// Copyright 2009 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "codegen-inl.h" #include "register-allocator-inl.h" namespace v8 { namespace internal { // ------------------------------------------------------------------------- // VirtualFrame implementation. VirtualFrame::SpilledScope::SpilledScope(CodeGenerator* cgen) : cgen_(cgen), previous_state_(cgen->in_spilled_code()) { ASSERT(cgen->has_valid_frame()); cgen->frame()->SpillAll(); cgen->set_in_spilled_code(true); } VirtualFrame::SpilledScope::~SpilledScope() { cgen_->set_in_spilled_code(previous_state_); } // When cloned, a frame is a deep copy of the original. VirtualFrame::VirtualFrame(VirtualFrame* original) : cgen_(original->cgen_), masm_(original->masm_), elements_(original->elements_.length()), parameter_count_(original->parameter_count_), local_count_(original->local_count_), stack_pointer_(original->stack_pointer_), frame_pointer_(original->frame_pointer_), frame_registers_(original->frame_registers_) { // Copy all the elements from the original. for (int i = 0; i < original->elements_.length(); i++) { elements_.Add(original->elements_[i]); } } FrameElement VirtualFrame::CopyElementAt(int index) { ASSERT(index >= 0); ASSERT(index < elements_.length()); FrameElement target = elements_[index]; FrameElement result; switch (target.type()) { case FrameElement::CONSTANT: // We do not copy constants and instead return a fresh unsynced // constant. result = FrameElement::ConstantElement(target.handle(), FrameElement::NOT_SYNCED); break; case FrameElement::COPY: // We do not allow copies of copies, so we follow one link to // the actual backing store of a copy before making a copy. index = target.index(); ASSERT(elements_[index].is_memory() || elements_[index].is_register()); // Fall through. case FrameElement::MEMORY: // Fall through. case FrameElement::REGISTER: // All copies are backed by memory or register locations. result.type_ = FrameElement::TypeField::encode(FrameElement::COPY) | FrameElement::IsCopiedField::encode(false) | FrameElement::SyncField::encode(FrameElement::NOT_SYNCED); result.data_.index_ = index; elements_[index].set_copied(); break; case FrameElement::INVALID: // We should not try to copy invalid elements. UNREACHABLE(); break; } return result; } // Modify the state of the virtual frame to match the actual frame by adding // extra in-memory elements to the top of the virtual frame. The extra // elements will be externally materialized on the actual frame (eg, by // pushing an exception handler). No code is emitted. void VirtualFrame::Adjust(int count) { ASSERT(count >= 0); ASSERT(stack_pointer_ == elements_.length() - 1); for (int i = 0; i < count; i++) { elements_.Add(FrameElement::MemoryElement()); } stack_pointer_ += count; } // Modify the state of the virtual frame to match the actual frame by // removing elements from the top of the virtual frame. The elements will // be externally popped from the actual frame (eg, by a runtime call). No // code is emitted. void VirtualFrame::Forget(int count) { ASSERT(count >= 0); ASSERT(stack_pointer_ == elements_.length() - 1); stack_pointer_ -= count; ForgetElements(count); } void VirtualFrame::ForgetElements(int count) { ASSERT(count >= 0); ASSERT(elements_.length() >= count); for (int i = 0; i < count; i++) { FrameElement last = elements_.RemoveLast(); if (last.is_register()) { // A hack to properly count register references for the code // generator's current frame and also for other frames. The // same code appears in PrepareMergeTo. if (cgen_->frame() == this) { Unuse(last.reg()); } else { frame_registers_.Unuse(last.reg()); } } } } void VirtualFrame::Use(Register reg) { frame_registers_.Use(reg); cgen_->allocator()->Use(reg); } void VirtualFrame::Unuse(Register reg) { frame_registers_.Unuse(reg); cgen_->allocator()->Unuse(reg); } void VirtualFrame::Spill(Register target) { if (!frame_registers_.is_used(target)) return; for (int i = 0; i < elements_.length(); i++) { if (elements_[i].is_register() && elements_[i].reg().is(target)) { SpillElementAt(i); } } } // Spill any register if possible, making its external reference count zero. Register VirtualFrame::SpillAnyRegister() { // Find the leftmost (ordered by register code), least // internally-referenced register whose internal reference count matches // its external reference count (so that spilling it from the frame frees // it for use). int min_count = kMaxInt; int best_register_code = no_reg.code_; for (int i = 0; i < kNumRegisters; i++) { int count = frame_registers_.count(i); if (count < min_count && count == cgen_->allocator()->count(i)) { min_count = count; best_register_code = i; } } Register result = { best_register_code }; if (result.is_valid()) { Spill(result); ASSERT(!cgen_->allocator()->is_used(result)); } return result; } // Make the type of the element at a given index be MEMORY. void VirtualFrame::SpillElementAt(int index) { if (!elements_[index].is_valid()) return; SyncElementAt(index); // The element is now in memory. Its copied flag is preserved. FrameElement new_element = FrameElement::MemoryElement(); if (elements_[index].is_copied()) { new_element.set_copied(); } if (elements_[index].is_register()) { Unuse(elements_[index].reg()); } elements_[index] = new_element; } // Clear the dirty bits for the range of elements in [begin, end). void VirtualFrame::SyncRange(int begin, int end) { ASSERT(begin >= 0); ASSERT(end <= elements_.length()); for (int i = begin; i < end; i++) { RawSyncElementAt(i); } } // Clear the dirty bit for the element at a given index. void VirtualFrame::SyncElementAt(int index) { if (index > stack_pointer_ + 1) { SyncRange(stack_pointer_ + 1, index); } RawSyncElementAt(index); } // Make the type of all elements be MEMORY. void VirtualFrame::SpillAll() { for (int i = 0; i < elements_.length(); i++) { SpillElementAt(i); } } void VirtualFrame::PrepareMergeTo(VirtualFrame* expected) { // Perform state changes on this frame that will make merge to the // expected frame simpler or else increase the likelihood that his // frame will match another. for (int i = 0; i < elements_.length(); i++) { FrameElement source = elements_[i]; FrameElement target = expected->elements_[i]; if (!target.is_valid() || (target.is_memory() && !source.is_memory() && source.is_synced())) { // No code needs to be generated to invalidate valid elements. // No code needs to be generated to move values to memory if // they are already synced. We perform those moves here, before // merging. if (source.is_register()) { // If the frame is the code generator's current frame, we have // to decrement both the frame-internal and global register // counts. if (cgen_->frame() == this) { Unuse(source.reg()); } else { frame_registers_.Unuse(source.reg()); } } elements_[i] = target; } else if (target.is_register() && !target.is_synced() && !source.is_memory()) { // If an element's target is a register that doesn't need to be // synced, and the element is not in memory, then the sync state // of the element is irrelevant. We clear the sync bit. ASSERT(source.is_valid()); elements_[i].clear_sync(); } elements_[i].clear_copied(); if (elements_[i].is_copy()) { elements_[elements_[i].index()].set_copied(); } } } void VirtualFrame::PrepareForCall(int spilled_args, int dropped_args) { ASSERT(height() >= dropped_args); ASSERT(height() >= spilled_args); ASSERT(dropped_args <= spilled_args); int arg_base_index = elements_.length() - spilled_args; // Spill the arguments. We spill from the top down so that the // backing stores of register copies will be spilled only after all // the copies are spilled---it is better to spill via a // register-to-memory move than a memory-to-memory move. for (int i = elements_.length() - 1; i >= arg_base_index; i--) { SpillElementAt(i); } // Below the arguments, spill registers and sync everything else. // Syncing is necessary for the locals and parameters to give the // debugger a consistent view of the frame. for (int i = arg_base_index - 1; i >= 0; i--) { FrameElement element = elements_[i]; if (element.is_register()) { SpillElementAt(i); } else if (element.is_valid()) { SyncElementAt(i); } } // Forget the frame elements that will be popped by the call. Forget(dropped_args); } void VirtualFrame::DetachFromCodeGenerator() { // Tell the global register allocator that it is free to reallocate all // register references contained in this frame. The frame elements remain // register references, so the frame-internal reference count is not // decremented. for (int i = 0; i < elements_.length(); i++) { if (elements_[i].is_register()) { cgen_->allocator()->Unuse(elements_[i].reg()); } } } void VirtualFrame::AttachToCodeGenerator() { // Tell the global register allocator that the frame-internal register // references are live again. for (int i = 0; i < elements_.length(); i++) { if (elements_[i].is_register()) { cgen_->allocator()->Use(elements_[i].reg()); } } } void VirtualFrame::PrepareForReturn() { // Spill all locals. This is necessary to make sure all locals have // the right value when breaking at the return site in the debugger. // // TODO(203): It is also necessary to ensure that merging at the // return site does not generate code to overwrite eax, where the // return value is kept in a non-refcounted register reference. for (int i = 0; i < expression_base_index(); i++) SpillElementAt(i); } void VirtualFrame::SetElementAt(int index, Result* value) { int frame_index = elements_.length() - index - 1; ASSERT(frame_index >= 0); ASSERT(frame_index < elements_.length()); ASSERT(value->is_valid()); FrameElement original = elements_[frame_index]; // Early exit if the element is the same as the one being set. bool same_register = original.is_register() && value->is_register() && original.reg().is(value->reg()); bool same_constant = original.is_constant() && value->is_constant() && original.handle().is_identical_to(value->handle()); if (same_register || same_constant) { value->Unuse(); return; } // If the original may be a copy, adjust to preserve the copy-on-write // semantics of copied elements. if (original.is_copied() && (original.is_register() || original.is_memory())) { FrameElement ignored = AdjustCopies(frame_index); } // If the original is a register reference, deallocate it. if (original.is_register()) { Unuse(original.reg()); } FrameElement new_element; if (value->is_register()) { // There are two cases depending no whether the register already // occurs in the frame or not. if (register_count(value->reg()) == 0) { Use(value->reg()); elements_[frame_index] = FrameElement::RegisterElement(value->reg(), FrameElement::NOT_SYNCED); } else { for (int i = 0; i < elements_.length(); i++) { FrameElement element = elements_[i]; if (element.is_register() && element.reg().is(value->reg())) { // The register backing store is lower in the frame than its // copy. if (i < frame_index) { elements_[frame_index] = CopyElementAt(i); } else { // There was an early bailout for the case of setting a // register element to itself. ASSERT(i != frame_index); element.clear_sync(); elements_[frame_index] = element; elements_[i] = CopyElementAt(frame_index); } // Exit the loop once the appropriate copy is inserted. break; } } } } else { ASSERT(value->is_constant()); elements_[frame_index] = FrameElement::ConstantElement(value->handle(), FrameElement::NOT_SYNCED); } value->Unuse(); } void VirtualFrame::PushFrameSlotAt(int index) { FrameElement new_element = CopyElementAt(index); elements_.Add(new_element); } Result VirtualFrame::CallStub(CodeStub* stub, int frame_arg_count) { PrepareForCall(frame_arg_count, frame_arg_count); return RawCallStub(stub, frame_arg_count); } Result VirtualFrame::CallStub(CodeStub* stub, Result* arg, int frame_arg_count) { PrepareForCall(frame_arg_count, frame_arg_count); arg->Unuse(); return RawCallStub(stub, frame_arg_count); } Result VirtualFrame::CallStub(CodeStub* stub, Result* arg0, Result* arg1, int frame_arg_count) { PrepareForCall(frame_arg_count, frame_arg_count); arg0->Unuse(); arg1->Unuse(); return RawCallStub(stub, frame_arg_count); } Result VirtualFrame::CallCodeObject(Handle code, RelocInfo::Mode rmode, int dropped_args) { int spilled_args = 0; switch (code->kind()) { case Code::CALL_IC: spilled_args = dropped_args + 1; break; case Code::FUNCTION: spilled_args = dropped_args + 1; break; case Code::KEYED_LOAD_IC: ASSERT(dropped_args == 0); spilled_args = 2; break; default: // The other types of code objects are called with values // in specific registers, and are handled in functions with // a different signature. UNREACHABLE(); break; } PrepareForCall(spilled_args, dropped_args); return RawCallCodeObject(code, rmode); } void VirtualFrame::Push(Register reg) { FrameElement new_element; if (register_count(reg) == 0) { Use(reg); new_element = FrameElement::RegisterElement(reg, FrameElement::NOT_SYNCED); } else { for (int i = 0; i < elements_.length(); i++) { FrameElement element = elements_[i]; if (element.is_register() && element.reg().is(reg)) { new_element = CopyElementAt(i); break; } } } elements_.Add(new_element); } void VirtualFrame::Push(Handle value) { elements_.Add(FrameElement::ConstantElement(value, FrameElement::NOT_SYNCED)); } void VirtualFrame::Push(Result* result) { if (result->is_register()) { Push(result->reg()); } else { ASSERT(result->is_constant()); Push(result->handle()); } result->Unuse(); } void VirtualFrame::Nip(int num_dropped) { ASSERT(num_dropped >= 0); if (num_dropped == 0) return; Result tos = Pop(); if (num_dropped > 1) { Drop(num_dropped - 1); } SetElementAt(0, &tos); } bool FrameElement::Equals(FrameElement other) { if (type_ != other.type_) return false; if (is_register()) { if (!reg().is(other.reg())) return false; } else if (is_constant()) { if (!handle().is_identical_to(other.handle())) return false; } else if (is_copy()) { if (index() != other.index()) return false; } return true; } bool VirtualFrame::Equals(VirtualFrame* other) { #ifdef DEBUG // These are sanity checks in debug builds, but we do not need to // use them to distinguish frames at merge points. if (cgen_ != other->cgen_) return false; if (masm_ != other->masm_) return false; if (parameter_count_ != other->parameter_count_) return false; if (local_count_ != other->local_count_) return false; if (frame_pointer_ != other->frame_pointer_) return false; for (int i = 0; i < kNumRegisters; i++) { if (frame_registers_.count(i) != other->frame_registers_.count(i)) { return false; } } if (elements_.length() != other->elements_.length()) return false; #endif if (stack_pointer_ != other->stack_pointer_) return false; for (int i = 0; i < elements_.length(); i++) { if (!elements_[i].Equals(other->elements_[i])) return false; } return true; } } } // namespace v8::internal