// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include #include #include "src/compilation-cache.h" #include "src/context-measure.h" #include "src/deoptimizer.h" #include "src/elements.h" #include "src/execution.h" #include "src/factory.h" #include "src/field-type.h" #include "src/global-handles.h" #include "src/heap/gc-tracer.h" #include "src/heap/memory-reducer.h" #include "src/ic/ic.h" #include "src/macro-assembler.h" #include "src/regexp/jsregexp.h" #include "src/snapshot/snapshot.h" #include "test/cctest/cctest.h" #include "test/cctest/heap/heap-tester.h" #include "test/cctest/heap/heap-utils.h" #include "test/cctest/test-feedback-vector.h" namespace v8 { namespace internal { static void CheckMap(Map* map, int type, int instance_size) { CHECK(map->IsHeapObject()); #ifdef DEBUG CHECK(CcTest::heap()->Contains(map)); #endif CHECK_EQ(CcTest::heap()->meta_map(), map->map()); CHECK_EQ(type, map->instance_type()); CHECK_EQ(instance_size, map->instance_size()); } TEST(HeapMaps) { CcTest::InitializeVM(); Heap* heap = CcTest::heap(); CheckMap(heap->meta_map(), MAP_TYPE, Map::kSize); CheckMap(heap->heap_number_map(), HEAP_NUMBER_TYPE, HeapNumber::kSize); #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \ CheckMap(heap->type##_map(), SIMD128_VALUE_TYPE, Type::kSize); SIMD128_TYPES(SIMD128_TYPE) #undef SIMD128_TYPE CheckMap(heap->fixed_array_map(), FIXED_ARRAY_TYPE, kVariableSizeSentinel); CheckMap(heap->string_map(), STRING_TYPE, kVariableSizeSentinel); } static void CheckOddball(Isolate* isolate, Object* obj, const char* string) { CHECK(obj->IsOddball()); Handle handle(obj, isolate); Object* print_string = *Object::ToString(isolate, handle).ToHandleChecked(); CHECK(String::cast(print_string)->IsUtf8EqualTo(CStrVector(string))); } static void CheckSmi(Isolate* isolate, int value, const char* string) { Handle handle(Smi::FromInt(value), isolate); Object* print_string = *Object::ToString(isolate, handle).ToHandleChecked(); CHECK(String::cast(print_string)->IsUtf8EqualTo(CStrVector(string))); } static void CheckNumber(Isolate* isolate, double value, const char* string) { Handle number = isolate->factory()->NewNumber(value); CHECK(number->IsNumber()); Handle print_string = Object::ToString(isolate, number).ToHandleChecked(); CHECK(String::cast(*print_string)->IsUtf8EqualTo(CStrVector(string))); } void CheckEmbeddedObjectsAreEqual(Handle lhs, Handle rhs) { int mode_mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT); RelocIterator lhs_it(*lhs, mode_mask); RelocIterator rhs_it(*rhs, mode_mask); while (!lhs_it.done() && !rhs_it.done()) { CHECK(lhs_it.rinfo()->target_object() == rhs_it.rinfo()->target_object()); lhs_it.next(); rhs_it.next(); } CHECK(lhs_it.done() == rhs_it.done()); } HEAP_TEST(TestNewSpaceRefsInCopiedCode) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); Heap* heap = isolate->heap(); HandleScope sc(isolate); Handle value = factory->NewNumber(1.000123); CHECK(heap->InNewSpace(*value)); i::byte buffer[i::Assembler::kMinimalBufferSize]; MacroAssembler masm(isolate, buffer, sizeof(buffer), v8::internal::CodeObjectRequired::kYes); // Add a new-space reference to the code. masm.Push(value); CodeDesc desc; masm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); Code* tmp = nullptr; heap->CopyCode(*code).To(&tmp); Handle copy(tmp); CheckEmbeddedObjectsAreEqual(code, copy); heap->CollectAllAvailableGarbage(); CheckEmbeddedObjectsAreEqual(code, copy); } static void CheckFindCodeObject(Isolate* isolate) { // Test FindCodeObject #define __ assm. Assembler assm(isolate, NULL, 0); __ nop(); // supported on all architectures CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); CHECK(code->IsCode()); HeapObject* obj = HeapObject::cast(*code); Address obj_addr = obj->address(); for (int i = 0; i < obj->Size(); i += kPointerSize) { Object* found = isolate->FindCodeObject(obj_addr + i); CHECK_EQ(*code, found); } Handle copy = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); HeapObject* obj_copy = HeapObject::cast(*copy); Object* not_right = isolate->FindCodeObject(obj_copy->address() + obj_copy->Size() / 2); CHECK(not_right != *code); } TEST(HandleNull) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope outer_scope(isolate); LocalContext context; Handle n(static_cast(nullptr), isolate); CHECK(!n.is_null()); } TEST(HeapObjects) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); Heap* heap = isolate->heap(); HandleScope sc(isolate); Handle value = factory->NewNumber(1.000123); CHECK(value->IsHeapNumber()); CHECK(value->IsNumber()); CHECK_EQ(1.000123, value->Number()); value = factory->NewNumber(1.0); CHECK(value->IsSmi()); CHECK(value->IsNumber()); CHECK_EQ(1.0, value->Number()); value = factory->NewNumberFromInt(1024); CHECK(value->IsSmi()); CHECK(value->IsNumber()); CHECK_EQ(1024.0, value->Number()); value = factory->NewNumberFromInt(Smi::kMinValue); CHECK(value->IsSmi()); CHECK(value->IsNumber()); CHECK_EQ(Smi::kMinValue, Handle::cast(value)->value()); value = factory->NewNumberFromInt(Smi::kMaxValue); CHECK(value->IsSmi()); CHECK(value->IsNumber()); CHECK_EQ(Smi::kMaxValue, Handle::cast(value)->value()); #if !defined(V8_TARGET_ARCH_64_BIT) // TODO(lrn): We need a NumberFromIntptr function in order to test this. value = factory->NewNumberFromInt(Smi::kMinValue - 1); CHECK(value->IsHeapNumber()); CHECK(value->IsNumber()); CHECK_EQ(static_cast(Smi::kMinValue - 1), value->Number()); #endif value = factory->NewNumberFromUint(static_cast(Smi::kMaxValue) + 1); CHECK(value->IsHeapNumber()); CHECK(value->IsNumber()); CHECK_EQ(static_cast(static_cast(Smi::kMaxValue) + 1), value->Number()); value = factory->NewNumberFromUint(static_cast(1) << 31); CHECK(value->IsHeapNumber()); CHECK(value->IsNumber()); CHECK_EQ(static_cast(static_cast(1) << 31), value->Number()); // nan oddball checks CHECK(factory->nan_value()->IsNumber()); CHECK(std::isnan(factory->nan_value()->Number())); Handle s = factory->NewStringFromStaticChars("fisk hest "); CHECK(s->IsString()); CHECK_EQ(10, s->length()); Handle object_string = Handle::cast(factory->Object_string()); Handle global( CcTest::i_isolate()->context()->global_object()); CHECK(Just(true) == JSReceiver::HasOwnProperty(global, object_string)); // Check ToString for oddballs CheckOddball(isolate, heap->true_value(), "true"); CheckOddball(isolate, heap->false_value(), "false"); CheckOddball(isolate, heap->null_value(), "null"); CheckOddball(isolate, heap->undefined_value(), "undefined"); // Check ToString for Smis CheckSmi(isolate, 0, "0"); CheckSmi(isolate, 42, "42"); CheckSmi(isolate, -42, "-42"); // Check ToString for Numbers CheckNumber(isolate, 1.1, "1.1"); CheckFindCodeObject(isolate); } template static void CheckSimdValue(T* value, LANE_TYPE lane_values[LANES], LANE_TYPE other_value) { // Check against lane_values, and check that all lanes can be set to // other_value without disturbing the other lanes. for (int i = 0; i < LANES; i++) { CHECK_EQ(lane_values[i], value->get_lane(i)); } for (int i = 0; i < LANES; i++) { value->set_lane(i, other_value); // change the value for (int j = 0; j < LANES; j++) { if (i != j) CHECK_EQ(lane_values[j], value->get_lane(j)); else CHECK_EQ(other_value, value->get_lane(j)); } value->set_lane(i, lane_values[i]); // restore the lane } CHECK(value->BooleanValue()); // SIMD values are 'true'. } TEST(SimdObjects) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); HandleScope sc(isolate); // Float32x4 { float lanes[4] = {1, 2, 3, 4}; float quiet_NaN = std::numeric_limits::quiet_NaN(); float signaling_NaN = std::numeric_limits::signaling_NaN(); Handle value = factory->NewFloat32x4(lanes); CHECK(value->IsFloat32x4()); CheckSimdValue(*value, lanes, 3.14f); // Check special lane values. value->set_lane(1, -0.0); CHECK_EQ(-0.0f, value->get_lane(1)); CHECK(std::signbit(value->get_lane(1))); // Sign bit should be preserved. value->set_lane(2, quiet_NaN); CHECK(std::isnan(value->get_lane(2))); value->set_lane(3, signaling_NaN); CHECK(std::isnan(value->get_lane(3))); #ifdef OBJECT_PRINT // Check value printing. { value = factory->NewFloat32x4(lanes); std::ostringstream os; value->Float32x4Print(os); CHECK_EQ("1, 2, 3, 4", os.str()); } { float special_lanes[4] = {0, -0.0, quiet_NaN, signaling_NaN}; value = factory->NewFloat32x4(special_lanes); std::ostringstream os; value->Float32x4Print(os); // Value printing doesn't preserve signed zeroes. CHECK_EQ("0, 0, NaN, NaN", os.str()); } #endif // OBJECT_PRINT } // Int32x4 { int32_t lanes[4] = {1, 2, 3, 4}; Handle value = factory->NewInt32x4(lanes); CHECK(value->IsInt32x4()); CheckSimdValue(*value, lanes, 3); #ifdef OBJECT_PRINT std::ostringstream os; value->Int32x4Print(os); CHECK_EQ("1, 2, 3, 4", os.str()); #endif // OBJECT_PRINT } // Uint32x4 { uint32_t lanes[4] = {1, 2, 3, 4}; Handle value = factory->NewUint32x4(lanes); CHECK(value->IsUint32x4()); CheckSimdValue(*value, lanes, 3); #ifdef OBJECT_PRINT std::ostringstream os; value->Uint32x4Print(os); CHECK_EQ("1, 2, 3, 4", os.str()); #endif // OBJECT_PRINT } // Bool32x4 { bool lanes[4] = {true, false, true, false}; Handle value = factory->NewBool32x4(lanes); CHECK(value->IsBool32x4()); CheckSimdValue(*value, lanes, false); #ifdef OBJECT_PRINT std::ostringstream os; value->Bool32x4Print(os); CHECK_EQ("true, false, true, false", os.str()); #endif // OBJECT_PRINT } // Int16x8 { int16_t lanes[8] = {1, 2, 3, 4, 5, 6, 7, 8}; Handle value = factory->NewInt16x8(lanes); CHECK(value->IsInt16x8()); CheckSimdValue(*value, lanes, 32767); #ifdef OBJECT_PRINT std::ostringstream os; value->Int16x8Print(os); CHECK_EQ("1, 2, 3, 4, 5, 6, 7, 8", os.str()); #endif // OBJECT_PRINT } // Uint16x8 { uint16_t lanes[8] = {1, 2, 3, 4, 5, 6, 7, 8}; Handle value = factory->NewUint16x8(lanes); CHECK(value->IsUint16x8()); CheckSimdValue(*value, lanes, 32767); #ifdef OBJECT_PRINT std::ostringstream os; value->Uint16x8Print(os); CHECK_EQ("1, 2, 3, 4, 5, 6, 7, 8", os.str()); #endif // OBJECT_PRINT } // Bool16x8 { bool lanes[8] = {true, false, true, false, true, false, true, false}; Handle value = factory->NewBool16x8(lanes); CHECK(value->IsBool16x8()); CheckSimdValue(*value, lanes, false); #ifdef OBJECT_PRINT std::ostringstream os; value->Bool16x8Print(os); CHECK_EQ("true, false, true, false, true, false, true, false", os.str()); #endif // OBJECT_PRINT } // Int8x16 { int8_t lanes[16] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}; Handle value = factory->NewInt8x16(lanes); CHECK(value->IsInt8x16()); CheckSimdValue(*value, lanes, 127); #ifdef OBJECT_PRINT std::ostringstream os; value->Int8x16Print(os); CHECK_EQ("1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16", os.str()); #endif // OBJECT_PRINT } // Uint8x16 { uint8_t lanes[16] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}; Handle value = factory->NewUint8x16(lanes); CHECK(value->IsUint8x16()); CheckSimdValue(*value, lanes, 127); #ifdef OBJECT_PRINT std::ostringstream os; value->Uint8x16Print(os); CHECK_EQ("1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16", os.str()); #endif // OBJECT_PRINT } // Bool8x16 { bool lanes[16] = {true, false, true, false, true, false, true, false, true, false, true, false, true, false, true, false}; Handle value = factory->NewBool8x16(lanes); CHECK(value->IsBool8x16()); CheckSimdValue(*value, lanes, false); #ifdef OBJECT_PRINT std::ostringstream os; value->Bool8x16Print(os); CHECK_EQ( "true, false, true, false, true, false, true, false, true, false, " "true, false, true, false, true, false", os.str()); #endif // OBJECT_PRINT } } TEST(Tagging) { CcTest::InitializeVM(); int request = 24; CHECK_EQ(request, static_cast(OBJECT_POINTER_ALIGN(request))); CHECK(Smi::FromInt(42)->IsSmi()); CHECK(Smi::FromInt(Smi::kMinValue)->IsSmi()); CHECK(Smi::FromInt(Smi::kMaxValue)->IsSmi()); } TEST(GarbageCollection) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); HandleScope sc(isolate); // Check GC. heap->CollectGarbage(NEW_SPACE); Handle global( CcTest::i_isolate()->context()->global_object()); Handle name = factory->InternalizeUtf8String("theFunction"); Handle prop_name = factory->InternalizeUtf8String("theSlot"); Handle prop_namex = factory->InternalizeUtf8String("theSlotx"); Handle obj_name = factory->InternalizeUtf8String("theObject"); Handle twenty_three(Smi::FromInt(23), isolate); Handle twenty_four(Smi::FromInt(24), isolate); { HandleScope inner_scope(isolate); // Allocate a function and keep it in global object's property. Handle function = factory->NewFunction(name); JSReceiver::SetProperty(global, name, function, SLOPPY).Check(); // Allocate an object. Unrooted after leaving the scope. Handle obj = factory->NewJSObject(function); JSReceiver::SetProperty(obj, prop_name, twenty_three, SLOPPY).Check(); JSReceiver::SetProperty(obj, prop_namex, twenty_four, SLOPPY).Check(); CHECK_EQ(Smi::FromInt(23), *Object::GetProperty(obj, prop_name).ToHandleChecked()); CHECK_EQ(Smi::FromInt(24), *Object::GetProperty(obj, prop_namex).ToHandleChecked()); } heap->CollectGarbage(NEW_SPACE); // Function should be alive. CHECK(Just(true) == JSReceiver::HasOwnProperty(global, name)); // Check function is retained. Handle func_value = Object::GetProperty(global, name).ToHandleChecked(); CHECK(func_value->IsJSFunction()); Handle function = Handle::cast(func_value); { HandleScope inner_scope(isolate); // Allocate another object, make it reachable from global. Handle obj = factory->NewJSObject(function); JSReceiver::SetProperty(global, obj_name, obj, SLOPPY).Check(); JSReceiver::SetProperty(obj, prop_name, twenty_three, SLOPPY).Check(); } // After gc, it should survive. heap->CollectGarbage(NEW_SPACE); CHECK(Just(true) == JSReceiver::HasOwnProperty(global, obj_name)); Handle obj = Object::GetProperty(global, obj_name).ToHandleChecked(); CHECK(obj->IsJSObject()); CHECK_EQ(Smi::FromInt(23), *Object::GetProperty(obj, prop_name).ToHandleChecked()); } static void VerifyStringAllocation(Isolate* isolate, const char* string) { HandleScope scope(isolate); Handle s = isolate->factory()->NewStringFromUtf8( CStrVector(string)).ToHandleChecked(); CHECK_EQ(StrLength(string), s->length()); for (int index = 0; index < s->length(); index++) { CHECK_EQ(static_cast(string[index]), s->Get(index)); } } TEST(String) { CcTest::InitializeVM(); Isolate* isolate = reinterpret_cast(CcTest::isolate()); VerifyStringAllocation(isolate, "a"); VerifyStringAllocation(isolate, "ab"); VerifyStringAllocation(isolate, "abc"); VerifyStringAllocation(isolate, "abcd"); VerifyStringAllocation(isolate, "fiskerdrengen er paa havet"); } TEST(LocalHandles) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); const char* name = "Kasper the spunky"; Handle string = factory->NewStringFromAsciiChecked(name); CHECK_EQ(StrLength(name), string->length()); } TEST(GlobalHandles) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); GlobalHandles* global_handles = isolate->global_handles(); Handle h1; Handle h2; Handle h3; Handle h4; { HandleScope scope(isolate); Handle i = factory->NewStringFromStaticChars("fisk"); Handle u = factory->NewNumber(1.12344); h1 = global_handles->Create(*i); h2 = global_handles->Create(*u); h3 = global_handles->Create(*i); h4 = global_handles->Create(*u); } // after gc, it should survive heap->CollectGarbage(NEW_SPACE); CHECK((*h1)->IsString()); CHECK((*h2)->IsHeapNumber()); CHECK((*h3)->IsString()); CHECK((*h4)->IsHeapNumber()); CHECK_EQ(*h3, *h1); GlobalHandles::Destroy(h1.location()); GlobalHandles::Destroy(h3.location()); CHECK_EQ(*h4, *h2); GlobalHandles::Destroy(h2.location()); GlobalHandles::Destroy(h4.location()); } static bool WeakPointerCleared = false; static void TestWeakGlobalHandleCallback( const v8::WeakCallbackInfo& data) { std::pair*, int>* p = reinterpret_cast*, int>*>( data.GetParameter()); if (p->second == 1234) WeakPointerCleared = true; p->first->Reset(); } TEST(WeakGlobalHandlesScavenge) { i::FLAG_stress_compaction = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); GlobalHandles* global_handles = isolate->global_handles(); WeakPointerCleared = false; Handle h1; Handle h2; { HandleScope scope(isolate); Handle i = factory->NewStringFromStaticChars("fisk"); Handle u = factory->NewNumber(1.12344); h1 = global_handles->Create(*i); h2 = global_handles->Create(*u); } std::pair*, int> handle_and_id(&h2, 1234); GlobalHandles::MakeWeak( h2.location(), reinterpret_cast(&handle_and_id), &TestWeakGlobalHandleCallback, v8::WeakCallbackType::kParameter); // Scavenge treats weak pointers as normal roots. heap->CollectGarbage(NEW_SPACE); CHECK((*h1)->IsString()); CHECK((*h2)->IsHeapNumber()); CHECK(!WeakPointerCleared); CHECK(!global_handles->IsNearDeath(h2.location())); CHECK(!global_handles->IsNearDeath(h1.location())); GlobalHandles::Destroy(h1.location()); GlobalHandles::Destroy(h2.location()); } TEST(WeakGlobalHandlesMark) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); GlobalHandles* global_handles = isolate->global_handles(); WeakPointerCleared = false; Handle h1; Handle h2; { HandleScope scope(isolate); Handle i = factory->NewStringFromStaticChars("fisk"); Handle u = factory->NewNumber(1.12344); h1 = global_handles->Create(*i); h2 = global_handles->Create(*u); } // Make sure the objects are promoted. heap->CollectGarbage(OLD_SPACE); heap->CollectGarbage(NEW_SPACE); CHECK(!heap->InNewSpace(*h1) && !heap->InNewSpace(*h2)); std::pair*, int> handle_and_id(&h2, 1234); GlobalHandles::MakeWeak( h2.location(), reinterpret_cast(&handle_and_id), &TestWeakGlobalHandleCallback, v8::WeakCallbackType::kParameter); CHECK(!GlobalHandles::IsNearDeath(h1.location())); CHECK(!GlobalHandles::IsNearDeath(h2.location())); // Incremental marking potentially marked handles before they turned weak. heap->CollectAllGarbage(); CHECK((*h1)->IsString()); CHECK(WeakPointerCleared); CHECK(!GlobalHandles::IsNearDeath(h1.location())); GlobalHandles::Destroy(h1.location()); } TEST(DeleteWeakGlobalHandle) { i::FLAG_stress_compaction = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); GlobalHandles* global_handles = isolate->global_handles(); WeakPointerCleared = false; Handle h; { HandleScope scope(isolate); Handle i = factory->NewStringFromStaticChars("fisk"); h = global_handles->Create(*i); } std::pair*, int> handle_and_id(&h, 1234); GlobalHandles::MakeWeak(h.location(), reinterpret_cast(&handle_and_id), &TestWeakGlobalHandleCallback, v8::WeakCallbackType::kParameter); // Scanvenge does not recognize weak reference. heap->CollectGarbage(NEW_SPACE); CHECK(!WeakPointerCleared); // Mark-compact treats weak reference properly. heap->CollectGarbage(OLD_SPACE); CHECK(WeakPointerCleared); } TEST(DoNotPromoteWhiteObjectsOnScavenge) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); HandleScope scope(isolate); Handle white = factory->NewStringFromStaticChars("white"); CHECK(Marking::IsWhite(ObjectMarking::MarkBitFrom(HeapObject::cast(*white)))); heap->CollectGarbage(NEW_SPACE); CHECK(heap->InNewSpace(*white)); } TEST(PromoteGreyOrBlackObjectsOnScavenge) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); HandleScope scope(isolate); Handle marked = factory->NewStringFromStaticChars("marked"); IncrementalMarking* marking = heap->incremental_marking(); marking->Stop(); heap->StartIncrementalMarking(); while ( Marking::IsWhite(ObjectMarking::MarkBitFrom(HeapObject::cast(*marked)))) { marking->Step(MB, IncrementalMarking::NO_GC_VIA_STACK_GUARD, IncrementalMarking::FORCE_MARKING, IncrementalMarking::DO_NOT_FORCE_COMPLETION); } heap->CollectGarbage(NEW_SPACE); CHECK(!heap->InNewSpace(*marked)); } TEST(BytecodeArray) { static const uint8_t kRawBytes[] = {0xc3, 0x7e, 0xa5, 0x5a}; static const int kRawBytesSize = sizeof(kRawBytes); static const int kFrameSize = 32; static const int kParameterCount = 2; i::FLAG_manual_evacuation_candidates_selection = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); HandleScope scope(isolate); heap::SimulateFullSpace(heap->old_space()); Handle constant_pool = factory->NewFixedArray(5, TENURED); for (int i = 0; i < 5; i++) { Handle number = factory->NewHeapNumber(i); constant_pool->set(i, *number); } // Allocate and initialize BytecodeArray Handle array = factory->NewBytecodeArray( kRawBytesSize, kRawBytes, kFrameSize, kParameterCount, constant_pool); CHECK(array->IsBytecodeArray()); CHECK_EQ(array->length(), (int)sizeof(kRawBytes)); CHECK_EQ(array->frame_size(), kFrameSize); CHECK_EQ(array->parameter_count(), kParameterCount); CHECK_EQ(array->constant_pool(), *constant_pool); CHECK_LE(array->address(), array->GetFirstBytecodeAddress()); CHECK_GE(array->address() + array->BytecodeArraySize(), array->GetFirstBytecodeAddress() + array->length()); for (int i = 0; i < kRawBytesSize; i++) { CHECK_EQ(array->GetFirstBytecodeAddress()[i], kRawBytes[i]); CHECK_EQ(array->get(i), kRawBytes[i]); } FixedArray* old_constant_pool_address = *constant_pool; // Perform a full garbage collection and force the constant pool to be on an // evacuation candidate. Page* evac_page = Page::FromAddress(constant_pool->address()); evac_page->SetFlag(MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING); heap->CollectAllGarbage(); // BytecodeArray should survive. CHECK_EQ(array->length(), kRawBytesSize); CHECK_EQ(array->frame_size(), kFrameSize); for (int i = 0; i < kRawBytesSize; i++) { CHECK_EQ(array->get(i), kRawBytes[i]); CHECK_EQ(array->GetFirstBytecodeAddress()[i], kRawBytes[i]); } // Constant pool should have been migrated. CHECK_EQ(array->constant_pool(), *constant_pool); CHECK_NE(array->constant_pool(), old_constant_pool_address); } static const char* not_so_random_string_table[] = { "abstract", "boolean", "break", "byte", "case", "catch", "char", "class", "const", "continue", "debugger", "default", "delete", "do", "double", "else", "enum", "export", "extends", "false", "final", "finally", "float", "for", "function", "goto", "if", "implements", "import", "in", "instanceof", "int", "interface", "long", "native", "new", "null", "package", "private", "protected", "public", "return", "short", "static", "super", "switch", "synchronized", "this", "throw", "throws", "transient", "true", "try", "typeof", "var", "void", "volatile", "while", "with", 0 }; static void CheckInternalizedStrings(const char** strings) { Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); for (const char* string = *strings; *strings != 0; string = *strings++) { HandleScope scope(isolate); Handle a = isolate->factory()->InternalizeUtf8String(CStrVector(string)); // InternalizeUtf8String may return a failure if a GC is needed. CHECK(a->IsInternalizedString()); Handle b = factory->InternalizeUtf8String(string); CHECK_EQ(*b, *a); CHECK(b->IsUtf8EqualTo(CStrVector(string))); b = isolate->factory()->InternalizeUtf8String(CStrVector(string)); CHECK_EQ(*b, *a); CHECK(b->IsUtf8EqualTo(CStrVector(string))); } } TEST(StringTable) { CcTest::InitializeVM(); v8::HandleScope sc(CcTest::isolate()); CheckInternalizedStrings(not_so_random_string_table); CheckInternalizedStrings(not_so_random_string_table); } TEST(FunctionAllocation) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope sc(CcTest::isolate()); Handle name = factory->InternalizeUtf8String("theFunction"); Handle function = factory->NewFunction(name); Handle twenty_three(Smi::FromInt(23), isolate); Handle twenty_four(Smi::FromInt(24), isolate); Handle prop_name = factory->InternalizeUtf8String("theSlot"); Handle obj = factory->NewJSObject(function); JSReceiver::SetProperty(obj, prop_name, twenty_three, SLOPPY).Check(); CHECK_EQ(Smi::FromInt(23), *Object::GetProperty(obj, prop_name).ToHandleChecked()); // Check that we can add properties to function objects. JSReceiver::SetProperty(function, prop_name, twenty_four, SLOPPY).Check(); CHECK_EQ(Smi::FromInt(24), *Object::GetProperty(function, prop_name).ToHandleChecked()); } TEST(ObjectProperties) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope sc(CcTest::isolate()); Handle object_string(String::cast(CcTest::heap()->Object_string())); Handle object = Object::GetProperty( CcTest::i_isolate()->global_object(), object_string).ToHandleChecked(); Handle constructor = Handle::cast(object); Handle obj = factory->NewJSObject(constructor); Handle first = factory->InternalizeUtf8String("first"); Handle second = factory->InternalizeUtf8String("second"); Handle one(Smi::FromInt(1), isolate); Handle two(Smi::FromInt(2), isolate); // check for empty CHECK(Just(false) == JSReceiver::HasOwnProperty(obj, first)); // add first JSReceiver::SetProperty(obj, first, one, SLOPPY).Check(); CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, first)); // delete first CHECK(Just(true) == JSReceiver::DeleteProperty(obj, first, SLOPPY)); CHECK(Just(false) == JSReceiver::HasOwnProperty(obj, first)); // add first and then second JSReceiver::SetProperty(obj, first, one, SLOPPY).Check(); JSReceiver::SetProperty(obj, second, two, SLOPPY).Check(); CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, first)); CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, second)); // delete first and then second CHECK(Just(true) == JSReceiver::DeleteProperty(obj, first, SLOPPY)); CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, second)); CHECK(Just(true) == JSReceiver::DeleteProperty(obj, second, SLOPPY)); CHECK(Just(false) == JSReceiver::HasOwnProperty(obj, first)); CHECK(Just(false) == JSReceiver::HasOwnProperty(obj, second)); // add first and then second JSReceiver::SetProperty(obj, first, one, SLOPPY).Check(); JSReceiver::SetProperty(obj, second, two, SLOPPY).Check(); CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, first)); CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, second)); // delete second and then first CHECK(Just(true) == JSReceiver::DeleteProperty(obj, second, SLOPPY)); CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, first)); CHECK(Just(true) == JSReceiver::DeleteProperty(obj, first, SLOPPY)); CHECK(Just(false) == JSReceiver::HasOwnProperty(obj, first)); CHECK(Just(false) == JSReceiver::HasOwnProperty(obj, second)); // check string and internalized string match const char* string1 = "fisk"; Handle s1 = factory->NewStringFromAsciiChecked(string1); JSReceiver::SetProperty(obj, s1, one, SLOPPY).Check(); Handle s1_string = factory->InternalizeUtf8String(string1); CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, s1_string)); // check internalized string and string match const char* string2 = "fugl"; Handle s2_string = factory->InternalizeUtf8String(string2); JSReceiver::SetProperty(obj, s2_string, one, SLOPPY).Check(); Handle s2 = factory->NewStringFromAsciiChecked(string2); CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, s2)); } TEST(JSObjectMaps) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope sc(CcTest::isolate()); Handle name = factory->InternalizeUtf8String("theFunction"); Handle function = factory->NewFunction(name); Handle prop_name = factory->InternalizeUtf8String("theSlot"); Handle obj = factory->NewJSObject(function); Handle initial_map(function->initial_map()); // Set a propery Handle twenty_three(Smi::FromInt(23), isolate); JSReceiver::SetProperty(obj, prop_name, twenty_three, SLOPPY).Check(); CHECK_EQ(Smi::FromInt(23), *Object::GetProperty(obj, prop_name).ToHandleChecked()); // Check the map has changed CHECK(*initial_map != obj->map()); } TEST(JSArray) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope sc(CcTest::isolate()); Handle name = factory->InternalizeUtf8String("Array"); Handle fun_obj = Object::GetProperty( CcTest::i_isolate()->global_object(), name).ToHandleChecked(); Handle function = Handle::cast(fun_obj); // Allocate the object. Handle element; Handle object = factory->NewJSObject(function); Handle array = Handle::cast(object); // We just initialized the VM, no heap allocation failure yet. JSArray::Initialize(array, 0); // Set array length to 0. JSArray::SetLength(array, 0); CHECK_EQ(Smi::FromInt(0), array->length()); // Must be in fast mode. CHECK(array->HasFastSmiOrObjectElements()); // array[length] = name. JSReceiver::SetElement(isolate, array, 0, name, SLOPPY).Check(); CHECK_EQ(Smi::FromInt(1), array->length()); element = i::Object::GetElement(isolate, array, 0).ToHandleChecked(); CHECK_EQ(*element, *name); // Set array length with larger than smi value. JSArray::SetLength(array, static_cast(Smi::kMaxValue) + 