// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if V8_TARGET_ARCH_IA32 #include "codegen.h" #include "ic-inl.h" #include "runtime.h" #include "stub-cache.h" namespace v8 { namespace internal { // ---------------------------------------------------------------------------- // Static IC stub generators. // #define __ ACCESS_MASM(masm) static void GenerateGlobalInstanceTypeCheck(MacroAssembler* masm, Register type, Label* global_object) { // Register usage: // type: holds the receiver instance type on entry. __ cmp(type, JS_GLOBAL_OBJECT_TYPE); __ j(equal, global_object); __ cmp(type, JS_BUILTINS_OBJECT_TYPE); __ j(equal, global_object); __ cmp(type, JS_GLOBAL_PROXY_TYPE); __ j(equal, global_object); } // Generated code falls through if the receiver is a regular non-global // JS object with slow properties and no interceptors. static void GenerateNameDictionaryReceiverCheck(MacroAssembler* masm, Register receiver, Register r0, Register r1, Label* miss) { // Register usage: // receiver: holds the receiver on entry and is unchanged. // r0: used to hold receiver instance type. // Holds the property dictionary on fall through. // r1: used to hold receivers map. // Check that the receiver isn't a smi. __ JumpIfSmi(receiver, miss); // Check that the receiver is a valid JS object. __ mov(r1, FieldOperand(receiver, HeapObject::kMapOffset)); __ movzx_b(r0, FieldOperand(r1, Map::kInstanceTypeOffset)); __ cmp(r0, FIRST_SPEC_OBJECT_TYPE); __ j(below, miss); // If this assert fails, we have to check upper bound too. STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE); GenerateGlobalInstanceTypeCheck(masm, r0, miss); // Check for non-global object that requires access check. __ test_b(FieldOperand(r1, Map::kBitFieldOffset), (1 << Map::kIsAccessCheckNeeded) | (1 << Map::kHasNamedInterceptor)); __ j(not_zero, miss); __ mov(r0, FieldOperand(receiver, JSObject::kPropertiesOffset)); __ CheckMap(r0, masm->isolate()->factory()->hash_table_map(), miss, DONT_DO_SMI_CHECK); } // Helper function used to load a property from a dictionary backing // storage. This function may fail to load a property even though it is // in the dictionary, so code at miss_label must always call a backup // property load that is complete. This function is safe to call if // name is not internalized, and will jump to the miss_label in that // case. The generated code assumes that the receiver has slow // properties, is not a global object and does not have interceptors. static void GenerateDictionaryLoad(MacroAssembler* masm, Label* miss_label, Register elements, Register name, Register r0, Register r1, Register result) { // Register use: // // elements - holds the property dictionary on entry and is unchanged. // // name - holds the name of the property on entry and is unchanged. // // Scratch registers: // // r0 - used for the index into the property dictionary // // r1 - used to hold the capacity of the property dictionary. // // result - holds the result on exit. Label done; // Probe the dictionary. NameDictionaryLookupStub::GeneratePositiveLookup(masm, miss_label, &done, elements, name, r0, r1); // If probing finds an entry in the dictionary, r0 contains the // index into the dictionary. Check that the value is a normal // property. __ bind(&done); const int kElementsStartOffset = NameDictionary::kHeaderSize + NameDictionary::kElementsStartIndex * kPointerSize; const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize; __ test(Operand(elements, r0, times_4, kDetailsOffset - kHeapObjectTag), Immediate(PropertyDetails::TypeField::kMask << kSmiTagSize)); __ j(not_zero, miss_label); // Get the value at the masked, scaled index. const int kValueOffset = kElementsStartOffset + kPointerSize; __ mov(result, Operand(elements, r0, times_4, kValueOffset - kHeapObjectTag)); } // Helper function used to store a property to a dictionary backing // storage. This function may fail to store a property eventhough it // is in the dictionary, so code at miss_label must always call a // backup property store that is complete. This function is safe to // call if name is not internalized, and will jump to the miss_label in // that case. The generated code assumes that the receiver has slow // properties, is not a global object and does not have interceptors. static void GenerateDictionaryStore(MacroAssembler* masm, Label* miss_label, Register elements, Register name, Register value, Register r0, Register r1) { // Register use: // // elements - holds the property dictionary on entry and is clobbered. // // name - holds the name of the property on entry and is unchanged. // // value - holds the value to store and is unchanged. // // r0 - used for index into the property dictionary and is clobbered. // // r1 - used to hold the capacity of the