } int Map::inobject_properties_or_constructor_function_index() { return READ_BYTE_FIELD(this, kInObjectPropertiesOrConstructorFunctionIndexOffset); } void Map::set_inobject_properties_or_constructor_function_index(int value) { DCHECK(0 <= value && value < 256); WRITE_BYTE_FIELD(this, kInObjectPropertiesOrConstructorFunctionIndexOffset, static_cast(value)); } int Map::GetInObjectProperties() { DCHECK(IsJSObjectMap()); return inobject_properties_or_constructor_function_index(); } void Map::SetInObjectProperties(int value) { DCHECK(IsJSObjectMap()); set_inobject_properties_or_constructor_function_index(value); } int Map::GetConstructorFunctionIndex() { DCHECK(IsPrimitiveMap()); return inobject_properties_or_constructor_function_index(); } void Map::SetConstructorFunctionIndex(int value) { DCHECK(IsPrimitiveMap()); set_inobject_properties_or_constructor_function_index(value); } int Map::GetInObjectPropertyOffset(int index) { // Adjust for the number of properties stored in the object. index -= GetInObjectProperties(); DCHECK(index <= 0); return instance_size() + (index * kPointerSize); } Handle Map::CopyInstallDescriptorsForTesting( Handle map, int new_descriptor, Handle descriptors, Handle layout_descriptor) { return CopyInstallDescriptors(map, new_descriptor, descriptors, layout_descriptor); } int HeapObject::SizeFromMap(Map* map) { int instance_size = map->instance_size(); if (instance_size != kVariableSizeSentinel) return instance_size; // Only inline the most frequent cases. InstanceType instance_type = map->instance_type(); if (instance_type == FIXED_ARRAY_TYPE) { return FixedArray::BodyDescriptor::SizeOf(map, this); } if (instance_type == ONE_BYTE_STRING_TYPE || instance_type == ONE_BYTE_INTERNALIZED_STRING_TYPE) { // Strings may get concurrently truncated, hence we have to access its // length synchronized. return SeqOneByteString::SizeFor( reinterpret_cast(this)->synchronized_length()); } if (instance_type == BYTE_ARRAY_TYPE) { return reinterpret_cast(this)->ByteArraySize(); } if (instance_type == BYTECODE_ARRAY_TYPE) { return reinterpret_cast(this)->BytecodeArraySize(); } if (instance_type == FREE_SPACE_TYPE) { return reinterpret_cast(this)->nobarrier_size(); } if (instance_type == STRING_TYPE || instance_type == INTERNALIZED_STRING_TYPE) { // Strings may get concurrently truncated, hence we have to access its // length synchronized. return SeqTwoByteString::SizeFor( reinterpret_cast(this)->synchronized_length()); } if (instance_type == FIXED_DOUBLE_ARRAY_TYPE) { return FixedDoubleArray::SizeFor( reinterpret_cast(this)->length()); } if (instance_type >= FIRST_FIXED_TYPED_ARRAY_TYPE && instance_type <= LAST_FIXED_TYPED_ARRAY_TYPE) { return reinterpret_cast( this)->TypedArraySize(instance_type); } DCHECK(instance_type == CODE_TYPE); return reinterpret_cast(this)->CodeSize(); } void Map::set_instance_size(int value) { DCHECK_EQ(0, value & (kPointerSize - 1)); value >>= kPointerSizeLog2; DCHECK(0 <= value && value < 256); NOBARRIER_WRITE_BYTE_FIELD( this, kInstanceSizeOffset, static_cast(value)); } void Map::clear_unused() { WRITE_BYTE_FIELD(this, kUnusedOffset, 0); } InstanceType Map::instance_type() { return static_cast(READ_BYTE_FIELD(this, kInstanceTypeOffset)); } void Map::set_instance_type(InstanceType value) { WRITE_BYTE_FIELD(this, kInstanceTypeOffset, value); } int Map::unused_property_fields() { return READ_BYTE_FIELD(this, kUnusedPropertyFieldsOffset); } void Map::set_unused_property_fields(int value) { WRITE_BYTE_FIELD(this, kUnusedPropertyFieldsOffset, Min(value, 255)); } byte Map::bit_field() const { return READ_BYTE_FIELD(this, kBitFieldOffset); } void Map::set_bit_field(byte value) { WRITE_BYTE_FIELD(this, kBitFieldOffset, value); } byte Map::bit_field2() const { return READ_BYTE_FIELD(this, kBitField2Offset); } void Map::set_bit_field2(byte value) { WRITE_BYTE_FIELD(this, kBitField2Offset, value); } void Map::set_non_instance_prototype(bool value) { if (value) { set_bit_field(bit_field() | (1 << kHasNonInstancePrototype)); } else { set_bit_field(bit_field() & ~(1 << kHasNonInstancePrototype)); } } bool Map::has_non_instance_prototype() { return ((1 << kHasNonInstancePrototype) & bit_field()) != 0; } void Map::set_is_constructor(bool value) { if (value) { set_bit_field(bit_field() | (1 << kIsConstructor)); } else { set_bit_field(bit_field() & ~(1 << kIsConstructor)); } } bool Map::is_constructor() const { return ((1 << kIsConstructor) & bit_field()) != 0; } void Map::set_is_hidden_prototype() { set_bit_field3(IsHiddenPrototype::update(bit_field3(), true)); } bool Map::is_hidden_prototype() const { return IsHiddenPrototype::decode(bit_field3()); } void Map::set_has_indexed_interceptor() { set_bit_field(bit_field() | (1 << kHasIndexedInterceptor)); } bool Map::has_indexed_interceptor() { return ((1 << kHasIndexedInterceptor) & bit_field()) != 0; } void Map::set_is_undetectable() { set_bit_field(bit_field() | (1 << kIsUndetectable)); } bool Map::is_undetectable() { return ((1 << kIsUndetectable) & bit_field()) != 0; } void Map::set_is_observed() { set_bit_field(bit_field() | (1 << kIsObserved)); } bool Map::is_observed() { return ((1 << kIsObserved) & bit_field()) != 0; } void Map::set_has_named_interceptor() { set_bit_field(bit_field() | (1 << kHasNamedInterceptor)); } bool Map::has_named_interceptor() { return ((1 << kHasNamedInterceptor) & bit_field()) != 0; } void Map::set_is_access_check_needed(bool access_check_needed) { if (access_check_needed) { set_bit_field(bit_field() | (1 << kIsAccessCheckNeeded)); } else { set_bit_field(bit_field() & ~(1 << kIsAccessCheckNeeded)); } } bool Map::is_access_check_needed() { return ((1 << kIsAccessCheckNeeded) & bit_field()) != 0; } void Map::set_is_extensible(bool value) { if (value) { set_bit_field2(bit_field2() | (1 << kIsExtensible)); } else { set_bit_field2(bit_field2() & ~(1 << kIsExtensible)); } } bool Map::is_extensible() { return ((1 << kIsExtensible) & bit_field2()) != 0; } void Map::set_is_prototype_map(bool value) { set_bit_field2(IsPrototypeMapBits::update(bit_field2(), value)); } bool Map::is_prototype_map() const { return IsPrototypeMapBits::decode(bit_field2()); } void Map::set_elements_kind(ElementsKind elements_kind) { DCHECK(static_cast(elements_kind) < kElementsKindCount); DCHECK(kElementsKindCount <= (1 << Map::ElementsKindBits::kSize)); set_bit_field2(Map::ElementsKindBits::update(bit_field2(), elements_kind)); DCHECK(this->elements_kind() == elements_kind); } ElementsKind Map::elements_kind() { return Map::ElementsKindBits::decode(bit_field2()); } bool Map::has_fast_smi_elements() { return IsFastSmiElementsKind(elements_kind()); } bool Map::has_fast_object_elements() { return IsFastObjectElementsKind(elements_kind()); } bool Map::has_fast_smi_or_object_elements() { return IsFastSmiOrObjectElementsKind(elements_kind()); } bool Map::has_fast_double_elements() { return IsFastDoubleElementsKind(elements_kind()); } bool Map::has_fast_elements() { return IsFastElementsKind(elements_kind()); } bool Map::has_sloppy_arguments_elements() { return IsSloppyArgumentsElements(elements_kind()); } bool Map::has_fixed_typed_array_elements() { return IsFixedTypedArrayElementsKind(elements_kind()); } bool Map::has_dictionary_elements() { return IsDictionaryElementsKind(elements_kind()); } void Map::set_dictionary_map(bool value) { uint32_t new_bit_field3 = DictionaryMap::update(bit_field3(), value); new_bit_field3 = IsUnstable::update(new_bit_field3, value); set_bit_field3(new_bit_field3); } bool Map::is_dictionary_map() { return DictionaryMap::decode(bit_field3()); } Code::Flags Code::flags() { return static_cast(READ_INT_FIELD(this, kFlagsOffset)); } void Map::set_owns_descriptors(bool owns_descriptors) { set_bit_field3(OwnsDescriptors::update(bit_field3(), owns_descriptors)); } bool Map::owns_descriptors() { return OwnsDescriptors::decode(bit_field3()); } void Map::set_is_callable() { set_bit_field(bit_field() | (1 << kIsCallable)); } bool Map::is_callable() const { return ((1 << kIsCallable) & bit_field()) != 0; } void Map::deprecate() { set_bit_field3(Deprecated::update(bit_field3(), true)); } bool Map::is_deprecated() { return Deprecated::decode(bit_field3()); } void Map::set_migration_target(bool value) { set_bit_field3(IsMigrationTarget::update(bit_field3(), value)); } bool Map::is_migration_target() { return IsMigrationTarget::decode(bit_field3()); } void Map::set_is_strong() { set_bit_field3(IsStrong::update(bit_field3(), true)); } bool Map::is_strong() { return IsStrong::decode(bit_field3()); } void Map::set_counter(int value) { set_bit_field3(Counter::update(bit_field3(), value)); } int Map::counter() { return Counter::decode(bit_field3()); } void Map::mark_unstable() { set_bit_field3(IsUnstable::update(bit_field3(), true)); } bool Map::is_stable() { return !IsUnstable::decode(bit_field3()); } bool Map::has_code_cache() { return code_cache() != GetIsolate()->heap()->empty_fixed_array(); } bool Map::CanBeDeprecated() { int descriptor = LastAdded(); for (int i = 0; i <= descriptor; i++) { PropertyDetails details = instance_descriptors()->GetDetails(i); if (details.representation().IsNone()) return true; if (details.representation().IsSmi()) return true; if (details.representation().IsDouble()) return true; if (details.representation().IsHeapObject()) return true; if (details.type() == DATA_CONSTANT) return true; } return false; } void Map::NotifyLeafMapLayoutChange() { if (is_stable()) { mark_unstable(); dependent_code()->DeoptimizeDependentCodeGroup( GetIsolate(), DependentCode::kPrototypeCheckGroup); } } bool Map::CanTransition() { // Only JSObject and subtypes have map transitions and back pointers. STATIC_ASSERT(LAST_TYPE == LAST_JS_OBJECT_TYPE); return instance_type() >= FIRST_JS_OBJECT_TYPE; } bool Map::IsPrimitiveMap() { STATIC_ASSERT(FIRST_PRIMITIVE_TYPE == FIRST_TYPE); return instance_type() <= LAST_PRIMITIVE_TYPE; } bool Map::IsJSObjectMap() { STATIC_ASSERT(LAST_JS_OBJECT_TYPE == LAST_TYPE); return instance_type() >= FIRST_JS_OBJECT_TYPE; } bool Map::IsJSArrayMap() { return instance_type() == JS_ARRAY_TYPE; } bool Map::IsJSFunctionMap() { return instance_type() == JS_FUNCTION_TYPE; } bool Map::IsStringMap() { return instance_type() < FIRST_NONSTRING_TYPE; } bool Map::IsJSProxyMap() { InstanceType type = instance_type(); return FIRST_JS_PROXY_TYPE <= type && type <= LAST_JS_PROXY_TYPE; } bool Map::IsJSGlobalProxyMap() { return instance_type() == JS_GLOBAL_PROXY_TYPE; } bool Map::IsJSGlobalObjectMap() { return instance_type() == JS_GLOBAL_OBJECT_TYPE; } bool Map::IsJSTypedArrayMap() { return instance_type() == JS_TYPED_ARRAY_TYPE; } bool Map::IsGlobalObjectMap() { const InstanceType type = instance_type(); return type == JS_GLOBAL_OBJECT_TYPE || type == JS_BUILTINS_OBJECT_TYPE; } bool Map::CanOmitMapChecks() { return is_stable() && FLAG_omit_map_checks_for_leaf_maps; } int DependentCode::number_of_entries(DependencyGroup group) { if (length() == 0) return 0; return Smi::cast(get(group))->value(); } void DependentCode::set_number_of_entries(DependencyGroup group, int value) { set(group, Smi::FromInt(value)); } void DependentCode::set_object_at(int i, Object* object) { set(kCodesStartIndex + i, object); } Object* DependentCode::object_at(int i) { return get(kCodesStartIndex + i); } void DependentCode::clear_at(int i) { set_undefined(kCodesStartIndex + i); } void DependentCode::copy(int from, int to) { set(kCodesStartIndex + to, get(kCodesStartIndex + from)); } void DependentCode::ExtendGroup(DependencyGroup group) { GroupStartIndexes starts(this); for (int g = kGroupCount - 1; g > group; g--) { if (starts.at(g) < starts.at(g + 1)) { copy(starts.at(g), starts.at(g + 1)); } } } void Code::set_flags(Code::Flags flags) { STATIC_ASSERT(Code::NUMBER_OF_KINDS <= KindField::kMax + 1); WRITE_INT_FIELD(this, kFlagsOffset, flags); } Code::Kind Code::kind() { return ExtractKindFromFlags(flags()); } bool Code::IsCodeStubOrIC() { return kind() == STUB || kind() == HANDLER || kind() == LOAD_IC || kind() == KEYED_LOAD_IC || kind() == CALL_IC || kind() == STORE_IC || kind() == KEYED_STORE_IC || kind() == BINARY_OP_IC || kind() == COMPARE_IC || kind() == COMPARE_NIL_IC || kind() == TO_BOOLEAN_IC; } bool Code::IsJavaScriptCode() { return kind() == FUNCTION || kind() == OPTIMIZED_FUNCTION || is_interpreter_entry_trampoline(); } InlineCacheState Code::ic_state() { InlineCacheState result = ExtractICStateFromFlags(flags()); // Only allow