// Copyright 2015 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "test/unittests/interpreter/interpreter-assembler-unittest.h" #include "src/code-factory.h" #include "src/compiler/node.h" #include "src/interface-descriptors.h" #include "src/isolate.h" #include "src/objects-inl.h" #include "test/unittests/compiler/compiler-test-utils.h" #include "test/unittests/compiler/node-test-utils.h" using ::testing::_; using v8::internal::compiler::Node; namespace c = v8::internal::compiler; namespace v8 { namespace internal { namespace interpreter { namespace interpreter_assembler_unittest { InterpreterAssemblerTestState::InterpreterAssemblerTestState( InterpreterAssemblerTest* test, Bytecode bytecode) : compiler::CodeAssemblerState( test->isolate(), test->zone(), InterpreterDispatchDescriptor(test->isolate()), Code::BYTECODE_HANDLER, Bytecodes::ToString(bytecode), Bytecodes::ReturnCount(bytecode)) {} const interpreter::Bytecode kBytecodes[] = { #define DEFINE_BYTECODE(Name, ...) interpreter::Bytecode::k##Name, BYTECODE_LIST(DEFINE_BYTECODE) #undef DEFINE_BYTECODE }; InterpreterAssemblerTest::InterpreterAssemblerForTest:: ~InterpreterAssemblerForTest() { // Tests don't necessarily read and write accumulator but // InterpreterAssembler checks accumulator uses. if (Bytecodes::ReadsAccumulator(bytecode())) { GetAccumulator(); } if (Bytecodes::WritesAccumulator(bytecode())) { SetAccumulator(nullptr); } } Matcher InterpreterAssemblerTest::InterpreterAssemblerForTest::IsLoad( const Matcher& rep_matcher, const Matcher& base_matcher, const Matcher& index_matcher) { return ::i::compiler::IsLoad(rep_matcher, base_matcher, index_matcher, _, _); } Matcher InterpreterAssemblerTest::InterpreterAssemblerForTest::IsStore( const Matcher& rep_matcher, const Matcher& base_matcher, const Matcher& index_matcher, const Matcher& value_matcher) { return ::i::compiler::IsStore(rep_matcher, base_matcher, index_matcher, value_matcher, _, _); } Matcher InterpreterAssemblerTest::InterpreterAssemblerForTest::IsUnsignedByteOperand( int offset) { return IsLoad( MachineType::Uint8(), c::IsParameter(InterpreterDispatchDescriptor::kBytecodeArray), c::IsIntPtrAdd( c::IsParameter(InterpreterDispatchDescriptor::kBytecodeOffset), c::IsIntPtrConstant(offset))); } Matcher InterpreterAssemblerTest::InterpreterAssemblerForTest::IsSignedByteOperand( int offset) { return IsLoad( MachineType::Int8(), c::IsParameter(InterpreterDispatchDescriptor::kBytecodeArray), c::IsIntPtrAdd( c::IsParameter(InterpreterDispatchDescriptor::kBytecodeOffset), c::IsIntPtrConstant(offset))); } Matcher InterpreterAssemblerTest::InterpreterAssemblerForTest::IsUnsignedShortOperand( int offset) { if (TargetSupportsUnalignedAccess()) { return IsLoad( MachineType::Uint16(), c::IsParameter(InterpreterDispatchDescriptor::kBytecodeArray), c::IsIntPtrAdd( c::IsParameter(InterpreterDispatchDescriptor::kBytecodeOffset), c::IsIntPtrConstant(offset))); } else { #if V8_TARGET_LITTLE_ENDIAN const int kStep = -1; const int kMsbOffset = 1; #elif V8_TARGET_BIG_ENDIAN const int kStep = 1; const int kMsbOffset = 0; #else #error "Unknown Architecture" #endif Matcher bytes[2]; for (int i = 0; i < static_cast(arraysize(bytes)); i++) { bytes[i] = IsLoad( MachineType::Uint8(), c::IsParameter(InterpreterDispatchDescriptor::kBytecodeArray), c::IsIntPtrAdd( c::IsParameter(InterpreterDispatchDescriptor::kBytecodeOffset), c::IsIntPtrConstant(offset + kMsbOffset + kStep * i))); } return c::IsWord32Or( c::IsWord32Shl(bytes[0], c::IsInt32Constant(kBitsPerByte)), bytes[1]); } } Matcher