// Copyright 2009 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef V8_VIRTUAL_FRAME_ARM_H_ #define V8_VIRTUAL_FRAME_ARM_H_ #include "register-allocator.h" namespace v8 { namespace internal { // ------------------------------------------------------------------------- // Virtual frames // // The virtual frame is an abstraction of the physical stack frame. It // encapsulates the parameters, frame-allocated locals, and the expression // stack. It supports push/pop operations on the expression stack, as well // as random access to the expression stack elements, locals, and // parameters. class VirtualFrame : public Malloced { public: // A utility class to introduce a scope where the virtual frame is // expected to remain spilled. The constructor spills the code // generator's current frame, but no attempt is made to require it // to stay spilled. It is intended as documentation while the code // generator is being transformed. class SpilledScope BASE_EMBEDDED { public: explicit SpilledScope(CodeGenerator* cgen); ~SpilledScope(); private: CodeGenerator* cgen_; bool previous_state_; }; // An illegal index into the virtual frame. static const int kIllegalIndex = -1; // Construct an initial virtual frame on entry to a JS function. explicit VirtualFrame(CodeGenerator* cgen); // Construct a virtual frame as a clone of an existing one. explicit VirtualFrame(VirtualFrame* original); // Create a duplicate of an existing valid frame element. FrameElement CopyElementAt(int index); // The height of the virtual expression stack. int height() const { return elements_.length() - expression_base_index(); } int register_index(Register reg) { return register_locations_[reg.code()]; } bool is_used(int reg_code) { return register_locations_[reg_code] != kIllegalIndex; } bool is_used(Register reg) { return is_used(reg.code()); } // Add extra in-memory elements to the top of the frame to match an actual // frame (eg, the frame after an exception handler is pushed). No code is // emitted. void Adjust(int count); // Forget elements from the top of the frame to match an actual frame (eg, // the frame after a runtime call). No code is emitted. void Forget(int count); // Forget count elements from the top of the frame without adjusting // the stack pointer downward. This is used, for example, before // merging frames at break, continue, and return targets. void ForgetElements(int count); // Spill all values from the frame to memory. void SpillAll(); // Spill all occurrences of a specific register from the frame. void Spill(Register reg); // Spill all occurrences of an arbitrary register if possible. Return the // register spilled or no_reg if it was not possible to free any register // (ie, they all have frame-external references). Register SpillAnyRegister(); // Prepare this virtual frame for merging to an expected frame by // performing some state changes that do not require generating // code. It is guaranteed that no code will be generated. void PrepareMergeTo(VirtualFrame* expected); // Make this virtual frame have a state identical to an expected virtual // frame. As a side effect, code may be emitted to make this frame match // the expected one. void MergeTo(VirtualFrame* expected); // Detach a frame from its code generator, perhaps temporarily. This // tells the register allocator that it is free to use frame-internal // registers. Used when the code generator's frame is switched from this // one to NULL by an unconditional jump. void DetachFromCodeGenerator(); // (Re)attach a frame to its code generator. This informs the register // allocator that the frame-internal register references are active again. // Used when a code generator's frame is switched from NULL to this one by // binding a label. void AttachToCodeGenerator(); // Emit code for the physical JS entry and exit frame sequences. After // calling Enter, the virtual frame is ready for use; and after calling // Exit it should not be used. Note that Enter does not allocate space in // the physical frame for storing frame-allocated locals. void Enter(); void Exit(); // Prepare for returning from the frame by spilling locals and // dropping all non-locals elements in the virtual frame. This // avoids generating unnecessary merge code when jumping to the // shared return site. Emits code for spills. void PrepareForReturn(); // Allocate and initialize the frame-allocated locals. void AllocateStackSlots(int count); // The current top of the expression stack as an assembly operand. MemOperand Top() const { return MemOperand(sp, 0); } // An element of the expression stack as an assembly operand. MemOperand ElementAt(int index) const { return MemOperand(sp, index * kPointerSize); } // Random-access store to a frame-top relative frame element. The result // becomes owned by the frame and is invalidated. void SetElementAt(int index, Result* value); // Set a frame element to a constant. The index is frame-top relative. void SetElementAt(int index, Handle value) { Result temp(value, cgen_); SetElementAt(index, &temp); } void PushElementAt(int index) { PushFrameSlotAt(elements_.length() - index - 1); } // A frame-allocated local as an assembly operand. MemOperand LocalAt(int index) const { ASSERT(0 <= index); ASSERT(index < local_count_); return MemOperand(fp, kLocal0Offset - index * kPointerSize); } // Push a copy of the value of a local frame slot on top of the frame. void PushLocalAt(int index) { PushFrameSlotAt(local0_index() + index); } // Push the value of a local frame slot on top of the frame and invalidate // the local slot. The slot should be written to before trying to read // from it again. void TakeLocalAt(int index) { TakeFrameSlotAt(local0_index() + index); } // Store the top value on the virtual frame into a local frame slot. The // value is left in place on top of the frame. void StoreToLocalAt(int index) { StoreToFrameSlotAt(local0_index() + index); } // Push the address of the receiver slot on the frame. void PushReceiverSlotAddress(); // The function frame slot. MemOperand Function() const { return MemOperand(fp, kFunctionOffset); } // Push the function on top of the frame. void PushFunction() { PushFrameSlotAt(function_index()); } // The context frame slot. MemOperand Context() const { return MemOperand(fp, kContextOffset); } // Save the value of the esi register to the context frame slot. void SaveContextRegister(); // Restore the esi register from the value of the context frame // slot. void RestoreContextRegister(); // A parameter as an assembly operand. MemOperand ParameterAt(int index) const { // Index -1 corresponds to the receiver. ASSERT(-1 <= index && index <= parameter_count_); return MemOperand(fp, (1 + parameter_count_ - index) * kPointerSize); } // Push a copy of the value of a parameter frame slot on top of the frame. void PushParameterAt(int index) { PushFrameSlotAt(param0_index() + index); } // Push the value of a paramter frame slot on top of the frame and // invalidate the parameter slot. The slot should be written to before // trying to read from it again. void TakeParameterAt(int index) { TakeFrameSlotAt(param0_index() + index); } // Store the top value on the virtual frame into a parameter frame slot. // The value is left in place on top of the frame. void StoreToParameterAt(int index) { StoreToFrameSlotAt(param0_index() + index); } // The receiver frame slot. MemOperand Receiver() const { return ParameterAt(-1); } // Push a try-catch or try-finally handler on top of the virtual frame. void PushTryHandler(HandlerType type); // Call stub given the number of arguments it expects on (and // removes from) the stack. Result CallStub(CodeStub* stub, int arg_count); // Call stub that expects its argument in r0. The argument is given // as a result which must be the register r0. Result CallStub(CodeStub* stub, Result* arg); // Call stub that expects its arguments in r1 and r0. The arguments // are given as results which must be the appropriate registers. Result CallStub(CodeStub* stub, Result* arg0, Result* arg1); // Call runtime given the number of arguments expected on (and // removed from) the stack. Result CallRuntime(Runtime::Function* f, int arg_count); Result CallRuntime(Runtime::FunctionId id, int arg_count); // Invoke builtin given the number of arguments it expects on (and // removes from) the stack. Result InvokeBuiltin(Builtins::JavaScript id, InvokeJSFlags flag, Result* arg_count_register, int arg_count); // Call into an IC stub given the number of arguments it removes // from the stack. Register arguments are passed as results and // consumed by the call. Result CallCodeObject(Handle ic, RelocInfo::Mode rmode, int dropped_args); Result CallCodeObject(Handle ic, RelocInfo::Mode rmode, Result* arg, int dropped_args); Result CallCodeObject(Handle ic, RelocInfo::Mode rmode, Result* arg0, Result* arg1, int dropped_args); // Drop a number of elements from the top of the expression stack. May // emit code to affect the physical frame. Does not clobber any registers // excepting possibly the stack pointer. void Drop(int count); // Drop one element. void Drop() { Drop(1); } // Duplicate the top element of the frame. void Dup() { PushFrameSlotAt(elements_.length() - 1); } // Pop an element from the top of the expression stack. Returns a // Result, which may be a constant or a register. Result Pop(); // Pop and save an element from the top of the expression stack and // emit a corresponding pop instruction. void EmitPop(Register reg); // Push an element on top of the expression stack and emit a // corresponding push instruction. void EmitPush(Register reg); // Push an element on the virtual frame. void Push(Register reg, StaticType static_type = StaticType()); void Push(Handle value); void Push(Smi* value) { Push(Handle(value)); } // Pushing a result invalidates it (its contents become owned by the frame). void Push(Result* result); // Nip removes zero or more elements from immediately below the top // of the frame, leaving the previous top-of-frame value on top of // the frame. Nip(k) is equivalent to x = Pop(), Drop(k), Push(x). void Nip(int num_dropped); private: static const int kLocal0Offset = JavaScriptFrameConstants::kLocal0Offset; static const int kFunctionOffset = JavaScriptFrameConstants::kFunctionOffset; static const int kContextOffset = StandardFrameConstants::kContextOffset; static const int kHandlerSize = StackHandlerConstants::kSize / kPointerSize; static