// Copyright 2006-2008 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include #include #include "v8.h" #include "conversions-inl.h" #include "factory.h" #include "fast-dtoa.h" #include "scanner.h" namespace v8 { namespace internal { int HexValue(uc32 c) { if ('0' <= c && c <= '9') return c - '0'; if ('a' <= c && c <= 'f') return c - 'a' + 10; if ('A' <= c && c <= 'F') return c - 'A' + 10; return -1; } // Provide a common interface to getting a character at a certain // index from a char* or a String object. static inline int GetChar(const char* str, int index) { ASSERT(index >= 0 && index < StrLength(str)); return str[index]; } static inline int GetChar(String* str, int index) { return str->Get(index); } static inline int GetLength(const char* str) { return StrLength(str); } static inline int GetLength(String* str) { return str->length(); } static inline const char* GetCString(const char* str, int index) { return str + index; } static inline const char* GetCString(String* str, int index) { int length = str->length(); char* result = NewArray(length + 1); for (int i = index; i < length; i++) { uc16 c = str->Get(i); if (c <= 127) { result[i - index] = static_cast(c); } else { result[i - index] = 127; // Force number parsing to fail. } } result[length - index] = '\0'; return result; } namespace { // C++-style iterator adaptor for StringInputBuffer // (unlike C++ iterators the end-marker has different type). class StringInputBufferIterator { public: class EndMarker {}; explicit StringInputBufferIterator(StringInputBuffer* buffer); int operator*() const; void operator++(); bool operator==(EndMarker const&) const { return end_; } bool operator!=(EndMarker const& m) const { return !end_; } private: StringInputBuffer* const buffer_; int current_; bool end_; }; StringInputBufferIterator::StringInputBufferIterator( StringInputBuffer* buffer) : buffer_(buffer) { ++(*this); } int StringInputBufferIterator::operator*() const { return current_; } void StringInputBufferIterator::operator++() { end_ = !buffer_->has_more(); if (!end_) { current_ = buffer_->GetNext(); } } } static inline void ReleaseCString(const char* original, const char* str) { } static inline void ReleaseCString(String* original, const char* str) { DeleteArray(const_cast(str)); } template static bool SubStringEquals(Iterator* current, EndMark end, const char* substring) { ASSERT(**current == *substring); for (substring++; *substring != '\0'; substring++) { ++*current; if (*current == end || **current != *substring) return false; } ++*current; return true; } extern "C" double gay_strtod(const char* s00, const char** se); // Maximum number of significant digits in decimal representation. // The longest possible double in decimal representation is // (2^53 - 1) * 2 ^ -1074 that is (2 ^ 53 - 1) * 5 ^ 1074 / 10 ^ 1074 // (768 digits). If we parse a number whose first digits are equal to a // mean of 2 adjacent doubles (that could have up to 769 digits) the result // must be rounded to the bigger one unless the tail consists of zeros, so // we don't need to preserve all the digits. const int kMaxSignificantDigits = 772; // Parse an int from a string starting a given index and in a given // radix. The string can be either a char* or a String*. template static int InternalStringToInt(S* s, int i, int radix, double* value) { int len = GetLength(s); // Setup limits for computing the value. ASSERT(2 <= radix && radix <= 36); int lim_0 = '0' + (radix < 10 ? radix : 10); int lim_a = 'a' + (radix - 10); int lim_A = 'A' + (radix - 10); // NOTE: The code for computing the value may seem a bit complex at // first glance. It is structured to use 32-bit multiply-and-add // loops as long as possible to avoid loosing precision. double v = 0.0; int j; for (j = i; j < len;) { // Parse the longest part of the string starting at index j // possible while keeping the multiplier, and thus the part // itself, within 32 bits. uint32_t part = 0, multiplier = 1; int k; for (k = j; k < len; k++) { int c = GetChar(s, k); if (c >= '0' && c < lim_0) { c = c - '0'; } else if (c >= 'a' && c < lim_a) { c = c - 'a' + 10; } else if (c >= 'A' && c < lim_A) { c = c - 'A' + 10; } else { break; } // Update the value of the part as long as the multiplier fits // in 32 bits. When we can't