InterpreterAssemblerTest::InterpreterAssemblerForTest::IsSignedShortOperand( int offset) { if (TargetSupportsUnalignedAccess()) { return IsLoad( MachineType::Int16(), c::IsParameter(InterpreterDispatchDescriptor::kBytecodeArray), c::IsIntPtrAdd( c::IsParameter(InterpreterDispatchDescriptor::kBytecodeOffset), c::IsIntPtrConstant(offset))); } else { #if V8_TARGET_LITTLE_ENDIAN const int kStep = -1; const int kMsbOffset = 1; #elif V8_TARGET_BIG_ENDIAN const int kStep = 1; const int kMsbOffset = 0; #else #error "Unknown Architecture" #endif Matcher bytes[2]; for (int i = 0; i < static_cast(arraysize(bytes)); i++) { bytes[i] = IsLoad( (i == 0) ? MachineType::Int8() : MachineType::Uint8(), c::IsParameter(InterpreterDispatchDescriptor::kBytecodeArray), c::IsIntPtrAdd( c::IsParameter(InterpreterDispatchDescriptor::kBytecodeOffset), c::IsIntPtrConstant(offset + kMsbOffset + kStep * i))); } return c::IsWord32Or( c::IsWord32Shl(bytes[0], c::IsInt32Constant(kBitsPerByte)), bytes[1]); } } Matcher InterpreterAssemblerTest::InterpreterAssemblerForTest::IsUnsignedQuadOperand( int offset) { if (TargetSupportsUnalignedAccess()) { return IsLoad( MachineType::Uint32(), c::IsParameter(InterpreterDispatchDescriptor::kBytecodeArray), c::IsIntPtrAdd( c::IsParameter(InterpreterDispatchDescriptor::kBytecodeOffset), c::IsIntPtrConstant(offset))); } else { #if V8_TARGET_LITTLE_ENDIAN const int kStep = -1; const int kMsbOffset = 3; #elif V8_TARGET_BIG_ENDIAN const int kStep = 1; const int kMsbOffset = 0; #else #error "Unknown Architecture" #endif Matcher bytes[4]; for (int i = 0; i < static_cast(arraysize(bytes)); i++) { bytes[i] = IsLoad( MachineType::Uint8(), c::IsParameter(InterpreterDispatchDescriptor::kBytecodeArray), c::IsIntPtrAdd( c::IsParameter(InterpreterDispatchDescriptor::kBytecodeOffset), c::IsIntPtrConstant(offset + kMsbOffset + kStep * i))); } return c::IsWord32Or( c::IsWord32Shl(bytes[0], c::IsInt32Constant(3 * kBitsPerByte)), c::IsWord32Or( c::IsWord32Shl(bytes[1], c::IsInt32Constant(2 * kBitsPerByte)), c::IsWord32Or( c::IsWord32Shl(bytes[2], c::IsInt32Constant(1 * kBitsPerByte)), bytes[3]))); } } Matcher InterpreterAssemblerTest::InterpreterAssemblerForTest::IsSignedQuadOperand( int offset) { if (TargetSupportsUnalignedAccess()) { return IsLoad( MachineType::Int32(), c::IsParameter(InterpreterDispatchDescriptor::kBytecodeArray), c::IsIntPtrAdd( c::IsParameter(InterpreterDispatchDescriptor::kBytecodeOffset), c::IsIntPtrConstant(offset))); } else { #if V8_TARGET_LITTLE_ENDIAN const int kStep = -1; int kMsbOffset = 3; #elif V8_TARGET_BIG_ENDIAN const int kStep = 1; int kMsbOffset = 0; #else #error "Unknown Architecture" #endif Matcher bytes[4]; for (int i = 0; i < static_cast(arraysize(bytes)); i++) { bytes[i] = IsLoad( (i == 0) ? MachineType::Int8() : MachineType::Uint8(), c::IsParameter(InterpreterDispatchDescriptor::kBytecodeArray), c::IsIntPtrAdd( c::IsParameter(InterpreterDispatchDescriptor::kBytecodeOffset), c::IsIntPtrConstant(offset + kMsbOffset + kStep * i))); } return c::IsWord32Or( c::IsWord32Shl(bytes[0], c::IsInt32Constant(3 * kBitsPerByte)), c::IsWord32Or( c::IsWord32Shl(bytes[1], c::IsInt32Constant(2 * kBitsPerByte)), c::IsWord32Or( c::IsWord32Shl(bytes[2], c::IsInt32Constant(1 * kBitsPerByte)), bytes[3]))); } } Matcher InterpreterAssemblerTest::InterpreterAssemblerForTest::IsSignedOperand( int offset, OperandSize operand_size) { switch (operand_size) { case OperandSize::kByte: return IsSignedByteOperand(offset); case