// Copyright 2011 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include #include "src/base/platform/platform.h" #include "src/heap/spaces-inl.h" // FIXME(mstarzinger, marja): This is weird, but required because of the missing // (disallowed) include: src/heap/incremental-marking.h -> src/objects-inl.h #include "src/objects-inl.h" #include "src/snapshot/snapshot.h" #include "src/v8.h" #include "test/cctest/cctest.h" #include "test/cctest/heap/heap-tester.h" #include "test/cctest/heap/heap-utils.h" namespace v8 { namespace internal { #if 0 static void VerifyRegionMarking(Address page_start) { #ifdef ENABLE_CARDMARKING_WRITE_BARRIER Page* p = Page::FromAddress(page_start); p->SetRegionMarks(Page::kAllRegionsCleanMarks); for (Address addr = p->ObjectAreaStart(); addr < p->ObjectAreaEnd(); addr += kPointerSize) { CHECK(!Page::FromAddress(addr)->IsRegionDirty(addr)); } for (Address addr = p->ObjectAreaStart(); addr < p->ObjectAreaEnd(); addr += kPointerSize) { Page::FromAddress(addr)->MarkRegionDirty(addr); } for (Address addr = p->ObjectAreaStart(); addr < p->ObjectAreaEnd(); addr += kPointerSize) { CHECK(Page::FromAddress(addr)->IsRegionDirty(addr)); } #endif } #endif // TODO(gc) you can no longer allocate pages like this. Details are hidden. #if 0 TEST(Page) { byte* mem = NewArray(2*Page::kPageSize); CHECK(mem != NULL); Address start = reinterpret_cast
(mem); Address page_start = RoundUp(start, Page::kPageSize); Page* p = Page::FromAddress(page_start); // Initialized Page has heap pointer, normally set by memory_allocator. p->heap_ = CcTest::heap(); CHECK(p->address() == page_start); CHECK(p->is_valid()); p->opaque_header = 0; p->SetIsLargeObjectPage(false); CHECK(!p->next_page()->is_valid()); CHECK(p->ObjectAreaStart() == page_start + Page::kObjectStartOffset); CHECK(p->ObjectAreaEnd() == page_start + Page::kPageSize); CHECK(p->Offset(page_start + Page::kObjectStartOffset) == Page::kObjectStartOffset); CHECK(p->Offset(page_start + Page::kPageSize) == Page::kPageSize); CHECK(p->OffsetToAddress(Page::kObjectStartOffset) == p->ObjectAreaStart()); CHECK(p->OffsetToAddress(Page::kPageSize) == p->ObjectAreaEnd()); // test region marking VerifyRegionMarking(page_start); DeleteArray(mem); } #endif // Temporarily sets a given allocator in an isolate. class TestMemoryAllocatorScope { public: TestMemoryAllocatorScope(Isolate* isolate, MemoryAllocator* allocator) : isolate_(isolate), old_allocator_(isolate->heap()->memory_allocator()) { isolate->heap()->memory_allocator_ = allocator; } ~TestMemoryAllocatorScope() { isolate_->heap()->memory_allocator_ = old_allocator_; } private: Isolate* isolate_; MemoryAllocator* old_allocator_; DISALLOW_COPY_AND_ASSIGN(TestMemoryAllocatorScope); }; // Temporarily sets a given code range in an isolate. class TestCodeRangeScope { public: TestCodeRangeScope(Isolate* isolate, CodeRange* code_range) : isolate_(isolate), old_code_range_(isolate->heap()->memory_allocator()->code_range()) { isolate->heap()->memory_allocator()->code_range_ = code_range; } ~TestCodeRangeScope() { isolate_->heap()->memory_allocator()->code_range_ = old_code_range_; } private: Isolate* isolate_; CodeRange* old_code_range_; DISALLOW_COPY_AND_ASSIGN(TestCodeRangeScope); }; static void VerifyMemoryChunk(Isolate* isolate, Heap* heap, CodeRange* code_range, size_t reserve_area_size, size_t commit_area_size, size_t second_commit_area_size, Executability executable) { MemoryAllocator* memory_allocator = new MemoryAllocator(isolate); CHECK(memory_allocator->SetUp(heap->MaxReserved(), heap->MaxExecutableSize(), 0)); { TestMemoryAllocatorScope test_allocator_scope(isolate, memory_allocator); TestCodeRangeScope test_code_range_scope(isolate, code_range); size_t header_size = (executable == EXECUTABLE) ? MemoryAllocator::CodePageGuardStartOffset() : MemoryChunk::kObjectStartOffset; size_t guard_size = (executable == EXECUTABLE) ? MemoryAllocator::CodePageGuardSize() : 0; MemoryChunk* memory_chunk = memory_allocator->AllocateChunk( reserve_area_size, commit_area_size, executable, NULL); size_t alignment = code_range != NULL && code_range->valid() ? MemoryChunk::kAlignment : base::OS::CommitPageSize(); size_t reserved_size = ((executable == EXECUTABLE)) ? RoundUp(header_size + guard_size + reserve_area_size + guard_size, alignment) : RoundUp(header_size + reserve_area_size, base::OS::CommitPageSize()); CHECK(memory_chunk->size() == reserved_size); CHECK(memory_chunk->area_start() < memory_chunk->address() + memory_chunk->size()); CHECK(memory_chunk->area_end() <= memory_chunk->address() + memory_chunk->size()); CHECK(static_cast(memory_chunk->area_size()) == commit_area_size); Address area_start = memory_chunk->area_start(); memory_chunk->CommitArea(second_commit_area_size); CHECK(area_start == memory_chunk->area_start()); CHECK(memory_chunk->area_start() < memory_chunk->address() + memory_chunk->size()); CHECK(memory_chunk->area_end() <= memory_chunk->address() + memory_chunk->size()); CHECK(static_cast(memory_chunk->area_size()) == second_commit_area_size); memory_allocator->Free(memory_chunk); } memory_allocator->TearDown(); delete memory_allocator; } TEST(Regress3540) { Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); MemoryAllocator* memory_allocator = new MemoryAllocator(isolate); CHECK(memory_allocator->SetUp(heap->MaxReserved(), heap->MaxExecutableSize(), 0)); TestMemoryAllocatorScope test_allocator_scope(isolate, memory_allocator); CodeRange* code_range = new CodeRange(isolate); size_t code_range_size = kMinimumCodeRangeSize > 0 ? kMinimumCodeRangeSize : 3 * Page::kPageSize; if (!code_range->SetUp(code_range_size)) { return; } Address address; size_t size; size_t request_size = code_range_size - Page::kPageSize; address = code_range->AllocateRawMemory( request_size, request_size - (2 * MemoryAllocator::CodePageGuardSize()), &size); CHECK_NOT_NULL(address); Address null_address; size_t null_size; request_size = code_range_size - Page::kPageSize; null_address = code_range->AllocateRawMemory( request_size, request_size - (2 * MemoryAllocator::CodePageGuardSize()), &null_size); CHECK_NULL(null_address); code_range->FreeRawMemory(address, size); delete code_range; memory_allocator->TearDown(); delete memory_allocator; } static unsigned int Pseudorandom() { static uint32_t lo = 2345; lo = 18273 * (lo & 0xFFFFF) + (lo >> 16); return lo & 0xFFFFF; } TEST(MemoryChunk) { Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); size_t reserve_area_size = 1 * MB; size_t initial_commit_area_size, second_commit_area_size; for (int i = 0; i < 100; i++) { initial_commit_area_size = Pseudorandom(); second_commit_area_size = Pseudorandom(); // With CodeRange. CodeRange* code_range = new CodeRange(isolate); const size_t code_range_size = 32 * MB; if (!code_range->SetUp(code_range_size)) return; VerifyMemoryChunk(isolate, heap, code_range, reserve_area_size, initial_commit_area_size, second_commit_area_size, EXECUTABLE); VerifyMemoryChunk(isolate, heap, code_range, reserve_area_size, initial_commit_area_size, second_commit_area_size, NOT_EXECUTABLE); delete code_range; // Without a valid CodeRange, i.e., omitting SetUp. code_range = new CodeRange(isolate); VerifyMemoryChunk(isolate, heap, code_range, reserve_area_size, initial_commit_area_size, second_commit_area_size, EXECUTABLE); VerifyMemoryChunk(isolate, heap, code_range, reserve_area_size, initial_commit_area_size, second_commit_area_size, NOT_EXECUTABLE); delete