// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/types.h" #include #include #include "src/ostreams.h" #include "src/types-inl.h" namespace v8 { namespace internal { // NOTE: If code is marked as being a "shortcut", this means that removing // the code won't affect the semantics of the surrounding function definition. // ----------------------------------------------------------------------------- // Range-related helper functions. // The result may be invalid (max < min). template typename TypeImpl::Limits TypeImpl::Intersect( Limits lhs, Limits rhs) { DisallowHeapAllocation no_allocation; Limits result(lhs); if (lhs.min->Number() < rhs.min->Number()) result.min = rhs.min; if (lhs.max->Number() > rhs.max->Number()) result.max = rhs.max; return result; } template typename TypeImpl::Limits TypeImpl::Union( Limits lhs, Limits rhs) { DisallowHeapAllocation no_allocation; Limits result(lhs); if (lhs.min->Number() > rhs.min->Number()) result.min = rhs.min; if (lhs.max->Number() < rhs.max->Number()) result.max = rhs.max; return result; } template bool TypeImpl::Overlap( typename TypeImpl::RangeType* lhs, typename TypeImpl::RangeType* rhs) { DisallowHeapAllocation no_allocation; typename TypeImpl::Limits lim = Intersect(Limits(lhs), Limits(rhs)); return lim.min->Number() <= lim.max->Number(); } template bool TypeImpl::Contains( typename TypeImpl::RangeType* lhs, typename TypeImpl::RangeType* rhs) { DisallowHeapAllocation no_allocation; return lhs->Min()->Number() <= rhs->Min()->Number() && rhs->Max()->Number() <= lhs->Max()->Number(); } template bool TypeImpl::Contains( typename TypeImpl::RangeType* range, i::Object* val) { DisallowHeapAllocation no_allocation; return IsInteger(val) && range->Min()->Number() <= val->Number() && val->Number() <= range->Max()->Number(); } // ----------------------------------------------------------------------------- // Min and Max computation. template double TypeImpl::Min() { DCHECK(this->Is(Number())); if (this->IsBitset()) return BitsetType::Min(this->AsBitset()); if (this->IsUnion()) { double min = +std::numeric_limits::infinity(); for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) { min = std::min(min, this->AsUnion()->Get(i)->Min()); } return min; } if (this->IsRange()) return this->AsRange()->Min()->Number(); if (this->IsConstant()) return this->AsConstant()->Value()->Number(); UNREACHABLE(); return 0; } template double TypeImpl::Max() { DCHECK(this->Is(Number())); if (this->IsBitset()) return BitsetType::Max(this->AsBitset()); if (this->IsUnion()) { double max = -std::numeric_limits::infinity(); for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) { max = std::max(max, this->AsUnion()->Get(i)->Max()); } return max; } if (this->IsRange()) return this->AsRange()->Max()->Number(); if (this->IsConstant()) return this->AsConstant()->Value()->Number(); UNREACHABLE(); return 0; } // ----------------------------------------------------------------------------- // Glb and lub computation. // The largest bitset subsumed by this type. template typename TypeImpl::bitset TypeImpl::BitsetType::Glb(TypeImpl* type) { DisallowHeapAllocation no_allocation; if (type->IsBitset()) { return type->AsBitset(); } else if (type->IsUnion()) { SLOW_DCHECK(type->AsUnion()->Wellformed()); return type->AsUnion()->Get(0)->BitsetGlb(); // Shortcut. // (The remaining BitsetGlb's are None anyway). } else { return kNone; } } // The smallest bitset subsuming this type. template typename TypeImpl::bitset TypeImpl::BitsetType::Lub(TypeImpl* type) { DisallowHeapAllocation no_allocation; if (type->IsBitset()) return type->AsBitset(); if (type->IsUnion()) { int bitset = kNone; for (int i = 0, n = type->AsUnion()->Length(); i < n; ++i) { bitset |= type->AsUnion()->Get(i)->BitsetLub(); } return bitset; } if (type->IsClass()) { // Little hack to avoid the need for a region for handlification here... return Config::is_class(type) ? Lub(*Config::as_class(type)) : type->AsClass()->Bound(NULL)->AsBitset(); } if (type->IsConstant()) return type->AsConstant()->Bound()->AsBitset(); if (type->IsRange()) return type->AsRange()->BitsetLub(); if (type->IsContext()) return kInternal & kTaggedPointer; if (type->IsArray()) return kArray; if (type->IsFunction()) return kOtherObject; // TODO(rossberg): kFunction UNREACHABLE(); return kNone; } template typename TypeImpl::bitset TypeImpl::BitsetType::Lub(i::Map* map) { DisallowHeapAllocation no_allocation; switch (map->instance_type()) { case STRING_TYPE: case ONE_BYTE_STRING_TYPE: case CONS_STRING_TYPE: case CONS_ONE_BYTE_STRING_TYPE: case SLICED_STRING_TYPE: case SLICED_ONE_BYTE_STRING_TYPE: case EXTERNAL_STRING_TYPE: case EXTERNAL_ONE_BYTE_STRING_TYPE: case EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE: case SHORT_EXTERNAL_STRING_TYPE: case SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE: case SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE: return kOtherString; case INTERNALIZED_STRING_TYPE: case ONE_BYTE_INTERNALIZED_STRING_TYPE: case EXTERNAL_INTERNALIZED_STRING_TYPE: case EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE: case EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE: case SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE: case SHORT_EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE: case SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE: return kInternalizedString; case SYMBOL_TYPE: return kSymbol; case ODDBALL_TYPE: { Heap* heap = map->GetHeap(); if (map == heap->undefined_map()) return kUndefined; if (map == heap->null_map()) return kNull; if (map == heap->boolean_map()) return kBoolean; DCHECK(map == heap->the_hole_map() || map == heap->uninitialized_map() || map == heap->no_interceptor_result_sentinel_map() || map == heap->termination_exception_map() || map == heap->arguments_marker_map()); return kInternal & kTaggedPointer; } case HEAP_NUMBER_TYPE: return kNumber & kTaggedPointer; case JS_VALUE_TYPE: case JS_DATE_TYPE: case JS_OBJECT_TYPE: case JS_CONTEXT_EXTENSION_OBJECT_TYPE: case JS_GENERATOR_OBJECT_TYPE: case JS_MODULE_TYPE: case JS_GLOBAL_OBJECT_TYPE: case JS_BUILTINS_OBJECT_TYPE: case JS_GLOBAL_PROXY_TYPE: case JS_ARRAY_BUFFER_TYPE: case JS_TYPED_ARRAY_TYPE: case JS_DATA_VIEW_TYPE: case JS_SET_TYPE: case JS_MAP_TYPE: case JS_SET_ITERATOR_TYPE: case JS_MAP_ITERATOR_TYPE: case JS_WEAK_MAP_TYPE: case JS_WEAK_SET_TYPE: if (map->is_undetectable()) return kUndetectable; return kOtherObject; case JS_ARRAY_TYPE: return kArray; case JS_FUNCTION_TYPE: return kOtherObject; // TODO(rossberg): there should be a Function type. case JS_REGEXP_TYPE: return kOtherObject; // TODO(rossberg): there should be a RegExp type. case JS_PROXY_TYPE: case JS_FUNCTION_PROXY_TYPE: return kProxy; case MAP_TYPE: // When compiling stub templates, the meta map is used as a place holder // for the actual map with which the template is later instantiated. // We treat it as a kind of type variable whose upper bound is Any. // TODO(rossberg): for caching of CompareNilIC stubs to work correctly, // we must exclude Undetectable here. This makes no sense, really, // because it means that the template isn't actually parametric. // Also, it doesn't apply elsewhere. 