const int kPreallocatedElements = 5 + 8; // 8 expression stack slots. CodeGenerator* cgen_; MacroAssembler* masm_; List elements_; // The number of frame-allocated locals and parameters respectively. int parameter_count_; int local_count_; // The index of the element that is at the processor's stack pointer // (the sp register). int stack_pointer_; // The index of the element that is at the processor's frame pointer // (the fp register). int frame_pointer_; // The index of the register frame element using each register, or // kIllegalIndex if a register is not on the frame. int register_locations_[kNumRegisters]; // The index of the first parameter. The receiver lies below the first // parameter. int param0_index() const { return 1; } // The index of the context slot in the frame. int context_index() const { ASSERT(frame_pointer_ != kIllegalIndex); return frame_pointer_ - 1; } // The index of the function slot in the frame. It lies above the context // slot. int function_index() const { ASSERT(frame_pointer_ != kIllegalIndex); return frame_pointer_ - 2; } // The index of the first local. Between the parameters and the locals // lie the return address, the saved frame pointer, the context, and the // function. int local0_index() const { ASSERT(frame_pointer_ != kIllegalIndex); return frame_pointer_ + 2; } // The index of the base of the expression stack. int expression_base_index() const { return local0_index() + local_count_; } // Convert a frame index into a frame pointer relative offset into the // actual stack. int fp_relative(int index) const { return (frame_pointer_ - index) * kPointerSize; } // Record an occurrence of a register in the virtual frame. This has the // effect of incrementing the register's external reference count and // of updating the index of the register's location in the frame. void Use(Register reg, int index); // Record that a register reference has been dropped from the frame. This // decrements the register's external reference count and invalidates the // index of the register's location in the frame. void Unuse(Register reg); // Spill the element at a particular index---write it to memory if // necessary, free any associated register, and forget its value if // constant. void SpillElementAt(int index); // Sync the element at a particular index. If it is a register or // constant that disagrees with the value on the stack, write it to memory. // Keep the element type as register or constant, and clear the dirty bit. void SyncElementAt(int index); // Sync the range of elements in [begin, end). void SyncRange(int begin, int end); // Sync a single unsynced element that lies beneath or at the stack pointer. void SyncElementBelowStackPointer(int index); // Sync a single unsynced element that lies just above the stack pointer. void SyncElementByPushing(int index); // Push a copy of a frame slot (typically a local or parameter) on top of // the frame. void PushFrameSlotAt(int index); // Push a the value of a frame slot (typically a local or parameter) on // top of the frame and invalidate the slot. void TakeFrameSlotAt(int index); // Store the value on top of the frame to a frame slot (typically a local // or parameter). void StoreToFrameSlotAt(int index); // Spill all elements in registers. Spill the top spilled_args elements // on the frame. Sync all other frame elements. // Then drop dropped_args elements from the virtual frame, to match // the effect of an upcoming call that will drop them from the stack. void PrepareForCall(int spilled_args, int dropped_args); // Move frame elements currently in registers or constants, that // should be in memory in the expected frame, to memory. void MergeMoveRegistersToMemory(VirtualFrame* expected); // Make the register-to-register moves necessary to // merge this frame with the expected frame. // Register to memory moves must already have been made, // and memory to register moves must follow this call. // This is because some new memory-to-register moves are // created in order to break cycles of register moves. // Used in the implementation of MergeTo(). void MergeMoveRegistersToRegisters(VirtualFrame* expected); // Make the memory-to-register and constant-to-register moves // needed to make this frame equal the expected frame. // Called after all register-to-memory and register-to-register // moves have been made. After this function returns, the frames // should be equal. void MergeMoveMemoryToRegisters(VirtualFrame* expected); // Invalidates a frame slot (puts an invalid frame element in it). // Copies on the frame are correctly handled, and if this slot was // the backing store of copies, the index of the new backing store // is returned. Otherwise, returns kIllegalIndex. // Register counts are correctly updated. int InvalidateFrameSlotAt(int index); // Call a code stub that has already been prepared for calling (via // PrepareForCall). Result RawCallStub(CodeStub* stub); // Calls a code object which has already been prepared for calling // (via PrepareForCall). Result RawCallCodeObject(Handle code, RelocInfo::Mode rmode); bool Equals(VirtualFrame* other); friend class JumpTarget; }; } } // namespace v8::internal #endif // V8_VIRTUAL_FRAME_ARM_H_