property dictionary and is clobbered. Label done; // Probe the dictionary. NameDictionaryLookupStub::GeneratePositiveLookup(masm, miss_label, &done, elements, name, r0, r1); // If probing finds an entry in the dictionary, r0 contains the // index into the dictionary. Check that the value is a normal // property that is not read only. __ bind(&done); const int kElementsStartOffset = NameDictionary::kHeaderSize + NameDictionary::kElementsStartIndex * kPointerSize; const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize; const int kTypeAndReadOnlyMask = (PropertyDetails::TypeField::kMask | PropertyDetails::AttributesField::encode(READ_ONLY)) << kSmiTagSize; __ test(Operand(elements, r0, times_4, kDetailsOffset - kHeapObjectTag), Immediate(kTypeAndReadOnlyMask)); __ j(not_zero, miss_label); // Store the value at the masked, scaled index. const int kValueOffset = kElementsStartOffset + kPointerSize; __ lea(r0, Operand(elements, r0, times_4, kValueOffset - kHeapObjectTag)); __ mov(Operand(r0, 0), value); // Update write barrier. Make sure not to clobber the value. __ mov(r1, value); __ RecordWrite(elements, r0, r1, kDontSaveFPRegs); } // Checks the receiver for special cases (value type, slow case bits). // Falls through for regular JS object. static void GenerateKeyedLoadReceiverCheck(MacroAssembler* masm, Register receiver, Register map, int interceptor_bit, Label* slow) { // Register use: // receiver - holds the receiver and is unchanged. // Scratch registers: // map - used to hold the map of the receiver. // Check that the object isn't a smi. __ JumpIfSmi(receiver, slow); // Get the map of the receiver. __ mov(map, FieldOperand(receiver, HeapObject::kMapOffset)); // Check bit field. __ test_b(FieldOperand(map, Map::kBitFieldOffset), (1 << Map::kIsAccessCheckNeeded) | (1 << interceptor_bit)); __ j(not_zero, slow); // Check that the object is some kind of JS object EXCEPT JS Value type. // In the case that the object is a value-wrapper object, // we enter the runtime system to make sure that indexing // into string objects works as intended. ASSERT(JS_OBJECT_TYPE > JS_VALUE_TYPE); __ CmpInstanceType(map, JS_OBJECT_TYPE); __ j(below, slow); } // Loads an indexed element from a fast case array. // If not_fast_array is NULL, doesn't perform the elements map check. static void GenerateFastArrayLoad(MacroAssembler* masm, Register receiver, Register key, Register scratch, Register result, Label* not_fast_array, Label* out_of_range) { // Register use: // receiver - holds the receiver and is unchanged. // key - holds the key and is unchanged (must be a smi). // Scratch registers: // scratch - used to hold elements of the receiver and the loaded value. // result - holds the result on exit if the load succeeds and // we fall through. __ mov(scratch, FieldOperand(receiver, JSObject::kElementsOffset)); if (not_fast_array != NULL) { // Check that the object is in fast mode and writable. __ CheckMap(scratch, masm->isolate()->factory()->fixed_array_map(), not_fast_array, DONT_DO_SMI_CHECK); } else { __ AssertFastElements(scratch); } // Check that the key (index) is within bounds. __ cmp(key, FieldOperand(scratch, FixedArray::kLengthOffset)); __ j(above_equal, out_of_range); // Fast case: Do the load. STATIC_ASSERT((kPointerSize == 4) && (kSmiTagSize == 1) && (kSmiTag == 0)); __ mov(scratch, FieldOperand(scratch, key, times_2, FixedArray::kHeaderSize)); __ cmp(scratch, Immediate(masm->isolate()->factory()->the_hole_value())); // In case the loaded value is the_hole we have to consult GetProperty // to ensure the prototype chain is searched. __ j(equal, out_of_range); if (!result.is(scratch)) { __ mov(result, scratch); } } // Checks whether a key is an array index string or a unique name. // Falls through if the key is a unique name. static void GenerateKeyNameCheck(MacroAssembler* masm, Register key, Register map, Register hash, Label* index_string, Label* not_unique) { // Register use: // key - holds the key and is unchanged. Assumed to be non-smi. // Scratch registers: // map - used to hold the map of the key. // hash - used to hold the hash of the key. Label unique; __ CmpObjectType(key, LAST_UNIQUE_NAME_TYPE, map); __ j(above, not_unique); STATIC_ASSERT(LAST_UNIQUE_NAME_TYPE == FIRST_NONSTRING_TYPE); __ j(equal, &unique); // Is the string an array index, with cached numeric value? __ mov(hash, FieldOperand(key, Name::kHashFieldOffset)); __ test(hash, Immediate(Name::kContainsCachedArrayIndexMask)); __ j(zero, index_string); // Is the string internalized? We already know it's a string so a single // bit test is enough. STATIC_ASSERT(kNotInternalizedTag != 0); __ test_b(FieldOperand(map, Map::kInstanceTypeOffset), kIsNotInternalizedMask); __ j(not_zero, not_unique); __ bind(&unique); } static Operand