8-( // We ought to find a cleaner solution for compiling stubs parameterised // over type or class variables, esp ones with bounds... return kDetectable; case DECLARED_ACCESSOR_INFO_TYPE: case EXECUTABLE_ACCESSOR_INFO_TYPE: case SHARED_FUNCTION_INFO_TYPE: case ACCESSOR_PAIR_TYPE: case FIXED_ARRAY_TYPE: case BYTE_ARRAY_TYPE: case FOREIGN_TYPE: case CODE_TYPE: return kInternal & kTaggedPointer; default: UNREACHABLE(); return kNone; } } template typename TypeImpl::bitset TypeImpl::BitsetType::Lub(i::Object* value) { DisallowHeapAllocation no_allocation; if (value->IsNumber()) { return Lub(value->Number()) & (value->IsSmi() ? kTaggedSigned : kTaggedPointer); } return Lub(i::HeapObject::cast(value)->map()); } template typename TypeImpl::bitset TypeImpl::BitsetType::Lub(double value) { DisallowHeapAllocation no_allocation; if (i::IsMinusZero(value)) return kMinusZero; if (std::isnan(value)) return kNaN; if (IsUint32Double(value) || IsInt32Double(value)) return Lub(value, value); return kPlainNumber; } // Minimum values of regular numeric bitsets when SmiValuesAre31Bits. template const typename TypeImpl::BitsetType::BitsetMin TypeImpl::BitsetType::BitsetMins31[] = { {kOtherNumber, -std::numeric_limits::infinity()}, {kOtherSigned32, kMinInt}, {kNegativeSignedSmall, -0x40000000}, {kUnsignedSmall, 0}, {kOtherUnsigned31, 0x40000000}, {kOtherUnsigned32, 0x80000000}, {kOtherNumber, static_cast(kMaxUInt32) + 1}}; // Minimum values of regular numeric bitsets when SmiValuesAre32Bits. // OtherSigned32 and OtherUnsigned31 are empty (see the diagrams in types.h). template const typename TypeImpl::BitsetType::BitsetMin TypeImpl::BitsetType::BitsetMins32[] = { {kOtherNumber, -std::numeric_limits::infinity()}, {kNegativeSignedSmall, kMinInt}, {kUnsignedSmall, 0}, {kOtherUnsigned32, 0x80000000}, {kOtherNumber, static_cast(kMaxUInt32) + 1}}; template typename TypeImpl::bitset TypeImpl::BitsetType::Lub(double min, double max) { DisallowHeapAllocation no_allocation; int lub = kNone; const BitsetMin* mins = BitsetMins(); // Make sure the min-max range touches 0, so we are guaranteed no holes // in unions of valid bitsets. if (max < -1) max = -1; if (min > 0) min = 0; for (size_t i = 1; i < BitsetMinsSize(); ++i) { if (min < mins[i].min) { lub |= mins[i-1].bits; if (max < mins[i].min) return lub; } } return lub |= mins[BitsetMinsSize()-1].bits; } template double TypeImpl::BitsetType::Min(bitset bits) { DisallowHeapAllocation no_allocation; DCHECK(Is(bits, kNumber)); const BitsetMin* mins = BitsetMins(); bool mz = SEMANTIC(bits & kMinusZero); for (size_t i = 0; i < BitsetMinsSize(); ++i) { if (Is(SEMANTIC(mins[i].bits), bits)) { return mz ? std::min(0.0, mins[i].min) : mins[i].min; } } if (mz) return 0; return base::OS::nan_value(); } template double TypeImpl::BitsetType::Max(bitset bits) { DisallowHeapAllocation no_allocation; DCHECK(Is(bits, kNumber)); const BitsetMin* mins = BitsetMins(); bool mz = SEMANTIC(bits & kMinusZero); if (BitsetType::Is(mins[BitsetMinsSize()-1].bits, bits)) { return +std::numeric_limits::infinity(); } for (size_t i = BitsetMinsSize()-1; i-- > 0; ) { if (Is(SEMANTIC(mins[i].bits), bits)) { return mz ? std::max(0.0, mins[i+1].min - 1) : mins[i+1].min - 1; } } if (mz) return 0; return base::OS::nan_value(); } // ----------------------------------------------------------------------------- // Predicates. template bool TypeImpl::SimplyEquals(TypeImpl* that) { DisallowHeapAllocation no_allocation; if (this->IsClass()) { return that->IsClass() && *this->AsClass()->Map() == *that->AsClass()->Map(); } if (this->IsConstant()) { return that->IsConstant() && *this->AsConstant()->Value() == *that->AsConstant()->Value(); } if (this->IsContext()) { return that->IsContext() && this->AsContext()->Outer()->Equals(that->AsContext()->Outer()); } if (this->IsArray()) { return that->IsArray() && this->AsArray()->Element()->Equals(that->AsArray()->Element()); } if (this->IsFunction()) { if (!that->IsFunction()) return false; FunctionType* this_fun = this->AsFunction(); FunctionType* that_fun = that->AsFunction(); if (this_fun->Arity() != that_fun->Arity() || !this_fun->Result()->Equals(that_fun->Result()) || !this_fun->Receiver()->Equals(that_fun->Receiver())) { return false; } for (int i = 0, n = this_fun->Arity(); i < n; ++i) { if (!this_fun->Parameter(i)->Equals(that_fun->Parameter(i))) return false; } return true; } UNREACHABLE(); return false; } // Check if [this] <= [that]. template bool TypeImpl::SlowIs(TypeImpl* that) { DisallowHeapAllocation no_allocation; if (that->IsBitset()) { return BitsetType::Is(this->BitsetLub(), that->AsBitset()); } if (this->IsBitset()) { return BitsetType::Is(this->AsBitset(), that->BitsetGlb()); } // (T1 \/ ... \/ Tn) <= T if (T1 <= T) /\ ... /\ (Tn <= T) if (this->IsUnion()) { for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) { if (!this->AsUnion()->Get(i)->Is(that)) return false; } return true; } // T <= (T1 \/ ... \/ Tn) if (T <= T1) \/ ... \/ (T <= Tn) if (that->IsUnion()) { for (int i = 0, n = that->AsUnion()->Length(); i < n; ++i) { if (this->Is(that->AsUnion()->Get(i))) return true; if (i > 1 && this->IsRange()) return false; // Shortcut. } return false; } if (that->IsRange()) { return (this->IsRange() && Contains(that->AsRange(), this->AsRange())) || (this->IsConstant() && Contains(that->AsRange(), *this->AsConstant()->Value())); } if (this->IsRange()) return false; return this->SimplyEquals(that); } template bool TypeImpl::NowIs(TypeImpl* that) { DisallowHeapAllocation no_allocation; // TODO(rossberg): this is incorrect for // Union(Constant(V), T)->NowIs(Class(M)) // but fuzzing does not cover that! if (this->IsConstant()) { i::Object* object = *this->AsConstant()->Value(); if (object->IsHeapObject()) { i::Map* map = i::HeapObject::cast(object)->map(); for (Iterator it = that->Classes(); !it.Done(); it.Advance()) { if (*it.Current() == map) return true; } } } return this->Is(that); } // Check if [this] contains only (currently) stable classes. template bool TypeImpl::NowStable() { DisallowHeapAllocation no_allocation; for (Iterator it = this->Classes(); !it.Done(); it.Advance()) { if (!it.Current()->is_stable()) return false; } return true; } // Check if [this] and [that] overlap. template bool TypeImpl::Maybe(TypeImpl* that) { DisallowHeapAllocation no_allocation; // (T1 \/ ... \/ Tn) overlaps T if (T1 overlaps T) \/ ... \/ (Tn overlaps T) if (this->IsUnion()) { for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) { if (this->AsUnion()->Get(i)->Maybe(that)) return true; } return false; } // T overlaps (T1 \/ ... \/ Tn) if (T overlaps T1) \/ ... \/ (T overlaps Tn) if (that->IsUnion()) { for (int i = 0, n = that->AsUnion()->Length(); i < n; ++i) { if (this->Maybe(that->AsUnion()->Get(i))) return true; } return false; } if (!BitsetType::IsInhabited(this->BitsetLub() & that->BitsetLub())) return false; if (this->IsBitset() || that->IsBitset()) return true; if (this->IsClass() != that->IsClass()) return true; if (this->IsRange()) { if (that->IsConstant()) { return Contains(this->AsRange(), *that->AsConstant()->Value()); } return that->IsRange() && Overlap(this->AsRange(), that->AsRange()); } if (that->IsRange()) { if (this->IsConstant()) { return Contains(that->AsRange(), *this->AsConstant()->Value()); } return this->IsRange() && Overlap(this->AsRange(), that->AsRange()); } return this->SimplyEquals(that); } // Return the range in [this], or [NULL]. template typename TypeImpl::RangeType* TypeImpl::GetRange() { DisallowHeapAllocation no_allocation; if (this->IsRange()) return this->AsRange(); if (this->IsUnion() && this->AsUnion()->Get(1)->IsRange()) { return this->AsUnion()->Get(1)->AsRange(); } return NULL; } template bool TypeImpl::Contains(i::Object* value) { DisallowHeapAllocation no_allocation; for (Iterator it = this->Constants(); !it.Done(); it.Advance()) { if (*it.Current() == value) return true; } if (IsInteger(value)) { RangeType* range = this->GetRange(); if (range != NULL && Contains(range, value)) return true; } return BitsetType::New(BitsetType::Lub(value))->Is(this); } template bool TypeImpl::UnionType::Wellformed() { DisallowHeapAllocation no_allocation; // This checks the invariants of the union representation: // 1. There are at least two elements. // 2. At most one element is a bitset, and it must be the first one. // 3. At most one element is a range, and it must be the second one // (even when the first element is not a bitset). // 4. No element is itself a union. // 5. No element is a subtype of any other. DCHECK(this->Length() >= 2); // (1) for (int i = 0; i < this->Length(); ++i) { if (i != 0) DCHECK(!this->Get(i)->IsBitset()); // (2) if (i != 1) DCHECK(!this->Get(i)->IsRange()); // (3) DCHECK(!this->Get(i)->IsUnion()); // (4) for (int j = 0; j < this->Length(); ++j) { if (i != j) DCHECK(!this->Get(i)->Is(this->Get(j))); // (5) } } return true; } // ----------------------------------------------------------------------------- // Union and intersection static bool AddIsSafe(int x, int y) { return x >= 0 ? y <= std::numeric_limits::max() - x : y >= std::numeric_limits::min() - x; } template typename TypeImpl::TypeHandle TypeImpl::Intersect( TypeHandle type1, TypeHandle type2, Region* region) { bitset bits = type1->BitsetGlb() & type2->BitsetGlb(); if (!BitsetType::IsInhabited(bits)) bits = BitsetType::kNone; // Fast case: bit sets. if (type1->IsBitset() && type2->IsBitset()) { return BitsetType::New(bits, region); } // Fast case: top or bottom types. if (type1->IsNone() || type2->IsAny()) return type1; // Shortcut. if (type2->IsNone() || type1->IsAny()) return type2; // Shortcut. // Semi-fast case. if (type1->Is(type2)) return type1; if (type2->Is(type1)) return type2; // Slow case: create union. int size1 = type1->IsUnion() ? type1->AsUnion()->Length() : 1; int size2 = type2->IsUnion() ? type2->AsUnion()->Length() : 1; if (!AddIsSafe(size1, size2)) return Any(region); int size = size1 + size2; if (!AddIsSafe(size, 2)) return Any(region); size += 2; UnionHandle result = UnionType::New(size, region); size = 0; // Deal with bitsets. result->Set(size++, BitsetType::New(bits, region)); // Deal with ranges. TypeHandle range = None(region); RangeType* range1 = type1->GetRange(); RangeType* range2 = type2->GetRange(); if (range1 != NULL && range2 != NULL) { Limits lim = Intersect(Limits(range1), Limits(range2)); if (lim.min->Number() <= lim.max->Number()) { range = RangeType::New(lim, region); } } result->Set(size++, range); size = IntersectAux(type1, type2, result, size, region); return NormalizeUnion(result, size); } template int TypeImpl::UpdateRange( RangeHandle range, UnionHandle result, int size, Region* region) { TypeHandle old_range = result->Get(1); DCHECK(old_range->IsRange() || old_range->IsNone()); if (range->Is(old_range)) return size; if (!old_range->Is(range->unhandle())) { range = RangeType::New( Union(Limits(range->AsRange()), Limits(old_range->AsRange())), region); } result->Set(1, range); // Remove any components that just got subsumed. for (int i = 2; i < size; ) { if (result->Get(i)->Is(range->unhandle())) { result->Set(i, result->Get(--size)); } else { ++i; } } return size; } template int TypeImpl::IntersectAux( TypeHandle lhs, TypeHandle rhs, UnionHandle result, int size, Region* region) { if (lhs->IsUnion()) { for (int i = 0, n = lhs->AsUnion()->Length(); i < n; ++i) { size = IntersectAux(lhs->AsUnion()->Get(i), rhs, result, size, region); } return size; } if (rhs->IsUnion()) { for (int i = 0, n = rhs->AsUnion()->Length(); i < n; ++i) { size = IntersectAux(lhs, rhs->AsUnion()->Get(i), result, size, region); } return size; } if (!BitsetType::IsInhabited(lhs->BitsetLub() & rhs->BitsetLub())) { return size; } if (lhs->IsRange()) { if (rhs->IsBitset() || rhs->IsClass()) { return UpdateRange( Config::template cast(lhs), result, size, region); } if (rhs->IsConstant() && Contains(lhs->AsRange(), *rhs->AsConstant()->Value())) { return AddToUnion(rhs, result, size, region); } return size; } if (rhs->IsRange()) { if (lhs->IsBitset() || lhs->IsClass()) { return UpdateRange( Config::template cast(rhs), result, size, region); } if (lhs->IsConstant() && Contains(rhs->AsRange(), *lhs->AsConstant()->Value())) { return AddToUnion(lhs, result, size, region); } return size; } if (lhs->IsBitset() || rhs->IsBitset()) { return AddToUnion(lhs->IsBitset() ? rhs : lhs, result, size, region); } if (lhs->IsClass() != rhs->IsClass()) { return AddToUnion(lhs->IsClass() ? rhs : lhs, result, size, region); } if (lhs->SimplyEquals(rhs->unhandle())) { return AddToUnion(lhs, result, size, region); } return size; } template typename TypeImpl::TypeHandle TypeImpl::Union( TypeHandle type1, TypeHandle type2, Region* region) { // Fast case: bit sets. if (type1->IsBitset() && type2->IsBitset()) { return BitsetType::New(type1->AsBitset() | type2->AsBitset(), region); } // Fast case: top or bottom types. if (type1->IsAny() || type2->IsNone()) return type1; if (type2->IsAny() || type1->IsNone()) return type2; // Semi-fast case. if (type1->Is(type2)) return type2; if (type2->Is(type1)) return type1; // Slow case: create union. int size1 = type1->IsUnion() ? type1->AsUnion()->Length() : 1; int size2 = type2->IsUnion() ? type2->AsUnion()->Length() : 1; if (!AddIsSafe(size1, size2)) return Any(region); int size = size1 + size2; if (!AddIsSafe(size, 2)) return Any(region); size += 2; UnionHandle result = UnionType::New(size, region); size = 0; // Deal with bitsets. TypeHandle bits = BitsetType::New( type1->BitsetGlb() | type2->BitsetGlb(), region); result->Set(size++, bits); // Deal with ranges. TypeHandle range = None(region); RangeType* range1 = type1->GetRange(); RangeType* range2 = type2->GetRange(); if (range1 != NULL && range2 != NULL) { range = RangeType::New(Union(Limits(range1), Limits(range2)), region); } else if (range1 != NULL) { range = handle(range1); } else if (range2 != NULL) { range = handle(range2); } result->Set(size++, range); size = AddToUnion(type1, result, size, region); size = AddToUnion(type2, result, size, region); return NormalizeUnion(result, size); } // Add [type] to [result] unless [type] is bitset, range, or already subsumed. // Return new size of [result]. template int TypeImpl::AddToUnion( TypeHandle type, UnionHandle result, int size, Region* region) { if (type->IsBitset() || type->IsRange()) return size; if (type->IsUnion()) { for (int i = 0, n = type->AsUnion()->Length(); i < n; ++i) { size = AddToUnion(type->AsUnion()->Get(i), result, size, region); } return size; } for (int i = 0; i < size; ++i) { if (type->Is(result->Get(i))) return size; } result->Set(size++, type); return size; } template typename TypeImpl::TypeHandle TypeImpl::NormalizeUnion( UnionHandle unioned, int size) { DCHECK(size >= 2); // If range is subsumed by bitset, use its place for a different type. if (unioned->Get(1)->Is(unioned->Get(0))) { unioned->Set(1, unioned->Get(--size)); } // If bitset is None, use its place for a different type. if (size >= 2 && unioned->Get(0)->IsNone()) { unioned->Set(0, unioned->Get(--size)); } if (size == 1) return unioned->Get(0); unioned->Shrink(size); SLOW_DCHECK(unioned->Wellformed()); return unioned; } // ----------------------------------------------------------------------------- // Iteration. template int TypeImpl::NumClasses() { DisallowHeapAllocation