1); uint32_t int_length = 0; CHECK(array->length()->ToArrayIndex(&int_length)); CHECK_EQ(static_cast(Smi::kMaxValue) + 1, int_length); CHECK(array->HasDictionaryElements()); // Must be in slow mode. // array[length] = name. JSReceiver::SetElement(isolate, array, int_length, name, SLOPPY).Check(); uint32_t new_int_length = 0; CHECK(array->length()->ToArrayIndex(&new_int_length)); CHECK_EQ(static_cast(int_length), new_int_length - 1); element = Object::GetElement(isolate, array, int_length).ToHandleChecked(); CHECK_EQ(*element, *name); element = Object::GetElement(isolate, array, 0).ToHandleChecked(); CHECK_EQ(*element, *name); } TEST(JSObjectCopy) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope sc(CcTest::isolate()); Handle object_string(String::cast(CcTest::heap()->Object_string())); Handle object = Object::GetProperty( CcTest::i_isolate()->global_object(), object_string).ToHandleChecked(); Handle constructor = Handle::cast(object); Handle obj = factory->NewJSObject(constructor); Handle first = factory->InternalizeUtf8String("first"); Handle second = factory->InternalizeUtf8String("second"); Handle one(Smi::FromInt(1), isolate); Handle two(Smi::FromInt(2), isolate); JSReceiver::SetProperty(obj, first, one, SLOPPY).Check(); JSReceiver::SetProperty(obj, second, two, SLOPPY).Check(); JSReceiver::SetElement(isolate, obj, 0, first, SLOPPY).Check(); JSReceiver::SetElement(isolate, obj, 1, second, SLOPPY).Check(); // Make the clone. Handle value1, value2; Handle clone = factory->CopyJSObject(obj); CHECK(!clone.is_identical_to(obj)); value1 = Object::GetElement(isolate, obj, 0).ToHandleChecked(); value2 = Object::GetElement(isolate, clone, 0).ToHandleChecked(); CHECK_EQ(*value1, *value2); value1 = Object::GetElement(isolate, obj, 1).ToHandleChecked(); value2 = Object::GetElement(isolate, clone, 1).ToHandleChecked(); CHECK_EQ(*value1, *value2); value1 = Object::GetProperty(obj, first).ToHandleChecked(); value2 = Object::GetProperty(clone, first).ToHandleChecked(); CHECK_EQ(*value1, *value2); value1 = Object::GetProperty(obj, second).ToHandleChecked(); value2 = Object::GetProperty(clone, second).ToHandleChecked(); CHECK_EQ(*value1, *value2); // Flip the values. JSReceiver::SetProperty(clone, first, two, SLOPPY).Check(); JSReceiver::SetProperty(clone, second, one, SLOPPY).Check(); JSReceiver::SetElement(isolate, clone, 0, second, SLOPPY).Check(); JSReceiver::SetElement(isolate, clone, 1, first, SLOPPY).Check(); value1 = Object::GetElement(isolate, obj, 1).ToHandleChecked(); value2 = Object::GetElement(isolate, clone, 0).ToHandleChecked(); CHECK_EQ(*value1, *value2); value1 = Object::GetElement(isolate, obj, 0).ToHandleChecked(); value2 = Object::GetElement(isolate, clone, 1).ToHandleChecked(); CHECK_EQ(*value1, *value2); value1 = Object::GetProperty(obj, second).ToHandleChecked(); value2 = Object::GetProperty(clone, first).ToHandleChecked(); CHECK_EQ(*value1, *value2); value1 = Object::GetProperty(obj, first).ToHandleChecked(); value2 = Object::GetProperty(clone, second).ToHandleChecked(); CHECK_EQ(*value1, *value2); } TEST(StringAllocation) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); const unsigned char chars[] = { 0xe5, 0xa4, 0xa7 }; for (int length = 0; length < 100; length++) { v8::HandleScope scope(CcTest::isolate()); char* non_one_byte = NewArray(3 * length + 1); char* one_byte = NewArray(length + 1); non_one_byte[3 * length] = 0; one_byte[length] = 0; for (int i = 0; i < length; i++) { one_byte[i] = 'a'; non_one_byte[3 * i] = chars[0]; non_one_byte[3 * i + 1] = chars[1]; non_one_byte[3 * i + 2] = chars[2]; } Handle non_one_byte_sym = factory->InternalizeUtf8String( Vector(non_one_byte, 3 * length)); CHECK_EQ(length, non_one_byte_sym->length()); Handle one_byte_sym = factory->InternalizeOneByteString(OneByteVector(one_byte, length)); CHECK_EQ(length, one_byte_sym->length()); Handle non_one_byte_str = factory->NewStringFromUtf8(Vector(non_one_byte, 3 * length)) .ToHandleChecked(); non_one_byte_str->Hash(); CHECK_EQ(length, non_one_byte_str->length()); Handle one_byte_str = factory->NewStringFromUtf8(Vector(one_byte, length)) .ToHandleChecked(); one_byte_str->Hash(); CHECK_EQ(length, one_byte_str->length()); DeleteArray(non_one_byte); DeleteArray(one_byte); } } static int ObjectsFoundInHeap(Heap* heap, Handle objs[], int size) { // Count the number of objects found in the heap. int found_count = 0; HeapIterator iterator(heap); for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) { for (int i = 0; i < size; i++) { if (*objs[i] == obj) { found_count++; } } } return found_count; } TEST(Iteration) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); // Array of objects to scan haep for. const int objs_count = 6; Handle objs[objs_count]; int next_objs_index = 0; // Allocate a JS array to OLD_SPACE and NEW_SPACE objs[next_objs_index++] = factory->NewJSArray(10); objs[next_objs_index++] = factory->NewJSArray(10, FAST_HOLEY_ELEMENTS, TENURED); // Allocate a small string to OLD_DATA_SPACE and NEW_SPACE objs[next_objs_index++] = factory->NewStringFromStaticChars("abcdefghij"); objs[next_objs_index++] = factory->NewStringFromStaticChars("abcdefghij", TENURED); // Allocate a large string (for large object space). int large_size = Page::kMaxRegularHeapObjectSize + 1; char* str = new char[large_size]; for (int i = 0; i < large_size - 1; ++i) str[i] = 'a'; str[large_size - 1] = '\0'; objs[next_objs_index++] = factory->NewStringFromAsciiChecked(str, TENURED); delete[] str; // Add a Map object to look for. objs[next_objs_index++] = Handle(HeapObject::cast(*objs[0])->map()); CHECK_EQ(objs_count, next_objs_index); CHECK_EQ(objs_count, ObjectsFoundInHeap(CcTest::heap(), objs, objs_count)); } UNINITIALIZED_TEST(TestCodeFlushing) { // If we do not flush code this test is invalid. if (!FLAG_flush_code) return; i::FLAG_allow_natives_syntax = true; i::FLAG_optimize_for_size = false; v8::Isolate::CreateParams create_params; create_params.array_buffer_allocator = CcTest::array_buffer_allocator(); v8::Isolate* isolate = v8::Isolate::New(create_params); i::Isolate* i_isolate = reinterpret_cast(isolate); isolate->Enter(); Factory* factory = i_isolate->factory(); { v8::HandleScope scope(isolate); v8::Context::New(isolate)->Enter(); const char* source = "function foo() {" " var x = 42;" " var y = 42;" " var z = x + y;" "};" "foo()"; Handle foo_name = factory->InternalizeUtf8String("foo"); // This compile will add the code to the compilation cache. { v8::HandleScope scope(isolate); CompileRun(source); } // Check function is compiled. Handle func_value = Object::GetProperty(i_isolate->global_object(), foo_name).ToHandleChecked(); CHECK(func_value->IsJSFunction()); Handle function = Handle::cast(func_value); CHECK(function->shared()->is_compiled()); // The code will survive at least two GCs. i_isolate->heap()->CollectAllGarbage(); i_isolate->heap()->CollectAllGarbage(); CHECK(function->shared()->is_compiled()); // Simulate several GCs that use full marking. const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { i_isolate->heap()->CollectAllGarbage(); } // foo should no longer be in the compilation cache CHECK(!function->shared()->is_compiled() || function->IsOptimized()); CHECK(!function->is_compiled() || function->IsOptimized()); // Call foo to get it recompiled. CompileRun("foo()"); CHECK(function->shared()->is_compiled()); CHECK(function->is_compiled()); } isolate->Exit(); isolate->Dispose(); } TEST(TestCodeFlushingPreAged) { // If we do not flush code this test is invalid. if (!FLAG_flush_code) return; i::FLAG_allow_natives_syntax = true; i::FLAG_optimize_for_size = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); const char* source = "function foo() {" " var x = 42;" " var y = 42;" " var z = x + y;" "};" "foo()"; Handle foo_name = factory->InternalizeUtf8String("foo"); // Compile foo, but don't run it. { v8::HandleScope scope(CcTest::isolate()); CompileRun(source); } // Check function is compiled. Handle func_value = Object::GetProperty(isolate->global_object(), foo_name).ToHandleChecked(); CHECK(func_value->IsJSFunction()); Handle function = Handle::cast(func_value); CHECK(function->shared()->is_compiled()); // The code has been run so will survive at least one GC. CcTest::heap()->CollectAllGarbage(); CHECK(function->shared()->is_compiled()); // The code was only run once, so it should be pre-aged and collected on the // next GC. CcTest::heap()->CollectAllGarbage(); CHECK(!function->shared()->is_compiled() || function->IsOptimized()); // Execute the function again twice, and ensure it is reset to the young age. { v8::HandleScope scope(CcTest::isolate()); CompileRun("foo();" "foo();"); } // The code will survive at least two GC now that it is young again. CcTest::heap()->CollectAllGarbage(); CcTest::heap()->CollectAllGarbage(); CHECK(function->shared()->is_compiled()); // Simulate several GCs that use full marking. const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { CcTest::heap()->CollectAllGarbage(); } // foo should no longer be in the compilation cache CHECK(!function->shared()->is_compiled() || function->IsOptimized()); CHECK(!function->is_compiled() || function->IsOptimized()); // Call foo to get it recompiled. CompileRun("foo()"); CHECK(function->shared()->is_compiled()); CHECK(function->is_compiled()); } TEST(TestCodeFlushingIncremental) { // If we do not flush code this test is invalid. if (!FLAG_flush_code) return; i::FLAG_allow_natives_syntax = true; i::FLAG_optimize_for_size = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); const char* source = "function foo() {" " var x = 42;" " var y = 42;" " var z = x + y;" "};" "foo()"; Handle foo_name = factory->InternalizeUtf8String("foo"); // This compile will add the code to the compilation cache. { v8::HandleScope scope(CcTest::isolate()); CompileRun(source); } // Check function is compiled. Handle func_value = Object::GetProperty(isolate->global_object(), foo_name).ToHandleChecked(); CHECK(func_value->IsJSFunction()); Handle function = Handle::cast(func_value); CHECK(function->shared()->is_compiled()); // The code will survive at least two GCs. CcTest::heap()->CollectAllGarbage(); CcTest::heap()->CollectAllGarbage(); CHECK(function->shared()->is_compiled()); // Simulate several GCs that use incremental marking. const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { heap::SimulateIncrementalMarking(CcTest::heap()); CcTest::heap()->CollectAllGarbage(); } CHECK(!function->shared()->is_compiled() || function->IsOptimized()); CHECK(!function->is_compiled() || function->IsOptimized()); // This compile will compile the function again. { v8::HandleScope scope(CcTest::isolate()); CompileRun("foo();"); } // Simulate several GCs that use incremental marking but make sure // the loop breaks once the function is enqueued as a candidate. for (int i = 0; i < kAgingThreshold; i++) { heap::SimulateIncrementalMarking(CcTest::heap()); if (!function->next_function_link()->IsUndefined(CcTest::i_isolate())) break; CcTest::heap()->CollectAllGarbage(); } // Force optimization while incremental marking is active and while // the function is enqueued as a candidate. { v8::HandleScope scope(CcTest::isolate()); CompileRun("%OptimizeFunctionOnNextCall(foo); foo();"); } // Simulate one final GC to make sure the candidate queue is sane. CcTest::heap()->CollectAllGarbage(); CHECK(function->shared()->is_compiled() || !function->IsOptimized()); CHECK(function->is_compiled() || !function->IsOptimized()); } TEST(TestCodeFlushingIncrementalScavenge) { // If we do not flush code this test is invalid. if (!FLAG_flush_code) return; i::FLAG_allow_natives_syntax = true; i::FLAG_optimize_for_size = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); const char* source = "var foo = function() {" " var x = 42;" " var y = 42;" " var z = x + y;" "};" "foo();" "var bar = function() {" " var x = 23;" "};" "bar();"; Handle foo_name = factory->InternalizeUtf8String("foo"); Handle bar_name = factory->InternalizeUtf8String("bar"); // Perfrom one initial GC to enable code flushing. CcTest::heap()->CollectAllGarbage(); // This compile will add the code to the compilation cache. { v8::HandleScope scope(CcTest::isolate()); CompileRun(source); } // Check functions are compiled. Handle func_value = Object::GetProperty(isolate->global_object(), foo_name).ToHandleChecked(); CHECK(func_value->IsJSFunction()); Handle function = Handle::cast(func_value); CHECK(function->shared()->is_compiled()); Handle func_value2 = Object::GetProperty(isolate->global_object(), bar_name).ToHandleChecked(); CHECK(func_value2->IsJSFunction()); Handle function2 = Handle::cast(func_value2); CHECK(function2->shared()->is_compiled()); // Clear references to functions so that one of them can die. { v8::HandleScope scope(CcTest::isolate()); CompileRun("foo = 0; bar = 0;"); } // Bump the code age so that flushing is triggered while the function // object is still located in new-space. const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { function->shared()->code()->MakeOlder(static_cast(i % 2)); function2->shared()->code()->MakeOlder(static_cast(i % 2)); } // Simulate incremental marking so that the functions are enqueued as // code flushing candidates. Then kill one of the functions. Finally // perform a scavenge while incremental marking is still running. heap::SimulateIncrementalMarking(CcTest::heap(), false); *function2.location() = NULL; CcTest::heap()->CollectGarbage(NEW_SPACE, "test scavenge while marking"); // Simulate one final GC to make sure the candidate queue is sane. CcTest::heap()->CollectAllGarbage(); CHECK(!function->shared()->is_compiled() || function->IsOptimized()); CHECK(!function->is_compiled() || function->IsOptimized()); } TEST(TestCodeFlushingIncrementalAbort) { // If we do not flush code this test is invalid. if (!FLAG_flush_code) return; i::FLAG_allow_natives_syntax = true; i::FLAG_optimize_for_size = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); Heap* heap = isolate->heap(); v8::HandleScope scope(CcTest::isolate()); const char* source = "function foo() {" " var x = 42;" " var y = 42;" " var z = x + y;" "};" "foo()"; Handle foo_name = factory->InternalizeUtf8String("foo"); // This compile will add the code to the compilation cache. { v8::HandleScope scope(CcTest::isolate()); CompileRun(source); } // Check function is compiled. Handle func_value = Object::GetProperty(isolate->global_object(), foo_name).ToHandleChecked(); CHECK(func_value->IsJSFunction()); Handle function = Handle::cast(func_value); CHECK(function->shared()->is_compiled()); // The code will survive at least two GCs. heap->CollectAllGarbage(); heap->CollectAllGarbage(); CHECK(function->shared()->is_compiled()); // Bump the code age so that flushing is triggered. const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { function->shared()->code()->MakeOlder(static_cast(i % 2)); } // Simulate incremental marking so that the function is enqueued as // code flushing candidate. heap::SimulateIncrementalMarking(heap); // Enable the debugger and add a breakpoint while incremental marking // is running so that incremental marking aborts and code flushing is // disabled. int position = function->shared()->start_position(); Handle breakpoint_object(Smi::FromInt(0), isolate); EnableDebugger(CcTest::isolate()); isolate->debug()->SetBreakPoint(function, breakpoint_object, &position); isolate->debug()->ClearBreakPoint(breakpoint_object); DisableDebugger(CcTest::isolate()); // Force optimization now that code flushing is disabled. { v8::HandleScope scope(CcTest::isolate()); CompileRun("%OptimizeFunctionOnNextCall(foo); foo();"); } // Simulate one final GC to make sure the candidate queue is sane. heap->CollectAllGarbage(); CHECK(function->shared()->is_compiled() || !function->IsOptimized()); CHECK(function->is_compiled() || !function->IsOptimized()); } TEST(TestUseOfIncrementalBarrierOnCompileLazy) { // Turn off always_opt because it interferes with running the built-in for // the last call to g(). i::FLAG_always_opt = false; i::FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); Heap* heap = isolate->heap(); v8::HandleScope scope(CcTest::isolate()); CompileRun( "function make_closure(x) {" " return function() { return x + 3 };" "}" "var f = make_closure(5); f();" "var g = make_closure(5);"); // Check f is compiled. Handle f_name = factory->InternalizeUtf8String("f"); Handle f_value = Object::GetProperty(isolate->global_object(), f_name).ToHandleChecked(); Handle f_function = Handle::cast(f_value); CHECK(f_function->is_compiled()); // Check g is not compiled. Handle g_name = factory->InternalizeUtf8String("g"); Handle g_value = Object::GetProperty(isolate->global_object(), g_name).ToHandleChecked(); Handle g_function = Handle::cast(g_value); CHECK(!g_function->is_compiled()); heap::SimulateIncrementalMarking(heap); CompileRun("%OptimizeFunctionOnNextCall(f); f();"); // g should now have available an optimized function, unmarked by gc. The // CompileLazy built-in will discover it and install it in the closure, and // the incremental write barrier should be used. CompileRun("g();"); CHECK(g_function->is_compiled()); } TEST(CompilationCacheCachingBehavior) { // If we do not flush code, or have the compilation cache turned off, this // test is invalid. if (!FLAG_flush_code || !FLAG_compilation_cache) { return; } CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); Heap* heap = isolate->heap(); CompilationCache* compilation_cache = isolate->compilation_cache(); LanguageMode language_mode = construct_language_mode(FLAG_use_strict); v8::HandleScope scope(CcTest::isolate()); const char* raw_source = "function foo() {" " var x = 42;" " var y = 42;" " var z = x + y;" "};" "foo()"; Handle source = factory->InternalizeUtf8String(raw_source); Handle native_context = isolate->native_context(); { v8::HandleScope scope(CcTest::isolate()); CompileRun(raw_source); } // The script should be in the cache now. MaybeHandle info = compilation_cache->LookupScript( source, Handle(), 0, 0, v8::ScriptOriginOptions(false, true, false), native_context, language_mode); CHECK(!info.is_null()); // Check that the code cache entry survives at least on GC. // (Unless --optimize-for-size, in which case it might get collected // immediately.) if (!FLAG_optimize_for_size) { heap->CollectAllGarbage(); info = compilation_cache->LookupScript( source, Handle(), 0, 0, v8::ScriptOriginOptions(false, true, false), native_context, language_mode); CHECK(!info.is_null()); } // Progress code age until it's old and ready for GC. while (!info.ToHandleChecked()->code()->IsOld()) { // To guarantee progress, we have to MakeOlder with different parities. // We can't just use NO_MARKING_PARITY, since e.g. kExecutedOnceCodeAge is // always NO_MARKING_PARITY and the code age only