uninitialized or debugger states for non-IC code // objects. This is used in the debugger to determine whether or not // a call to code object has been replaced with a debug break call. DCHECK(is_inline_cache_stub() || result == UNINITIALIZED || result == DEBUG_STUB); return result; } ExtraICState Code::extra_ic_state() { DCHECK(is_inline_cache_stub() || ic_state() == DEBUG_STUB); return ExtractExtraICStateFromFlags(flags()); } Code::StubType Code::type() { return ExtractTypeFromFlags(flags()); } // For initialization. void Code::set_raw_kind_specific_flags1(int value) { WRITE_INT_FIELD(this, kKindSpecificFlags1Offset, value); } void Code::set_raw_kind_specific_flags2(int value) { WRITE_INT_FIELD(this, kKindSpecificFlags2Offset, value); } inline bool Code::is_crankshafted() { return IsCrankshaftedField::decode( READ_UINT32_FIELD(this, kKindSpecificFlags2Offset)); } inline bool Code::is_hydrogen_stub() { return is_crankshafted() && kind() != OPTIMIZED_FUNCTION; } inline bool Code::is_interpreter_entry_trampoline() { Handle interpreter_entry = GetIsolate()->builtins()->InterpreterEntryTrampoline(); return interpreter_entry.location() != nullptr && *interpreter_entry == this; } inline void Code::set_is_crankshafted(bool value) { int previous = READ_UINT32_FIELD(this, kKindSpecificFlags2Offset); int updated = IsCrankshaftedField::update(previous, value); WRITE_UINT32_FIELD(this, kKindSpecificFlags2Offset, updated); } inline bool Code::is_turbofanned() { return IsTurbofannedField::decode( READ_UINT32_FIELD(this, kKindSpecificFlags1Offset)); } inline void Code::set_is_turbofanned(bool value) { int previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset); int updated = IsTurbofannedField::update(previous, value); WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated); } inline bool Code::can_have_weak_objects() { DCHECK(kind() == OPTIMIZED_FUNCTION); return CanHaveWeakObjectsField::decode( READ_UINT32_FIELD(this, kKindSpecificFlags1Offset)); } inline void Code::set_can_have_weak_objects(bool value) { DCHECK(kind() == OPTIMIZED_FUNCTION); int previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset); int updated = CanHaveWeakObjectsField::update(previous, value); WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated); } bool Code::has_deoptimization_support() { DCHECK_EQ(FUNCTION, kind()); unsigned flags = READ_UINT32_FIELD(this, kFullCodeFlags); return FullCodeFlagsHasDeoptimizationSupportField::decode(flags); } void Code::set_has_deoptimization_support(bool value) { DCHECK_EQ(FUNCTION, kind()); unsigned flags = READ_UINT32_FIELD(this, kFullCodeFlags); flags = FullCodeFlagsHasDeoptimizationSupportField::update(flags, value); WRITE_UINT32_FIELD(this, kFullCodeFlags, flags); } bool Code::has_debug_break_slots() { DCHECK_EQ(FUNCTION, kind()); unsigned flags = READ_UINT32_FIELD(this, kFullCodeFlags); return FullCodeFlagsHasDebugBreakSlotsField::decode(flags); } void Code::set_has_debug_break_slots(bool value) { DCHECK_EQ(FUNCTION, kind()); unsigned flags = READ_UINT32_FIELD(this, kFullCodeFlags); flags = FullCodeFlagsHasDebugBreakSlotsField::update(flags, value); WRITE_UINT32_FIELD(this, kFullCodeFlags, flags); } bool Code::has_reloc_info_for_serialization() { DCHECK_EQ(FUNCTION, kind()); unsigned flags = READ_UINT32_FIELD(this, kFullCodeFlags); return FullCodeFlagsHasRelocInfoForSerialization::decode(flags); } void Code::set_has_reloc_info_for_serialization(bool value) { DCHECK_EQ(FUNCTION, kind()); unsigned flags = READ_UINT32_FIELD(this, kFullCodeFlags); flags = FullCodeFlagsHasRelocInfoForSerialization::update(flags, value); WRITE_UINT32_FIELD(this, kFullCodeFlags, flags); } int Code::allow_osr_at_loop_nesting_level() { DCHECK_EQ(FUNCTION, kind()); int fields = READ_UINT32_FIELD(this, kKindSpecificFlags2Offset); return AllowOSRAtLoopNestingLevelField::decode(fields); } void Code::set_allow_osr_at_loop_nesting_level(int level) { DCHECK_EQ(FUNCTION, kind()); DCHECK(level >= 0 && level <= kMaxLoopNestingMarker); int previous = READ_UINT32_FIELD(this, kKindSpecificFlags2Offset); int updated = AllowOSRAtLoopNestingLevelField::update(previous, level); WRITE_UINT32_FIELD(this, kKindSpecificFlags2Offset, updated); } int Code::profiler_ticks() { DCHECK_EQ(FUNCTION, kind()); return ProfilerTicksField::decode( READ_UINT32_FIELD(this, kKindSpecificFlags1Offset)); } void Code::set_profiler_ticks(int ticks) { if (kind() == FUNCTION) { unsigned previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset); unsigned updated = ProfilerTicksField::update(previous, ticks); WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated); } } int Code::builtin_index() { return READ_INT32_FIELD(this, kKindSpecificFlags1Offset); } void Code::set_builtin_index(int index) { WRITE_INT32_FIELD(this, kKindSpecificFlags1Offset, index); } unsigned Code::stack_slots() { DCHECK(is_crankshafted()); return StackSlotsField::decode( READ_UINT32_FIELD(this, kKindSpecificFlags1Offset)); } void Code::set_stack_slots(unsigned slots) { CHECK(slots <= (1 << kStackSlotsBitCount)); DCHECK(is_crankshafted()); int previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset); int updated = StackSlotsField::update(previous, slots); WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated); } unsigned Code::safepoint_table_offset() { DCHECK(is_crankshafted()); return SafepointTableOffsetField::decode( READ_UINT32_FIELD(this, kKindSpecificFlags2Offset)); } void Code::set_safepoint_table_offset(unsigned offset) { CHECK(offset <= (1 << kSafepointTableOffsetBitCount)); DCHECK(is_crankshafted()); DCHECK(IsAligned(offset, static_cast(kIntSize))); int previous = READ_UINT32_FIELD(this, kKindSpecificFlags2Offset); int updated = SafepointTableOffsetField::update(previous, offset); WRITE_UINT32_FIELD(this, kKindSpecificFlags2Offset, updated); } unsigned Code::back_edge_table_offset() { DCHECK_EQ(FUNCTION, kind()); return BackEdgeTableOffsetField::decode( READ_UINT32_FIELD(this, kKindSpecificFlags2Offset)) << kPointerSizeLog2; } void Code::set_back_edge_table_offset(unsigned offset) { DCHECK_EQ(FUNCTION, kind()); DCHECK(IsAligned(offset, static_cast(kPointerSize))); offset = offset >> kPointerSizeLog2; int previous = READ_UINT32_FIELD(this, kKindSpecificFlags2Offset); int updated = BackEdgeTableOffsetField::update(previous, offset); WRITE_UINT32_FIELD(this, kKindSpecificFlags2Offset, updated); } bool Code::back_edges_patched_for_osr() { DCHECK_EQ(FUNCTION, kind()); return allow_osr_at_loop_nesting_level() > 0; } uint16_t Code::to_boolean_state() { return extra_ic_state(); } bool Code::has_function_cache() { DCHECK(kind() == STUB); return HasFunctionCacheField::decode( READ_UINT32_FIELD(this, kKindSpecificFlags1Offset)); } void Code::set_has_function_cache(bool flag) { DCHECK(kind() == STUB); int previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset); int updated = HasFunctionCacheField::update(previous, flag); WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated); } bool Code::marked_for_deoptimization() { DCHECK(kind() == OPTIMIZED_FUNCTION); return MarkedForDeoptimizationField::decode( READ_UINT32_FIELD(this, kKindSpecificFlags1Offset)); } void Code::set_marked_for_deoptimization(bool flag) { DCHECK(kind() == OPTIMIZED_FUNCTION); DCHECK(!flag || AllowDeoptimization::IsAllowed(GetIsolate())); int previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset); int updated = MarkedForDeoptimizationField::update(previous, flag); WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated); } bool Code::is_inline_cache_stub() { Kind kind = this->kind(); switch (kind) { #define CASE(name) case name: return true; IC_KIND_LIST(CASE) #undef CASE default: return false; } } bool Code::is_keyed_stub() { return is_keyed_load_stub() || is_keyed_store_stub(); } bool Code::is_debug_stub() { return ic_state() == DEBUG_STUB; } bool Code::is_handler() { return kind() == HANDLER; } bool Code::is_load_stub() { return kind() == LOAD_IC; } bool Code::is_keyed_load_stub() { return kind() == KEYED_LOAD_IC; } bool Code::is_store_stub() { return kind() == STORE_IC; } bool Code::is_keyed_store_stub() { return kind() == KEYED_STORE_IC; } bool Code::is_call_stub() { return kind() == CALL_IC; } bool Code::is_binary_op_stub() { return kind() == BINARY_OP_IC; } bool Code::is_compare_ic_stub() { return kind() == COMPARE_IC; } bool Code::is_compare_nil_ic_stub() { return kind() == COMPARE_NIL_IC; } bool Code::is_to_boolean_ic_stub() { return kind() == TO_BOOLEAN_IC; } bool Code::is_optimized_code() { return kind() == OPTIMIZED_FUNCTION; } bool Code::embeds_maps_weakly() { Kind k = kind(); return (k == LOAD_IC || k == STORE_IC || k == KEYED_LOAD_IC || k == KEYED_STORE_IC || k == COMPARE_NIL_IC) && ic_state() == MONOMORPHIC; } Address Code::constant_pool() { Address constant_pool = NULL; if (FLAG_enable_embedded_constant_pool) { int offset = constant_pool_offset(); if (offset < instruction_size()) { constant_pool = FIELD_ADDR(this, kHeaderSize + offset); } } return constant_pool; } Code::Flags Code::ComputeFlags(Kind kind, InlineCacheState ic_state, ExtraICState extra_ic_state, StubType type, CacheHolderFlag holder) { // Compute the bit mask. unsigned int bits = KindField::encode(kind) | ICStateField::encode(ic_state) | TypeField::encode(type) | ExtraICStateField::encode(extra_ic_state) | CacheHolderField::encode(holder); return static_cast(bits); } Code::Flags Code::ComputeMonomorphicFlags(Kind kind, ExtraICState extra_ic_state, CacheHolderFlag holder, StubType type) { return ComputeFlags(kind, MONOMORPHIC, extra_ic_state, type, holder); } Code::Flags Code::ComputeHandlerFlags(Kind handler_kind, StubType type, CacheHolderFlag holder) { return ComputeFlags(Code::HANDLER, MONOMORPHIC, handler_kind, type, holder); } Code::Kind Code::ExtractKindFromFlags(Flags flags) { return KindField::decode(flags); } InlineCacheState Code::ExtractICStateFromFlags(Flags flags) { return ICStateField::decode(flags); } ExtraICState Code::ExtractExtraICStateFromFlags(Flags flags) { return ExtraICStateField::decode(flags); } Code::StubType Code::ExtractTypeFromFlags(Flags flags) { return TypeField::decode(flags); } CacheHolderFlag Code::ExtractCacheHolderFromFlags(Flags flags) { return CacheHolderField::decode(flags); } Code::Flags Code::RemoveTypeFromFlags(Flags flags) { int bits = flags & ~TypeField::kMask; return static_cast(bits); } Code::Flags Code::RemoveTypeAndHolderFromFlags(Flags flags) { int bits = flags & ~TypeField::kMask & ~CacheHolderField::kMask; return static_cast(bits); } Code* Code::GetCodeFromTargetAddress(Address address) { HeapObject* code = HeapObject::FromAddress(address - Code::kHeaderSize); // GetCodeFromTargetAddress might be called when marking objects during mark // sweep. reinterpret_cast is therefore used instead of the more appropriate // Code::cast. Code::cast does not work when the object's map is // marked. Code* result = reinterpret_cast(code); return result; } Object* Code::GetObjectFromEntryAddress(Address location_of_address) { return HeapObject:: FromAddress(Memory::Address_at(location_of_address) - Code::kHeaderSize); } bool Code::CanContainWeakObjects() { // is_turbofanned() implies !can_have_weak_objects(). DCHECK(!is_optimized_code() || !is_turbofanned() || !can_have_weak_objects()); return is_optimized_code() && can_have_weak_objects(); } bool Code::IsWeakObject(Object* object) { return (CanContainWeakObjects() && IsWeakObjectInOptimizedCode(object)); } bool Code::IsWeakObjectInOptimizedCode(Object* object) { if (object->IsMap()) { return Map::cast(object)->CanTransition() && FLAG_weak_embedded_maps_in_optimized_code; } if (object->IsCell()) { object = Cell::cast(object)->value(); } else if (object->IsPropertyCell()) { object = PropertyCell::cast(object)->value(); } if (object->IsJSObject() || object->IsJSProxy()) { // JSProxy is handled like JSObject because it can morph into one. return FLAG_weak_embedded_objects_in_optimized_code; } if (object->IsFixedArray()) { // Contexts of inlined functions are embedded in optimized code. Map* map = HeapObject::cast(object)->map(); Heap* heap = map->GetHeap(); return FLAG_weak_embedded_objects_in_optimized_code && map == heap->function_context_map(); } return false; } class Code::FindAndReplacePattern { public: FindAndReplacePattern() : count_(0) { } void Add(Handle map_to_find, Handle obj_to_replace) { DCHECK(count_ < kMaxCount); find_[count_] = map_to_find; replace_[count_] = obj_to_replace; ++count_; } private: static const int kMaxCount = 4; int count_; Handle find_[kMaxCount]; Handle replace_[kMaxCount]; friend class Code; }; Object* Map::prototype() const { return READ_FIELD(this, kPrototypeOffset); } void Map::set_prototype(Object* value, WriteBarrierMode mode) { DCHECK(value->IsNull() || value->IsJSReceiver()); WRITE_FIELD(this, kPrototypeOffset, value); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kPrototypeOffset, value, mode); } LayoutDescriptor* Map::layout_descriptor_gc_safe() { Object* layout_desc = READ_FIELD(this, kLayoutDecriptorOffset); return LayoutDescriptor::cast_gc_safe(layout_desc); } bool Map::HasFastPointerLayout() const { Object* layout_desc = READ_FIELD(this, kLayoutDecriptorOffset); return LayoutDescriptor::IsFastPointerLayout(layout_desc); } void Map::UpdateDescriptors(DescriptorArray* descriptors, LayoutDescriptor* layout_desc) { set_instance_descriptors(descriptors); if (FLAG_unbox_double_fields) { if (layout_descriptor()->IsSlowLayout()) { set_layout_descriptor(layout_desc); } #ifdef VERIFY_HEAP // TODO(ishell): remove these checks from VERIFY_HEAP mode. if (FLAG_verify_heap) { CHECK(layout_descriptor()->IsConsistentWithMap(this)); CHECK(visitor_id() == Heap::GetStaticVisitorIdForMap(this)); } #else SLOW_DCHECK(layout_descriptor()->IsConsistentWithMap(this)); DCHECK(visitor_id() == Heap::GetStaticVisitorIdForMap(this)); #endif } } void Map::InitializeDescriptors(DescriptorArray* descriptors, LayoutDescriptor* layout_desc) { int len = descriptors->number_of_descriptors(); set_instance_descriptors(descriptors); SetNumberOfOwnDescriptors(len); if (FLAG_unbox_double_fields) { set_layout_descriptor(layout_desc); #ifdef VERIFY_HEAP // TODO(ishell): remove these checks from VERIFY_HEAP mode. if (FLAG_verify_heap) { CHECK(layout_descriptor()->IsConsistentWithMap(this)); } #else SLOW_DCHECK(layout_descriptor()->IsConsistentWithMap(this)); #endif set_visitor_id(Heap::GetStaticVisitorIdForMap(this)); } } ACCESSORS(Map, instance_descriptors, DescriptorArray, kDescriptorsOffset) ACCESSORS(Map, layout_descriptor, LayoutDescriptor, kLayoutDecriptorOffset) void Map::set_bit_field3(uint32_t bits) { if (kInt32Size != kPointerSize) { WRITE_UINT32_FIELD(this, kBitField3Offset + kInt32Size, 0); } WRITE_UINT32_FIELD(this, kBitField3Offset, bits); } uint32_t Map::bit_field3() const { return READ_UINT32_FIELD(this, kBitField3Offset); } LayoutDescriptor* Map::GetLayoutDescriptor() { return FLAG_unbox_double_fields ? layout_descriptor() : LayoutDescriptor::FastPointerLayout(); } void Map::AppendDescriptor(Descriptor* desc) { DescriptorArray* descriptors = instance_descriptors(); int number_of_own_descriptors = NumberOfOwnDescriptors(); DCHECK(descriptors->number_of_descriptors() == number_of_own_descriptors); descriptors->Append(desc); SetNumberOfOwnDescriptors(number_of_own_descriptors + 1); // This function does not support appending double field descriptors and // it should never try to (otherwise, layout descriptor must be updated too). #ifdef DEBUG PropertyDetails details = desc->GetDetails(); CHECK(details.type() != DATA || !details.representation().IsDouble()); #endif } Object* Map::GetBackPointer() { Object* object = constructor_or_backpointer(); if (object->IsMap()) { return object; } return GetIsolate()->heap()->undefined_value(); } Map* Map::ElementsTransitionMap() { return TransitionArray::SearchSpecial( this, GetHeap()->elements_transition_symbol()); } ACCESSORS(Map, raw_transitions, Object, kTransitionsOrPrototypeInfoOffset) Object* Map::prototype_info() const { DCHECK(is_prototype_map()); return READ_FIELD(this, Map::kTransitionsOrPrototypeInfoOffset); } void Map::set_prototype_info(Object* value, WriteBarrierMode mode) { DCHECK(is_prototype_map()); WRITE_FIELD(this, Map::kTransitionsOrPrototypeInfoOffset, value); CONDITIONAL_WRITE_BARRIER( GetHeap(), this, Map::kTransitionsOrPrototypeInfoOffset, value, mode); } void Map::SetBackPointer(Object* value, WriteBarrierMode mode) { DCHECK(instance_type() >= FIRST_JS_RECEIVER_TYPE); DCHECK((value->IsUndefined() && GetBackPointer()->IsMap()) || (value->IsMap() && GetBackPointer()->IsUndefined())); DCHECK(!value->IsMap() || Map::cast(value)->GetConstructor() == constructor_or_backpointer()); set_constructor_or_backpointer(value, mode); } ACCESSORS(Map, code_cache, Object, kCodeCacheOffset) ACCESSORS(Map, dependent_code, DependentCode, kDependentCodeOffset) ACCESSORS(Map, weak_cell_cache, Object, kWeakCellCacheOffset) ACCESSORS(Map, constructor_or_backpointer, Object, kConstructorOrBackPointerOffset) Object* Map::GetConstructor() const { Object* maybe_constructor = constructor_or_backpointer(); // Follow any back pointers. while (maybe_constructor->IsMap()) { maybe_constructor = Map::cast(maybe_constructor)->constructor_or_backpointer(); } return maybe_constructor; } void Map::SetConstructor(Object* constructor, WriteBarrierMode mode) { // Never overwrite a back pointer with a constructor. DCHECK(!constructor_or_backpointer()->IsMap()); set_constructor_or_backpointer(constructor, mode); } ACCESSORS(JSFunction, shared, SharedFunctionInfo, kSharedFunctionInfoOffset) ACCESSORS(JSFunction, literals_or_bindings, FixedArray, kLiteralsOffset) ACCESSORS(JSFunction, next_function_link, Object, kNextFunctionLinkOffset) ACCESSORS(GlobalObject, builtins, JSBuiltinsObject, kBuiltinsOffset) ACCESSORS(GlobalObject, native_context, Context, kNativeContextOffset) ACCESSORS(GlobalObject, global_proxy, JSObject, kGlobalProxyOffset) ACCESSORS(JSGlobalProxy, native_context, Object, kNativeContextOffset) ACCESSORS(JSGlobalProxy, hash, Object, kHashOffset) ACCESSORS(AccessorInfo, name, Object, kNameOffset) SMI_ACCESSORS(AccessorInfo, flag, kFlagOffset) ACCESSORS(AccessorInfo, expected_receiver_type, Object, kExpectedReceiverTypeOffset) ACCESSORS(ExecutableAccessorInfo, getter, Object, kGetterOffset) ACCESSORS(ExecutableAccessorInfo, setter, Object, kSetterOffset) ACCESSORS(ExecutableAccessorInfo, data, Object, kDataOffset) ACCESSORS(Box, value, Object, kValueOffset) ACCESSORS(PrototypeInfo, prototype_users, Object, kPrototypeUsersOffset) SMI_ACCESSORS(PrototypeInfo, registry_slot, kRegistrySlotOffset) ACCESSORS(PrototypeInfo, validity_cell, Object, kValidityCellOffset) ACCESSORS(PrototypeInfo, constructor_name, Object, kConstructorNameOffset) ACCESSORS(SloppyBlockWithEvalContextExtension, scope_info, ScopeInfo, kScopeInfoOffset) ACCESSORS(SloppyBlockWithEvalContextExtension, extension, JSObject, kExtensionOffset) ACCESSORS(AccessorPair, getter, Object, kGetterOffset) ACCESSORS(AccessorPair, setter, Object, kSetterOffset) ACCESSORS(AccessCheckInfo, named_callback, Object, kNamedCallbackOffset) ACCESSORS(AccessCheckInfo, indexed_callback, Object, kIndexedCallbackOffset) ACCESSORS(AccessCheckInfo, data, Object, kDataOffset) ACCESSORS(InterceptorInfo, getter, Object, kGetterOffset) ACCESSORS(InterceptorInfo, setter, Object, kSetterOffset) ACCESSORS(InterceptorInfo, query, Object, kQueryOffset) ACCESSORS(InterceptorInfo, deleter, Object, kDeleterOffset) ACCESSORS(InterceptorInfo, enumerator, Object, kEnumeratorOffset) ACCESSORS(InterceptorInfo, data, Object, kDataOffset) SMI_ACCESSORS(InterceptorInfo, flags, kFlagsOffset) BOOL_ACCESSORS(InterceptorInfo, flags, can_intercept_symbols, kCanInterceptSymbolsBit) BOOL_ACCESSORS(InterceptorInfo, flags, all_can_read, kAllCanReadBit) BOOL_ACCESSORS(InterceptorInfo, flags, non_masking, kNonMasking) ACCESSORS(CallHandlerInfo, callback, Object, kCallbackOffset) ACCESSORS(CallHandlerInfo, data, Object, kDataOffset) ACCESSORS(TemplateInfo, tag, Object, kTagOffset) SMI_ACCESSORS(TemplateInfo, number_of_properties, kNumberOfProperties) ACCESSORS(TemplateInfo, property_list, Object, kPropertyListOffset) ACCESSORS(TemplateInfo, property_accessors, Object, kPropertyAccessorsOffset) ACCESSORS(FunctionTemplateInfo, serial_number, Object, kSerialNumberOffset) ACCESSORS(FunctionTemplateInfo, call_code, Object, kCallCodeOffset) ACCESSORS(FunctionTemplateInfo, prototype_template, Object, kPrototypeTemplateOffset) ACCESSORS(FunctionTemplateInfo, parent_template, Object, kParentTemplateOffset) ACCESSORS(FunctionTemplateInfo, named_property_handler, Object, kNamedPropertyHandlerOffset) ACCESSORS(FunctionTemplateInfo, indexed_property_handler, Object, kIndexedPropertyHandlerOffset) ACCESSORS(FunctionTemplateInfo, instance_template, Object, kInstanceTemplateOffset) ACCESSORS(FunctionTemplateInfo, class_name, Object, kClassNameOffset) ACCESSORS(FunctionTemplateInfo, signature, Object, kSignatureOffset) ACCESSORS(FunctionTemplateInfo, instance_call_handler, Object, kInstanceCallHandlerOffset) ACCESSORS(FunctionTemplateInfo, access_check_info, Object, kAccessCheckInfoOffset) SMI_ACCESSORS(FunctionTemplateInfo, flag, kFlagOffset) ACCESSORS(ObjectTemplateInfo, constructor, Object, kConstructorOffset) ACCESSORS(ObjectTemplateInfo, internal_field_count, Object, kInternalFieldCountOffset) ACCESSORS(TypeSwitchInfo, types, Object, kTypesOffset) ACCESSORS(AllocationSite, transition_info, Object, kTransitionInfoOffset) ACCESSORS(AllocationSite, nested_site, Object, kNestedSiteOffset) SMI_ACCESSORS(AllocationSite, pretenure_data, kPretenureDataOffset) SMI_ACCESSORS(AllocationSite, pretenure_create_count, kPretenureCreateCountOffset) ACCESSORS(AllocationSite, dependent_code, DependentCode, kDependentCodeOffset) ACCESSORS(AllocationSite, weak_next, Object, kWeakNextOffset) ACCESSORS(AllocationMemento, allocation_site, Object, kAllocationSiteOffset) ACCESSORS(Script, source, Object, kSourceOffset) ACCESSORS(Script, name, Object, kNameOffset) SMI_ACCESSORS(Script, id, kIdOffset) SMI_ACCESSORS(Script, line_offset, kLineOffsetOffset) SMI_ACCESSORS(Script, column_offset, kColumnOffsetOffset) ACCESSORS(Script, context_data, Object, kContextOffset) ACCESSORS(Script, wrapper, HeapObject, kWrapperOffset) SMI_ACCESSORS(Script, type, kTypeOffset) ACCESSORS(Script, line_ends, Object, kLineEndsOffset) ACCESSORS(Script, eval_from_shared, Object, kEvalFromSharedOffset) SMI_ACCESSORS(Script, eval_from_instructions_offset, kEvalFrominstructionsOffsetOffset) ACCESSORS(Script, shared_function_infos, Object, kSharedFunctionInfosOffset) SMI_ACCESSORS(Script, flags, kFlagsOffset) ACCESSORS(Script, source_url, Object, kSourceUrlOffset) ACCESSORS(Script, source_mapping_url, Object, kSourceMappingUrlOffset) Script::CompilationType Script::compilation_type() { return BooleanBit::get(flags(), kCompilationTypeBit) ? COMPILATION_TYPE_EVAL : COMPILATION_TYPE_HOST; } void Script::set_compilation_type(CompilationType type) { set_flags(BooleanBit::set(flags(), kCompilationTypeBit, type == COMPILATION_TYPE_EVAL)); } bool Script::hide_source() { return BooleanBit::get(flags(), kHideSourceBit); } void Script::set_hide_source(bool value) { set_flags(BooleanBit::set(flags(), kHideSourceBit, value)); } Script::CompilationState Script::compilation_state() { return BooleanBit::get(flags(), kCompilationStateBit) ? COMPILATION_STATE_COMPILED : COMPILATION_STATE_INITIAL; } void Script::set_compilation_state(CompilationState state) { set_flags(BooleanBit::set(flags(), kCompilationStateBit, state == COMPILATION_STATE_COMPILED)); } ScriptOriginOptions Script::origin_options() { return ScriptOriginOptions((flags() & kOriginOptionsMask) >> kOriginOptionsShift); } void Script::set_origin_options(ScriptOriginOptions origin_options) { DCHECK(!