no_allocation; if (this->IsClass()) { return 1; } else if (this->IsUnion()) { int result = 0; for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) { if (this->AsUnion()->Get(i)->IsClass()) ++result; } return result; } else { return 0; } } template int TypeImpl::NumConstants() { DisallowHeapAllocation no_allocation; if (this->IsConstant()) { return 1; } else if (this->IsUnion()) { int result = 0; for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) { if (this->AsUnion()->Get(i)->IsConstant()) ++result; } return result; } else { return 0; } } template template typename TypeImpl::TypeHandle TypeImpl::Iterator::get_type() { DCHECK(!Done()); return type_->IsUnion() ? type_->AsUnion()->Get(index_) : type_; } // C++ cannot specialise nested templates, so we have to go through this // contortion with an auxiliary template to simulate it. template struct TypeImplIteratorAux { static bool matches(typename TypeImpl::TypeHandle type); static i::Handle current(typename TypeImpl::TypeHandle type); }; template struct TypeImplIteratorAux { static bool matches(typename TypeImpl::TypeHandle type) { return type->IsClass(); } static i::Handle current(typename TypeImpl::TypeHandle type) { return type->AsClass()->Map(); } }; template struct TypeImplIteratorAux { static bool matches(typename TypeImpl::TypeHandle type) { return type->IsConstant(); } static i::Handle current( typename TypeImpl::TypeHandle type) { return type->AsConstant()->Value(); } }; template template bool TypeImpl::Iterator::matches(TypeHandle type) { return TypeImplIteratorAux::matches(type); } template template i::Handle TypeImpl::Iterator::Current() { return TypeImplIteratorAux::current(get_type()); } template template void TypeImpl::Iterator::Advance() { DisallowHeapAllocation no_allocation; ++index_; if (type_->IsUnion()) { for (int n = type_->AsUnion()->Length(); index_ < n; ++index_) { if (matches(type_->AsUnion()->Get(index_))) return; } } else if (index_ == 0 && matches(type_)) { return; } index_ = -1; } // ----------------------------------------------------------------------------- // Conversion between low-level representations. template template typename TypeImpl::TypeHandle TypeImpl::Convert( typename OtherType::TypeHandle type, Region* region) { if (type->IsBitset()) { return BitsetType::New(type->AsBitset(), region); } else if (type->IsClass()) { return ClassType::New(type->AsClass()->Map(), region); } else if (type->IsConstant()) { return ConstantType::New(type->AsConstant()->Value(), region); } else if (type->IsRange()) { return RangeType::New( type->AsRange()->Min(), type->AsRange()->Max(), region); } else if (type->IsContext()) { TypeHandle outer = Convert(type->AsContext()->Outer(), region); return ContextType::New(outer, region); } else if (type->IsUnion()) { int length = type->AsUnion()->Length(); UnionHandle unioned = UnionType::New(length, region); for (int i = 0; i < length; ++i) { TypeHandle t = Convert(type->AsUnion()->Get(i), region); unioned->Set(i, t); } return unioned; } else if (type->IsArray()) { TypeHandle element = Convert(type->AsArray()->Element(), region); return ArrayType::New(element, region); } else if (type->IsFunction()) { TypeHandle res = Convert(type->AsFunction()->Result(), region); TypeHandle rcv = Convert(type->AsFunction()->Receiver(), region); FunctionHandle function = FunctionType::New( res, rcv, type->AsFunction()->Arity(), region); for (int i = 0; i < function->Arity(); ++i) { TypeHandle param = Convert( type->AsFunction()->Parameter(i), region); function->InitParameter(i, param); } return function; } else { UNREACHABLE(); return None(region); } } // ----------------------------------------------------------------------------- // Printing. template const