progresses if the parity // is different. info.ToHandleChecked()->code()->MakeOlder(ODD_MARKING_PARITY); info.ToHandleChecked()->code()->MakeOlder(EVEN_MARKING_PARITY); } heap->CollectAllGarbage(); // Ensure code aging cleared the entry from the cache. info = compilation_cache->LookupScript( source, Handle(), 0, 0, v8::ScriptOriginOptions(false, true, false), native_context, language_mode); CHECK(info.is_null()); } static void OptimizeEmptyFunction(const char* name) { HandleScope scope(CcTest::i_isolate()); EmbeddedVector source; SNPrintF(source, "function %s() { return 0; }" "%s(); %s();" "%%OptimizeFunctionOnNextCall(%s);" "%s();", name, name, name, name, name); CompileRun(source.start()); } // Count the number of native contexts in the weak list of native contexts. int CountNativeContexts() { int count = 0; Object* object = CcTest::heap()->native_contexts_list(); while (!object->IsUndefined(CcTest::i_isolate())) { count++; object = Context::cast(object)->next_context_link(); } return count; } // Count the number of user functions in the weak list of optimized // functions attached to a native context. static int CountOptimizedUserFunctions(v8::Local context) { int count = 0; Handle icontext = v8::Utils::OpenHandle(*context); Object* object = icontext->get(Context::OPTIMIZED_FUNCTIONS_LIST); while (object->IsJSFunction() && !JSFunction::cast(object)->shared()->IsBuiltin()) { count++; object = JSFunction::cast(object)->next_function_link(); } return count; } TEST(TestInternalWeakLists) { FLAG_always_opt = false; FLAG_allow_natives_syntax = true; v8::V8::Initialize(); // Some flags turn Scavenge collections into Mark-sweep collections // and hence are incompatible with this test case. if (FLAG_gc_global || FLAG_stress_compaction) return; FLAG_retain_maps_for_n_gc = 0; static const int kNumTestContexts = 10; Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); HandleScope scope(isolate); v8::Local ctx[kNumTestContexts]; if (!isolate->use_crankshaft()) return; CHECK_EQ(0, CountNativeContexts()); // Create a number of global contests which gets linked together. for (int i = 0; i < kNumTestContexts; i++) { ctx[i] = v8::Context::New(CcTest::isolate()); // Collect garbage that might have been created by one of the // installed extensions. isolate->compilation_cache()->Clear(); heap->CollectAllGarbage(); CHECK_EQ(i + 1, CountNativeContexts()); ctx[i]->Enter(); // Create a handle scope so no function objects get stuck in the outer // handle scope. HandleScope scope(isolate); CHECK_EQ(0, CountOptimizedUserFunctions(ctx[i])); OptimizeEmptyFunction("f1"); CHECK_EQ(1, CountOptimizedUserFunctions(ctx[i])); OptimizeEmptyFunction("f2"); CHECK_EQ(2, CountOptimizedUserFunctions(ctx[i])); OptimizeEmptyFunction("f3"); CHECK_EQ(3, CountOptimizedUserFunctions(ctx[i])); OptimizeEmptyFunction("f4"); CHECK_EQ(4, CountOptimizedUserFunctions(ctx[i])); OptimizeEmptyFunction("f5"); CHECK_EQ(5, CountOptimizedUserFunctions(ctx[i])); // Remove function f1, and CompileRun("f1=null"); // Scavenge treats these references as strong. for (int j = 0; j < 10; j++) { CcTest::heap()->CollectGarbage(NEW_SPACE); CHECK_EQ(5, CountOptimizedUserFunctions(ctx[i])); } // Mark compact handles the weak references. isolate->compilation_cache()->Clear(); heap->CollectAllGarbage(); CHECK_EQ(4, CountOptimizedUserFunctions(ctx[i])); // Get rid of f3 and f5 in the same way. CompileRun("f3=null"); for (int j = 0; j < 10; j++) { CcTest::heap()->CollectGarbage(NEW_SPACE); CHECK_EQ(4, CountOptimizedUserFunctions(ctx[i])); } CcTest::heap()->CollectAllGarbage(); CHECK_EQ(3, CountOptimizedUserFunctions(ctx[i])); CompileRun("f5=null"); for (int j = 0; j < 10; j++) { CcTest::heap()->CollectGarbage(NEW_SPACE); CHECK_EQ(3, CountOptimizedUserFunctions(ctx[i])); } CcTest::heap()->CollectAllGarbage(); CHECK_EQ(2, CountOptimizedUserFunctions(ctx[i])); ctx[i]->Exit(); } // Force compilation cache cleanup. CcTest::heap()->NotifyContextDisposed(true); CcTest::heap()->CollectAllGarbage(); // Dispose the native contexts one by one. for (int i = 0; i < kNumTestContexts; i++) { // TODO(dcarney): is there a better way to do this? i::Object** unsafe = reinterpret_cast(*ctx[i]); *unsafe = CcTest::heap()->undefined_value(); ctx[i].Clear(); // Scavenge treats these references as strong. for (int j = 0; j < 10; j++) { CcTest::heap()->CollectGarbage(i::NEW_SPACE); CHECK_EQ(kNumTestContexts - i, CountNativeContexts()); } // Mark compact handles the weak references. CcTest::heap()->CollectAllGarbage(); CHECK_EQ(kNumTestContexts - i - 1, CountNativeContexts()); } CHECK_EQ(0, CountNativeContexts()); } // Count the number of native contexts in the weak list of native contexts // causing a GC after the specified number of elements. static int CountNativeContextsWithGC(Isolate* isolate, int n) { Heap* heap = isolate->heap(); int count = 0; Handle object(heap->native_contexts_list(), isolate); while (!object->IsUndefined(isolate)) { count++; if (count == n) heap->CollectAllGarbage(); object = Handle(Context::cast(*object)->next_context_link(), isolate); } return count; } // Count the number of user functions in the weak list of optimized // functions attached to a native context causing a GC after the // specified number of elements. static int CountOptimizedUserFunctionsWithGC(v8::Local context, int n) { int count = 0; Handle icontext = v8::Utils::OpenHandle(*context); Isolate* isolate = icontext->GetIsolate(); Handle object(icontext->get(Context::OPTIMIZED_FUNCTIONS_LIST), isolate); while (object->IsJSFunction() && !Handle::cast(object)->shared()->IsBuiltin()) { count++; if (count == n) isolate->heap()->CollectAllGarbage(); object = Handle( Object::cast(JSFunction::cast(*object)->next_function_link()), isolate); } return count; } TEST(TestInternalWeakListsTraverseWithGC) { FLAG_always_opt = false; FLAG_allow_natives_syntax = true; v8::V8::Initialize(); static const int kNumTestContexts = 10; Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); v8::Local ctx[kNumTestContexts]; if (!isolate->use_crankshaft()) return; CHECK_EQ(0, CountNativeContexts()); // Create an number of contexts and check the length of the weak list both // with and without GCs while iterating the list. for (int i = 0; i < kNumTestContexts; i++) { ctx[i] = v8::Context::New(CcTest::isolate()); CHECK_EQ(i + 1, CountNativeContexts()); CHECK_EQ(i + 1, CountNativeContextsWithGC(isolate, i / 2 + 1)); } ctx[0]->Enter(); // Compile a number of functions the length of the weak list of optimized // functions both with and without GCs while iterating the list. CHECK_EQ(0, CountOptimizedUserFunctions(ctx[0])); OptimizeEmptyFunction("f1"); CHECK_EQ(1, CountOptimizedUserFunctions(ctx[0])); CHECK_EQ(1, CountOptimizedUserFunctionsWithGC(ctx[0], 1)); OptimizeEmptyFunction("f2"); CHECK_EQ(2, CountOptimizedUserFunctions(ctx[0])); CHECK_EQ(2, CountOptimizedUserFunctionsWithGC(ctx[0], 1)); OptimizeEmptyFunction("f3"); CHECK_EQ(3, CountOptimizedUserFunctions(ctx[0])); CHECK_EQ(3, CountOptimizedUserFunctionsWithGC(ctx[0], 1)); OptimizeEmptyFunction("f4"); CHECK_EQ(4, CountOptimizedUserFunctions(ctx[0])); CHECK_EQ(4, CountOptimizedUserFunctionsWithGC(ctx[0], 2)); OptimizeEmptyFunction("f5"); CHECK_EQ(5, CountOptimizedUserFunctions(ctx[0])); CHECK_EQ(5, CountOptimizedUserFunctionsWithGC(ctx[0], 4)); ctx[0]->Exit(); } TEST(TestSizeOfRegExpCode) { if (!FLAG_regexp_optimization) return; v8::V8::Initialize(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); LocalContext context; // Adjust source below and this check to match // RegExpImple::kRegExpTooLargeToOptimize. CHECK_EQ(i::RegExpImpl::kRegExpTooLargeToOptimize, 20 * KB); // Compile a regexp that is much larger if we are using regexp optimizations. CompileRun( "var reg_exp_source = '(?:a|bc|def|ghij|klmno|pqrstu)';" "var half_size_reg_exp;" "while (reg_exp_source.length < 20 * 1024) {" " half_size_reg_exp = reg_exp_source;" " reg_exp_source = reg_exp_source + reg_exp_source;" "}" // Flatten string. "reg_exp_source.match(/f/);"); // Get initial heap size after several full GCs, which will stabilize // the heap size and return with sweeping finished completely. CcTest::heap()->CollectAllAvailableGarbage("initial cleanup"); MarkCompactCollector* collector = CcTest::heap()->mark_compact_collector(); if (collector->sweeping_in_progress()) { collector->EnsureSweepingCompleted(); } int initial_size = static_cast(CcTest::heap()->SizeOfObjects()); CompileRun("'foo'.match(reg_exp_source);"); CcTest::heap()->CollectAllGarbage(); int size_with_regexp = static_cast(CcTest::heap()->SizeOfObjects()); CompileRun("'foo'.match(half_size_reg_exp);"); CcTest::heap()->CollectAllGarbage(); int size_with_optimized_regexp = static_cast(CcTest::heap()->SizeOfObjects()); int size_of_regexp_code = size_with_regexp - initial_size; // On some platforms the debug-code flag causes huge amounts of regexp code // to be emitted, breaking this test. if (!FLAG_debug_code) { CHECK_LE(size_of_regexp_code, 1 * MB); } // Small regexp is half the size, but compiles to more than twice the code // due to the optimization steps. CHECK_GE(size_with_optimized_regexp, size_with_regexp + size_of_regexp_code * 2); } HEAP_TEST(TestSizeOfObjects) { v8::V8::Initialize(); Heap* heap = CcTest::heap(); MarkCompactCollector* collector = heap->mark_compact_collector(); // Get initial heap size after several full GCs, which will stabilize // the heap size