// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "profile-generator-inl.h" #include "compiler.h" #include "debug.h" #include "sampler.h" #include "global-handles.h" #include "scopeinfo.h" #include "unicode.h" #include "zone-inl.h" namespace v8 { namespace internal { TokenEnumerator::TokenEnumerator() : token_locations_(4), token_removed_(4) { } TokenEnumerator::~TokenEnumerator() { Isolate* isolate = Isolate::Current(); for (int i = 0; i < token_locations_.length(); ++i) { if (!token_removed_[i]) { isolate->global_handles()->ClearWeakness(token_locations_[i]); isolate->global_handles()->Destroy(token_locations_[i]); } } } int TokenEnumerator::GetTokenId(Object* token) { Isolate* isolate = Isolate::Current(); if (token == NULL) return TokenEnumerator::kNoSecurityToken; for (int i = 0; i < token_locations_.length(); ++i) { if (*token_locations_[i] == token && !token_removed_[i]) return i; } Handle handle = isolate->global_handles()->Create(token); // handle.location() points to a memory cell holding a pointer // to a token object in the V8's heap. isolate->global_handles()->MakeWeak(handle.location(), this, TokenRemovedCallback); token_locations_.Add(handle.location()); token_removed_.Add(false); return token_locations_.length() - 1; } void TokenEnumerator::TokenRemovedCallback(v8::Isolate* isolate, v8::Persistent* handle, void* parameter) { reinterpret_cast(parameter)->TokenRemoved( Utils::OpenPersistent(handle).location()); handle->Dispose(isolate); } void TokenEnumerator::TokenRemoved(Object** token_location) { for (int i = 0; i < token_locations_.length(); ++i) { if (token_locations_[i] == token_location && !token_removed_[i]) { token_removed_[i] = true; return; } } } StringsStorage::StringsStorage() : names_(StringsMatch) { } StringsStorage::~StringsStorage() { for (HashMap::Entry* p = names_.Start(); p != NULL; p = names_.Next(p)) { DeleteArray(reinterpret_cast(p->value)); } } const char* StringsStorage::GetCopy(const char* src) { int len = static_cast(strlen(src)); Vector dst = Vector::New(len + 1); OS::StrNCpy(dst, src, len); dst[len] = '\0'; uint32_t hash = StringHasher::HashSequentialString(dst.start(), len, HEAP->HashSeed()); return AddOrDisposeString(dst.start(), hash); } const char* StringsStorage::GetFormatted(const char* format, ...) { va_list args; va_start(args, format); const char* result = GetVFormatted(format, args); va_end(args); return result; } const char* StringsStorage::AddOrDisposeString(char* str, uint32_t hash) { HashMap::Entry* cache_entry = names_.Lookup(str, hash, true); if (cache_entry->value == NULL) { // New entry added. cache_entry->value = str; } else { DeleteArray(str); } return reinterpret_cast(cache_entry->value); } const char* StringsStorage::GetVFormatted(const char* format, va_list args) { Vector str = Vector::New(1024); int len = OS::VSNPrintF(str, format, args); if (len == -1) { DeleteArray(str.start()); return format; } uint32_t hash = StringHasher::HashSequentialString( str.start(), len, HEAP->HashSeed()); return AddOrDisposeString(str.start(), hash); } const char* StringsStorage::GetName(Name* name) { if (name->IsString()) { String* str = String::cast(name); int length = Min(kMaxNameSize, str->length()); SmartArrayPointer data = str->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL, 0, length); uint32_t hash = StringHasher::HashSequentialString( *data, length, name->GetHeap()->HashSeed()); return AddOrDisposeString(data.Detach(), hash); } else if (name->IsSymbol()) { return ""; } return ""; } const char* StringsStorage::GetName(int index) { return GetFormatted("%d", index); } size_t StringsStorage::GetUsedMemorySize() const { size_t size = sizeof(*this); size += sizeof(HashMap::Entry) * names_.capacity(); for (HashMap::Entry* p = names_.Start(); p != NULL; p = names_.Next(p)) { size += strlen(reinterpret_cast(p->value)) + 1; } return size; } const char* const CodeEntry::kEmptyNamePrefix = ""; const char* const CodeEntry::kEmptyResourceName = ""; CodeEntry::~CodeEntry() { delete no_frame_ranges_; } void