guarantee that the next iteration // will not overflow the multiplier, we stop parsing the part // by leaving the loop. static const uint32_t kMaximumMultiplier = 0xffffffffU / 36; uint32_t m = multiplier * radix; if (m > kMaximumMultiplier) break; part = part * radix + c; multiplier = m; ASSERT(multiplier > part); } // Compute the number of part digits. If no digits were parsed; // we're done parsing the entire string. int digits = k - j; if (digits == 0) break; // Update the value and skip the part in the string. ASSERT(multiplier == pow(static_cast(radix), static_cast(digits))); v = v * multiplier + part; j = k; } // If the resulting value is larger than 2^53 the value does not fit // in the mantissa of the double and there is a loss of precision. // When the value is larger than 2^53 the rounding depends on the // code generation. If the code generator spills the double value // it uses 64 bits and if it does not it uses 80 bits. // // If there is a potential for overflow we resort to strtod for // radix 10 numbers to get higher precision. For numbers in another // radix we live with the loss of precision. static const double kPreciseConversionLimit = 9007199254740992.0; if (radix == 10 && v > kPreciseConversionLimit) { const char* cstr = GetCString(s, i); const char* end; v = gay_strtod(cstr, &end); ReleaseCString(s, cstr); } *value = v; return j; } int StringToInt(String* str, int index, int radix, double* value) { return InternalStringToInt(str, index, radix, value); } int StringToInt(const char* str, int index, int radix, double* value) { return InternalStringToInt(const_cast(str), index, radix, value); } static const double JUNK_STRING_VALUE = OS::nan_value(); // Returns true if a nonspace found and false if the end has reached. template static inline bool AdvanceToNonspace(Iterator* current, EndMark end) { while (*current != end) { if (!Scanner::kIsWhiteSpace.get(**current)) return true; ++*current; } return false; } template static double InternalHexadecimalStringToDouble(Iterator current, EndMark end, char* buffer, bool allow_trailing_junk) { ASSERT(current != end); const int max_hex_significant_digits = 52 / 4 + 2; // We reuse the buffer of InternalStringToDouble. Since hexadecimal // numbers may have much less digits than decimal the buffer won't overflow. ASSERT(max_hex_significant_digits < kMaxSignificantDigits); int significant_digits = 0; int insignificant_digits = 0; bool leading_zero = false; // A double has a 53bit significand (once the hidden bit has been added). // Halfway cases thus have at most 54bits. Therefore 54/4 + 1 digits are // sufficient to represent halfway cases. By adding another digit we can keep // track of dropped digits. int buffer_pos = 0; bool nonzero_digit_dropped = false; // Skip leading 0s. while (*current == '0') { leading_zero = true; ++current; if (current == end) return 0; } int begin_pos = buffer_pos; while ((*current >= '0' && *current <= '9') || (*current >= 'a' && *current <= 'f') || (*current >= 'A' && *current <= 'F')) { if (significant_digits <= max_hex_significant_digits) { buffer[buffer_pos++] = static_cast(*current); significant_digits++; } else { insignificant_digits++; nonzero_digit_dropped = nonzero_digit_dropped || *current != '0'; } ++current; if (current == end) break; } if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) { return JUNK_STRING_VALUE; } if (significant_digits == 0) { return leading_zero ? 0 : JUNK_STRING_VALUE; } if (nonzero_digit_dropped) { ASSERT(insignificant_digits > 0); insignificant_digits--; buffer[buffer_pos++] = '1'; } buffer[buffer_pos] = '\0'; double result; StringToInt(buffer, begin_pos, 16, &result); if (insignificant_digits > 0) { // Multiplying by a power of 2 doesn't cause a loss of precision. result *= pow(16.0, insignificant_digits); } return result; } // Converts a string to a double value. Assumes the Iterator supports // the following operations: // 1. current == end (other ops are not allowed), current != end. // 2. *current - gets the current character in the sequence. // 3. ++current (advances the position). template static double InternalStringToDouble(Iterator current, EndMark end, int flags, double empty_string_val) { // To make sure that iterator dereferencing is valid the following // convention is used: // 1. Each '++current' statement is followed by check for equality to 'end'. // 2. If AdvanceToNonspace returned false then current == end. // 3. If 'current' becomes be equal to 'end' the function returns or goes to // 'parsing_done'. // 4. 