(origin_options.Flags() & ~((1 << kOriginOptionsSize) - 1))); set_flags((flags() & ~kOriginOptionsMask) | (origin_options.Flags() << kOriginOptionsShift)); } ACCESSORS(DebugInfo, shared, SharedFunctionInfo, kSharedFunctionInfoIndex) ACCESSORS(DebugInfo, code, Code, kCodeIndex) ACCESSORS(DebugInfo, break_points, FixedArray, kBreakPointsStateIndex) SMI_ACCESSORS(BreakPointInfo, code_position, kCodePositionIndex) SMI_ACCESSORS(BreakPointInfo, source_position, kSourcePositionIndex) SMI_ACCESSORS(BreakPointInfo, statement_position, kStatementPositionIndex) ACCESSORS(BreakPointInfo, break_point_objects, Object, kBreakPointObjectsIndex) ACCESSORS(SharedFunctionInfo, name, Object, kNameOffset) ACCESSORS(SharedFunctionInfo, optimized_code_map, Object, kOptimizedCodeMapOffset) ACCESSORS(SharedFunctionInfo, construct_stub, Code, kConstructStubOffset) ACCESSORS(SharedFunctionInfo, feedback_vector, TypeFeedbackVector, kFeedbackVectorOffset) #if TRACE_MAPS SMI_ACCESSORS(SharedFunctionInfo, unique_id, kUniqueIdOffset) #endif ACCESSORS(SharedFunctionInfo, instance_class_name, Object, kInstanceClassNameOffset) ACCESSORS(SharedFunctionInfo, function_data, Object, kFunctionDataOffset) ACCESSORS(SharedFunctionInfo, script, Object, kScriptOffset) ACCESSORS(SharedFunctionInfo, debug_info, Object, kDebugInfoOffset) ACCESSORS(SharedFunctionInfo, inferred_name, String, kInferredNameOffset) SMI_ACCESSORS(FunctionTemplateInfo, length, kLengthOffset) BOOL_ACCESSORS(FunctionTemplateInfo, flag, hidden_prototype, kHiddenPrototypeBit) BOOL_ACCESSORS(FunctionTemplateInfo, flag, undetectable, kUndetectableBit) BOOL_ACCESSORS(FunctionTemplateInfo, flag, needs_access_check, kNeedsAccessCheckBit) BOOL_ACCESSORS(FunctionTemplateInfo, flag, read_only_prototype, kReadOnlyPrototypeBit) BOOL_ACCESSORS(FunctionTemplateInfo, flag, remove_prototype, kRemovePrototypeBit) BOOL_ACCESSORS(FunctionTemplateInfo, flag, do_not_cache, kDoNotCacheBit) BOOL_ACCESSORS(FunctionTemplateInfo, flag, instantiated, kInstantiatedBit) BOOL_ACCESSORS(FunctionTemplateInfo, flag, accept_any_receiver, kAcceptAnyReceiver) BOOL_ACCESSORS(SharedFunctionInfo, start_position_and_type, is_expression, kIsExpressionBit) BOOL_ACCESSORS(SharedFunctionInfo, start_position_and_type, is_toplevel, kIsTopLevelBit) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, allows_lazy_compilation, kAllowLazyCompilation) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, allows_lazy_compilation_without_context, kAllowLazyCompilationWithoutContext) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, uses_arguments, kUsesArguments) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, has_duplicate_parameters, kHasDuplicateParameters) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, asm_function, kIsAsmFunction) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, deserialized, kDeserialized) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, never_compiled, kNeverCompiled) #if V8_HOST_ARCH_32_BIT SMI_ACCESSORS(SharedFunctionInfo, length, kLengthOffset) SMI_ACCESSORS(SharedFunctionInfo, internal_formal_parameter_count, kFormalParameterCountOffset) SMI_ACCESSORS(SharedFunctionInfo, expected_nof_properties, kExpectedNofPropertiesOffset) SMI_ACCESSORS(SharedFunctionInfo, num_literals, kNumLiteralsOffset) SMI_ACCESSORS(SharedFunctionInfo, start_position_and_type, kStartPositionAndTypeOffset) SMI_ACCESSORS(SharedFunctionInfo, end_position, kEndPositionOffset) SMI_ACCESSORS(SharedFunctionInfo, function_token_position, kFunctionTokenPositionOffset) SMI_ACCESSORS(SharedFunctionInfo, compiler_hints, kCompilerHintsOffset) SMI_ACCESSORS(SharedFunctionInfo, opt_count_and_bailout_reason, kOptCountAndBailoutReasonOffset) SMI_ACCESSORS(SharedFunctionInfo, counters, kCountersOffset) SMI_ACCESSORS(SharedFunctionInfo, ast_node_count, kAstNodeCountOffset) SMI_ACCESSORS(SharedFunctionInfo, profiler_ticks, kProfilerTicksOffset) #else #if V8_TARGET_LITTLE_ENDIAN #define PSEUDO_SMI_LO_ALIGN 0 #define PSEUDO_SMI_HI_ALIGN kIntSize #else #define PSEUDO_SMI_LO_ALIGN kIntSize #define PSEUDO_SMI_HI_ALIGN 0 #endif #define PSEUDO_SMI_ACCESSORS_LO(holder, name, offset) \ STATIC_ASSERT(holder::offset % kPointerSize == PSEUDO_SMI_LO_ALIGN); \ int holder::name() const { \ int value = READ_INT_FIELD(this, offset); \ DCHECK(kHeapObjectTag == 1); \ DCHECK((value & kHeapObjectTag) == 0); \ return value >> 1; \ } \ void holder::set_##name(int value) { \ DCHECK(kHeapObjectTag == 1); \ DCHECK((value & 0xC0000000) == 0xC0000000 || (value & 0xC0000000) == 0x0); \ WRITE_INT_FIELD(this, offset, (value << 1) & ~kHeapObjectTag); \ } #define PSEUDO_SMI_ACCESSORS_HI(holder, name, offset) \ STATIC_ASSERT(holder::offset % kPointerSize == PSEUDO_SMI_HI_ALIGN); \ INT_ACCESSORS(holder, name, offset) PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo, length, kLengthOffset) PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo, internal_formal_parameter_count, kFormalParameterCountOffset) PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo, expected_nof_properties, kExpectedNofPropertiesOffset) PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo, num_literals, kNumLiteralsOffset) PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo, end_position, kEndPositionOffset) PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo, start_position_and_type, kStartPositionAndTypeOffset) PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo, function_token_position, kFunctionTokenPositionOffset) PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo, compiler_hints, kCompilerHintsOffset) PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo, opt_count_and_bailout_reason, kOptCountAndBailoutReasonOffset) PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo, counters, kCountersOffset) PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo, ast_node_count, kAstNodeCountOffset) PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo, profiler_ticks, kProfilerTicksOffset) #endif BOOL_GETTER(SharedFunctionInfo, compiler_hints, optimization_disabled, kOptimizationDisabled) void SharedFunctionInfo::set_optimization_disabled(bool disable) { set_compiler_hints(BooleanBit::set(compiler_hints(), kOptimizationDisabled, disable)); } LanguageMode SharedFunctionInfo::language_mode() { STATIC_ASSERT(LANGUAGE_END == 3); return construct_language_mode( BooleanBit::get(compiler_hints(), kStrictModeFunction), BooleanBit::get(compiler_hints(), kStrongModeFunction)); } void SharedFunctionInfo::set_language_mode(LanguageMode language_mode) { STATIC_ASSERT(LANGUAGE_END == 3); // We only allow language mode transitions that set the same language mode // again or go up in the chain: DCHECK(is_sloppy(this->language_mode()) || is_strict(language_mode)); int hints = compiler_hints(); hints = BooleanBit::set(hints, kStrictModeFunction, is_strict(language_mode)); hints = BooleanBit::set(hints, kStrongModeFunction, is_strong(language_mode)); set_compiler_hints(hints); } FunctionKind SharedFunctionInfo::kind() { return FunctionKindBits::decode(compiler_hints()); } void SharedFunctionInfo::set_kind(FunctionKind kind) { DCHECK(IsValidFunctionKind(kind)); int hints = compiler_hints(); hints = FunctionKindBits::update(hints, kind); set_compiler_hints(hints); } BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, needs_home_object, kNeedsHomeObject) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, native, kNative) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, force_inline, kForceInline) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, name_should_print_as_anonymous, kNameShouldPrintAsAnonymous) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, bound, kBoundFunction) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, is_anonymous, kIsAnonymous) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, is_function, kIsFunction) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, dont_crankshaft, kDontCrankshaft) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, dont_flush, kDontFlush) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, is_arrow, kIsArrow) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, is_generator, kIsGenerator) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, is_concise_method, kIsConciseMethod) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, is_accessor_function, kIsAccessorFunction) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, is_default_constructor, kIsDefaultConstructor) ACCESSORS(CodeCache, default_cache, FixedArray, kDefaultCacheOffset) ACCESSORS(CodeCache, normal_type_cache, Object, kNormalTypeCacheOffset) ACCESSORS(PolymorphicCodeCache, cache, Object, kCacheOffset) bool Script::HasValidSource() { Object* src = this->source(); if (!src->IsString()) return true; String* src_str = String::cast(src); if (!StringShape(src_str).IsExternal()) return true; if (src_str->IsOneByteRepresentation()) { return ExternalOneByteString::cast(src)->resource() != NULL; } else if (src_str->IsTwoByteRepresentation()) { return ExternalTwoByteString::cast(src)->resource() != NULL; } return true; } void SharedFunctionInfo::DontAdaptArguments() { DCHECK(code()->kind() == Code::BUILTIN); set_internal_formal_parameter_count(kDontAdaptArgumentsSentinel); } int SharedFunctionInfo::start_position() const { return start_position_and_type() >> kStartPositionShift; } void SharedFunctionInfo::set_start_position(int start_position) { set_start_position_and_type((start_position << kStartPositionShift) | (start_position_and_type() & ~kStartPositionMask)); } Code* SharedFunctionInfo::code() const { return Code::cast(READ_FIELD(this, kCodeOffset)); } void SharedFunctionInfo::set_code(Code* value, WriteBarrierMode mode) { DCHECK(value->kind() != Code::OPTIMIZED_FUNCTION); WRITE_FIELD(this, kCodeOffset, value); CONDITIONAL_WRITE_BARRIER(value->GetHeap(), this, kCodeOffset, value, mode); } void SharedFunctionInfo::ReplaceCode(Code* value) { // If the GC metadata field is already used then the function was // enqueued as a code flushing candidate and we remove it now. if (code()->gc_metadata() != NULL) { CodeFlusher* flusher = GetHeap()->mark_compact_collector()->code_flusher(); flusher->EvictCandidate(this); } DCHECK(code()->gc_metadata() == NULL && value->gc_metadata() == NULL); #ifdef DEBUG Code::VerifyRecompiledCode(code(), value); #endif // DEBUG set_code(value); if (is_compiled()) set_never_compiled(false); } ScopeInfo* SharedFunctionInfo::scope_info() const { return reinterpret_cast(READ_FIELD(this, kScopeInfoOffset)); } void SharedFunctionInfo::set_scope_info(ScopeInfo* value, WriteBarrierMode mode) { WRITE_FIELD(this, kScopeInfoOffset, reinterpret_cast(value)); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kScopeInfoOffset, reinterpret_cast(value), mode); } bool SharedFunctionInfo::is_compiled() { Builtins* builtins = GetIsolate()->builtins(); DCHECK(code() != builtins->builtin(Builtins::kCompileOptimizedConcurrent)); DCHECK(code() != builtins->builtin(Builtins::kCompileOptimized)); return code() != builtins->builtin(Builtins::kCompileLazy); } bool SharedFunctionInfo::has_simple_parameters() { return scope_info()->HasSimpleParameters(); } bool SharedFunctionInfo::HasDebugInfo() { bool has_debug_info = debug_info()->IsStruct(); DCHECK(!has_debug_info || HasDebugCode()); return has_debug_info; } DebugInfo* SharedFunctionInfo::GetDebugInfo() { DCHECK(HasDebugInfo()); return DebugInfo::cast(debug_info()); } bool SharedFunctionInfo::HasDebugCode() { return code()->kind() == Code::FUNCTION && code()->has_debug_break_slots(); } bool SharedFunctionInfo::IsApiFunction() { return function_data()->IsFunctionTemplateInfo(); } FunctionTemplateInfo* SharedFunctionInfo::get_api_func_data() { DCHECK(IsApiFunction()); return FunctionTemplateInfo::cast(function_data()); } bool SharedFunctionInfo::HasBuiltinFunctionId() { return function_data()->IsSmi(); } BuiltinFunctionId SharedFunctionInfo::builtin_function_id() { DCHECK(HasBuiltinFunctionId()); return static_cast(Smi::cast(function_data())->value()); } bool SharedFunctionInfo::HasBytecodeArray() { return function_data()->IsBytecodeArray(); } BytecodeArray* SharedFunctionInfo::bytecode_array() { DCHECK(HasBytecodeArray()); return BytecodeArray::cast(function_data()); } int SharedFunctionInfo::ic_age() { return ICAgeBits::decode(counters()); } void SharedFunctionInfo::set_ic_age(int ic_age) { set_counters(ICAgeBits::update(counters(), ic_age)); } int SharedFunctionInfo::deopt_count() { return DeoptCountBits::decode(counters()); } void SharedFunctionInfo::set_deopt_count(int deopt_count) { set_counters(DeoptCountBits::update(counters(), deopt_count)); } void SharedFunctionInfo::increment_deopt_count() { int value = counters(); int deopt_count = DeoptCountBits::decode(value); deopt_count = (deopt_count + 1) & DeoptCountBits::kMax; set_counters(DeoptCountBits::update(value, deopt_count)); } int SharedFunctionInfo::opt_reenable_tries() { return OptReenableTriesBits::decode(counters()); } void SharedFunctionInfo::set_opt_reenable_tries(int tries) { set_counters(OptReenableTriesBits::update(counters(), tries)); } int SharedFunctionInfo::opt_count() { return OptCountBits::decode(opt_count_and_bailout_reason()); } void SharedFunctionInfo::set_opt_count(int opt_count) { set_opt_count_and_bailout_reason( OptCountBits::update(opt_count_and_bailout_reason(), opt_count)); } BailoutReason SharedFunctionInfo::disable_optimization_reason() { return static_cast( DisabledOptimizationReasonBits::decode(opt_count_and_bailout_reason())); } bool