CodeEntry::CopyData(const CodeEntry& source) { tag_ = source.tag_; name_prefix_ = source.name_prefix_; name_ = source.name_; resource_name_ = source.resource_name_; line_number_ = source.line_number_; } uint32_t CodeEntry::GetCallUid() const { uint32_t hash = ComputeIntegerHash(tag_, v8::internal::kZeroHashSeed); if (shared_id_ != 0) { hash ^= ComputeIntegerHash(static_cast(shared_id_), v8::internal::kZeroHashSeed); } else { hash ^= ComputeIntegerHash( static_cast(reinterpret_cast(name_prefix_)), v8::internal::kZeroHashSeed); hash ^= ComputeIntegerHash( static_cast(reinterpret_cast(name_)), v8::internal::kZeroHashSeed); hash ^= ComputeIntegerHash( static_cast(reinterpret_cast(resource_name_)), v8::internal::kZeroHashSeed); hash ^= ComputeIntegerHash(line_number_, v8::internal::kZeroHashSeed); } return hash; } bool CodeEntry::IsSameAs(CodeEntry* entry) const { return this == entry || (tag_ == entry->tag_ && shared_id_ == entry->shared_id_ && (shared_id_ != 0 || (name_prefix_ == entry->name_prefix_ && name_ == entry->name_ && resource_name_ == entry->resource_name_ && line_number_ == entry->line_number_))); } void CodeEntry::SetBuiltinId(Builtins::Name id) { tag_ = Logger::BUILTIN_TAG; builtin_id_ = id; } ProfileNode* ProfileNode::FindChild(CodeEntry* entry) { HashMap::Entry* map_entry = children_.Lookup(entry, CodeEntryHash(entry), false); return map_entry != NULL ? reinterpret_cast(map_entry->value) : NULL; } ProfileNode* ProfileNode::FindOrAddChild(CodeEntry* entry) { HashMap::Entry* map_entry = children_.Lookup(entry, CodeEntryHash(entry), true); if (map_entry->value == NULL) { // New node added. ProfileNode* new_node = new ProfileNode(tree_, entry); map_entry->value = new_node; children_list_.Add(new_node); } return reinterpret_cast(map_entry->value); } double ProfileNode::GetSelfMillis() const { return tree_->TicksToMillis(self_ticks_); } double ProfileNode::GetTotalMillis() const { return tree_->TicksToMillis(total_ticks_); } void ProfileNode::Print(int indent) { OS::Print("%5u %5u %*c %s%s [%d] #%d %d", total_ticks_, self_ticks_, indent, ' ', entry_->name_prefix(), entry_->name(), entry_->security_token_id(), entry_->script_id(), id()); if (entry_->resource_name()[0] != '\0') OS::Print(" %s:%d", entry_->resource_name(), entry_->line_number()); OS::Print("\n"); for (HashMap::Entry* p = children_.Start(); p != NULL; p = children_.Next(p)) { reinterpret_cast(p->value)->Print(indent + 2); } } class DeleteNodesCallback { public: void BeforeTraversingChild(ProfileNode*, ProfileNode*) { } void AfterAllChildrenTraversed(ProfileNode* node) { delete node; } void AfterChildTraversed(ProfileNode*, ProfileNode*) { } }; ProfileTree::ProfileTree() : root_entry_(Logger::FUNCTION_TAG, "(root)"), next_node_id_(1), root_(new ProfileNode(this, &root_entry_)) { } ProfileTree::~ProfileTree() { DeleteNodesCallback cb; TraverseDepthFirst(&cb); } ProfileNode* ProfileTree::AddPathFromEnd(const Vector& path) { ProfileNode* node = root_; for (CodeEntry** entry = path.start() + path.length() - 1; entry != path.start() - 1; --entry) { if (*entry != NULL) { node = node->FindOrAddChild(*entry); } } node->IncrementSelfTicks(); return node; } void ProfileTree::AddPathFromStart(const Vector& path) { ProfileNode* node = root_; for (CodeEntry** entry = path.start(); entry != path.start() + path.length(); ++entry) { if (*entry != NULL) { node = node->FindOrAddChild(*entry); } } node->IncrementSelfTicks(); } struct NodesPair { NodesPair(ProfileNode* src, ProfileNode* dst) : src(src), dst(dst) { } ProfileNode* src; ProfileNode* dst; }; class FilteredCloneCallback { public: FilteredCloneCallback(ProfileNode* dst_root, int security_token_id) : stack_(10), security_token_id_(security_token_id) { stack_.Add(NodesPair(NULL, dst_root)); } void BeforeTraversingChild(ProfileNode* parent, ProfileNode* child) { if (IsTokenAcceptable(child->entry()->security_token_id(), parent->entry()->security_token_id())) { ProfileNode* clone = stack_.last().dst->FindOrAddChild(child->entry()); clone->IncreaseSelfTicks(child->self_ticks()); stack_.Add(NodesPair(child, clone)); } else { // Attribute ticks to parent node. stack_.last().dst->IncreaseSelfTicks(child->self_ticks()); } } void AfterAllChildrenTraversed(ProfileNode* parent) { } void AfterChildTraversed(ProfileNode*, ProfileNode* child) { if (stack_.last().src == child) { stack_.RemoveLast(); } } private: bool IsTokenAcceptable(int token, int parent_token) { if (token == TokenEnumerator::kNoSecurityToken || token == security_token_id_) return true; if (token == TokenEnumerator::kInheritsSecurityToken) { ASSERT(parent_token != TokenEnumerator::kInheritsSecurityToken); return parent_token == TokenEnumerator::kNoSecurityToken || parent_token == security_token_id_; } return false; } List stack_; int security_token_id_; }; void ProfileTree::FilteredClone(ProfileTree* src, int security_token_id) { ms_to_ticks_scale_ = src->ms_to_ticks_scale_; FilteredCloneCallback cb(root_, security_token_id); src->TraverseDepthFirst(&cb); CalculateTotalTicks(); } void ProfileTree::SetTickRatePerMs(double ticks_per_ms) { ms_to_ticks_scale_ = ticks_per_ms > 0 ? 1.0 / ticks_per_ms : 1.0; } class Position { public: explicit Position(ProfileNode* node) : node(node), child_idx_(0) { } INLINE(ProfileNode* current_child()) { return node->children()->at(child_idx_); } INLINE(bool has_current_child()) { return child_idx_ < node->children()->length(); } INLINE(void next_child()) { ++child_idx_; } ProfileNode* node; private: int child_idx_; }; // Non-recursive implementation of a depth-first post-order tree traversal. template void ProfileTree::TraverseDepthFirst(Callback* callback) { List stack(10); stack.Add(Position(root_)); while (stack.length() > 0) { Position& current = stack.last(); if (current.has_current_child()) { callback->BeforeTraversingChild(current.node, current.current_child()); stack.Add(Position(current.current_child())); } else { callback->AfterAllChildrenTraversed(current.node); if (stack.length() > 1) { Position& parent = stack[stack.length() - 2]; callback->AfterChildTraversed(parent.node, current.node); parent.next_child(); } // Remove child from the stack. stack.RemoveLast(); } } } class CalculateTotalTicksCallback { public: void BeforeTraversingChild(ProfileNode*, ProfileNode*) { } void AfterAllChildrenTraversed(ProfileNode* node) { node->IncreaseTotalTicks(node->self_ticks()); } void AfterChildTraversed(ProfileNode* parent, ProfileNode* child) { parent->IncreaseTotalTicks(child->total_ticks()); } }; void ProfileTree::CalculateTotalTicks() { CalculateTotalTicksCallback cb; TraverseDepthFirst(&cb); } void ProfileTree::ShortPrint() { OS::Print("root: %u %u %.2fms %.2fms\n", root_->total_ticks(), root_->self_ticks(), root_->GetTotalMillis(), root_->GetSelfMillis()); } void CpuProfile::AddPath(const Vector& path) { ProfileNode* top_frame_node = top_down_.AddPathFromEnd(path); if (record_samples_) samples_.Add(top_frame_node); } void CpuProfile::CalculateTotalTicks() { top_down_.CalculateTotalTicks(); } void CpuProfile::SetActualSamplingRate(double actual_sampling_rate) { top_down_.SetTickRatePerMs(actual_sampling_rate); } CpuProfile* CpuProfile::FilteredClone(int security_token_id) { ASSERT(security_token_id != TokenEnumerator::kNoSecurityToken); CpuProfile* clone = new CpuProfile(title_, uid_, false); clone->top_down_.FilteredClone(&top_down_, security_token_id); return clone; } void CpuProfile::ShortPrint() { OS::Print("top down "); top_down_.ShortPrint(); } void CpuProfile::Print() { OS::Print("[Top down]:\n"); top_down_.Print(); } CodeEntry* const CodeMap::kSharedFunctionCodeEntry = NULL; const CodeMap::CodeTreeConfig::Key CodeMap::CodeTreeConfig::kNoKey = NULL; void CodeMap::AddCode(Address addr, CodeEntry* entry, unsigned size) { DeleteAllCoveredCode(addr, addr + size); CodeTree::Locator locator; tree_.Insert(addr, &locator); locator.set_value(CodeEntryInfo(entry, size)); } void CodeMap::DeleteAllCoveredCode(Address start, Address end) { List