code_range; } } TEST(MemoryAllocator) { Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); MemoryAllocator* memory_allocator = new MemoryAllocator(isolate); CHECK(memory_allocator != nullptr); CHECK(memory_allocator->SetUp(heap->MaxReserved(), heap->MaxExecutableSize(), 0)); TestMemoryAllocatorScope test_scope(isolate, memory_allocator); { int total_pages = 0; OldSpace faked_space(heap, OLD_SPACE, NOT_EXECUTABLE); Page* first_page = memory_allocator->AllocatePage( faked_space.AreaSize(), static_cast(&faked_space), NOT_EXECUTABLE); first_page->InsertAfter(faked_space.anchor()->prev_page()); CHECK(Page::IsValid(first_page)); CHECK(first_page->next_page() == faked_space.anchor()); total_pages++; for (Page* p = first_page; p != faked_space.anchor(); p = p->next_page()) { CHECK(p->owner() == &faked_space); } // Again, we should get n or n - 1 pages. Page* other = memory_allocator->AllocatePage( faked_space.AreaSize(), static_cast(&faked_space), NOT_EXECUTABLE); CHECK(Page::IsValid(other)); total_pages++; other->InsertAfter(first_page); int page_count = 0; for (Page* p = first_page; p != faked_space.anchor(); p = p->next_page()) { CHECK(p->owner() == &faked_space); page_count++; } CHECK(total_pages == page_count); Page* second_page = first_page->next_page(); CHECK(Page::IsValid(second_page)); // OldSpace's destructor will tear down the space and free up all pages. } memory_allocator->TearDown(); delete memory_allocator; } TEST(NewSpace) { Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); MemoryAllocator* memory_allocator = new MemoryAllocator(isolate); CHECK(memory_allocator->SetUp(heap->MaxReserved(), heap->MaxExecutableSize(), 0)); TestMemoryAllocatorScope test_scope(isolate, memory_allocator); NewSpace new_space(heap); CHECK(new_space.SetUp(CcTest::heap()->InitialSemiSpaceSize(), CcTest::heap()->InitialSemiSpaceSize())); CHECK(new_space.HasBeenSetUp()); while (new_space.Available() >= kMaxRegularHeapObjectSize) { CHECK(new_space.Contains( new_space.AllocateRawUnaligned(kMaxRegularHeapObjectSize) .ToObjectChecked())); } new_space.TearDown(); memory_allocator->TearDown(); delete memory_allocator; } TEST(OldSpace) { Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); MemoryAllocator* memory_allocator = new MemoryAllocator(isolate); CHECK(memory_allocator->SetUp(heap->MaxReserved(), heap->MaxExecutableSize(), 0)); TestMemoryAllocatorScope test_scope(isolate, memory_allocator); OldSpace* s = new OldSpace(heap, OLD_SPACE, NOT_EXECUTABLE); CHECK(s != NULL); CHECK(s->SetUp()); while (s->Available() > 0) { s->AllocateRawUnaligned(kMaxRegularHeapObjectSize).ToObjectChecked(); } delete s; memory_allocator->TearDown(); delete memory_allocator; } TEST(CompactionSpace) { Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); MemoryAllocator* memory_allocator = new MemoryAllocator(isolate); CHECK(memory_allocator != nullptr); CHECK(memory_allocator->SetUp(heap->MaxReserved(), heap->MaxExecutableSize(), 0)); TestMemoryAllocatorScope test_scope(isolate, memory_allocator); CompactionSpace* compaction_space = new CompactionSpace(heap, OLD_SPACE, NOT_EXECUTABLE); CHECK(compaction_space != NULL); CHECK(compaction_space->SetUp()); OldSpace* old_space = new OldSpace(heap, OLD_SPACE, NOT_EXECUTABLE); CHECK(old_space != NULL); CHECK(old_space->SetUp()); // Cannot loop until "Available()" since we initially have 0 bytes available // and would thus neither grow, nor be able to allocate an object. const int kNumObjects = 100; const int kNumObjectsPerPage = compaction_space->AreaSize() / kMaxRegularHeapObjectSize; const int kExpectedPages = (kNumObjects + kNumObjectsPerPage - 1) / kNumObjectsPerPage; for (int i = 0; i < kNumObjects; i++) { compaction_space->AllocateRawUnaligned(kMaxRegularHeapObjectSize) .ToObjectChecked(); } int pages_in_old_space = old_space->CountTotalPages(); int pages_in_compaction_space = compaction_space->CountTotalPages(); CHECK_EQ(pages_in_compaction_space, kExpectedPages); CHECK_LE(pages_in_old_space, 1); old_space->MergeCompactionSpace(compaction_space); CHECK_EQ(old_space->CountTotalPages(), pages_in_old_space + pages_in_compaction_space); delete compaction_space; delete old_space; memory_allocator->TearDown(); delete memory_allocator; } TEST(LargeObjectSpace) { // This test does not initialize allocated objects, which confuses the // incremental marker. FLAG_incremental_marking = false; v8::V8::Initialize(); LargeObjectSpace* lo = CcTest::heap()->lo_space(); CHECK(lo != NULL); int lo_size = Page::kPageSize; Object* obj = lo->AllocateRaw(lo_size, NOT_EXECUTABLE).ToObjectChecked(); CHECK(obj->IsHeapObject()); HeapObject* ho = HeapObject::cast(obj); CHECK(lo->Contains(HeapObject::cast(obj))); CHECK(lo->FindObject(ho->address()) == obj); CHECK(lo->Contains(ho)); while (true) { size_t available = lo->Available(); { AllocationResult allocation = lo->AllocateRaw(lo_size, NOT_EXECUTABLE); if (allocation.IsRetry()) break; } // The available value is conservative such that it may report // zero prior to heap exhaustion. CHECK(lo->Available() < available || available == 0); } CHECK(!lo->IsEmpty()); CHECK(lo->AllocateRaw(lo_size, NOT_EXECUTABLE).IsRetry()); } TEST(SizeOfInitialHeap) { if (i::FLAG_always_opt) return; // Bootstrapping without a snapshot causes more allocations. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); if (!isolate->snapshot_available()) return; HandleScope scope(isolate); v8::Local context = CcTest::isolate()->GetCurrentContext(); // Skip this test on the custom snapshot builder. if (!CcTest::global() ->Get(context, v8_str("assertEquals")) .ToLocalChecked() ->IsUndefined()) { return; } // Initial size of LO_SPACE size_t initial_lo_space = isolate->heap()->lo_space()->Size(); // The limit for each space for an empty isolate containing just the // snapshot. // In PPC the page size is 64K, causing more internal fragmentation // hence requiring a larger limit. #if V8_OS_LINUX && V8_HOST_ARCH_PPC const size_t kMaxInitialSizePerSpace = 3 * MB; #else const size_t kMaxInitialSizePerSpace = 2 * MB; #endif // Freshly initialized VM gets by with the snapshot size (which is below // kMaxInitialSizePerSpace per space). Heap* heap = isolate->heap(); int page_count[LAST_PAGED_SPACE + 1] = {0, 0, 0, 0}; for (int i = FIRST_PAGED_SPACE; i <= LAST_PAGED_SPACE; i++) { // Debug code can be very large, so skip CODE_SPACE if we are generating it. if (i == CODE_SPACE && i::FLAG_debug_code) continue; page_count[i] = heap->paged_space(i)->CountTotalPages(); // Check that the initial heap is also below the limit. CHECK_LT(heap->paged_space(i)->CommittedMemory(), kMaxInitialSizePerSpace); } // Executing the empty script gets by with the same number of pages, i.e., // requires no extra space. CompileRun("/*empty*/"); for (int i = FIRST_PAGED_SPACE; i <= LAST_PAGED_SPACE; i++) { // Debug code can be very large, so skip CODE_SPACE if we are generating it. if (i == CODE_SPACE && i::FLAG_debug_code) continue; CHECK_EQ(page_count[i], isolate->heap()->paged_space(i)->CountTotalPages()); } // No large objects required to perform the above steps. CHECK_EQ(initial_lo_space, static_cast(isolate->heap()->lo_space()->Size())); } static HeapObject* AllocateUnaligned(NewSpace* space, int size) { AllocationResult allocation = space->AllocateRawUnaligned(size); CHECK(!allocation.IsRetry()); HeapObject* filler = NULL; CHECK(allocation.To(&filler)); space->heap()->CreateFillerObjectAt(filler->address(), size, ClearRecordedSlots::kNo); return filler; } static HeapObject* AllocateUnaligned(PagedSpace* space, int size) { AllocationResult allocation = space->AllocateRaw(size, kDoubleUnaligned); CHECK(!allocation.IsRetry()); HeapObject* filler = NULL; CHECK(allocation.To(&filler)); space->heap()->CreateFillerObjectAt(filler->address(), size, ClearRecordedSlots::kNo); return filler; } static HeapObject* AllocateUnaligned(LargeObjectSpace* space, int size) { AllocationResult allocation = space->AllocateRaw(size, EXECUTABLE); CHECK(!allocation.IsRetry()); HeapObject* filler = NULL; CHECK(allocation.To(&filler)); return filler; } class Observer : public AllocationObserver { public: explicit Observer(intptr_t step_size) : AllocationObserver(step_size), count_(0) {} void Step(int bytes_allocated, Address, size_t) override { count_++; } int count() const { return count_; } private: int count_; }; template void testAllocationObserver(Isolate* i_isolate, T* space) { Observer observer1(128); space->AddAllocationObserver(&observer1); // The observer should not get notified if we have only allocated less than // 128 bytes. AllocateUnaligned(space, 64); CHECK_EQ(observer1.count(), 0); // The observer should get called when we have allocated exactly 128 bytes. AllocateUnaligned(space, 64); CHECK_EQ(observer1.count(), 1); // Another >128 bytes should get another notification. AllocateUnaligned(space, 136); CHECK_EQ(observer1.count(), 2); // Allocating a large object should get only one notification. AllocateUnaligned(space, 1024); CHECK_EQ(observer1.count(), 3); // Allocating another 2048 bytes in small objects should get 16 // notifications. for (int i = 0; i < 64; ++i) { AllocateUnaligned(space, 32); } CHECK_EQ(observer1.count(), 19); // Multiple observers should work. Observer observer2(96); space->AddAllocationObserver(&observer2); AllocateUnaligned(space, 2048); CHECK_EQ(observer1.count(), 20); CHECK_EQ(observer2.count(), 1); AllocateUnaligned(space, 104); CHECK_EQ(observer1.count(), 20); CHECK_EQ(observer2.count(), 2); // Callback should stop getting called after an observer is removed. space->RemoveAllocationObserver(&observer1); AllocateUnaligned(space, 384); CHECK_EQ(observer1.count(), 20); // no more notifications. CHECK_EQ(observer2.count(), 3); // this one is still active. // Ensure that PauseInlineAllocationObserversScope work correctly. AllocateUnaligned(space, 48); CHECK_EQ(observer2.count(), 3); { PauseAllocationObserversScope pause_observers(i_isolate->heap()); CHECK_EQ(observer2.count(), 3); AllocateUnaligned(space, 384); CHECK_EQ(observer2.count(), 3); } CHECK_EQ(observer2.count(), 3); // Coupled with the 48 bytes allocated before the pause, another 48 bytes // allocated here should trigger a notification. AllocateUnaligned(space, 48); CHECK_EQ(observer2.count(), 4); space->RemoveAllocationObserver(&observer2); AllocateUnaligned(space, 384); CHECK_EQ(observer1.count(), 20); CHECK_EQ(observer2.count(), 4); } UNINITIALIZED_TEST(AllocationObserver) { v8::Isolate::CreateParams create_params; create_params.array_buffer_allocator = CcTest::array_buffer_allocator(); v8::Isolate* isolate = v8::Isolate::New(create_params); { v8::Isolate::Scope isolate_scope(isolate); v8::HandleScope handle_scope(isolate); v8::Context::New(isolate)->Enter(); Isolate* i_isolate = reinterpret_cast(isolate); testAllocationObserver(i_isolate, i_isolate->heap()->new_space()); // Old space is used but the code path is shared for all // classes inheriting from PagedSpace. testAllocationObserver(i_isolate, i_isolate->heap()->old_space()); testAllocationObserver(i_isolate, i_isolate->heap()->lo_space()); } isolate->Dispose(); } UNINITIALIZED_TEST(InlineAllocationObserverCadence) { v8::Isolate::CreateParams create_params; create_params.array_buffer_allocator = CcTest::array_buffer_allocator(); v8::Isolate* isolate = v8::Isolate::New(create_params); { v8::Isolate::Scope