SharedFunctionInfo::has_deoptimization_support() { Code* code = this->code(); return code->kind() == Code::FUNCTION && code->has_deoptimization_support(); } void SharedFunctionInfo::TryReenableOptimization() { int tries = opt_reenable_tries(); set_opt_reenable_tries((tries + 1) & OptReenableTriesBits::kMax); // We reenable optimization whenever the number of tries is a large // enough power of 2. if (tries >= 16 && (((tries - 1) & tries) == 0)) { set_optimization_disabled(false); set_opt_count(0); set_deopt_count(0); } } void SharedFunctionInfo::set_disable_optimization_reason(BailoutReason reason) { set_opt_count_and_bailout_reason(DisabledOptimizationReasonBits::update( opt_count_and_bailout_reason(), reason)); } bool SharedFunctionInfo::IsBuiltin() { Object* script_obj = script(); if (script_obj->IsUndefined()) return true; Script* script = Script::cast(script_obj); Script::Type type = static_cast(script->type()); return type != Script::TYPE_NORMAL; } bool SharedFunctionInfo::IsSubjectToDebugging() { return !IsBuiltin(); } bool JSFunction::IsBuiltin() { return shared()->IsBuiltin(); } bool JSFunction::IsSubjectToDebugging() { return shared()->IsSubjectToDebugging(); } bool JSFunction::NeedsArgumentsAdaption() { return shared()->internal_formal_parameter_count() != SharedFunctionInfo::kDontAdaptArgumentsSentinel; } bool JSFunction::IsOptimized() { return code()->kind() == Code::OPTIMIZED_FUNCTION; } bool JSFunction::IsMarkedForOptimization() { return code() == GetIsolate()->builtins()->builtin( Builtins::kCompileOptimized); } bool JSFunction::IsMarkedForConcurrentOptimization() { return code() == GetIsolate()->builtins()->builtin( Builtins::kCompileOptimizedConcurrent); } bool JSFunction::IsInOptimizationQueue() { return code() == GetIsolate()->builtins()->builtin( Builtins::kInOptimizationQueue); } bool JSFunction::IsInobjectSlackTrackingInProgress() { return has_initial_map() && initial_map()->counter() >= Map::kSlackTrackingCounterEnd; } Code* JSFunction::code() { return Code::cast( Code::GetObjectFromEntryAddress(FIELD_ADDR(this, kCodeEntryOffset))); } void JSFunction::set_code(Code* value) { DCHECK(!GetHeap()->InNewSpace(value)); Address entry = value->entry(); WRITE_INTPTR_FIELD(this, kCodeEntryOffset, reinterpret_cast(entry)); GetHeap()->incremental_marking()->RecordWriteOfCodeEntry( this, HeapObject::RawField(this, kCodeEntryOffset), value); } void JSFunction::set_code_no_write_barrier(Code* value) { DCHECK(!GetHeap()->InNewSpace(value)); Address entry = value->entry(); WRITE_INTPTR_FIELD(this, kCodeEntryOffset, reinterpret_cast(entry)); } void JSFunction::ReplaceCode(Code* code) { bool was_optimized = IsOptimized(); bool is_optimized = code->kind() == Code::OPTIMIZED_FUNCTION; if (was_optimized && is_optimized) { shared()->EvictFromOptimizedCodeMap(this->code(), "Replacing with another optimized code"); } set_code(code); // Add/remove the function from the list of optimized functions for this // context based on the state change. if (!was_optimized && is_optimized) { context()->native_context()->AddOptimizedFunction(this); } if (was_optimized && !is_optimized) { // TODO(titzer): linear in the number of optimized functions; fix! context()->native_context()->RemoveOptimizedFunction(this); } } Context* JSFunction::context() { return Context::cast(READ_FIELD(this, kContextOffset)); } JSObject* JSFunction::global_proxy() { return context()->global_proxy(); } void JSFunction::set_context(Object* value) { DCHECK(value->IsUndefined() || value->IsContext()); WRITE_FIELD(this, kContextOffset, value); WRITE_BARRIER(GetHeap(), this, kContextOffset, value); } ACCESSORS(JSFunction, prototype_or_initial_map, Object, kPrototypeOrInitialMapOffset) Map* JSFunction::initial_map() { return Map::cast(prototype_or_initial_map()); } bool JSFunction::has_initial_map() { return prototype_or_initial_map()->IsMap(); } bool JSFunction::has_instance_prototype() { return has_initial_map() || !prototype_or_initial_map()->IsTheHole(); } bool JSFunction::has_prototype() { return map()->has_non_instance_prototype() || has_instance_prototype(); } Object* JSFunction::instance_prototype() { DCHECK(has_instance_prototype()); if (has_initial_map()) return initial_map()->prototype(); // When there is no initial map and the prototype is a JSObject, the // initial map field is used for the prototype field. return prototype_or_initial_map(); } Object* JSFunction::prototype() { DCHECK(has_prototype()); // If the function's prototype property has been set to a non-JSObject // value, that value is stored in the constructor field of the map. if (map()->has_non_instance_prototype()) { Object* prototype = map()->GetConstructor(); // The map must have a prototype in that field, not a back pointer. DCHECK(!prototype->IsMap()); return prototype; } return instance_prototype(); } bool JSFunction::is_compiled() { Builtins* builtins = GetIsolate()->builtins(); return code() != builtins->builtin(Builtins::kCompileLazy) && code() != builtins->builtin(Builtins::kCompileOptimized) && code() != builtins->builtin(Builtins::kCompileOptimizedConcurrent); } bool JSFunction::has_simple_parameters() { return shared()->has_simple_parameters(); } LiteralsArray* JSFunction::literals() { DCHECK(!shared()->bound()); return LiteralsArray::cast(literals_or_bindings()); } void JSFunction::set_literals(LiteralsArray* literals) { DCHECK(!shared()->bound()); set_literals_or_bindings(literals); } BindingsArray* JSFunction::function_bindings() { DCHECK(shared()->bound()); return BindingsArray::cast(literals_or_bindings()); } void JSFunction::set_function_bindings(BindingsArray* bindings) { DCHECK(shared()->bound()); // Bound function literal may be initialized to the empty fixed array // before the bindings are set. DCHECK(bindings == GetHeap()->empty_fixed_array() || bindings->map() == GetHeap()->fixed_array_map()); set_literals_or_bindings(bindings); } int JSFunction::NumberOfLiterals() { DCHECK(!shared()->bound()); return literals()->length(); } ACCESSORS(JSProxy, handler, Object, kHandlerOffset) ACCESSORS(JSProxy, hash, Object, kHashOffset) ACCESSORS(JSFunctionProxy, call_trap, JSReceiver, kCallTrapOffset) ACCESSORS(JSFunctionProxy, construct_trap, Object, kConstructTrapOffset) void JSProxy::InitializeBody(int object_size, Object* value) { DCHECK(!value->IsHeapObject() || !GetHeap()->InNewSpace(value)); for (int offset = kHeaderSize; offset < object_size; offset += kPointerSize) { WRITE_FIELD(this, offset, value); } } ACCESSORS(JSCollection, table, Object, kTableOffset) #define ORDERED_HASH_TABLE_ITERATOR_ACCESSORS(name, type, offset) \ template \ type* OrderedHashTableIterator::name() const { \ return type::cast(READ_FIELD(this, offset)); \ } \ template \ void OrderedHashTableIterator::set_##name( \ type* value, WriteBarrierMode mode) { \ WRITE_FIELD(this, offset, value); \ CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, value, mode); \ } ORDERED_HASH_TABLE_ITERATOR_ACCESSORS(table, Object, kTableOffset) ORDERED_HASH_TABLE_ITERATOR_ACCESSORS(index, Object, kIndexOffset) ORDERED_HASH_TABLE_ITERATOR_ACCESSORS(kind, Object, kKindOffset) #undef ORDERED_HASH_TABLE_ITERATOR_ACCESSORS ACCESSORS(JSWeakCollection, table, Object, kTableOffset) ACCESSORS(JSWeakCollection, next, Object, kNextOffset) Address Foreign::foreign_address() { return AddressFrom
(READ_INTPTR_FIELD(this, kForeignAddressOffset)); } void Foreign::set_foreign_address(Address value) { WRITE_INTPTR_FIELD(this, kForeignAddressOffset, OffsetFrom(value)); } ACCESSORS(JSGeneratorObject, function, JSFunction, kFunctionOffset) ACCESSORS(JSGeneratorObject, context, Context, kContextOffset) ACCESSORS(JSGeneratorObject, receiver, Object, kReceiverOffset) SMI_ACCESSORS(JSGeneratorObject, continuation, kContinuationOffset) ACCESSORS(JSGeneratorObject, operand_stack, FixedArray, kOperandStackOffset) bool JSGeneratorObject::is_suspended() { DCHECK_LT(kGeneratorExecuting, kGeneratorClosed); DCHECK_EQ(kGeneratorClosed, 0); return continuation() > 0; } bool JSGeneratorObject::is_closed() { return continuation() == kGeneratorClosed; } bool JSGeneratorObject::is_executing() { return continuation() == kGeneratorExecuting; } ACCESSORS(JSModule, context, Object, kContextOffset) ACCESSORS(JSModule, scope_info, ScopeInfo, kScopeInfoOffset) ACCESSORS(JSValue, value, Object, kValueOffset) HeapNumber* HeapNumber::cast(Object* object) { SLOW_DCHECK(object->IsHeapNumber() || object->IsMutableHeapNumber()); return reinterpret_cast(object); } const HeapNumber* HeapNumber::cast(const Object* object) { SLOW_DCHECK(object->IsHeapNumber() || object->IsMutableHeapNumber()); return reinterpret_cast(object); } ACCESSORS(JSDate, value, Object, kValueOffset) ACCESSORS(JSDate, cache_stamp, Object, kCacheStampOffset) ACCESSORS(JSDate, year, Object, kYearOffset) ACCESSORS(JSDate, month, Object, kMonthOffset) ACCESSORS(JSDate, day, Object, kDayOffset) ACCESSORS(JSDate, weekday, Object, kWeekdayOffset) ACCESSORS(JSDate, hour, Object, kHourOffset) ACCESSORS(JSDate, min, Object, kMinOffset) ACCESSORS(JSDate, sec, Object, kSecOffset) SMI_ACCESSORS(JSMessageObject, type, kTypeOffset) ACCESSORS(JSMessageObject, argument, Object, kArgumentsOffset) ACCESSORS(JSMessageObject, script, Object, kScriptOffset) ACCESSORS(JSMessageObject, stack_frames, Object, kStackFramesOffset) SMI_ACCESSORS(JSMessageObject, start_position, kStartPositionOffset) SMI_ACCESSORS(JSMessageObject, end_position, kEndPositionOffset) INT_ACCESSORS(Code, instruction_size, kInstructionSizeOffset) INT_ACCESSORS(Code, prologue_offset, kPrologueOffset) INT_ACCESSORS(Code, constant_pool_offset, kConstantPoolOffset) ACCESSORS(Code, relocation_info, ByteArray, kRelocationInfoOffset) ACCESSORS(Code, handler_table, FixedArray, kHandlerTableOffset) ACCESSORS(Code, deoptimization_data, FixedArray, kDeoptimizationDataOffset) ACCESSORS(Code, raw_type_feedback_info, Object, kTypeFeedbackInfoOffset) ACCESSORS(Code, next_code_link, Object, kNextCodeLinkOffset) void Code::WipeOutHeader() { WRITE_FIELD(this, kRelocationInfoOffset, NULL); WRITE_FIELD(this, kHandlerTableOffset, NULL); WRITE_FIELD(this, kDeoptimizationDataOffset, NULL); // Do not wipe out major/minor keys on a code stub or IC if (!READ_FIELD(this, kTypeFeedbackInfoOffset)->IsSmi()) { WRITE_FIELD(this, kTypeFeedbackInfoOffset, NULL); } WRITE_FIELD(this, kNextCodeLinkOffset, NULL); WRITE_FIELD(this, kGCMetadataOffset, NULL); } Object* Code::type_feedback_info() { DCHECK(kind() == FUNCTION); return raw_type_feedback_info(); } void Code::set_type_feedback_info(Object* value, WriteBarrierMode mode) { DCHECK(kind() == FUNCTION); set_raw_type_feedback_info(value, mode); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kTypeFeedbackInfoOffset, value, mode); } uint32_t Code::stub_key() { DCHECK(IsCodeStubOrIC()); Smi* smi_key = Smi::cast(raw_type_feedback_info()); return static_cast(smi_key->value()); } void Code::set_stub_key(uint32_t key) { DCHECK(IsCodeStubOrIC()); set_raw_type_feedback_info(Smi::FromInt(key)); } ACCESSORS(Code, gc_metadata, Object, kGCMetadataOffset) INT_ACCESSORS(Code, ic_age, kICAgeOffset) byte* Code::instruction_start() { return FIELD_ADDR(this, kHeaderSize); } byte* Code::instruction_end() { return instruction_start() + instruction_size(); } int Code::body_size() { return RoundUp(instruction_size(), kObjectAlignment); } ByteArray* Code::unchecked_relocation_info() { return reinterpret_cast(READ_FIELD(this, kRelocationInfoOffset)); } byte* Code::relocation_start() { return unchecked_relocation_info()->GetDataStartAddress(); } int Code::relocation_size() { return unchecked_relocation_info()->length(); } byte* Code::entry() { return instruction_start(); } bool Code::contains(byte* inner_pointer) { return (address() <= inner_pointer) && (inner_pointer <= address() + Size()); } int Code::ExecutableSize() { // Check that the assumptions about the layout of the code object holds. DCHECK_EQ(static_cast(instruction_start() - address()), Code::kHeaderSize); return instruction_size() + Code::kHeaderSize; } int Code::CodeSize() { return SizeFor(body_size()); } ACCESSORS(JSArray, length, Object, kLengthOffset) void* JSArrayBuffer::backing_store() const { intptr_t ptr = READ_INTPTR_FIELD(this, kBackingStoreOffset); return reinterpret_cast(ptr); } void JSArrayBuffer::set_backing_store(void* value, WriteBarrierMode mode) { intptr_t ptr = reinterpret_cast(value); WRITE_INTPTR_FIELD(this, kBackingStoreOffset, ptr); } ACCESSORS(JSArrayBuffer, byte_length, Object, kByteLengthOffset) void