'current' is not dereferenced after the 'parsing_done' label. // 5. Code before 'parsing_done' may rely on 'current != end'. if (!AdvanceToNonspace(¤t, end)) return empty_string_val; const bool allow_trailing_junk = (flags & ALLOW_TRAILING_JUNK) != 0; // The longest form of simplified number is: "-'.1eXXX\0". const int kBufferSize = kMaxSignificantDigits + 10; char buffer[kBufferSize]; // NOLINT: size is known at compile time. int buffer_pos = 0; // Exponent will be adjusted if insignificant digits of the integer part // or insignificant leading zeros of the fractional part are dropped. int exponent = 0; int significant_digits = 0; int insignificant_digits = 0; bool nonzero_digit_dropped = false; double signed_zero = 0.0; if (*current == '+') { // Ignore leading sign; skip following spaces. ++current; if (!AdvanceToNonspace(¤t, end)) return JUNK_STRING_VALUE; } else if (*current == '-') { buffer[buffer_pos++] = '-'; ++current; if (!AdvanceToNonspace(¤t, end)) return JUNK_STRING_VALUE; signed_zero = -0.0; } static const char kInfinitySymbol[] = "Infinity"; if (*current == kInfinitySymbol[0]) { if (!SubStringEquals(¤t, end, kInfinitySymbol)) { return JUNK_STRING_VALUE; } if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) { return JUNK_STRING_VALUE; } ASSERT(buffer_pos == 0 || buffer[0] == '-'); return buffer_pos > 0 ? -V8_INFINITY : V8_INFINITY; } bool leading_zero = false; if (*current == '0') { ++current; if (current == end) return signed_zero; leading_zero = true; // It could be hexadecimal value. if ((flags & ALLOW_HEX) && (*current == 'x' || *current == 'X')) { ++current; if (current == end) return JUNK_STRING_VALUE; // "0x". double result = InternalHexadecimalStringToDouble(current, end, buffer + buffer_pos, allow_trailing_junk); return (buffer_pos > 0 && buffer[0] == '-') ? -result : result; } // Ignore leading zeros in the integer part. while (*current == '0') { ++current; if (current == end) return signed_zero; } } bool octal = leading_zero && (flags & ALLOW_OCTALS) != 0; // Copy significant digits of the integer part (if any) to the buffer. while (*current >= '0' && *current <= '9') { if (significant_digits < kMaxSignificantDigits) { ASSERT(buffer_pos < kBufferSize); buffer[buffer_pos++] = static_cast(*current); significant_digits++; // Will later check if it's an octal in the buffer. } else { insignificant_digits++; // Move the digit into the exponential part. nonzero_digit_dropped = nonzero_digit_dropped || *current != '0'; } octal = octal && *current < '8'; ++current; if (current == end) goto parsing_done; } if (significant_digits == 0) { octal = false; } if (*current == '.') { ASSERT(buffer_pos < kBufferSize); buffer[buffer_pos++] = '.'; ++current; if (current == end) { if (significant_digits == 0 && !leading_zero) { return JUNK_STRING_VALUE; } else { goto parsing_done; } } if (significant_digits == 0) { // octal = false; // Integer part consists of 0 or is absent. Significant digits start after // leading zeros (if any). while (*current == '0') { ++current; if (current == end) return signed_zero; exponent--; // Move this 0 into the exponent. } } // There is the fractional part. while (*current >= '0' && *current <= '9') { if (significant_digits < kMaxSignificantDigits) { ASSERT(buffer_pos < kBufferSize); buffer[buffer_pos++] = static_cast(*current); significant_digits++; } else { // Ignore insignificant digits in the fractional part. nonzero_digit_dropped = nonzero_digit_dropped || *current != '0'; } ++current; if (current == end) goto parsing_done; } } if (!leading_zero && exponent == 0 && significant_digits == 0) { // If leading_zeros is true then the string contains zeros. // If exponent < 0 then string was [+-]\.0*... // If significant_digits != 0 the string is not equal to 0. // Otherwise there are no digits in the string. return JUNK_STRING_VALUE; } // Parse exponential part. if (*current == 'e' || *current == 'E') { if (octal) return JUNK_STRING_VALUE; ++current; if (current == end) { if (allow_trailing_junk) { goto parsing_done; } else { return JUNK_STRING_VALUE; } } char sign = '+'; if (*current == '+' || *current == '-') { sign = static_cast(*current); ++current; if (current == end) { if (allow_trailing_junk) { goto parsing_done; } else { return JUNK_STRING_VALUE; } } } if (current == end || *current < '0' || *current > '9') { if (allow_trailing_junk) { goto parsing_done; } else { return JUNK_STRING_VALUE; } } const int max_exponent = INT_MAX / 2; ASSERT(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2); int num = 0; do { // Check overflow. int digit = *current - '0'; if (num >= max_exponent / 10 && !