to_delete; Address addr = end - 1; while (addr >= start) { CodeTree::Locator locator; if (!tree_.FindGreatestLessThan(addr, &locator)) break; Address start2 = locator.key(), end2 = start2 + locator.value().size; if (start2 < end && start < end2) to_delete.Add(start2); addr = start2 - 1; } for (int i = 0; i < to_delete.length(); ++i) tree_.Remove(to_delete[i]); } CodeEntry* CodeMap::FindEntry(Address addr, Address* start) { CodeTree::Locator locator; if (tree_.FindGreatestLessThan(addr, &locator)) { // locator.key() <= addr. Need to check that addr is within entry. const CodeEntryInfo& entry = locator.value(); if (addr < (locator.key() + entry.size)) { if (start) { *start = locator.key(); } return entry.entry; } } return NULL; } int CodeMap::GetSharedId(Address addr) { CodeTree::Locator locator; // For shared function entries, 'size' field is used to store their IDs. if (tree_.Find(addr, &locator)) { const CodeEntryInfo& entry = locator.value(); ASSERT(entry.entry == kSharedFunctionCodeEntry); return entry.size; } else { tree_.Insert(addr, &locator); int id = next_shared_id_++; locator.set_value(CodeEntryInfo(kSharedFunctionCodeEntry, id)); return id; } } void CodeMap::MoveCode(Address from, Address to) { if (from == to) return; CodeTree::Locator locator; if (!tree_.Find(from, &locator)) return; CodeEntryInfo entry = locator.value(); tree_.Remove(from); AddCode(to, entry.entry, entry.size); } void CodeMap::CodeTreePrinter::Call( const Address& key, const CodeMap::CodeEntryInfo& value) { // For shared function entries, 'size' field is used to store their IDs. if (value.entry == kSharedFunctionCodeEntry) { OS::Print("%p SharedFunctionInfo %d\n", key, value.size); } else { OS::Print("%p %5d %s\n", key, value.size, value.entry->name()); } } void CodeMap::Print() { CodeTreePrinter printer; tree_.ForEach(&printer); } CpuProfilesCollection::CpuProfilesCollection() : profiles_uids_(UidsMatch), current_profiles_semaphore_(OS::CreateSemaphore(1)) { // Create list of unabridged profiles. profiles_by_token_.Add(new List()); } static void DeleteCodeEntry(CodeEntry** entry_ptr) { delete *entry_ptr; } static void DeleteCpuProfile(CpuProfile** profile_ptr) { delete *profile_ptr; } static void DeleteProfilesList(List** list_ptr) { if (*list_ptr != NULL) { (*list_ptr)->Iterate(DeleteCpuProfile); delete *list_ptr; } } CpuProfilesCollection::~CpuProfilesCollection() { delete current_profiles_semaphore_; current_profiles_.Iterate(DeleteCpuProfile); detached_profiles_.Iterate(DeleteCpuProfile); profiles_by_token_.Iterate(DeleteProfilesList); code_entries_.Iterate(DeleteCodeEntry); } bool CpuProfilesCollection::StartProfiling(const char* title, unsigned uid, bool record_samples) { ASSERT(uid > 0); current_profiles_semaphore_->Wait(); if (current_profiles_.length() >= kMaxSimultaneousProfiles) { current_profiles_semaphore_->Signal(); return false; } for (int i = 0; i < current_profiles_.length(); ++i) { if (strcmp(current_profiles_[i]->title(), title) == 0) { // Ignore attempts to start profile with the same title. current_profiles_semaphore_->Signal(); return false; } } current_profiles_.Add(new CpuProfile(title, uid, record_samples)); current_profiles_semaphore_->Signal(); return true; } CpuProfile* CpuProfilesCollection::StopProfiling(int security_token_id, const char* title, double actual_sampling_rate) { const int title_len = StrLength(title); CpuProfile* profile = NULL; current_profiles_semaphore_->Wait(); for (int i = current_profiles_.length() - 1; i >= 0; --i) { if (title_len == 0 || strcmp(current_profiles_[i]->title(), title) == 0) { profile = current_profiles_.Remove(i); break; } } current_profiles_semaphore_->Signal(); if (profile != NULL) { profile->CalculateTotalTicks(); profile->SetActualSamplingRate(actual_sampling_rate); List* unabridged_list = profiles_by_token_[TokenToIndex(TokenEnumerator::kNoSecurityToken)]; unabridged_list->Add(profile); HashMap::Entry* entry = profiles_uids_.Lookup(reinterpret_cast(profile->uid()), static_cast(profile->uid()), true); ASSERT(entry->value == NULL); entry->value = reinterpret_cast(unabridged_list->length() - 1); return GetProfile(security_token_id, profile->uid()); } return NULL; } CpuProfile* CpuProfilesCollection::GetProfile(int security_token_id, unsigned uid) { int index = GetProfileIndex(uid); if (index < 0) return NULL; List* unabridged_list = profiles_by_token_[TokenToIndex(TokenEnumerator::kNoSecurityToken)]; if (security_token_id == TokenEnumerator::kNoSecurityToken) { return unabridged_list->at(index); } List* list = GetProfilesList(security_token_id); if (list->at(index) == NULL) { (*list)[index] = unabridged_list->at(index)->FilteredClone(security_token_id); } return list->at(index); } int CpuProfilesCollection::GetProfileIndex(unsigned uid) { HashMap::Entry* entry = profiles_uids_.Lookup(reinterpret_cast(uid), static_cast(uid), false); return entry != NULL ? static_cast(reinterpret_cast(entry->value)) : -1; } bool CpuProfilesCollection::IsLastProfile(const char* title) { // Called from VM thread, and only it can mutate the list, // so no locking is needed here. if (current_profiles_.length() != 1) return false; return StrLength(title) == 0 || strcmp(current_profiles_[0]->title(), title) == 0; } void CpuProfilesCollection::RemoveProfile(CpuProfile* profile) { // Called from VM thread for a completed profile. unsigned uid = profile->uid(); int index = GetProfileIndex(uid); if (index < 0) { detached_profiles_.RemoveElement(profile); return; } profiles_uids_.Remove(reinterpret_cast(uid), static_cast(uid)); // Decrement all indexes above the deleted one. for (HashMap::Entry* p = profiles_uids_.Start(); p != NULL; p = profiles_uids_.Next(p)) { intptr_t p_index = reinterpret_cast(p->value); if (p_index > index) { p->value = reinterpret_cast(p_index - 1); } } for (int i = 0; i < profiles_by_token_.length(); ++i) { List* list = profiles_by_token_[i]; if (list != NULL && index < list->length()) { // Move all filtered clones into detached_profiles_, // so we can know that they are still in use. CpuProfile* cloned_profile = list->Remove(index); if (cloned_profile != NULL && cloned_profile != profile) { detached_profiles_.Add(cloned_profile); } } } } int CpuProfilesCollection::TokenToIndex(int security_token_id) { ASSERT(TokenEnumerator::kNoSecurityToken == -1); return security_token_id + 1; // kNoSecurityToken -> 0, 0 -> 1, ... } List* CpuProfilesCollection::GetProfilesList( int security_token_id) { const int index = TokenToIndex(security_token_id); const int lists_to_add = index - profiles_by_token_.length() + 1; if (lists_to_add > 0) profiles_by_token_.AddBlock(NULL, lists_to_add); List* unabridged_list = profiles_by_token_[TokenToIndex(TokenEnumerator::kNoSecurityToken)]; const int current_count = unabridged_list->length(); if (profiles_by_token_[index] == NULL) { profiles_by_token_[index] = new List(current_count); } List* list = profiles_by_token_[index]; const int profiles_to_add = current_count - list->length(); if (profiles_to_add > 0) list->AddBlock(NULL, profiles_to_add); return list; } List* CpuProfilesCollection::Profiles(int security_token_id) { List* unabridged_list = profiles_by_token_[TokenToIndex(TokenEnumerator::kNoSecurityToken)]; if (security_token_id == TokenEnumerator::kNoSecurityToken) { return unabridged_list; } List* list = GetProfilesList(security_token_id); const int current_count = unabridged_list->length(); for (int i = 0; i < current_count; ++i) { if (list->at(i) == NULL) { (*list)[i] = unabridged_list->at(i)->FilteredClone(security_token_id); } } return list; } void CpuProfilesCollection::AddPathToCurrentProfiles( const Vector& path) { // As starting / stopping profiles is rare relatively to this // method, we don't bother minimizing the duration of lock holding, // e.g. copying contents of the list to a local vector. current_profiles_semaphore_->Wait(); for (int i = 0; i < current_profiles_.length(); ++i) { current_profiles_[i]->AddPath(path); } current_profiles_semaphore_->Signal(); } CodeEntry* CpuProfilesCollection::NewCodeEntry( Logger::LogEventsAndTags tag, const char* name, int security_token_id, const