JSArrayBuffer::set_bit_field(uint32_t bits) { if (kInt32Size != kPointerSize) { #if V8_TARGET_LITTLE_ENDIAN WRITE_UINT32_FIELD(this, kBitFieldSlot + kInt32Size, 0); #else WRITE_UINT32_FIELD(this, kBitFieldSlot, 0); #endif } WRITE_UINT32_FIELD(this, kBitFieldOffset, bits); } uint32_t JSArrayBuffer::bit_field() const { return READ_UINT32_FIELD(this, kBitFieldOffset); } bool JSArrayBuffer::is_external() { return IsExternal::decode(bit_field()); } void JSArrayBuffer::set_is_external(bool value) { set_bit_field(IsExternal::update(bit_field(), value)); } bool JSArrayBuffer::is_neuterable() { return IsNeuterable::decode(bit_field()); } void JSArrayBuffer::set_is_neuterable(bool value) { set_bit_field(IsNeuterable::update(bit_field(), value)); } bool JSArrayBuffer::was_neutered() { return WasNeutered::decode(bit_field()); } void JSArrayBuffer::set_was_neutered(bool value) { set_bit_field(WasNeutered::update(bit_field(), value)); } bool JSArrayBuffer::is_shared() { return IsShared::decode(bit_field()); } void JSArrayBuffer::set_is_shared(bool value) { set_bit_field(IsShared::update(bit_field(), value)); } // static template void JSArrayBuffer::JSArrayBufferIterateBody(Heap* heap, HeapObject* obj) { StaticVisitor::VisitPointers( heap, obj, HeapObject::RawField(obj, JSArrayBuffer::BodyDescriptor::kStartOffset), HeapObject::RawField(obj, JSArrayBuffer::kByteLengthOffset + kPointerSize)); StaticVisitor::VisitPointers( heap, obj, HeapObject::RawField(obj, JSArrayBuffer::kSize), HeapObject::RawField(obj, JSArrayBuffer::kSizeWithInternalFields)); } void JSArrayBuffer::JSArrayBufferIterateBody(HeapObject* obj, ObjectVisitor* v) { v->VisitPointers( HeapObject::RawField(obj, JSArrayBuffer::BodyDescriptor::kStartOffset), HeapObject::RawField(obj, JSArrayBuffer::kByteLengthOffset + kPointerSize)); v->VisitPointers( HeapObject::RawField(obj, JSArrayBuffer::kSize), HeapObject::RawField(obj, JSArrayBuffer::kSizeWithInternalFields)); } Object* JSArrayBufferView::byte_offset() const { if (WasNeutered()) return Smi::FromInt(0); return Object::cast(READ_FIELD(this, kByteOffsetOffset)); } void JSArrayBufferView::set_byte_offset(Object* value, WriteBarrierMode mode) { WRITE_FIELD(this, kByteOffsetOffset, value); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kByteOffsetOffset, value, mode); } Object* JSArrayBufferView::byte_length() const { if (WasNeutered()) return Smi::FromInt(0); return Object::cast(READ_FIELD(this, kByteLengthOffset)); } void JSArrayBufferView::set_byte_length(Object* value, WriteBarrierMode mode) { WRITE_FIELD(this, kByteLengthOffset, value); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kByteLengthOffset, value, mode); } ACCESSORS(JSArrayBufferView, buffer, Object, kBufferOffset) #ifdef VERIFY_HEAP ACCESSORS(JSArrayBufferView, raw_byte_offset, Object, kByteOffsetOffset) ACCESSORS(JSArrayBufferView, raw_byte_length, Object, kByteLengthOffset) #endif bool JSArrayBufferView::WasNeutered() const { return JSArrayBuffer::cast(buffer())->was_neutered(); } Object* JSTypedArray::length() const { if (WasNeutered()) return Smi::FromInt(0); return Object::cast(READ_FIELD(this, kLengthOffset)); } uint32_t JSTypedArray::length_value() const { if (WasNeutered()) return 0; uint32_t index = 0; CHECK(Object::cast(READ_FIELD(this, kLengthOffset))->ToArrayLength(&index)); return index; } void JSTypedArray::set_length(Object* value, WriteBarrierMode mode) { WRITE_FIELD(this, kLengthOffset, value); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kLengthOffset, value, mode); } #ifdef VERIFY_HEAP ACCESSORS(JSTypedArray, raw_length, Object, kLengthOffset) #endif ACCESSORS(JSRegExp, data, Object, kDataOffset) JSRegExp::Type JSRegExp::TypeTag() { Object* data = this->data(); if (data->IsUndefined()) return JSRegExp::NOT_COMPILED; Smi* smi = Smi::cast(FixedArray::cast(data)->get(kTagIndex)); return static_cast(smi->value()); } int JSRegExp::CaptureCount() { switch (TypeTag()) { case ATOM: return 0; case IRREGEXP: return Smi::cast(DataAt(kIrregexpCaptureCountIndex))->value(); default: UNREACHABLE(); return -1; } } JSRegExp::Flags JSRegExp::GetFlags() { DCHECK(this->data()->IsFixedArray()); Object* data = this->data(); Smi* smi = Smi::cast(FixedArray::cast(data)->get(kFlagsIndex)); return Flags(smi->value()); } String* JSRegExp::Pattern() { DCHECK(this->data()->IsFixedArray()); Object* data = this->data(); String* pattern = String::cast(FixedArray::cast(data)->get(kSourceIndex)); return pattern; } Object* JSRegExp::DataAt(int index) { DCHECK(TypeTag() != NOT_COMPILED); return FixedArray::cast(data())->get(index); } void JSRegExp::SetDataAt(int index, Object* value) { DCHECK(TypeTag() != NOT_COMPILED); DCHECK(index >= kDataIndex); // Only implementation data can be set this way. FixedArray::cast(data())->set(index, value); } ElementsKind JSObject::GetElementsKind() { ElementsKind kind = map()->elements_kind(); #if VERIFY_HEAP && DEBUG FixedArrayBase* fixed_array = reinterpret_cast(READ_FIELD(this, kElementsOffset)); // If a GC was caused while constructing this object, the elements // pointer may point to a one pointer filler map. if (ElementsAreSafeToExamine()) { Map* map = fixed_array->map(); DCHECK((IsFastSmiOrObjectElementsKind(kind) && (map == GetHeap()->fixed_array_map() || map == GetHeap()->fixed_cow_array_map())) || (IsFastDoubleElementsKind(kind) && (fixed_array->IsFixedDoubleArray() || fixed_array == GetHeap()->empty_fixed_array())) || (kind == DICTIONARY_ELEMENTS && fixed_array->IsFixedArray() && fixed_array->IsDictionary()) || (kind > DICTIONARY_ELEMENTS)); DCHECK(!IsSloppyArgumentsElements(kind) || (elements()->IsFixedArray() && elements()->length() >= 2)); } #endif return kind; } bool JSObject::HasFastObjectElements() { return IsFastObjectElementsKind(GetElementsKind()); } bool JSObject::HasFastSmiElements() { return IsFastSmiElementsKind(GetElementsKind()); } bool JSObject::HasFastSmiOrObjectElements() { return IsFastSmiOrObjectElementsKind(GetElementsKind()); } bool JSObject::HasFastDoubleElements() { return IsFastDoubleElementsKind(GetElementsKind()); } bool JSObject::HasFastHoleyElements() { return IsFastHoleyElementsKind(GetElementsKind()); } bool JSObject::HasFastElements() { return IsFastElementsKind(GetElementsKind()); } bool JSObject::HasDictionaryElements() { return GetElementsKind() == DICTIONARY_ELEMENTS; } bool JSObject::HasFastArgumentsElements() { return GetElementsKind() == FAST_SLOPPY_ARGUMENTS_ELEMENTS; } bool JSObject::HasSlowArgumentsElements() { return GetElementsKind() == SLOW_SLOPPY_ARGUMENTS_ELEMENTS; } bool JSObject::HasSloppyArgumentsElements() { return IsSloppyArgumentsElements(GetElementsKind()); } bool JSObject::HasFixedTypedArrayElements() { HeapObject* array = elements(); DCHECK(array != NULL); return array->IsFixedTypedArrayBase(); } #define FIXED_TYPED_ELEMENTS_CHECK(Type, type, TYPE, ctype, size) \ bool JSObject::HasFixed##Type##Elements() { \ HeapObject* array = elements(); \ DCHECK(array != NULL); \ if (!array->IsHeapObject()) \ return false; \ return array->map()->instance_type() == FIXED_##TYPE##_ARRAY_TYPE; \ } TYPED_ARRAYS(FIXED_TYPED_ELEMENTS_CHECK) #undef FIXED_TYPED_ELEMENTS_CHECK bool JSObject::HasNamedInterceptor() { return map()->has_named_interceptor(); } bool JSObject::HasIndexedInterceptor() { return map()->has_indexed_interceptor(); } NameDictionary* JSObject::property_dictionary() { DCHECK(!HasFastProperties()); DCHECK(!IsGlobalObject()); return NameDictionary::cast(properties()); } GlobalDictionary* JSObject::global_dictionary() { DCHECK(!HasFastProperties()); DCHECK(IsGlobalObject()); return GlobalDictionary::cast(properties()); } SeededNumberDictionary* JSObject::element_dictionary() { DCHECK(HasDictionaryElements()); return SeededNumberDictionary::cast(elements()); } bool Name::IsHashFieldComputed(uint32_t field) { return (field & kHashNotComputedMask) == 0; } bool Name::HasHashCode() { return IsHashFieldComputed(hash_field()); } uint32_t Name::Hash() { // Fast case: has hash code already been computed? uint32_t field = hash_field(); if (IsHashFieldComputed(field)) return field >> kHashShift; // Slow case: compute hash code and set it. Has to be a string. return String::cast(this)->ComputeAndSetHash(); } bool Name::IsPrivate() { return this->IsSymbol() && Symbol::cast(this)->is_private(); } StringHasher::StringHasher(int length, uint32_t seed) : length_(length), raw_running_hash_(seed), array_index_(0), is_array_index_(0 < length_ && length_ <= String::kMaxArrayIndexSize), is_first_char_(true) { DCHECK(FLAG_randomize_hashes || raw_running_hash_ == 0); } bool StringHasher::has_trivial_hash() { return length_ > String::kMaxHashCalcLength; } uint32_t StringHasher::AddCharacterCore(uint32_t running_hash, uint16_t c) { running_hash += c; running_hash += (running_hash << 10); running_hash ^= (running_hash >> 6); return running_hash; } uint32_t StringHasher::GetHashCore(uint32_t running_hash) { running_hash += (running_hash << 3); running_hash ^= (running_hash >> 11); running_hash += (running_hash << 15); if ((running_hash & String::kHashBitMask) == 0) { return kZeroHash; } return running_hash; } uint32_t StringHasher::ComputeRunningHash(uint32_t running_hash, const uc16* chars, int length) { DCHECK_NOT_NULL(chars); DCHECK(length >= 0); for (int i = 0; i < length; ++i) { running_hash = AddCharacterCore(running_hash, *chars++); } return running_hash; } uint32_t StringHasher::ComputeRunningHashOneByte(uint32_t running_hash, const char* chars, int length) { DCHECK_NOT_NULL(chars); DCHECK(length >= 0); for (int i = 0; i < length; ++i) { uint16_t c = static_cast(*chars++); running_hash = AddCharacterCore(running_hash, c); } return running_hash; } void StringHasher::AddCharacter(uint16_t c) { // Use the Jenkins one-at-a-time hash function to update the hash // for the given character. raw_running_hash_ = AddCharacterCore(raw_running_hash_, c); } bool StringHasher::UpdateIndex(uint16_t c) { DCHECK(is_array_index_); if (c < '0' || c > '9') { is_array_index_ = false; return false; } int d = c - '0'; if (is_first_char_) { is_first_char_ = false; if (c == '0' && length_ > 1) { is_array_index_ = false; return false; } } if (array_index_ > 429496729U - ((d + 3) >> 3)) { is_array_index_ = false; return false; } array_index_ = array_index_ * 10 + d; return true; } template inline void StringHasher::AddCharacters(const Char* chars, int length) { DCHECK(sizeof(Char) == 1 || sizeof(Char) == 2); int i = 0; if (is_array_index_) { for (; i < length; i++) { AddCharacter(chars[i]); if (!UpdateIndex(chars[i])) { i++; break; } } } for (; i < length; i++) { DCHECK(!is_array_index_); AddCharacter(chars[i]); } } template uint32_t StringHasher::HashSequentialString(const schar* chars, int length, uint32_t seed) { StringHasher hasher(length, seed); if (!hasher.has_trivial_hash()) hasher.AddCharacters(chars, length); return hasher.GetHashField(); } IteratingStringHasher::IteratingStringHasher(int len, uint32_t seed) : StringHasher(len, seed) {} uint32_t IteratingStringHasher::Hash(String* string, uint32_t seed) { IteratingStringHasher hasher(string->length(), seed); // Nothing to do. if (hasher.has_trivial_hash()) return hasher.GetHashField(); ConsString* cons_string = String::VisitFlat(&hasher, string); if (cons_string == nullptr) return hasher.GetHashField(); hasher.VisitConsString(cons_string); return hasher.GetHashField(); } void IteratingStringHasher::VisitOneByteString(const uint8_t* chars, int length) { AddCharacters(chars, length); } void IteratingStringHasher::VisitTwoByteString(const uint16_t* chars, int length) { AddCharacters(chars, length); } bool Name::AsArrayIndex(uint32_t* index) { return IsString() && String::cast(this)->AsArrayIndex(index); } bool String::AsArrayIndex(uint32_t* index) { uint32_t field = hash_field(); if (IsHashFieldComputed(field) && (field & kIsNotArrayIndexMask)) { return false; } return SlowAsArrayIndex(index); } void String::SetForwardedInternalizedString(String* canonical) { DCHECK(IsInternalizedString()); DCHECK(HasHashCode()); if (canonical == this) return; // No need to forward. DCHECK(SlowEquals(canonical)); DCHECK(canonical->IsInternalizedString()); DCHECK(canonical->HasHashCode()); WRITE_FIELD(this, kHashFieldSlot, canonical); // Setting the hash field to a tagged value sets the LSB, causing the hash // code to be interpreted as uninitialized. We use this fact to recognize // that we