isolate_scope(isolate); v8::HandleScope handle_scope(isolate); v8::Context::New(isolate)->Enter(); Isolate* i_isolate = reinterpret_cast(isolate); NewSpace* new_space = i_isolate->heap()->new_space(); Observer observer1(512); new_space->AddAllocationObserver(&observer1); Observer observer2(576); new_space->AddAllocationObserver(&observer2); for (int i = 0; i < 512; ++i) { AllocateUnaligned(new_space, 32); } new_space->RemoveAllocationObserver(&observer1); new_space->RemoveAllocationObserver(&observer2); CHECK_EQ(observer1.count(), 32); CHECK_EQ(observer2.count(), 28); } isolate->Dispose(); } TEST(ShrinkPageToHighWaterMarkFreeSpaceEnd) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); heap::SealCurrentObjects(CcTest::heap()); // Prepare page that only contains a single object and a trailing FreeSpace // filler. Handle array = isolate->factory()->NewFixedArray(128, TENURED); Page* page = Page::FromAddress(array->address()); // Reset space so high water mark is consistent. CcTest::heap()->old_space()->ResetFreeList(); CcTest::heap()->old_space()->EmptyAllocationInfo(); HeapObject* filler = HeapObject::FromAddress(array->address() + array->Size()); CHECK(filler->IsFreeSpace()); size_t shrinked = page->ShrinkToHighWaterMark(); size_t should_have_shrinked = RoundDown(static_cast(Page::kAllocatableMemory - array->Size()), base::OS::CommitPageSize()); CHECK_EQ(should_have_shrinked, shrinked); } TEST(ShrinkPageToHighWaterMarkNoFiller) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); heap::SealCurrentObjects(CcTest::heap()); const int kFillerSize = 0; std::vector> arrays = heap::FillOldSpacePageWithFixedArrays(CcTest::heap(), kFillerSize); Handle array = arrays.back(); Page* page = Page::FromAddress(array->address()); CHECK_EQ(page->area_end(), array->address() + array->Size() + kFillerSize); // Reset space so high water mark and fillers are consistent. CcTest::heap()->old_space()->ResetFreeList(); CcTest::heap()->old_space()->EmptyAllocationInfo(); const size_t shrinked = page->ShrinkToHighWaterMark(); CHECK_EQ(0u, shrinked); } TEST(ShrinkPageToHighWaterMarkOneWordFiller) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); heap::SealCurrentObjects(CcTest::heap()); const int kFillerSize = kPointerSize; std::vector> arrays = heap::FillOldSpacePageWithFixedArrays(CcTest::heap(), kFillerSize); Handle array = arrays.back(); Page* page = Page::FromAddress(array->address()); CHECK_EQ(page->area_end(), array->address() + array->Size() + kFillerSize); // Reset space so high water mark and fillers are consistent. CcTest::heap()->old_space()->ResetFreeList(); CcTest::heap()->old_space()->EmptyAllocationInfo(); HeapObject* filler = HeapObject::FromAddress(array->address() + array->Size()); CHECK_EQ(filler->map(), CcTest::heap()->one_pointer_filler_map()); const size_t shrinked = page->ShrinkToHighWaterMark(); CHECK_EQ(0u, shrinked); } TEST(ShrinkPageToHighWaterMarkTwoWordFiller) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); heap::SealCurrentObjects(CcTest::heap()); const int kFillerSize = 2 * kPointerSize; std::vector> arrays = heap::FillOldSpacePageWithFixedArrays(CcTest::heap(), kFillerSize); Handle array = arrays.back(); Page* page = Page::FromAddress(array->address()); CHECK_EQ(page->area_end(), array->address() + array->Size() + kFillerSize); // Reset space so high water mark and fillers are consistent. CcTest::heap()->old_space()->ResetFreeList(); CcTest::heap()->old_space()->EmptyAllocationInfo(); HeapObject* filler = HeapObject::FromAddress(array->address() + array->Size()); CHECK_EQ(filler->map(), CcTest::heap()->two_pointer_filler_map()); const size_t shrinked = page->ShrinkToHighWaterMark(); CHECK_EQ(0u, shrinked); } } // namespace internal } // namespace v8