and return with sweeping finished completely. heap->CollectAllAvailableGarbage("initial cleanup"); if (collector->sweeping_in_progress()) { collector->EnsureSweepingCompleted(); } int initial_size = static_cast(heap->SizeOfObjects()); { // Allocate objects on several different old-space pages so that // concurrent sweeper threads will be busy sweeping the old space on // subsequent GC runs. AlwaysAllocateScope always_allocate(CcTest::i_isolate()); int filler_size = static_cast(FixedArray::SizeFor(8192)); for (int i = 1; i <= 100; i++) { heap->AllocateFixedArray(8192, TENURED).ToObjectChecked(); CHECK_EQ(initial_size + i * filler_size, static_cast(heap->SizeOfObjects())); } } // The heap size should go back to initial size after a full GC, even // though sweeping didn't finish yet. heap->CollectAllGarbage(); // Normally sweeping would not be complete here, but no guarantees. CHECK_EQ(initial_size, static_cast(heap->SizeOfObjects())); // Waiting for sweeper threads should not change heap size. if (collector->sweeping_in_progress()) { collector->EnsureSweepingCompleted(); } CHECK_EQ(initial_size, static_cast(heap->SizeOfObjects())); } TEST(TestAlignmentCalculations) { // Maximum fill amounts are consistent. int maximum_double_misalignment = kDoubleSize - kPointerSize; int maximum_simd128_misalignment = kSimd128Size - kPointerSize; int max_word_fill = Heap::GetMaximumFillToAlign(kWordAligned); CHECK_EQ(0, max_word_fill); int max_double_fill = Heap::GetMaximumFillToAlign(kDoubleAligned); CHECK_EQ(maximum_double_misalignment, max_double_fill); int max_double_unaligned_fill = Heap::GetMaximumFillToAlign(kDoubleUnaligned); CHECK_EQ(maximum_double_misalignment, max_double_unaligned_fill); int max_simd128_unaligned_fill = Heap::GetMaximumFillToAlign(kSimd128Unaligned); CHECK_EQ(maximum_simd128_misalignment, max_simd128_unaligned_fill); Address base = static_cast
(NULL); int fill = 0; // Word alignment never requires fill. fill = Heap::GetFillToAlign(base, kWordAligned); CHECK_EQ(0, fill); fill = Heap::GetFillToAlign(base + kPointerSize, kWordAligned); CHECK_EQ(0, fill); // No fill is required when address is double aligned. fill = Heap::GetFillToAlign(base, kDoubleAligned); CHECK_EQ(0, fill); // Fill is required if address is not double aligned. fill = Heap::GetFillToAlign(base + kPointerSize, kDoubleAligned); CHECK_EQ(maximum_double_misalignment, fill); // kDoubleUnaligned has the opposite fill amounts. fill = Heap::GetFillToAlign(base, kDoubleUnaligned); CHECK_EQ(maximum_double_misalignment, fill); fill = Heap::GetFillToAlign(base + kPointerSize, kDoubleUnaligned); CHECK_EQ(0, fill); // 128 bit SIMD types have 2 or 4 possible alignments, depending on platform. fill = Heap::GetFillToAlign(base, kSimd128Unaligned); CHECK_EQ((3 * kPointerSize) & kSimd128AlignmentMask, fill); fill = Heap::GetFillToAlign(base + kPointerSize, kSimd128Unaligned); CHECK_EQ((2 * kPointerSize) & kSimd128AlignmentMask, fill); fill = Heap::GetFillToAlign(base + 2 * kPointerSize, kSimd128Unaligned); CHECK_EQ(kPointerSize, fill); fill = Heap::GetFillToAlign(base + 3 * kPointerSize, kSimd128Unaligned); CHECK_EQ(0, fill); } static HeapObject* NewSpaceAllocateAligned(int size, AllocationAlignment alignment) { Heap* heap = CcTest::heap(); AllocationResult allocation = heap->new_space()->AllocateRawAligned(size, alignment); HeapObject* obj = NULL; allocation.To(&obj); heap->CreateFillerObjectAt(obj->address(), size, ClearRecordedSlots::kNo); return obj; } // Get new space allocation into the desired alignment. static Address AlignNewSpace(AllocationAlignment alignment, int offset) { Address* top_addr = CcTest::heap()->new_space()->allocation_top_address(); int fill = Heap::GetFillToAlign(*top_addr, alignment); if (fill) { NewSpaceAllocateAligned(fill + offset, kWordAligned); } return *top_addr; } TEST(TestAlignedAllocation) { // Double misalignment is 4 on 32-bit platforms, 0 on 64-bit ones. const intptr_t double_misalignment = kDoubleSize - kPointerSize; Address* top_addr = CcTest::heap()->new_space()->allocation_top_address(); Address start; HeapObject* obj; HeapObject* filler; if (double_misalignment) { // Allocate a pointer sized object that must be double aligned at an // aligned address. start = AlignNewSpace(kDoubleAligned, 0); obj = NewSpaceAllocateAligned(kPointerSize, kDoubleAligned); CHECK(IsAddressAligned(obj->address(), kDoubleAlignment)); // There is no filler. CHECK_EQ(kPointerSize, *top_addr - start); // Allocate a second pointer sized object that must be double aligned at an // unaligned address. start = AlignNewSpace(kDoubleAligned, kPointerSize); obj = NewSpaceAllocateAligned(kPointerSize, kDoubleAligned); CHECK(IsAddressAligned(obj->address(), kDoubleAlignment)); // There is a filler object before the object. filler = HeapObject::FromAddress(start); CHECK(obj != filler && filler->IsFiller() && filler->Size() == kPointerSize); CHECK_EQ(kPointerSize + double_misalignment, *top_addr - start); // Similarly for kDoubleUnaligned. start = AlignNewSpace(kDoubleUnaligned, 0); obj = NewSpaceAllocateAligned(kPointerSize, kDoubleUnaligned); CHECK(IsAddressAligned(obj->address(), kDoubleAlignment, kPointerSize)); CHECK_EQ(kPointerSize, *top_addr - start); start = AlignNewSpace(kDoubleUnaligned, kPointerSize); obj = NewSpaceAllocateAligned(kPointerSize, kDoubleUnaligned); CHECK(IsAddressAligned(obj->address(), kDoubleAlignment, kPointerSize)); // There is a filler object before the object. filler = HeapObject::FromAddress(start); CHECK(obj != filler && filler->IsFiller() && filler->Size() == kPointerSize); CHECK_EQ(kPointerSize + double_misalignment, *top_addr - start); } // Now test SIMD alignment. There are 2 or 4 possible alignments, depending // on platform. start = AlignNewSpace(kSimd128Unaligned, 0); obj = NewSpaceAllocateAligned(kPointerSize, kSimd128Unaligned); CHECK(IsAddressAligned(obj->address(), kSimd128Alignment, kPointerSize)); // There is no filler. CHECK_EQ(kPointerSize, *top_addr - start); start = AlignNewSpace(kSimd128Unaligned, kPointerSize); obj = NewSpaceAllocateAligned(kPointerSize, kSimd128Unaligned); CHECK(IsAddressAligned(obj->address(), kSimd128Alignment, kPointerSize)); // There is a filler object before the object. filler = HeapObject::FromAddress(start); CHECK(obj != filler && filler->IsFiller() && filler->Size() == kSimd128Size - kPointerSize); CHECK_EQ(kPointerSize + kSimd128Size - kPointerSize, *top_addr - start); if (double_misalignment) { // Test the 2 other alignments possible on 32 bit platforms. start = AlignNewSpace(kSimd128Unaligned, 2 * kPointerSize); obj = NewSpaceAllocateAligned(kPointerSize, kSimd128Unaligned); CHECK(IsAddressAligned(obj->address(), kSimd128Alignment, kPointerSize)); // There is a filler object before the object. filler = HeapObject::FromAddress(start); CHECK(obj != filler && filler->IsFiller() && filler->Size() == 2 * kPointerSize); CHECK_EQ(kPointerSize + 2 * kPointerSize, *top_addr - start); start = AlignNewSpace(kSimd128Unaligned, 3 * kPointerSize); obj = NewSpaceAllocateAligned(kPointerSize, kSimd128Unaligned); CHECK(IsAddressAligned(obj->address(), kSimd128Alignment, kPointerSize)); // There is a filler object before the object. filler = HeapObject::FromAddress(start); CHECK(obj != filler && filler->IsFiller() && filler->Size() == kPointerSize); CHECK_EQ(kPointerSize + kPointerSize, *top_addr - start); } } static HeapObject* OldSpaceAllocateAligned(int size, AllocationAlignment alignment) { Heap* heap = CcTest::heap(); AllocationResult allocation = heap->old_space()->AllocateRawAligned(size, alignment); HeapObject* obj = NULL; allocation.To(&obj); heap->CreateFillerObjectAt(obj->address(), size, ClearRecordedSlots::kNo); return obj; } // Get old space allocation into the desired alignment. static Address AlignOldSpace(AllocationAlignment alignment, int offset) { Address* top_addr = CcTest::heap()->old_space()->allocation_top_address(); int fill = Heap::GetFillToAlign(*top_addr, alignment); int allocation = fill + offset; if (allocation) { OldSpaceAllocateAligned(allocation, kWordAligned); } Address top = *top_addr; // Now force the remaining allocation onto the free list. CcTest::heap()->old_space()->EmptyAllocationInfo(); return top; } // Test the case where allocation must be done from the free list, so filler // may precede or follow the object. TEST(TestAlignedOverAllocation) { // Double misalignment is 4 on 32-bit platforms, 0 on 64-bit ones. const intptr_t double_misalignment = kDoubleSize - kPointerSize; Address start; HeapObject* obj; HeapObject* filler1; HeapObject* filler2; if (double_misalignment) { start = AlignOldSpace(kDoubleAligned, 0); obj = OldSpaceAllocateAligned(kPointerSize, kDoubleAligned); // The object is aligned, and a filler object is created after. CHECK(IsAddressAligned(obj->address(), kDoubleAlignment)); filler1 = HeapObject::FromAddress(start + kPointerSize); CHECK(obj != filler1 && filler1->IsFiller() && filler1->Size() == kPointerSize); // Try the opposite alignment case. start = AlignOldSpace(kDoubleAligned, kPointerSize); obj = OldSpaceAllocateAligned(kPointerSize, kDoubleAligned); CHECK(IsAddressAligned(obj->address(), kDoubleAlignment)); filler1 = HeapObject::FromAddress(start); CHECK(obj != filler1); CHECK(filler1->IsFiller()); CHECK(filler1->Size() == kPointerSize); CHECK(obj != filler1 && filler1->IsFiller() && filler1->Size() == kPointerSize); // Similarly