char* TypeImpl::BitsetType::Name(bitset bits) { switch (bits) { case REPRESENTATION(kAny): return "Any"; #define RETURN_NAMED_REPRESENTATION_TYPE(type, value) \ case REPRESENTATION(k##type): return #type; REPRESENTATION_BITSET_TYPE_LIST(RETURN_NAMED_REPRESENTATION_TYPE) #undef RETURN_NAMED_REPRESENTATION_TYPE #define RETURN_NAMED_SEMANTIC_TYPE(type, value) \ case SEMANTIC(k##type): return #type; SEMANTIC_BITSET_TYPE_LIST(RETURN_NAMED_SEMANTIC_TYPE) #undef RETURN_NAMED_SEMANTIC_TYPE default: return NULL; } } template void TypeImpl::BitsetType::Print(std::ostream& os, // NOLINT bitset bits) { DisallowHeapAllocation no_allocation; const char* name = Name(bits); if (name != NULL) { os << name; return; } static const bitset named_bitsets[] = { #define BITSET_CONSTANT(type, value) REPRESENTATION(k##type), REPRESENTATION_BITSET_TYPE_LIST(BITSET_CONSTANT) #undef BITSET_CONSTANT #define BITSET_CONSTANT(type, value) SEMANTIC(k##type), INTERNAL_BITSET_TYPE_LIST(BITSET_CONSTANT) SEMANTIC_BITSET_TYPE_LIST(BITSET_CONSTANT) #undef BITSET_CONSTANT }; bool is_first = true; os << "("; for (int i(arraysize(named_bitsets) - 1); bits != 0 && i >= 0; --i) { bitset subset = named_bitsets[i]; if ((bits & subset) == subset) { if (!is_first) os << " | "; is_first = false; os << Name(subset); bits -= subset; } } DCHECK(bits == 0); os << ")"; } template void TypeImpl::PrintTo(std::ostream& os, PrintDimension dim) { DisallowHeapAllocation no_allocation; if (dim != REPRESENTATION_DIM) { if (this->IsBitset()) { BitsetType::Print(os, SEMANTIC(this->AsBitset())); } else if (this->IsClass()) { os << "Class(" << static_cast(*this->AsClass()->Map()) << " < "; BitsetType::New(BitsetType::Lub(this))->PrintTo(os, dim); os << ")"; } else if (this->IsConstant()) { os << "Constant(" << Brief(*this->AsConstant()->Value()) << ")"; } else if (this->IsRange()) { std::ostream::fmtflags saved_flags = os.setf(std::ios::fixed); std::streamsize saved_precision = os.precision(0); os << "Range(" << this->AsRange()->Min()->Number() << ", " << this->AsRange()->Max()->Number() << ")"; os.flags(saved_flags); os.precision(saved_precision); } else if (this->IsContext()) { os << "Context("; this->AsContext()->Outer()->PrintTo(os, dim); os << ")"; } else if (this->IsUnion()) { os << "("; for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) { TypeHandle type_i = this->AsUnion()->Get(i); if (i > 0) os << " | "; type_i->PrintTo(os, dim); } os << ")"; } else if (this->IsArray()) { os << "Array("; AsArray()->Element()->PrintTo(os, dim); os << ")"; } else if (this->IsFunction()) { if (!this->AsFunction()->Receiver()->IsAny()) { this->AsFunction()->Receiver()->PrintTo(os, dim); os << "."; } os << "("; for (int i = 0; i < this->AsFunction()->Arity(); ++i) { if (i > 0) os << ", "; this->AsFunction()->Parameter(i)->PrintTo(os, dim); } os << ")->"; this->AsFunction()->Result()->PrintTo(os, dim); } else { UNREACHABLE(); } } if (dim == BOTH_DIMS) os << "/"; if (dim != SEMANTIC_DIM) { BitsetType::Print(os, REPRESENTATION(this->BitsetLub())); } } #ifdef DEBUG template void TypeImpl::Print() { OFStream os(stdout); PrintTo(os); os << std::endl; } template void TypeImpl::BitsetType::Print(bitset bits) { OFStream os(stdout); Print(os, bits); os << std::endl; } #endif // ----------------------------------------------------------------------------- // Instantiations. template class TypeImpl; template class TypeImpl::Iterator; template class TypeImpl::Iterator; template class TypeImpl; template class TypeImpl::Iterator; template class TypeImpl::Iterator; template TypeImpl::TypeHandle TypeImpl::Convert( TypeImpl::TypeHandle, TypeImpl::Region*); template TypeImpl::TypeHandle TypeImpl::Convert( TypeImpl::TypeHandle, TypeImpl::Region*); } } // namespace v8::internal