(num == max_exponent / 10 && digit <= max_exponent % 10)) { num = max_exponent; } else { num = num * 10 + digit; } ++current; } while (current != end && *current >= '0' && *current <= '9'); exponent += (sign == '-' ? -num : num); } if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) { return JUNK_STRING_VALUE; } parsing_done: exponent += insignificant_digits; if (octal) { buffer[buffer_pos] = '\0'; // ALLOW_OCTALS is set and there is no '8' or '9' in insignificant // digits. Check significant digits now. char sign = '+'; const char* s = buffer; if (*s == '-' || *s == '+') sign = *s++; double result; s += StringToInt(s, 0, 8, &result); if (!allow_trailing_junk && *s != '\0') return JUNK_STRING_VALUE; if (sign == '-') result = -result; if (insignificant_digits > 0) { result *= pow(8.0, insignificant_digits); } return result; } if (nonzero_digit_dropped) { if (insignificant_digits) buffer[buffer_pos++] = '.'; buffer[buffer_pos++] = '1'; } if (exponent != 0) { ASSERT(buffer_pos < kBufferSize); buffer[buffer_pos++] = 'e'; if (exponent < 0) { ASSERT(buffer_pos < kBufferSize); buffer[buffer_pos++] = '-'; exponent = -exponent; } if (exponent > 999) exponent = 999; // Result will be Infinity or 0 or -0. const int exp_digits = 3; for (int i = 0; i < exp_digits; i++) { buffer[buffer_pos + exp_digits - 1 - i] = '0' + exponent % 10; exponent /= 10; } ASSERT(exponent == 0); buffer_pos += exp_digits; } ASSERT(buffer_pos < kBufferSize); buffer[buffer_pos] = '\0'; return gay_strtod(buffer, NULL); } double StringToDouble(String* str, int flags, double empty_string_val) { StringShape shape(str); if (shape.IsSequentialAscii()) { const char* begin = SeqAsciiString::cast(str)->GetChars(); const char* end = begin + str->length(); return InternalStringToDouble(begin, end, flags, empty_string_val); } else if (shape.IsSequentialTwoByte()) { const uc16* begin = SeqTwoByteString::cast(str)->GetChars(); const uc16* end = begin + str->length(); return InternalStringToDouble(begin, end, flags, empty_string_val); } else { StringInputBuffer buffer(str); return InternalStringToDouble(StringInputBufferIterator(&buffer), StringInputBufferIterator::EndMarker(), flags, empty_string_val); } } double StringToDouble(const char* str, int flags, double empty_string_val) { const char* end = str + StrLength(str); return InternalStringToDouble(str, end, flags, empty_string_val); } extern "C" char* dtoa(double d, int mode, int ndigits, int* decpt, int* sign, char** rve); extern "C" void freedtoa(char* s); const char* DoubleToCString(double v, Vector buffer) { StringBuilder builder(buffer.start(), buffer.length()); switch (fpclassify(v)) { case FP_NAN: builder.AddString("NaN"); break; case FP_INFINITE: if (v < 0.0) { builder.AddString("-Infinity"); } else { builder.AddString("Infinity"); } break; case FP_ZERO: builder.AddCharacter('0'); break; default: { int decimal_point; int sign; char* decimal_rep; bool used_gay_dtoa = false; char fast_dtoa_buffer[kFastDtoaMaximalLength + 1]; int length; if (FastDtoa(v, fast_dtoa_buffer, &sign, &length, &decimal_point)) { decimal_rep = fast_dtoa_buffer; } else { decimal_rep = dtoa(v, 0, 0, &decimal_point, &sign, NULL); used_gay_dtoa = true; length = StrLength(decimal_rep); } if (sign) builder.AddCharacter('-'); if (length <= decimal_point && decimal_point <= 21) { // ECMA-262 section 9.8.1 step 6. builder.AddString(decimal_rep); builder.AddPadding('0', decimal_point - length); } else if (0 < decimal_point && decimal_point <= 21) { // ECMA-262 section 9.8.1 step 7. builder.AddSubstring(decimal_rep, decimal_point); builder.AddCharacter('.'); builder.AddString(decimal_rep + decimal_point); } else if (decimal_point <= 0 && decimal_point > -6) { // ECMA-262 section 9.8.1 step 8. builder.AddString("0."); builder.AddPadding('0', -decimal_point); builder.AddString(decimal_rep); } else { // ECMA-262 section 9.8.1 step 9 and 10 combined. builder.AddCharacter(decimal_rep[0]); if (length != 1) { builder.AddCharacter('.'); builder.AddString(decimal_rep + 1); } builder.AddCharacter('e'); builder.AddCharacter((decimal_point >= 0) ? '+' : '-'); int exponent = decimal_point - 1; if (exponent < 0) exponent = -exponent; builder.AddFormatted("%d", exponent); } if (used_gay_dtoa) freedtoa(decimal_rep); } } return builder.Finalize(); } const char* IntToCString(int n, Vector buffer) { bool negative = false; if (n < 0) { // We must not negate the most negative int. if (n == kMinInt) return DoubleToCString(n, buffer); negative = true; n = -n; } // Build the string backwards from the least significant digit. int i = buffer.length(); buffer[--i] = '\0'; do { buffer[--i] = '0' + (n % 10); n /= 10; } while (n); if (negative) buffer[--i] = '-'; return buffer.start() + i; } char* DoubleToFixedCString(double value, int f) { ASSERT(f >= 0); bool negative = false; double abs_value = value; if (value < 0) { abs_value = -value; negative = true; } if (abs_value >= 1e21) { char arr[100]; Vector buffer(arr, ARRAY_SIZE(arr)); return StrDup(DoubleToCString(value, buffer)); } // Find a sufficiently precise decimal representation of n. int decimal_point; int sign; char* decimal_rep = dtoa(abs_value, 3, f, &decimal_point, &sign, NULL); int decimal_rep_length = StrLength(decimal_rep); // Create a representation that is padded with zeros if needed. int zero_prefix_length = 0; int zero_postfix_length = 0; if (decimal_point <= 0) { zero_prefix_length = -decimal_point + 1; decimal_point = 1; } if (zero_prefix_length + decimal_rep_length < decimal_point + f) { zero_postfix_length = decimal_point + f - decimal_rep_length - zero_prefix_length; } unsigned rep_length = zero_prefix_length + decimal_rep_length + zero_postfix_length; StringBuilder rep_builder(rep_length + 1); rep_builder.AddPadding('0', zero_prefix_length); rep_builder.AddString(decimal_rep); rep_builder.AddPadding('0', zero_postfix_length); char* rep = rep_builder.Finalize(); freedtoa(decimal_rep); // Create the result string by appending a minus and putting in a // decimal point if needed. unsigned result_size = decimal_point + f + 2; StringBuilder builder(result_size + 1); if (negative) builder.AddCharacter('-'); builder.AddSubstring(rep, decimal_point); if (f > 0) { builder.AddCharacter('.'); builder.AddSubstring(rep + decimal_point, f); } DeleteArray(rep); return builder.Finalize(); } static char* CreateExponentialRepresentation(char* decimal_rep, int exponent, bool negative, int significant_digits) { bool negative_exponent = false; if (exponent < 0) { negative_exponent = true; exponent = -exponent; } // Leave room in the result for appending a minus, for a period, the // letter 'e', a minus or a plus depending on the exponent, and a // three digit exponent. unsigned result_size = significant_digits + 7; StringBuilder builder(result_size + 1); if (negative) builder.AddCharacter('-'); builder.AddCharacter(decimal_rep[0]); if (significant_digits != 1) { builder.AddCharacter('.'); builder.AddString(decimal_rep + 1); int rep_length = StrLength(decimal_rep); builder.AddPadding('0', significant_digits - rep_length); } builder.AddCharacter('e'); builder.AddCharacter(negative_exponent ? '-' : '+'); builder.AddFormatted("%d", exponent); return builder.Finalize(); } char* DoubleToExponentialCString(double value, int f) { // f might be -1 to signal that f was undefined in JavaScript. ASSERT(f >= -1 && f <= 20); bool negative = false; if (value < 0) { value = -value; negative = true; } // Find a sufficiently precise decimal representation of n. int decimal_point; int sign; char* decimal_rep = NULL; if (f == -1) { decimal_rep = dtoa(value, 0, 0, &decimal_point, &sign, NULL); f = StrLength(decimal_rep) - 1; } else { decimal_rep = dtoa(value, 2, f + 1, &decimal_point, &sign, NULL); } int decimal_rep_length = StrLength(decimal_rep); ASSERT(decimal_rep_length > 0); ASSERT(decimal_rep_length <= f + 1); USE(decimal_rep_length); int exponent = decimal_point - 1; char* result = CreateExponentialRepresentation(decimal_rep, exponent, negative, f+1); freedtoa(decimal_rep); return