GenerateMappedArgumentsLookup(MacroAssembler* masm, Register object, Register key, Register scratch1, Register scratch2, Label* unmapped_case, Label* slow_case) { Heap* heap = masm->isolate()->heap(); Factory* factory = masm->isolate()->factory(); // Check that the receiver is a JSObject. Because of the elements // map check later, we do not need to check for interceptors or // whether it requires access checks. __ JumpIfSmi(object, slow_case); // Check that the object is some kind of JSObject. __ CmpObjectType(object, FIRST_JS_RECEIVER_TYPE, scratch1); __ j(below, slow_case); // Check that the key is a positive smi. __ test(key, Immediate(0x80000001)); __ j(not_zero, slow_case); // Load the elements into scratch1 and check its map. Handle arguments_map(heap->non_strict_arguments_elements_map()); __ mov(scratch1, FieldOperand(object, JSObject::kElementsOffset)); __ CheckMap(scratch1, arguments_map, slow_case, DONT_DO_SMI_CHECK); // Check if element is in the range of mapped arguments. If not, jump // to the unmapped lookup with the parameter map in scratch1. __ mov(scratch2, FieldOperand(scratch1, FixedArray::kLengthOffset)); __ sub(scratch2, Immediate(Smi::FromInt(2))); __ cmp(key, scratch2); __ j(above_equal, unmapped_case); // Load element index and check whether it is the hole. const int kHeaderSize = FixedArray::kHeaderSize + 2 * kPointerSize; __ mov(scratch2, FieldOperand(scratch1, key, times_half_pointer_size, kHeaderSize)); __ cmp(scratch2, factory->the_hole_value()); __ j(equal, unmapped_case); // Load value from context and return it. We can reuse scratch1 because // we do not jump to the unmapped lookup (which requires the parameter // map in scratch1). const int kContextOffset = FixedArray::kHeaderSize; __ mov(scratch1, FieldOperand(scratch1, kContextOffset)); return FieldOperand(scratch1, scratch2, times_half_pointer_size, Context::kHeaderSize); } static Operand GenerateUnmappedArgumentsLookup(MacroAssembler* masm, Register key, Register parameter_map, Register scratch, Label* slow_case) { // Element is in arguments backing store, which is referenced by the // second element of the parameter_map. const int kBackingStoreOffset = FixedArray::kHeaderSize + kPointerSize; Register backing_store = parameter_map; __ mov(backing_store, FieldOperand(parameter_map, kBackingStoreOffset)); Handle fixed_array_map(masm->isolate()->heap()->fixed_array_map()); __ CheckMap(backing_store, fixed_array_map, slow_case, DONT_DO_SMI_CHECK); __ mov(scratch, FieldOperand(backing_store, FixedArray::kLengthOffset)); __ cmp(key, scratch); __ j(greater_equal, slow_case); return FieldOperand(backing_store, key, times_half_pointer_size, FixedArray::kHeaderSize); } void KeyedLoadIC::GenerateGeneric(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- ecx : key // -- edx : receiver // -- esp[0] : return address // ----------------------------------- Label slow, check_name, index_smi, index_name, property_array_property; Label probe_dictionary, check_number_dictionary; // Check that the key is a smi. __ JumpIfNotSmi(ecx, &check_name); __ bind(&index_smi); // Now the key is known to be a smi. This place is also jumped to from // where a numeric string is converted to a smi. GenerateKeyedLoadReceiverCheck( masm, edx, eax, Map::kHasIndexedInterceptor, &slow); // Check the receiver's map to see if it has fast elements. __ CheckFastElements(eax, &check_number_dictionary); GenerateFastArrayLoad(masm, edx, ecx, eax, eax, NULL, &slow); Isolate* isolate = masm->isolate(); Counters* counters = isolate->counters(); __ IncrementCounter(counters->keyed_load_generic_smi(), 1); __ ret(0); __ bind(&check_number_dictionary); __ mov(ebx, ecx); __ SmiUntag(ebx); __ mov(eax, FieldOperand(edx, JSObject::kElementsOffset)); // Check whether the elements is a number dictionary. // edx: receiver // ebx: untagged index // ecx: key // eax: elements __ CheckMap(eax, isolate->factory()->hash_table_map(), &slow, DONT_DO_SMI_CHECK); Label slow_pop_receiver; // Push receiver on the stack to free up a register for the dictionary // probing. __ push(edx); __ LoadFromNumberDictionary(&slow_pop_receiver, eax, ecx, ebx, edx, edi, eax); // Pop receiver before returning. __ pop(edx); __ ret(0); __ bind(&slow_pop_receiver); // Pop the receiver from the stack and jump to runtime. __ pop(edx); __ bind(&slow); // Slow case: jump to runtime. // edx: receiver // ecx: key __ IncrementCounter(counters->keyed_load_generic_slow(), 1); GenerateRuntimeGetProperty(masm); __ bind(&check_name); GenerateKeyNameCheck(masm, ecx, eax, ebx, &index_name, &slow); GenerateKeyedLoadReceiverCheck( masm, edx, eax, Map::kHasNamedInterceptor, &slow); // If the receiver is a fast-case object, check the keyed lookup // cache. Otherwise probe the dictionary. __ mov(ebx, FieldOperand(edx, JSObject::kPropertiesOffset)); __ cmp(FieldOperand(ebx, HeapObject::kMapOffset), Immediate(isolate->factory()->hash_table_map())); __ j(equal, &probe_dictionary); // The receiver's map is still in eax, compute the keyed lookup cache hash // based on 32 bits of the map pointer and the string hash. if (FLAG_debug_code) { __ cmp(eax, FieldOperand(edx, HeapObject::kMapOffset)); __ Check(equal, kMapIsNoLongerInEax); } __ mov(ebx, eax); // Keep the map around for later. __ shr(eax, KeyedLookupCache::kMapHashShift); __ mov(edi, FieldOperand(ecx, String::kHashFieldOffset)); __ shr(edi, String::kHashShift); __ xor_(eax, edi); __ and_(eax, KeyedLookupCache::kCapacityMask & KeyedLookupCache::kHashMask); // Load the key (consisting of map and internalized string) from the cache and // check for match. Label load_in_object_property; static const int kEntriesPerBucket = KeyedLookupCache::kEntriesPerBucket; Label hit_on_nth_entry[kEntriesPerBucket]; ExternalReference cache_keys = ExternalReference::keyed_lookup_cache_keys(masm->isolate()); for (int i = 0; i < kEntriesPerBucket - 1; i++) { Label try_next_entry; __ mov(edi, eax); __ shl(edi, kPointerSizeLog2 + 1); if (i != 0) { __ add(edi, Immediate(kPointerSize * i * 2)); } __ cmp(ebx, Operand::StaticArray(edi, times_1, cache_keys)); __ j(not_equal, &try_next_entry); __ add(edi, Immediate(kPointerSize)); __ cmp(ecx, Operand::StaticArray(edi, times_1, cache_keys)); __ j(equal, &hit_on_nth_entry[i]); __ bind(&try_next_entry); } __ lea(edi, Operand(eax, 1)); __ shl(edi, kPointerSizeLog2 + 1); __ add(edi, Immediate(kPointerSize * (kEntriesPerBucket - 1) * 2)); __ cmp(ebx, Operand::StaticArray(edi, times_1, cache_keys)); __ j(not_equal, &slow); __ add(edi, Immediate(kPointerSize)); __ cmp(ecx, Operand::StaticArray(edi, times_1, cache_keys)); __ j(not_equal, &slow); // Get field offset. // edx : receiver // ebx : receiver's map // ecx : key // eax : lookup cache index ExternalReference cache_field_offsets = ExternalReference::keyed_lookup_cache_field_offsets(masm->isolate()); // Hit on nth entry. for (int i = kEntriesPerBucket - 1; i >= 0; i--) { __ bind(&hit_on_nth_entry[i]); if (i != 0) { __ add(eax, Immediate(i)); } __ mov(edi, Operand::StaticArray(eax, times_pointer_size, cache_field_offsets)); __ movzx_b(eax, FieldOperand(ebx, Map::kInObjectPropertiesOffset)); __ sub(edi, eax); __ j(above_equal, &property_array_property); if (i != 0) { __ jmp(&load_in_object_property); } } // Load in-object property. __ bind(&load_in_object_property); __ movzx_b(eax, FieldOperand(ebx, Map::kInstanceSizeOffset)); __ add(eax, edi); __ mov(eax, FieldOperand(edx, eax, times_pointer_size, 0)); __ IncrementCounter(counters->keyed_load_generic_lookup_cache(), 1); __ ret(0); // Load property array property. __ bind(&property_array_property); __ mov(eax, FieldOperand(edx, JSObject::kPropertiesOffset)); __ mov(eax, FieldOperand(eax, edi, times_pointer_size, FixedArray::kHeaderSize)); __ IncrementCounter(counters->keyed_load_generic_lookup_cache(), 1); __ ret(0); // Do a quick inline probe of the receiver's dictionary, if it // exists. __ bind(&probe_dictionary); __ mov(eax, FieldOperand(edx, JSObject::kMapOffset)); __ movzx_b(eax, FieldOperand(eax, Map::kInstanceTypeOffset)); GenerateGlobalInstanceTypeCheck(masm, eax, &slow); GenerateDictionaryLoad(masm, &slow, ebx, ecx, eax, edi, eax); __ IncrementCounter(counters->keyed_load_generic_symbol(), 1); __ ret(0); __ bind(&index_name); __ IndexFromHash(ebx, ecx); // Now jump to the place where smi keys are handled. __ jmp(&index_smi); } void KeyedLoadIC::GenerateString(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- ecx : key (index) // -- edx : receiver // -- esp[0] : return address // ----------------------------------- Label miss; Register receiver = edx; Register index = ecx; Register scratch = ebx; Register result = eax; StringCharAtGenerator char_at_generator(receiver, index, scratch, result, &miss, // When not a string. &miss, // When not a number. &miss, // When index out of range. STRING_INDEX_IS_ARRAY_INDEX); char_at_generator.GenerateFast(masm); __ ret(0); StubRuntimeCallHelper call_helper; char_at_generator.GenerateSlow(masm, call_helper); __ bind(&miss); GenerateMiss(masm); } void KeyedLoadIC::GenerateIndexedInterceptor(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- ecx : key // -- edx : receiver // -- esp[0] : return address // ----------------------------------- Label slow; // Check that the receiver isn't a smi. __ JumpIfSmi(edx, &slow); // Check that the key is an array index, that is Uint32. __ test(ecx, Immediate(kSmiTagMask | kSmiSignMask)); __ j(not_zero, &slow); // Get the map of the receiver. __ mov(eax, FieldOperand(edx, HeapObject::kMapOffset)); // Check that it has indexed interceptor and