OperandSize::kShort: return IsSignedShortOperand(offset); case OperandSize::kQuad: return IsSignedQuadOperand(offset); case OperandSize::kNone: UNREACHABLE(); } return nullptr; } Matcher InterpreterAssemblerTest::InterpreterAssemblerForTest::IsUnsignedOperand( int offset, OperandSize operand_size) { switch (operand_size) { case OperandSize::kByte: return IsUnsignedByteOperand(offset); case OperandSize::kShort: return IsUnsignedShortOperand(offset); case OperandSize::kQuad: return IsUnsignedQuadOperand(offset); case OperandSize::kNone: UNREACHABLE(); } return nullptr; } TARGET_TEST_F(InterpreterAssemblerTest, Jump) { // If debug code is enabled we emit extra code in Jump. if (FLAG_debug_code) return; int jump_offsets[] = {-9710, -77, 0, +3, +97109}; TRACED_FOREACH(int, jump_offset, jump_offsets) { TRACED_FOREACH(interpreter::Bytecode, bytecode, kBytecodes) { if (!interpreter::Bytecodes::IsJump(bytecode)) return; InterpreterAssemblerTestState state(this, bytecode); InterpreterAssemblerForTest m(&state, bytecode); Node* tail_call_node = m.Jump(m.IntPtrConstant(jump_offset)); Matcher next_bytecode_offset_matcher = c::IsIntPtrAdd( c::IsParameter(InterpreterDispatchDescriptor::kBytecodeOffset), c::IsIntPtrConstant(jump_offset)); Matcher target_bytecode_matcher = m.IsLoad(MachineType::Uint8(), _, next_bytecode_offset_matcher); target_bytecode_matcher = c::IsChangeUint32ToWord(target_bytecode_matcher); Matcher code_target_matcher = m.IsLoad( MachineType::Pointer(), c::IsParameter(InterpreterDispatchDescriptor::kDispatchTable), c::IsWordShl(target_bytecode_matcher, c::IsIntPtrConstant(kPointerSizeLog2))); EXPECT_THAT( tail_call_node, c::IsTailCall( _, code_target_matcher, c::IsParameter(InterpreterDispatchDescriptor::kAccumulator), next_bytecode_offset_matcher, _, c::IsParameter(InterpreterDispatchDescriptor::kDispatchTable), _, _)); } } } TARGET_TEST_F(InterpreterAssemblerTest, BytecodeOperand) { static const OperandScale kOperandScales[] = { OperandScale::kSingle, OperandScale::kDouble, OperandScale::kQuadruple}; TRACED_FOREACH(interpreter::Bytecode, bytecode, kBytecodes) { TRACED_FOREACH(interpreter::OperandScale, operand_scale, kOperandScales) { InterpreterAssemblerTestState state(this, bytecode); InterpreterAssemblerForTest m(&state, bytecode, operand_scale); int number_of_operands = interpreter::Bytecodes::NumberOfOperands(bytecode); for (int i = 0; i < number_of_operands; i++) { int offset = interpreter::Bytecodes::GetOperandOffset(bytecode, i, operand_scale); OperandType operand_type = interpreter::Bytecodes::GetOperandType(bytecode, i); OperandSize operand_size = Bytecodes::SizeOfOperand(operand_type, operand_scale); switch (interpreter::Bytecodes::GetOperandType(bytecode, i)) { case interpreter::OperandType::kRegCount: EXPECT_THAT(m.BytecodeOperandCount(i), m.IsUnsignedOperand(offset, operand_size)); break; case interpreter::OperandType::kFlag8: EXPECT_THAT(m.BytecodeOperandFlag(i), m.IsUnsignedOperand(offset, operand_size)); break; case interpreter::OperandType::kIdx: EXPECT_THAT(m.BytecodeOperandIdx(i), c::IsChangeUint32ToWord( m.IsUnsignedOperand(offset, operand_size))); break; case interpreter::OperandType::kNativeContextIndex: EXPECT_THAT(m.BytecodeOperandNativeContextIndex(i), c::IsChangeUint32ToWord( m.IsUnsignedOperand(offset, operand_size))); break; case interpreter::OperandType::kUImm: EXPECT_THAT(m.BytecodeOperandUImm(i), m.IsUnsignedOperand(offset, operand_size)); break; case interpreter::OperandType::kImm: { EXPECT_THAT(m.BytecodeOperandImm(i), m.IsSignedOperand(offset, operand_size)); break; } case interpreter::OperandType::kRegList: case interpreter::OperandType::kReg: case interpreter::OperandType::kRegOut: case interpreter::OperandType::kRegOutList: case interpreter::OperandType::kRegOutPair: case interpreter::OperandType::kRegOutTriple: case interpreter::OperandType::kRegPair: EXPECT_THAT(m.BytecodeOperandReg(i), c::IsChangeInt32ToIntPtr( m.IsSignedOperand(offset, operand_size))); break; case interpreter::OperandType::kRuntimeId: EXPECT_THAT(m.BytecodeOperandRuntimeId(i), m.IsUnsignedOperand(offset, operand_size)); break; case interpreter::OperandType::kIntrinsicId: EXPECT_THAT(m.BytecodeOperandIntrinsicId(i), m.IsUnsignedOperand(offset, operand_size)); break; case interpreter::OperandType::kNone: UNREACHABLE(); break; } } } } } TARGET_TEST_F(InterpreterAssemblerTest, GetContext) { TRACED_FOREACH(interpreter::Bytecode, bytecode, kBytecodes) { InterpreterAssemblerTestState state(this, bytecode); InterpreterAssemblerForTest m(&state, bytecode); EXPECT_THAT( m.GetContext(), m.IsLoad(MachineType::AnyTagged(), c::IsLoadParentFramePointer(), c::IsIntPtrConstant(Register::current_context().ToOperand() << kPointerSizeLog2))); } } TARGET_TEST_F(InterpreterAssemblerTest, RegisterLocation) { TRACED_FOREACH(interpreter::Bytecode, bytecode, kBytecodes) { InterpreterAssemblerTestState state(this, bytecode); InterpreterAssemblerForTest m(&state, bytecode); Node* reg_index_node = m.Parameter(0); Node* reg_location_node = m.RegisterLocation(reg_index_node); EXPECT_THAT( reg_location_node, c::IsIntPtrAdd(c::IsLoadParentFramePointer(), c::IsWordShl(reg_index_node, c::IsIntPtrConstant(kPointerSizeLog2)))); } } TARGET_TEST_F(InterpreterAssemblerTest, LoadRegister) { TRACED_FOREACH(interpreter::Bytecode, bytecode, kBytecodes) { InterpreterAssemblerTestState state(this, bytecode); InterpreterAssemblerForTest m(&state, bytecode); Node* reg_index_node = m.Parameter(0); Node* load_reg_node = m.LoadRegister(reg_index_node); EXPECT_THAT( load_reg_node, m.IsLoad(MachineType::AnyTagged(), c::IsLoadParentFramePointer(), c::IsWordShl(reg_index_node, c::IsIntPtrConstant(kPointerSizeLog2)))); } } TARGET_TEST_F(InterpreterAssemblerTest, StoreRegister) { TRACED_FOREACH(interpreter::Bytecode, bytecode, kBytecodes) { InterpreterAssemblerTestState state(this, bytecode); InterpreterAssemblerForTest m(&state, bytecode); Node* store_value = m.Int32Constant(0xdeadbeef); Node* reg_index_node = m.Parameter(0); Node* store_reg_node = m.StoreRegister(store_value, reg_index_node); EXPECT_THAT(store_reg_node, m.IsStore(c::StoreRepresentation(MachineRepresentation::kTagged, kNoWriteBarrier), c::IsLoadParentFramePointer(), c::IsWordShl(reg_index_node, c::IsIntPtrConstant(kPointerSizeLog2)), store_value)); } } TARGET_TEST_F(InterpreterAssemblerTest, LoadConstantPoolEntry) { TRACED_FOREACH(interpreter::Bytecode, bytecode, kBytecodes) { InterpreterAssemblerTestState state(this, bytecode); InterpreterAssemblerForTest m(&state, bytecode); { Node* index = m.IntPtrConstant(2); Node* load_constant = m.LoadConstantPoolEntry(index); Matcher constant_pool_matcher = m.IsLoad( MachineType::AnyTagged(), c::IsParameter(InterpreterDispatchDescriptor::kBytecodeArray), c::IsIntPtrConstant(BytecodeArray::kConstantPoolOffset - kHeapObjectTag)); EXPECT_THAT( load_constant, m.IsLoad(MachineType::AnyTagged(), constant_pool_matcher, c::IsIntPtrConstant(FixedArray::OffsetOfElementAt(2) - kHeapObjectTag))); } { Node* index = m.Parameter(2); Node* load_constant = m.LoadConstantPoolEntry(index); Matcher constant_pool_matcher = m.IsLoad( MachineType::AnyTagged(), c::IsParameter(InterpreterDispatchDescriptor::kBytecodeArray), c::IsIntPtrConstant(BytecodeArray::kConstantPoolOffset - kHeapObjectTag)); EXPECT_THAT( load_constant, m.IsLoad( MachineType::AnyTagged(), constant_pool_matcher, c::IsIntPtrAdd( c::IsIntPtrConstant(FixedArray::kHeaderSize - kHeapObjectTag), c::IsWordShl(index, c::IsIntPtrConstant(kPointerSizeLog2))))); } } } TARGET_TEST_F(InterpreterAssemblerTest, LoadObjectField) { TRACED_FOREACH(interpreter::Bytecode, bytecode, kBytecodes) { InterpreterAssemblerTestState state(this, bytecode); InterpreterAssemblerForTest m(&state, bytecode); Node* object = m.IntPtrConstant(0xdeadbeef); int offset = 16; Node* load_field = m.LoadObjectField(object, offset); EXPECT_THAT(load_field, m.IsLoad(MachineType::AnyTagged(), object, c::IsIntPtrConstant(offset - kHeapObjectTag))); } } TARGET_TEST_F(InterpreterAssemblerTest, CallRuntime2) { TRACED_FOREACH(interpreter::Bytecode, bytecode, kBytecodes) { InterpreterAssemblerTestState state(this, bytecode); InterpreterAssemblerForTest m(&state, bytecode); Node* arg1 = m.Int32Constant(2); Node* arg2 = m.Int32Constant(3); Node* context = m.Int32Constant(4); Node* call_runtime = m.CallRuntime(Runtime::kAdd, context, arg1, arg2); EXPECT_THAT(call_runtime, c::IsCall(_, _, arg1, arg2, _, c::IsInt32Constant(2), context, _, _)); } } TARGET_TEST_F(InterpreterAssemblerTest, CallRuntime) { const int kResultSizes[] = {1, 2}; TRACED_FOREACH(interpreter::Bytecode, bytecode, kBytecodes) { TRACED_FOREACH(int, result_size, kResultSizes) { if (Bytecodes::IsCallRuntime(bytecode)) { InterpreterAssemblerTestState state(this, bytecode); InterpreterAssemblerForTest m(&state, bytecode); Callable builtin = CodeFactory::InterpreterCEntry(isolate(), result_size); Node* function_id = m.Int32Constant(0); Node* first_arg = m.IntPtrConstant(1); Node* arg_count = m.Int32Constant(2); Node* context = m.IntPtrConstant(4); Matcher function_table = c::IsExternalConstant( ExternalReference::runtime_function_table_address(isolate())); Matcher function = c::IsIntPtrAdd( function_table, c::IsChangeUint32ToWord(c::IsInt32Mul( function_id, c::IsInt32Constant(sizeof(Runtime::Function))))); Matcher function_entry = m.IsLoad(MachineType::Pointer(), function, c::IsIntPtrConstant(offsetof(Runtime::Function, entry))); Node* call_runtime = m.CallRuntimeN(function_id, context, first_arg, arg_count, result_size); EXPECT_THAT(call_runtime, c::IsCall(_, c::IsHeapConstant(builtin.code()), arg_count, first_arg, function_entry, context, _, _)); } } } } TARGET_TEST_F(InterpreterAssemblerTest, LoadFeedbackVector) { TRACED_FOREACH(interpreter::Bytecode, bytecode, kBytecodes) { InterpreterAssemblerTestState state(this, bytecode); InterpreterAssemblerForTest m(&state, bytecode); Node* feedback_vector = m.LoadFeedbackVector(); Matcher load_function_matcher = m.IsLoad(MachineType::AnyTagged(), c::IsLoadParentFramePointer(), c::IsIntPtrConstant(Register::function_closure().ToOperand() << kPointerSizeLog2)); Matcher load_vector_cell_matcher = m.IsLoad(MachineType::AnyTagged(), load_function_matcher, c::IsIntPtrConstant(JSFunction::kFeedbackVectorOffset - kHeapObjectTag)); EXPECT_THAT( feedback_vector, m.IsLoad(MachineType::AnyTagged(), load_vector_cell_matcher, c::IsIntPtrConstant(Cell::kValueOffset - kHeapObjectTag))); } } } // namespace interpreter_assembler_unittest } // namespace interpreter } // namespace internal } // namespace v8