result; } char* DoubleToPrecisionCString(double value, int p) { ASSERT(p >= 1 && p <= 21); bool negative = false; if (value < 0) { value = -value; negative = true; } // Find a sufficiently precise decimal representation of n. int decimal_point; int sign; char* decimal_rep = dtoa(value, 2, p, &decimal_point, &sign, NULL); int decimal_rep_length = StrLength(decimal_rep); ASSERT(decimal_rep_length <= p); int exponent = decimal_point - 1; char* result = NULL; if (exponent < -6 || exponent >= p) { result = CreateExponentialRepresentation(decimal_rep, exponent, negative, p); } else { // Use fixed notation. // // Leave room in the result for appending a minus, a period and in // the case where decimal_point is not positive for a zero in // front of the period. unsigned result_size = (decimal_point <= 0) ? -decimal_point + p + 3 : p + 2; StringBuilder builder(result_size + 1); if (negative) builder.AddCharacter('-'); if (decimal_point <= 0) { builder.AddString("0."); builder.AddPadding('0', -decimal_point); builder.AddString(decimal_rep); builder.AddPadding('0', p - decimal_rep_length); } else { const int m = Min(decimal_rep_length, decimal_point); builder.AddSubstring(decimal_rep, m); builder.AddPadding('0', decimal_point - decimal_rep_length); if (decimal_point < p) { builder.AddCharacter('.'); const int extra = negative ? 2 : 1; if (decimal_rep_length > decimal_point) { const int len = StrLength(decimal_rep + decimal_point); const int n = Min(len, p - (builder.position() - extra)); builder.AddSubstring(decimal_rep + decimal_point, n); } builder.AddPadding('0', extra + (p - builder.position())); } } result = builder.Finalize(); } freedtoa(decimal_rep); return result; } char* DoubleToRadixCString(double value, int radix) { ASSERT(radix >= 2 && radix <= 36); // Character array used for conversion. static const char chars[] = "0123456789abcdefghijklmnopqrstuvwxyz"; // Buffer for the integer part of the result. 1024 chars is enough // for max integer value in radix 2. We need room for a sign too. static const int kBufferSize = 1100; char integer_buffer[kBufferSize]; integer_buffer[kBufferSize - 1] = '\0'; // Buffer for the decimal part of the result. We only generate up // to kBufferSize - 1 chars for the decimal part. char decimal_buffer[kBufferSize]; decimal_buffer[kBufferSize - 1] = '\0'; // Make sure the value is positive. bool is_negative = value < 0.0; if (is_negative) value = -value; // Get the integer part and the decimal part. double integer_part = floor(value); double decimal_part = value - integer_part; // Convert the integer part starting from the back. Always generate // at least one digit. int integer_pos = kBufferSize - 2; do { integer_buffer[integer_pos--] = chars[static_cast(modulo(integer_part, radix))]; integer_part /= radix; } while (integer_part >= 1.0); // Sanity check. ASSERT(integer_pos > 0); // Add sign if needed. if (is_negative) integer_buffer[integer_pos--] = '-'; // Convert the decimal part. Repeatedly multiply by the radix to // generate the next char. Never generate more than kBufferSize - 1 // chars. // // TODO(1093998): We will often generate a full decimal_buffer of // chars because hitting zero will often not happen. The right // solution would be to continue until the string representation can // be read back and yield the original value. To implement this // efficiently, we probably have to modify dtoa. int decimal_pos = 0; while ((decimal_part > 0.0) && (decimal_pos < kBufferSize - 1)) { decimal_part *= radix; decimal_buffer[decimal_pos++] = chars[static_cast(floor(decimal_part))]; decimal_part -= floor(decimal_part); } decimal_buffer[decimal_pos] = '\0'; // Compute the result size. int integer_part_size = kBufferSize - 2 - integer_pos; // Make room for zero termination. unsigned result_size = integer_part_size + decimal_pos; // If the number has a decimal part, leave room for the period. if (decimal_pos > 0) result_size++; // Allocate result and fill in the parts. StringBuilder builder(result_size + 1); builder.AddSubstring(integer_buffer + integer_pos + 1, integer_part_size); if (decimal_pos > 0) builder.AddCharacter('.'); builder.AddSubstring(decimal_buffer, decimal_pos); return builder.Finalize(); } } } // namespace v8::internal