access checks // are not enabled for this object. __ movzx_b(eax, FieldOperand(eax, Map::kBitFieldOffset)); __ and_(eax, Immediate(kSlowCaseBitFieldMask)); __ cmp(eax, Immediate(1 << Map::kHasIndexedInterceptor)); __ j(not_zero, &slow); // Everything is fine, call runtime. __ pop(eax); __ push(edx); // receiver __ push(ecx); // key __ push(eax); // return address // Perform tail call to the entry. ExternalReference ref = ExternalReference(IC_Utility(kKeyedLoadPropertyWithInterceptor), masm->isolate()); __ TailCallExternalReference(ref, 2, 1); __ bind(&slow); GenerateMiss(masm); } void KeyedLoadIC::GenerateNonStrictArguments(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- ecx : key // -- edx : receiver // -- esp[0] : return address // ----------------------------------- Label slow, notin; Factory* factory = masm->isolate()->factory(); Operand mapped_location = GenerateMappedArgumentsLookup(masm, edx, ecx, ebx, eax, ¬in, &slow); __ mov(eax, mapped_location); __ Ret(); __ bind(¬in); // The unmapped lookup expects that the parameter map is in ebx. Operand unmapped_location = GenerateUnmappedArgumentsLookup(masm, ecx, ebx, eax, &slow); __ cmp(unmapped_location, factory->the_hole_value()); __ j(equal, &slow); __ mov(eax, unmapped_location); __ Ret(); __ bind(&slow); GenerateMiss(masm); } void KeyedStoreIC::GenerateNonStrictArguments(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : value // -- ecx : key // -- edx : receiver // -- esp[0] : return address // ----------------------------------- Label slow, notin; Operand mapped_location = GenerateMappedArgumentsLookup(masm, edx, ecx, ebx, edi, ¬in, &slow); __ mov(mapped_location, eax); __ lea(ecx, mapped_location); __ mov(edx, eax); __ RecordWrite(ebx, ecx, edx, kDontSaveFPRegs); __ Ret(); __ bind(¬in); // The unmapped lookup expects that the parameter map is in ebx. Operand unmapped_location = GenerateUnmappedArgumentsLookup(masm, ecx, ebx, edi, &slow); __ mov(unmapped_location, eax); __ lea(edi, unmapped_location); __ mov(edx, eax); __ RecordWrite(ebx, edi, edx, kDontSaveFPRegs); __ Ret(); __ bind(&slow); GenerateMiss(masm); } static void KeyedStoreGenerateGenericHelper( MacroAssembler* masm, Label* fast_object, Label* fast_double, Label* slow, KeyedStoreCheckMap check_map, KeyedStoreIncrementLength increment_length) { Label transition_smi_elements; Label finish_object_store, non_double_value, transition_double_elements; Label fast_double_without_map_check; // eax: value // ecx: key (a smi) // edx: receiver // ebx: FixedArray receiver->elements // edi: receiver map // Fast case: Do the store, could either Object or double. __ bind(fast_object); if (check_map == kCheckMap) { __ mov(edi, FieldOperand(ebx, HeapObject::kMapOffset)); __ cmp(edi, masm->isolate()->factory()->fixed_array_map()); __ j(not_equal, fast_double); } // HOLECHECK: guards "A[i] = V" // We have to go to the runtime if the current value is the hole because // there may be a callback on the element Label holecheck_passed1; __ cmp(FixedArrayElementOperand(ebx, ecx), masm->isolate()->factory()->the_hole_value()); __ j(not_equal, &holecheck_passed1); __ JumpIfDictionaryInPrototypeChain(edx, ebx, edi, slow); __ mov(ebx, FieldOperand(edx, JSObject::kElementsOffset)); __ bind(&holecheck_passed1); // Smi stores don't require further checks. Label non_smi_value; __ JumpIfNotSmi(eax, &non_smi_value); if (increment_length == kIncrementLength) { // Add 1 to receiver->length. __ add(FieldOperand(edx, JSArray::kLengthOffset), Immediate(Smi::FromInt(1))); } // It's irrelevant whether array is smi-only or not when writing a smi. __ mov(FixedArrayElementOperand(ebx, ecx), eax); __ ret(0); __ bind(&non_smi_value); // Escape to elements kind transition case. __ mov(edi, FieldOperand(edx, HeapObject::kMapOffset)); __ CheckFastObjectElements(edi, &transition_smi_elements); // Fast elements array, store the value to the elements backing store. __ bind(&finish_object_store); if (increment_length == kIncrementLength) { // Add 1 to receiver->length. __ add(FieldOperand(edx, JSArray::kLengthOffset), Immediate(Smi::FromInt(1))); } __ mov(FixedArrayElementOperand(ebx, ecx), eax); // Update write barrier for the elements array address. __ mov(edx, eax); // Preserve the value which is returned. __ RecordWriteArray( ebx, edx, ecx, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); __ ret(0); __ bind(fast_double); if (check_map == kCheckMap) { // Check for fast double array case. If this fails, call through to the // runtime. __ cmp(edi, masm->isolate()->factory()->fixed_double_array_map()); __ j(not_equal, slow); // If the value is a number, store it as a double in the FastDoubleElements // array. } // HOLECHECK: guards "A[i] double hole?" // We have to see if the double version of the hole is