char* name_prefix, const char* resource_name, int line_number) { CodeEntry* code_entry = new CodeEntry(tag, name, security_token_id, name_prefix, resource_name, line_number); code_entries_.Add(code_entry); return code_entry; } void SampleRateCalculator::Tick() { if (--wall_time_query_countdown_ == 0) UpdateMeasurements(OS::TimeCurrentMillis()); } void SampleRateCalculator::UpdateMeasurements(double current_time) { if (measurements_count_++ != 0) { const double measured_ticks_per_ms = (kWallTimeQueryIntervalMs * ticks_per_ms_) / (current_time - last_wall_time_); // Update the average value. ticks_per_ms_ += (measured_ticks_per_ms - ticks_per_ms_) / measurements_count_; // Update the externally accessible result. result_ = static_cast(ticks_per_ms_ * kResultScale); } last_wall_time_ = current_time; wall_time_query_countdown_ = static_cast(kWallTimeQueryIntervalMs * ticks_per_ms_); } const char* const ProfileGenerator::kAnonymousFunctionName = "(anonymous function)"; const char* const ProfileGenerator::kProgramEntryName = "(program)"; const char* const ProfileGenerator::kGarbageCollectorEntryName = "(garbage collector)"; const char* const ProfileGenerator::kUnresolvedFunctionName = "(unresolved function)"; ProfileGenerator::ProfileGenerator(CpuProfilesCollection* profiles) : profiles_(profiles), program_entry_( profiles->NewCodeEntry(Logger::FUNCTION_TAG, kProgramEntryName)), gc_entry_( profiles->NewCodeEntry(Logger::BUILTIN_TAG, kGarbageCollectorEntryName)), unresolved_entry_( profiles->NewCodeEntry(Logger::FUNCTION_TAG, kUnresolvedFunctionName)) { } void ProfileGenerator::RecordTickSample(const TickSample& sample) { // Allocate space for stack frames + pc + function + vm-state. ScopedVector entries(sample.frames_count + 3); // As actual number of decoded code entries may vary, initialize // entries vector with NULL values. CodeEntry** entry = entries.start(); memset(entry, 0, entries.length() * sizeof(*entry)); if (sample.pc != NULL) { if (sample.has_external_callback) { // Don't use PC when in external callback code, as it can point // inside callback's code, and we will erroneously report // that a callback calls itself. *entry++ = code_map_.FindEntry(sample.external_callback); } else { Address start; CodeEntry* pc_entry = code_map_.FindEntry(sample.pc, &start); // If pc is in the function code before it set up stack frame or after the // frame was destroyed SafeStackFrameIterator incorrectly thinks that // ebp contains return address of the current function and skips caller's // frame. Check for this case and just skip such samples. if (pc_entry) { List* ranges = pc_entry->no_frame_ranges(); if (ranges) { Code* code = Code::cast(HeapObject::FromAddress(start)); int pc_offset = static_cast( sample.pc - code->instruction_start()); for (int i = 0; i < ranges->length(); i++) { OffsetRange& range = ranges->at(i); if (range.from <= pc_offset && pc_offset < range.to) { return; } } } *entry++ = pc_entry; if (pc_entry->builtin_id() == Builtins::kFunctionCall || pc_entry->builtin_id() == Builtins::kFunctionApply) { // When current function is FunctionCall or FunctionApply builtin the // top frame is either frame of the calling JS function or internal // frame. In the latter case we know the caller for sure but in the // former case we don't so we simply replace the frame with // 'unresolved' entry. if (sample.top_frame_type == StackFrame::JAVA_SCRIPT) { *entry++ = unresolved_entry_; } } } } for (const Address* stack_pos = sample.stack, *stack_end = stack_pos + sample.frames_count; stack_pos != stack_end; ++stack_pos) { *entry++ = code_map_.FindEntry(*stack_pos); } } if (FLAG_prof_browser_mode) { bool no_symbolized_entries = true; for (CodeEntry** e = entries.start(); e != entry; ++e) { if (*e != NULL) { no_symbolized_entries = false; break; } } // If no frames were symbolized, put the VM state entry in. if (no_symbolized_entries) { *entry++ = EntryForVMState(sample.state); } } profiles_->AddPathToCurrentProfiles(entries); } } } // namespace v8::internal