have a forwarded string. DCHECK(!HasHashCode()); } String* String::GetForwardedInternalizedString() { DCHECK(IsInternalizedString()); if (HasHashCode()) return this; String* canonical = String::cast(READ_FIELD(this, kHashFieldSlot)); DCHECK(canonical->IsInternalizedString()); DCHECK(SlowEquals(canonical)); DCHECK(canonical->HasHashCode()); return canonical; } // static Maybe Object::GreaterThan(Handle x, Handle y, Strength strength) { Maybe result = Compare(x, y, strength); if (result.IsJust()) { switch (result.FromJust()) { case ComparisonResult::kGreaterThan: return Just(true); case ComparisonResult::kLessThan: case ComparisonResult::kEqual: case ComparisonResult::kUndefined: return Just(false); } } return Nothing(); } // static Maybe Object::GreaterThanOrEqual(Handle x, Handle y, Strength strength) { Maybe result = Compare(x, y, strength); if (result.IsJust()) { switch (result.FromJust()) { case ComparisonResult::kEqual: case ComparisonResult::kGreaterThan: return Just(true); case ComparisonResult::kLessThan: case ComparisonResult::kUndefined: return Just(false); } } return Nothing(); } // static Maybe Object::LessThan(Handle x, Handle y, Strength strength) { Maybe result = Compare(x, y, strength); if (result.IsJust()) { switch (result.FromJust()) { case ComparisonResult::kLessThan: return Just(true); case ComparisonResult::kEqual: case ComparisonResult::kGreaterThan: case ComparisonResult::kUndefined: return Just(false); } } return Nothing(); } // static Maybe Object::LessThanOrEqual(Handle x, Handle y, Strength strength) { Maybe result = Compare(x, y, strength); if (result.IsJust()) { switch (result.FromJust()) { case ComparisonResult::kEqual: case ComparisonResult::kLessThan: return Just(true); case ComparisonResult::kGreaterThan: case ComparisonResult::kUndefined: return Just(false); } } return Nothing(); } MaybeHandle Object::GetPropertyOrElement(Handle object, Handle name, LanguageMode language_mode) { LookupIterator it = LookupIterator::PropertyOrElement(name->GetIsolate(), object, name); return GetProperty(&it, language_mode); } MaybeHandle Object::GetPropertyOrElement(Handle holder, Handle name, Handle receiver, LanguageMode language_mode) { LookupIterator it = LookupIterator::PropertyOrElement( name->GetIsolate(), receiver, name, holder); return GetProperty(&it, language_mode); } Maybe JSReceiver::HasProperty(Handle object, Handle name) { // Call the "has" trap on proxies. if (object->IsJSProxy()) { Handle proxy = Handle::cast(object); return JSProxy::HasPropertyWithHandler(proxy, name); } Maybe result = GetPropertyAttributes(object, name); return result.IsJust() ? Just(result.FromJust() != ABSENT) : Nothing(); } Maybe JSReceiver::HasOwnProperty(Handle object, Handle name) { // Call the "has" trap on proxies. if (object->IsJSProxy()) { Handle proxy = Handle::cast(object); return JSProxy::HasPropertyWithHandler(proxy, name); } Maybe result = GetOwnPropertyAttributes(object, name); return result.IsJust() ? Just(result.FromJust() != ABSENT) : Nothing(); } Maybe JSReceiver::GetPropertyAttributes( Handle object, Handle name) { LookupIterator it = LookupIterator::PropertyOrElement(name->GetIsolate(), object, name); return GetPropertyAttributes(&it); } Maybe JSReceiver::GetOwnPropertyAttributes( Handle object, Handle name) { LookupIterator it = LookupIterator::PropertyOrElement( name->GetIsolate(), object, name, LookupIterator::HIDDEN); return GetPropertyAttributes(&it); } Maybe JSReceiver::HasElement(Handle object, uint32_t index) { // Call the "has" trap on proxies. if (object->IsJSProxy()) { Isolate* isolate = object->GetIsolate(); Handle name = isolate->factory()->Uint32ToString(index); Handle proxy = Handle::cast(object); return JSProxy::HasPropertyWithHandler(proxy, name); } Maybe result = GetElementAttributes(object, index); return result.IsJust() ? Just(result.FromJust() != ABSENT) : Nothing(); } Maybe JSReceiver::HasOwnElement(Handle object, uint32_t index) { // Call the "has" trap on proxies. if (object->IsJSProxy()) { Isolate* isolate = object->GetIsolate(); Handle name = isolate->factory()->Uint32ToString(index); Handle proxy = Handle::cast(object); return JSProxy::HasPropertyWithHandler(proxy, name); } Maybe result = GetOwnElementAttributes(object, index); return result.IsJust() ? Just(result.FromJust() != ABSENT) : Nothing(); } Maybe JSReceiver::GetElementAttributes( Handle object, uint32_t index) { Isolate* isolate = object->GetIsolate(); LookupIterator it(isolate, object, index); return GetPropertyAttributes(&it); } Maybe JSReceiver::GetOwnElementAttributes( Handle object, uint32_t index) { Isolate* isolate = object->GetIsolate(); LookupIterator it(isolate, object, index, LookupIterator::HIDDEN); return GetPropertyAttributes(&it); } bool JSGlobalObject::IsDetached() { return JSGlobalProxy::cast(global_proxy())->IsDetachedFrom(this); } bool JSGlobalProxy::IsDetachedFrom(GlobalObject* global) const { const PrototypeIterator iter(this->GetIsolate(), const_cast(this)); return iter.GetCurrent() != global; } Handle JSReceiver::GetOrCreateIdentityHash(Handle object) { return object->IsJSProxy() ? JSProxy::GetOrCreateIdentityHash(Handle::cast(object)) : JSObject::GetOrCreateIdentityHash(Handle::cast(object)); } Object* JSReceiver::GetIdentityHash() { return IsJSProxy() ? JSProxy::cast(this)->GetIdentityHash() : JSObject::cast(this)->GetIdentityHash(); } bool AccessorInfo::all_can_read() { return BooleanBit::get(flag(), kAllCanReadBit); } void AccessorInfo::set_all_can_read(bool value) { set_flag(BooleanBit::set(flag(), kAllCanReadBit, value)); } bool AccessorInfo::all_can_write() { return BooleanBit::get(flag(), kAllCanWriteBit); } void AccessorInfo::set_all_can_write(bool value) { set_flag(BooleanBit::set(flag(), kAllCanWriteBit, value)); } bool AccessorInfo::is_special_data_property() { return BooleanBit::get(flag(), kSpecialDataProperty); } void AccessorInfo::set_is_special_data_property(bool value) { set_flag(BooleanBit::set(flag(), kSpecialDataProperty, value)); } PropertyAttributes AccessorInfo::property_attributes() { return AttributesField::decode(static_cast(flag())); } void AccessorInfo::set_property_attributes(PropertyAttributes attributes) { set_flag(AttributesField::update(flag(), attributes)); } bool AccessorInfo::IsCompatibleReceiver(Object* receiver) { if (!HasExpectedReceiverType()) return true; if (!receiver->IsJSObject()) return false; return FunctionTemplateInfo::cast(expected_receiver_type()) ->IsTemplateFor(JSObject::cast(receiver)->map()); } bool AccessorInfo::HasExpectedReceiverType() { return expected_receiver_type()->IsFunctionTemplateInfo(); } Object* AccessorPair::get(AccessorComponent component) { return component == ACCESSOR_GETTER ? getter() : setter(); } void AccessorPair::set(AccessorComponent component, Object* value) { if (component == ACCESSOR_GETTER) { set_getter(value); } else { set_setter(value); } } void AccessorPair::SetComponents(Object* getter, Object* setter) { if (!getter->IsNull()) set_getter(getter); if (!setter->IsNull()) set_setter(setter); } bool AccessorPair::Equals(AccessorPair* pair) { return (this == pair) || pair->Equals(getter(), setter()); } bool AccessorPair::Equals(Object* getter_value, Object* setter_value) { return (getter() == getter_value) && (setter() == setter_value); } bool AccessorPair::ContainsAccessor() { return IsJSAccessor(getter()) || IsJSAccessor(setter()); } bool AccessorPair::IsJSAccessor(Object* obj) { return obj->IsCallable() || obj->IsUndefined(); } template void Dictionary::SetEntry(int entry, Handle key, Handle value) { this->SetEntry(entry, key, value, PropertyDetails(Smi::FromInt(0))); } template void Dictionary::SetEntry(int entry, Handle key, Handle value, PropertyDetails details) { Shape::SetEntry(static_cast(this), entry, key, value, details); } template template void BaseDictionaryShape::SetEntry(Dictionary* dict, int entry, Handle key, Handle value, PropertyDetails details) { STATIC_ASSERT(Dictionary::kEntrySize == 3); DCHECK(!key->IsName() || details.dictionary_index() > 0); int index = dict->EntryToIndex(entry); DisallowHeapAllocation no_gc; WriteBarrierMode mode = dict->GetWriteBarrierMode(no_gc); dict->set(index, *key, mode); dict->set(index + 1, *value, mode); dict->set(index + 2, details.AsSmi()); } template void GlobalDictionaryShape::SetEntry(Dictionary* dict, int entry, Handle key, Handle value, PropertyDetails details) { STATIC_ASSERT(Dictionary::kEntrySize == 2); DCHECK(!key->IsName() || details.dictionary_index() > 0); DCHECK(value->IsPropertyCell()); int index = dict->EntryToIndex(entry); DisallowHeapAllocation no_gc; WriteBarrierMode mode = dict->GetWriteBarrierMode(no_gc); dict->set(index, *key, mode); dict->set(index + 1, *value, mode); PropertyCell::cast(*value)->set_property_details(details); } bool NumberDictionaryShape::IsMatch(uint32_t key, Object* other) { DCHECK(other->IsNumber()); return key == static_cast(other->Number()); } uint32_t UnseededNumberDictionaryShape::Hash(uint32_t key) { return ComputeIntegerHash(key, 0); } uint32_t UnseededNumberDictionaryShape::HashForObject(uint32_t key, Object* other) { DCHECK(other->IsNumber()); return ComputeIntegerHash(static_cast(other->Number()), 0); } uint32_t SeededNumberDictionaryShape::SeededHash(uint32_t key, uint32_t seed) { return ComputeIntegerHash(key, seed); } uint32_t SeededNumberDictionaryShape::SeededHashForObject(uint32_t key, uint32_t seed, Object* other) { DCHECK(other->IsNumber()); return ComputeIntegerHash(static_cast(other->Number()), seed); } Handle NumberDictionaryShape::AsHandle(Isolate* isolate, uint32_t key) { return isolate->factory()->NewNumberFromUint(key); } bool NameDictionaryShape::IsMatch(Handle key, Object* other) { // We know that all entries in a hash table had their hash keys created. // Use that knowledge to have fast failure. if (key->Hash() != Name::cast(other)->Hash()) return false; return key->Equals(Name::cast(other)); } uint32_t NameDictionaryShape::Hash(Handle key) { return key->Hash(); } uint32_t NameDictionaryShape::HashForObject(Handle key, Object* other) { return Name::cast(other)->Hash(); } Handle NameDictionaryShape::AsHandle(Isolate* isolate, Handle key) { DCHECK(key->IsUniqueName()); return key; } Handle NameDictionary::DoGenerateNewEnumerationIndices( Handle dictionary) { return DerivedDictionary::GenerateNewEnumerationIndices(dictionary); } template PropertyDetails GlobalDictionaryShape::DetailsAt(Dictionary* dict, int entry) { DCHECK(entry >= 0); // Not found is -1, which is not caught by get(). Object* raw_value = dict->ValueAt(entry); DCHECK(raw_value->IsPropertyCell()); PropertyCell* cell = PropertyCell::cast(raw_value); return cell->property_details(); } template void GlobalDictionaryShape::DetailsAtPut(Dictionary* dict, int entry, PropertyDetails value) { DCHECK(entry >= 0); // Not found is -1, which is not caught by get(). Object* raw_value = dict->ValueAt(entry); DCHECK(raw_value->IsPropertyCell()); PropertyCell* cell = PropertyCell::cast(raw_value); cell->set_property_details(value); } template bool GlobalDictionaryShape::IsDeleted(Dictionary* dict, int entry) { DCHECK(dict->ValueAt(entry)->IsPropertyCell()); return PropertyCell::cast(dict->ValueAt(entry))->value()->IsTheHole(); } bool ObjectHashTableShape::IsMatch(Handle key, Object* other) { return key->SameValue(other); } uint32_t ObjectHashTableShape::Hash(Handle key) { return Smi::cast(key->GetHash())->value(); } uint32_t ObjectHashTableShape::HashForObject(Handle key, Object* other) { return Smi::cast(other->GetHash())->value(); } Handle ObjectHashTableShape::AsHandle(Isolate* isolate, Handle key) { return key; } Handle ObjectHashTable::Shrink( Handle table, Handle key) { return DerivedHashTable::Shrink(table, key); } Object* OrderedHashMap::ValueAt(int entry) { return get(EntryToIndex(entry) + kValueOffset); } template bool WeakHashTableShape::IsMatch(Handle key, Object* other) { if (other->IsWeakCell()) other = WeakCell::cast(other)->value(); return key->IsWeakCell() ? WeakCell::cast(*key)->value() == other : *key == other; } template uint32_t WeakHashTableShape::Hash(Handle key) { intptr_t hash = key->IsWeakCell() ? reinterpret_cast(WeakCell::cast(*key)->value()) : reinterpret_cast(*key); return (uint32_t)(hash & 0xFFFFFFFF); } template uint32_t WeakHashTableShape::HashForObject(Handle key, Object* other) { if (other->IsWeakCell()) other = WeakCell::cast(other)->value(); intptr_t hash = reinterpret_cast(other); return (uint32_t)(hash & 0xFFFFFFFF); } template Handle WeakHashTableShape::AsHandle(Isolate* isolate, Handle key) { return key; } bool ScopeInfo::IsAsmModule() { return AsmModuleField::decode(Flags()); } bool ScopeInfo::IsAsmFunction() { return AsmFunctionField::decode(Flags()); } bool ScopeInfo::HasSimpleParameters() { return HasSimpleParametersField::decode(Flags()); } #define SCOPE_INFO_FIELD_ACCESSORS(name) \ void ScopeInfo::Set##name(int value) { set(k##name, Smi::FromInt(value)); } \ int ScopeInfo::name() { \ if (length() > 0) { \ return Smi::cast(get(k##name))->value(); \ } else { \ return 0; \ } \ } FOR_EACH_SCOPE_INFO_NUMERIC_FIELD(SCOPE_INFO_FIELD_ACCESSORS) #undef SCOPE_INFO_FIELD_ACCESSORS void Map::ClearCodeCache(Heap* heap) { // No write barrier is needed since empty_fixed_array is not in new space. // Please note this function is used during marking: // - MarkCompactCollector::MarkUnmarkedObject // - IncrementalMarking::Step DCHECK(!heap->InNewSpace(heap->empty_fixed_array())); WRITE_FIELD(this, kCodeCacheOffset, heap->empty_fixed_array()); } int Map::SlackForArraySize(int old_size, int size_limit) { const int max_slack = size_limit - old_size; CHECK_LE(0, max_slack); if (old_size < 4) { DCHECK_LE(1, max_slack); return 1; } return Min(max_slack, old_size / 4); } void JSArray::set_length(Smi* length) { // Don't need a write barrier for a Smi. set_length(static_cast(length), SKIP_WRITE_BARRIER); } bool JSArray::SetLengthWouldNormalize(Heap* heap, uint32_t new_length) { // If the new array won't fit in a some non-trivial fraction of the max old // space size, then force it to go dictionary mode. uint32_t max_fast_array_size = static_cast((heap->MaxOldGenerationSize() / kDoubleSize) / 4); return new_length >= max_fast_array_size; } bool JSArray::AllowsSetLength() { bool result = elements()->IsFixedArray() || elements()->IsFixedDoubleArray(); DCHECK(result == !HasFixedTypedArrayElements()); return result; } void JSArray::SetContent(Handle array, Handle storage) { EnsureCanContainElements(array, storage, storage->length(), ALLOW_COPIED_DOUBLE_ELEMENTS); DCHECK((storage->map() == array->GetHeap()->fixed_double_array_map() && IsFastDoubleElementsKind(array->GetElementsKind())) || ((storage->map() != array->GetHeap()->fixed_double_array_map()) && (IsFastObjectElementsKind(array->GetElementsKind()) || (IsFastSmiElementsKind(array->GetElementsKind()) && Handle::cast(storage)->ContainsOnlySmisOrHoles())))); array->set_elements(*storage); array->set_length(Smi::FromInt(storage->length())); } int TypeFeedbackInfo::ic_total_count() { int current = Smi::cast(READ_FIELD(this, kStorage1Offset))->value(); return ICTotalCountField::decode(current); } void TypeFeedbackInfo::set_ic_total_count(int count) { int value = Smi::cast(READ_FIELD(this, kStorage1Offset))->value(); value = ICTotalCountField::update(value, ICTotalCountField::decode(count)); WRITE_FIELD(this, kStorage1Offset, Smi::FromInt(value)); } int TypeFeedbackInfo::ic_with_type_info_count() { int current = Smi::cast(READ_FIELD(this, kStorage2Offset))->value(); return ICsWithTypeInfoCountField::decode(current); } void TypeFeedbackInfo::change_ic_with_type_info_count(int delta) { if (delta == 0) return; int value = Smi::cast(READ_FIELD(this, kStorage2Offset))->value(); int new_count = ICsWithTypeInfoCountField::decode(value) + delta; // We can get negative count here when the type-feedback info is // shared between two code objects. The can only happen when // the debugger made a shallow copy of code object (see Heap::CopyCode). // Since we do not optimize when the debugger is active, we can skip // this counter update. if (new_count >= 0) { new_count &= ICsWithTypeInfoCountField::kMask; value = ICsWithTypeInfoCountField::update(value, new_count); WRITE_FIELD(this, kStorage2Offset, Smi::FromInt(value)); } } int TypeFeedbackInfo::ic_generic_count() { return Smi::cast(READ_FIELD(this, kStorage3Offset))->value(); } void TypeFeedbackInfo::change_ic_generic_count(int delta) { if (delta == 0) return; int new_count = ic_generic_count() + delta; if (new_count >= 0) { new_count &= ~Smi::kMinValue; WRITE_FIELD(this, kStorage3Offset, Smi::FromInt(new_count)); } } void TypeFeedbackInfo::initialize_storage() { WRITE_FIELD(this, kStorage1Offset, Smi::FromInt(0)); WRITE_FIELD(this, kStorage2Offset, Smi::FromInt(0)); WRITE_FIELD(this, kStorage3Offset, Smi::FromInt(0)); } void TypeFeedbackInfo::change_own_type_change_checksum() { int value = Smi::cast(READ_FIELD(this, kStorage1Offset))->value(); int checksum = OwnTypeChangeChecksum::decode(value); checksum = (checksum + 1) % (1 << kTypeChangeChecksumBits); value = OwnTypeChangeChecksum::update(value, checksum); // Ensure packed bit field is in Smi range. if (value > Smi::kMaxValue) value |= Smi::kMinValue; if (value < Smi::kMinValue) value &= ~Smi::kMinValue; WRITE_FIELD(this, kStorage1Offset, Smi::FromInt(value)); } void TypeFeedbackInfo::set_inlined_type_change_checksum(int checksum) { int value = Smi::cast(READ_FIELD(this, kStorage2Offset))->value(); int mask = (1 << kTypeChangeChecksumBits) - 1; value = InlinedTypeChangeChecksum::update(value, checksum & mask); // Ensure packed bit field is in Smi range. if (value > Smi::kMaxValue) value |= Smi::kMinValue; if (value < Smi::kMinValue) value &= ~Smi::kMinValue; WRITE_FIELD(this, kStorage2Offset, Smi::FromInt(value)); } int TypeFeedbackInfo::own_type_change_checksum() { int value = Smi::cast(READ_FIELD(this, kStorage1Offset))->value(); return OwnTypeChangeChecksum::decode(value); } bool TypeFeedbackInfo::matches_inlined_type_change_checksum(int checksum) { int value = Smi::cast(READ_FIELD(this, kStorage2Offset))->value(); int mask = (1 << kTypeChangeChecksumBits) - 1; return InlinedTypeChangeChecksum::decode(value) == (checksum & mask); } SMI_ACCESSORS(AliasedArgumentsEntry, aliased_context_slot, kAliasedContextSlot) Relocatable::Relocatable(Isolate* isolate) { isolate_ = isolate; prev_ = isolate->relocatable_top(); isolate->set_relocatable_top(this); } Relocatable::~Relocatable() { DCHECK_EQ(isolate_->relocatable_top(), this); isolate_->set_relocatable_top(prev_); } // static int JSObject::BodyDescriptor::SizeOf(Map* map, HeapObject* object) { return map->instance_size(); } // static int FixedArray::BodyDescriptor::SizeOf(Map* map, HeapObject* object) { return SizeFor(reinterpret_cast(object)->synchronized_length()); } // static int StructBodyDescriptor::SizeOf(Map* map, HeapObject* object) { return map->instance_size(); } void Foreign::ForeignIterateBody(ObjectVisitor* v) { v->VisitExternalReference( reinterpret_cast(FIELD_ADDR(this, kForeignAddressOffset))); } template void Foreign::ForeignIterateBody() { StaticVisitor::VisitExternalReference( reinterpret_cast(FIELD_ADDR(this, kForeignAddressOffset))); } void FixedTypedArrayBase::FixedTypedArrayBaseIterateBody(ObjectVisitor* v) { v->VisitPointer( reinterpret_cast(FIELD_ADDR(this, kBasePointerOffset))); } template void FixedTypedArrayBase::FixedTypedArrayBaseIterateBody() { StaticVisitor::VisitPointer( reinterpret_cast(FIELD_ADDR(this, kBasePointerOffset))); } void ExternalOneByteString::ExternalOneByteStringIterateBody(ObjectVisitor* v) { typedef v8::String::ExternalOneByteStringResource Resource; v->VisitExternalOneByteString( reinterpret_cast(FIELD_ADDR(this, kResourceOffset))); } template void ExternalOneByteString::ExternalOneByteStringIterateBody() { typedef v8::String::ExternalOneByteStringResource Resource; StaticVisitor::VisitExternalOneByteString( reinterpret_cast(FIELD_ADDR(this, kResourceOffset))); } void ExternalTwoByteString::ExternalTwoByteStringIterateBody(ObjectVisitor* v) { typedef v8::String::ExternalStringResource Resource; v->VisitExternalTwoByteString( reinterpret_cast(FIELD_ADDR(this, kResourceOffset))); } template void ExternalTwoByteString::ExternalTwoByteStringIterateBody() { typedef v8::String::ExternalStringResource Resource; StaticVisitor::VisitExternalTwoByteString( reinterpret_cast(FIELD_ADDR(this, kResourceOffset))); } static inline void IterateBodyUsingLayoutDescriptor(HeapObject* object, int start_offset, int end_offset, ObjectVisitor* v) { DCHECK(FLAG_unbox_double_fields); DCHECK(IsAligned(start_offset, kPointerSize) && IsAligned(end_offset, kPointerSize)); LayoutDescriptorHelper helper(object->map()); DCHECK(!helper.all_fields_tagged()); for (int offset = start_offset; offset < end_offset; offset += kPointerSize) { // Visit all tagged fields. if (helper.IsTagged(offset)) { v->VisitPointer(HeapObject::RawField(object, offset)); } } } template void FixedBodyDescriptor::IterateBody( HeapObject* obj, ObjectVisitor* v) { if (!FLAG_unbox_double_fields || obj->map()->HasFastPointerLayout()) { v->VisitPointers(HeapObject::RawField(obj, start_offset), HeapObject::RawField(obj, end_offset)); } else { IterateBodyUsingLayoutDescriptor(obj, start_offset, end_offset, v); } } template void FlexibleBodyDescriptor::IterateBody(HeapObject* obj, int object_size, ObjectVisitor* v) { if (!FLAG_unbox_double_fields || obj->map()->HasFastPointerLayout()) { v->VisitPointers(HeapObject::RawField(obj, start_offset), HeapObject::RawField(obj, object_size)); } else { IterateBodyUsingLayoutDescriptor(obj, start_offset, object_size, v); } } template Object* OrderedHashTableIterator::CurrentKey() { TableType* table(TableType::cast(this->table())); int index = Smi::cast(this->index())->value(); Object* key = table->KeyAt(index); DCHECK(!key->IsTheHole()); return key; } void JSSetIterator::PopulateValueArray(FixedArray* array) { array->set(0, CurrentKey()); } void JSMapIterator::PopulateValueArray(FixedArray* array) { array->set(0, CurrentKey()); array->set(1, CurrentValue()); } Object* JSMapIterator::CurrentValue() { OrderedHashMap* table(OrderedHashMap::cast(this->table())); int index = Smi::cast(this->index())->value(); Object* value = table->ValueAt(index); DCHECK(!value->IsTheHole()); return value; } ACCESSORS(JSIteratorResult, done, Object, kDoneOffset) ACCESSORS(JSIteratorResult, value, Object, kValueOffset) String::SubStringRange::SubStringRange(String* string, int first, int length) : string_(string), first_(first), length_(length == -1 ? string->length() : length) {} class String::SubStringRange::iterator final { public: typedef std::forward_iterator_tag iterator_category; typedef int difference_type; typedef uc16 value_type; typedef uc16* pointer; typedef uc16& reference; iterator(const iterator& other) : content_(other.content_), offset_(other.offset_) {} uc16 operator*() { return content_.Get(offset_); } bool operator==(const iterator& other) const { return content_.UsesSameString(other.content_) && offset_ == other.offset_; } bool operator!=(const iterator& other) const { return !content_.UsesSameString(other.content_) || offset_ != other.offset_; } iterator& operator++() { ++offset_; return *this; } iterator operator++(int); private: friend class String; iterator(String* from, int offset) : content_(from->GetFlatContent()), offset_(offset) {} String::FlatContent content_; int offset_; }; String::SubStringRange::iterator String::SubStringRange::begin() { return String::SubStringRange::iterator(string_, first_); } String::SubStringRange::iterator String::SubStringRange::end() { return String::SubStringRange::iterator(string_, first_ + length_); } #undef TYPE_CHECKER #undef CAST_ACCESSOR #undef INT_ACCESSORS #undef ACCESSORS #undef SMI_ACCESSORS #undef SYNCHRONIZED_SMI_ACCESSORS #undef NOBARRIER_SMI_ACCESSORS #undef BOOL_GETTER #undef BOOL_ACCESSORS #undef FIELD_ADDR #undef FIELD_ADDR_CONST #undef READ_FIELD #undef NOBARRIER_READ_FIELD #undef WRITE_FIELD #undef NOBARRIER_WRITE_FIELD #undef WRITE_BARRIER #undef CONDITIONAL_WRITE_BARRIER #undef READ_DOUBLE_FIELD #undef WRITE_DOUBLE_FIELD #undef READ_INT_FIELD #undef WRITE_INT_FIELD #undef READ_INTPTR_FIELD #undef WRITE_INTPTR_FIELD #undef READ_UINT8_FIELD #undef WRITE_UINT8_FIELD #undef READ_INT8_FIELD #undef WRITE_INT8_FIELD #undef READ_UINT16_FIELD #undef WRITE_UINT16_FIELD #undef READ_INT16_FIELD #undef WRITE_INT16_FIELD #undef READ_UINT32_FIELD #undef WRITE_UINT32_FIELD #undef READ_INT32_FIELD #undef WRITE_INT32_FIELD #undef READ_FLOAT_FIELD #undef WRITE_FLOAT_FIELD #undef READ_UINT64_FIELD #undef WRITE_UINT64_FIELD #undef READ_INT64_FIELD #undef WRITE_INT64_FIELD #undef READ_BYTE_FIELD #undef WRITE_BYTE_FIELD #undef NOBARRIER_READ_BYTE_FIELD #undef NOBARRIER_WRITE_BYTE_FIELD } // namespace internal } // namespace v8 #endif // V8_OBJECTS_INL_H_