present. If so // go to the runtime. uint32_t offset = FixedDoubleArray::kHeaderSize + sizeof(kHoleNanLower32); __ cmp(FieldOperand(ebx, ecx, times_4, offset), Immediate(kHoleNanUpper32)); __ j(not_equal, &fast_double_without_map_check); __ JumpIfDictionaryInPrototypeChain(edx, ebx, edi, slow); __ mov(ebx, FieldOperand(edx, JSObject::kElementsOffset)); __ bind(&fast_double_without_map_check); __ StoreNumberToDoubleElements(eax, ebx, ecx, edi, xmm0, &transition_double_elements, false); if (increment_length == kIncrementLength) { // Add 1 to receiver->length. __ add(FieldOperand(edx, JSArray::kLengthOffset), Immediate(Smi::FromInt(1))); } __ ret(0); __ bind(&transition_smi_elements); __ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset)); // Transition the array appropriately depending on the value type. __ CheckMap(eax, masm->isolate()->factory()->heap_number_map(), &non_double_value, DONT_DO_SMI_CHECK); // Value is a double. Transition FAST_SMI_ELEMENTS -> FAST_DOUBLE_ELEMENTS // and complete the store. __ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS, FAST_DOUBLE_ELEMENTS, ebx, edi, slow); AllocationSiteMode mode = AllocationSite::GetMode(FAST_SMI_ELEMENTS, FAST_DOUBLE_ELEMENTS); ElementsTransitionGenerator::GenerateSmiToDouble(masm, mode, slow); __ mov(ebx, FieldOperand(edx, JSObject::kElementsOffset)); __ jmp(&fast_double_without_map_check); __ bind(&non_double_value); // Value is not a double, FAST_SMI_ELEMENTS -> FAST_ELEMENTS __ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS, FAST_ELEMENTS, ebx, edi, slow); mode = AllocationSite::GetMode(FAST_SMI_ELEMENTS, FAST_ELEMENTS); ElementsTransitionGenerator::GenerateMapChangeElementsTransition(masm, mode, slow); __ mov(ebx, FieldOperand(edx, JSObject::kElementsOffset)); __ jmp(&finish_object_store); __ bind(&transition_double_elements); // Elements are FAST_DOUBLE_ELEMENTS, but value is an Object that's not a // HeapNumber. Make sure that the receiver is a Array with FAST_ELEMENTS and // transition array from FAST_DOUBLE_ELEMENTS to FAST_ELEMENTS __ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset)); __ LoadTransitionedArrayMapConditional(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS, ebx, edi, slow); mode = AllocationSite::GetMode(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS); ElementsTransitionGenerator::GenerateDoubleToObject(masm, mode, slow); __ mov(ebx, FieldOperand(edx, JSObject::kElementsOffset)); __ jmp(&finish_object_store); } void KeyedStoreIC::GenerateGeneric(MacroAssembler* masm, StrictModeFlag strict_mode) { // ----------- S t a t e ------------- // -- eax : value // -- ecx : key // -- edx : receiver // -- esp[0] : return address // ----------------------------------- Label slow, fast_object, fast_object_grow; Label fast_double, fast_double_grow; Label array, extra, check_if_double_array; // Check that the object isn't a smi. __ JumpIfSmi(edx, &slow); // Get the map from the receiver. __ mov(edi, FieldOperand(edx, HeapObject::kMapOffset)); // Check that the receiver does not require access checks and is not observed. // The generic stub does not perform map checks or handle observed objects. __ test_b(FieldOperand(edi, Map::kBitFieldOffset), 1 << Map::kIsAccessCheckNeeded | 1 << Map::kIsObserved); __ j(not_zero, &slow); // Check that the key is a smi. __ JumpIfNotSmi(ecx, &slow); __ CmpInstanceType(edi, JS_ARRAY_TYPE); __ j(equal, &array); // Check that the object is some kind of JSObject. __ CmpInstanceType(edi, FIRST_JS_OBJECT_TYPE); __ j(below, &slow); // Object case: Check key against length in the elements array. // eax: value // edx: JSObject // ecx: key (a smi) // edi: receiver map __ mov(ebx, FieldOperand(edx, JSObject::kElementsOffset)); // Check array bounds. Both the key and the length of FixedArray are smis. __ cmp(ecx, FieldOperand(ebx, FixedArray::kLengthOffset)); __ j(below, &fast_object); // Slow case: call runtime. __ bind(&slow); GenerateRuntimeSetProperty(masm, strict_mode); // Extra capacity case: Check if there is extra capacity to // perform the store and update the length. Used for adding one // element to the array by writing to array[array.length]. __ bind(&extra); // eax: value // edx: receiver, a JSArray // ecx: key, a smi. // ebx: receiver->elements, a FixedArray // edi: receiver map // flags: compare (ecx, edx.length()) // do not leave holes in the array: __ j(not_equal, &slow); __ cmp(ecx, FieldOperand(ebx, FixedArray::kLengthOffset)); __ j(above_equal, &slow); __ mov(edi, FieldOperand(ebx, HeapObject::kMapOffset)); __ cmp(edi, masm->isolate()->factory()->fixed_array_map()); __ j(not_equal, &check_if_double_array); __ jmp(&fast_object_grow); __ bind(&check_if_double_array); __ cmp(edi, masm->isolate()->factory()->fixed_double_array_map()); __ j(not_equal, &slow); __ jmp(&fast_double_grow); // Array case: Get the length and the elements array from the JS // array. Check that the array is in fast mode (and writable); if it // is the length is always a smi. __ bind(&array); // eax: value // edx: receiver, a JSArray // ecx: key, a smi. // edi: receiver map __ mov(ebx, FieldOperand(edx, JSObject::kElementsOffset)); // Check the key against the length in the array and fall through to the // common store code. __ cmp(ecx, FieldOperand(edx, JSArray::kLengthOffset)); // Compare smis. __ j(above_equal, &extra); KeyedStoreGenerateGenericHelper(masm, &fast_object, &fast_double, &slow, kCheckMap, kDontIncrementLength); KeyedStoreGenerateGenericHelper(masm, &fast_object_grow, &fast_double_grow, &slow, kDontCheckMap, kIncrementLength); } void LoadIC::GenerateMegamorphic(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- ecx : name // -- edx : receiver // -- esp[0] : return address // ----------------------------------- // Probe the stub cache. Code::Flags flags = Code::ComputeHandlerFlags(Code::LOAD_IC); masm->isolate()->stub_cache()->GenerateProbe( masm, flags, edx, ecx, ebx, eax); // Cache miss: Jump to runtime. GenerateMiss(masm); } void LoadIC::GenerateNormal(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- ecx : name // -- edx : receiver // -- esp[0] : return address // ----------------------------------- Label miss; GenerateNameDictionaryReceiverCheck(masm, edx, eax, ebx, &miss); // eax: elements // Search the dictionary placing the result in eax. GenerateDictionaryLoad(masm, &miss, eax, ecx, edi, ebx, eax); __ ret(0); // Cache miss: Jump to runtime. __ bind(&miss); GenerateMiss(masm); } void LoadIC::GenerateMiss(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- ecx : name // -- edx : receiver // -- esp[0] : return address // ----------------------------------- __ IncrementCounter(masm->isolate()->counters()->load_miss(), 1); __ pop(ebx); __ push(edx); // receiver __ push(ecx); // name __ push(ebx); // return address // Perform tail call to the entry. ExternalReference ref = ExternalReference(IC_Utility(kLoadIC_Miss), masm->isolate()); __ TailCallExternalReference(ref, 2, 1); } void LoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- ecx : key // -- edx : receiver // -- esp[0] : return address // ----------------------------------- __ pop(ebx); __ push(edx); // receiver __ push(ecx); // name __ push(ebx); // return address // Perform tail call to the entry. __ TailCallRuntime(Runtime::kGetProperty, 2, 1); } void KeyedLoadIC::GenerateMiss(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- ecx : key // -- edx : receiver // -- esp[0] : return address // ----------------------------------- __ IncrementCounter(masm->isolate()->counters()->keyed_load_miss(), 1); __ pop(ebx); __ push(edx); // receiver __ push(ecx); // name __ push(ebx); // return address // Perform tail call to the entry. ExternalReference ref = ExternalReference(IC_Utility(kKeyedLoadIC_Miss), masm->isolate()); __ TailCallExternalReference(ref, 2, 1); } void KeyedLoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- ecx : key // -- edx : receiver // -- esp[0] : return address // ----------------------------------- __ pop(ebx); __ push(edx); // receiver __ push(ecx); // name __ push(ebx); // return address // Perform tail call to the entry. __ TailCallRuntime(Runtime::kKeyedGetProperty, 2, 1); } void StoreIC::GenerateMegamorphic(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : value // -- ecx : name // -- edx : receiver // -- esp[0] : return address // ----------------------------------- Code::Flags flags = Code::ComputeHandlerFlags(Code::STORE_IC); masm->isolate()->stub_cache()->GenerateProbe( masm, flags, edx, ecx, ebx, no_reg); // Cache miss: Jump to runtime. GenerateMiss(masm); } void StoreIC::GenerateMiss(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : value // -- ecx : name // -- edx : receiver // -- esp[0] : return address // ----------------------------------- __ pop(ebx); __ push(edx); __ push(ecx); __ push(eax); __ push(ebx); // Perform tail call to the entry. ExternalReference ref = ExternalReference(IC_Utility(kStoreIC_Miss), masm->isolate()); __ TailCallExternalReference(ref, 3, 1); } void StoreIC::GenerateNormal(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : value // -- ecx : name // -- edx : receiver // -- esp[0] : return address // ----------------------------------- Label miss, restore_miss; GenerateNameDictionaryReceiverCheck(masm, edx, ebx, edi, &miss); // A lot of registers are needed for storing to slow case // objects. Push and restore receiver but rely on // GenerateDictionaryStore preserving the value and name. __ push(edx); GenerateDictionaryStore(masm, &restore_miss, ebx, ecx, eax, edx, edi); __ Drop(1); Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->store_normal_hit(), 1); __ ret(0); __ bind(&restore_miss); __ pop(edx); __ bind(&miss); __ IncrementCounter(counters->store_normal_miss(), 1); GenerateMiss(masm); } void StoreIC::GenerateRuntimeSetProperty(MacroAssembler* masm, StrictModeFlag strict_mode) { // ----------- S t a t e ------------- // -- eax : value // -- ecx : name // -- edx : receiver // -- esp[0] : return address // ----------------------------------- __ pop(ebx); __ push(edx); __ push(ecx); __ push(eax); __ push(Immediate(Smi::FromInt(NONE))); // PropertyAttributes __ push(Immediate(Smi::FromInt(strict_mode))); __ push(ebx); // return address // Do tail-call to runtime routine. __ TailCallRuntime(Runtime::kSetProperty, 5, 1); } void KeyedStoreIC::GenerateRuntimeSetProperty(MacroAssembler* masm, StrictModeFlag strict_mode) { // ----------- S t a t e ------------- // -- eax : value // -- ecx : key // -- edx : receiver // -- esp[0] : return address // ----------------------------------- __ pop(ebx); __ push(edx); __ push(ecx); __ push(eax); __ push(Immediate(Smi::FromInt(NONE))); // PropertyAttributes __ push(Immediate(Smi::FromInt(strict_mode))); // Strict mode. __ push(ebx); // return address // Do tail-call to runtime routine. __ TailCallRuntime(Runtime::kSetProperty, 5, 1); } void KeyedStoreIC::GenerateMiss(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : value // -- ecx : key // -- edx : receiver // -- esp[0] : return address // ----------------------------------- __ pop(ebx); __ push(edx); __ push(ecx); __ push(eax); __ push(ebx); // Do tail-call to runtime routine. ExternalReference ref = ExternalReference(IC_Utility(kKeyedStoreIC_Miss), masm->isolate()); __ TailCallExternalReference(ref, 3, 1); } void StoreIC::GenerateSlow(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : value // -- ecx : key // -- edx : receiver // -- esp[0] : return address // ----------------------------------- __ pop(ebx); __ push(edx); __ push(ecx); __ push(eax); __ push(ebx); // return address // Do tail-call to runtime routine. ExternalReference ref(IC_Utility(kStoreIC_Slow), masm->isolate()); __ TailCallExternalReference(ref, 3, 1); } void KeyedStoreIC::GenerateSlow(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : value // -- ecx : key // -- edx : receiver // -- esp[0] : return address // ----------------------------------- __ pop(ebx); __ push(edx); __ push(ecx); __ push(eax); __ push(ebx); // return address // Do tail-call to runtime routine. ExternalReference ref(IC_Utility(kKeyedStoreIC_Slow), masm->isolate()); __ TailCallExternalReference(ref, 3, 1); } #undef __ Condition CompareIC::ComputeCondition(Token::Value op) { switch (op) { case Token::EQ_STRICT: case Token::EQ: return equal; case Token::LT: return less; case Token::GT: return greater; case Token::LTE: return less_equal; case Token::GTE: return greater_equal; default: UNREACHABLE(); return no_condition; } } bool CompareIC::HasInlinedSmiCode(Address address) { // The address of the instruction following the call. Address test_instruction_address = address + Assembler::kCallTargetAddressOffset; // If the instruction following the call is not a test al, nothing // was inlined. return *test_instruction_address == Assembler::kTestAlByte; } void PatchInlinedSmiCode(Address address, InlinedSmiCheck check) { // The address of the instruction following the call. Address test_instruction_address = address + Assembler::kCallTargetAddressOffset; // If the instruction following the call is not a test al, nothing // was inlined. if (*test_instruction_address != Assembler::kTestAlByte) { ASSERT(*test_instruction_address == Assembler::kNopByte); return; } Address delta_address = test_instruction_address + 1; // The delta to the start of the map check instruction and the // condition code uses at the patched jump. int8_t delta = *reinterpret_cast(delta_address); if (FLAG_trace_ic) { PrintF("[ patching ic at %p, test=%p, delta=%d\n", address, test_instruction_address, delta); } // Patch with a short conditional jump. Enabling means switching from a short // jump-if-carry/not-carry to jump-if-zero/not-zero, whereas disabling is the // reverse operation of that. Address jmp_address = test_instruction_address - delta; ASSERT((check == ENABLE_INLINED_SMI_CHECK) ? (*jmp_address == Assembler::kJncShortOpcode || *jmp_address == Assembler::kJcShortOpcode) : (*jmp_address == Assembler::kJnzShortOpcode || *jmp_address == Assembler::kJzShortOpcode)); Condition cc = (check == ENABLE_INLINED_SMI_CHECK) ? (*jmp_address == Assembler::kJncShortOpcode ? not_zero : zero) : (*jmp_address == Assembler::kJnzShortOpcode ? not_carry : carry); *jmp_address = static_cast(Assembler::kJccShortPrefix | cc); } } } // namespace v8::internal #endif // V8_TARGET_ARCH_IA32