for kDoubleUnaligned. start = AlignOldSpace(kDoubleUnaligned, 0); obj = OldSpaceAllocateAligned(kPointerSize, kDoubleUnaligned); // The object is aligned, and a filler object is created after. CHECK(IsAddressAligned(obj->address(), kDoubleAlignment, kPointerSize)); filler1 = HeapObject::FromAddress(start + kPointerSize); CHECK(obj != filler1 && filler1->IsFiller() && filler1->Size() == kPointerSize); // Try the opposite alignment case. start = AlignOldSpace(kDoubleUnaligned, kPointerSize); obj = OldSpaceAllocateAligned(kPointerSize, kDoubleUnaligned); CHECK(IsAddressAligned(obj->address(), kDoubleAlignment, kPointerSize)); filler1 = HeapObject::FromAddress(start); CHECK(obj != filler1 && filler1->IsFiller() && filler1->Size() == kPointerSize); } // Now test SIMD alignment. There are 2 or 4 possible alignments, depending // on platform. start = AlignOldSpace(kSimd128Unaligned, 0); obj = OldSpaceAllocateAligned(kPointerSize, kSimd128Unaligned); CHECK(IsAddressAligned(obj->address(), kSimd128Alignment, kPointerSize)); // There is a filler object after the object. filler1 = HeapObject::FromAddress(start + kPointerSize); CHECK(obj != filler1 && filler1->IsFiller() && filler1->Size() == kSimd128Size - kPointerSize); start = AlignOldSpace(kSimd128Unaligned, kPointerSize); obj = OldSpaceAllocateAligned(kPointerSize, kSimd128Unaligned); CHECK(IsAddressAligned(obj->address(), kSimd128Alignment, kPointerSize)); // There is a filler object before the object. filler1 = HeapObject::FromAddress(start); CHECK(obj != filler1 && filler1->IsFiller() && filler1->Size() == kSimd128Size - kPointerSize); if (double_misalignment) { // Test the 2 other alignments possible on 32 bit platforms. start = AlignOldSpace(kSimd128Unaligned, 2 * kPointerSize); obj = OldSpaceAllocateAligned(kPointerSize, kSimd128Unaligned); CHECK(IsAddressAligned(obj->address(), kSimd128Alignment, kPointerSize)); // There are filler objects before and after the object. filler1 = HeapObject::FromAddress(start); CHECK(obj != filler1 && filler1->IsFiller() && filler1->Size() == 2 * kPointerSize); filler2 = HeapObject::FromAddress(start + 3 * kPointerSize); CHECK(obj != filler2 && filler2->IsFiller() && filler2->Size() == kPointerSize); start = AlignOldSpace(kSimd128Unaligned, 3 * kPointerSize); obj = OldSpaceAllocateAligned(kPointerSize, kSimd128Unaligned); CHECK(IsAddressAligned(obj->address(), kSimd128Alignment, kPointerSize)); // There are filler objects before and after the object. filler1 = HeapObject::FromAddress(start); CHECK(obj != filler1 && filler1->IsFiller() && filler1->Size() == kPointerSize); filler2 = HeapObject::FromAddress(start + 2 * kPointerSize); CHECK(obj != filler2 && filler2->IsFiller() && filler2->Size() == 2 * kPointerSize); } } TEST(TestSizeOfObjectsVsHeapIteratorPrecision) { CcTest::InitializeVM(); HeapIterator iterator(CcTest::heap()); intptr_t size_of_objects_1 = CcTest::heap()->SizeOfObjects(); intptr_t size_of_objects_2 = 0; for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) { if (!obj->IsFreeSpace()) { size_of_objects_2 += obj->Size(); } } // Delta must be within 5% of the larger result. // TODO(gc): Tighten this up by distinguishing between byte // arrays that are real and those that merely mark free space // on the heap. if (size_of_objects_1 > size_of_objects_2) { intptr_t delta = size_of_objects_1 - size_of_objects_2; PrintF("Heap::SizeOfObjects: %" V8PRIdPTR ", " "Iterator: %" V8PRIdPTR ", " "delta: %" V8PRIdPTR "\n", size_of_objects_1, size_of_objects_2, delta); CHECK_GT(size_of_objects_1 / 20, delta); } else { intptr_t delta = size_of_objects_2 - size_of_objects_1; PrintF("Heap::SizeOfObjects: %" V8PRIdPTR ", " "Iterator: %" V8PRIdPTR ", " "delta: %" V8PRIdPTR "\n", size_of_objects_1, size_of_objects_2, delta); CHECK_GT(size_of_objects_2 / 20, delta); } } static void FillUpNewSpace(NewSpace* new_space) { // Fill up new space to the point that it is completely full. Make sure // that the scavenger does not undo the filling. Heap* heap = new_space->heap(); Isolate* isolate = heap->isolate(); Factory* factory = isolate->factory(); HandleScope scope(isolate); AlwaysAllocateScope always_allocate(isolate); intptr_t available = new_space->Capacity() - new_space->Size(); intptr_t number_of_fillers = (available / FixedArray::SizeFor(32)) - 1; for (intptr_t i = 0; i < number_of_fillers; i++) { CHECK(heap->InNewSpace(*factory->NewFixedArray(32, NOT_TENURED))); } } TEST(GrowAndShrinkNewSpace) { CcTest::InitializeVM(); Heap* heap = CcTest::heap(); NewSpace* new_space = heap->new_space(); if (heap->MaxSemiSpaceSize() == heap->InitialSemiSpaceSize()) { return; } // Explicitly growing should double the space capacity. intptr_t old_capacity, new_capacity; old_capacity = new_space->TotalCapacity(); new_space->Grow(); new_capacity = new_space->TotalCapacity(); CHECK(2 * old_capacity == new_capacity); old_capacity = new_space->TotalCapacity(); FillUpNewSpace(new_space); new_capacity = new_space->TotalCapacity(); CHECK(old_capacity == new_capacity); // Explicitly shrinking should not affect space capacity. old_capacity = new_space->TotalCapacity(); new_space->Shrink(); new_capacity = new_space->TotalCapacity(); CHECK(old_capacity == new_capacity); // Let the scavenger empty the new space. heap->CollectGarbage(NEW_SPACE); CHECK_LE(new_space->Size(), old_capacity); // Explicitly shrinking should halve the space capacity. old_capacity = new_space->TotalCapacity(); new_space->Shrink(); new_capacity = new_space->TotalCapacity(); CHECK(old_capacity == 2 * new_capacity); // Consecutive shrinking should not affect space capacity. old_capacity = new_space->TotalCapacity(); new_space->Shrink(); new_space->Shrink(); new_space->Shrink(); new_capacity = new_space->TotalCapacity(); CHECK(old_capacity == new_capacity); } TEST(CollectingAllAvailableGarbageShrinksNewSpace) { CcTest::InitializeVM(); Heap* heap = CcTest::heap(); if (heap->MaxSemiSpaceSize() == heap->InitialSemiSpaceSize()) { return; } v8::HandleScope scope(CcTest::isolate()); NewSpace* new_space = heap->new_space(); intptr_t old_capacity, new_capacity; old_capacity = new_space->TotalCapacity(); new_space->Grow(); new_capacity = new_space->TotalCapacity(); CHECK(2 * old_capacity == new_capacity); FillUpNewSpace(new_space); heap->CollectAllAvailableGarbage(); new_capacity = new_space->TotalCapacity(); CHECK(old_capacity == new_capacity); } static int NumberOfGlobalObjects() { int count = 0; HeapIterator iterator(CcTest::heap()); for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) { if (obj->IsJSGlobalObject()) count++; } return count; } // Test that we don't embed maps from foreign contexts into // optimized code. TEST(LeakNativeContextViaMap) { i::FLAG_allow_natives_syntax = true; v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope outer_scope(isolate); v8::Persistent ctx1p; v8::Persistent ctx2p; { v8::HandleScope scope(isolate); ctx1p.Reset(isolate, v8::Context::New(isolate)); ctx2p.Reset(isolate, v8::Context::New(isolate)); v8::Local::New(isolate, ctx1p)->Enter(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(2, NumberOfGlobalObjects()); { v8::HandleScope inner_scope(isolate); CompileRun("var v = {x: 42}"); v8::Local ctx1 = v8::Local::New(isolate, ctx1p); v8::Local ctx2 = v8::Local::New(isolate, ctx2p); v8::Local v = ctx1->Global()->Get(ctx1, v8_str("v")).ToLocalChecked(); ctx2->Enter(); CHECK(ctx2->Global()->Set(ctx2, v8_str("o"), v).FromJust()); v8::Local res = CompileRun( "function f() { return o.x; }" "for (var i = 0; i < 10; ++i) f();" "%OptimizeFunctionOnNextCall(f);" "f();"); CHECK_EQ(42, res->Int32Value(ctx2).FromJust()); CHECK(ctx2->Global() ->Set(ctx2, v8_str("o"), v8::Int32::New(isolate, 0)) .FromJust()); ctx2->Exit(); v8::Local::New(isolate, ctx1)->Exit(); ctx1p.Reset(); isolate->ContextDisposedNotification(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(1, NumberOfGlobalObjects()); ctx2p.Reset(); CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(0, NumberOfGlobalObjects()); } // Test that we don't embed functions from foreign contexts into // optimized code. TEST(LeakNativeContextViaFunction) { i::FLAG_allow_natives_syntax = true; v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope outer_scope(isolate); v8::Persistent ctx1p; v8::Persistent ctx2p; { v8::HandleScope scope(isolate); ctx1p.Reset(isolate, v8::Context::New(isolate)); ctx2p.Reset(isolate, v8::Context::New(isolate)); v8::Local::New(isolate, ctx1p)->Enter(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(2, NumberOfGlobalObjects()); { v8::HandleScope inner_scope(isolate); CompileRun("var v = function() { return 42; }"); v8::Local ctx1 = v8::Local::New(isolate, ctx1p); v8::Local ctx2 = v8::Local::New(isolate, ctx2p); v8::Local v = ctx1->Global()->Get(ctx1, v8_str("v")).ToLocalChecked(); ctx2->Enter(); CHECK(ctx2->Global()->Set(ctx2, v8_str("o"), v).FromJust()); v8::Local res = CompileRun( "function f(x) { return x(); }" "for (var i = 0; i < 10; ++i) f(o);" "%OptimizeFunctionOnNextCall(f);" "f(o);"); CHECK_EQ(42, res->Int32Value(ctx2).FromJust()); CHECK(ctx2->Global() ->Set(ctx2, v8_str("o"), v8::Int32::New(isolate, 0)) .FromJust()); ctx2->Exit(); ctx1->Exit(); ctx1p.Reset(); isolate->ContextDisposedNotification(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(1, NumberOfGlobalObjects()); ctx2p.Reset(); CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(0, NumberOfGlobalObjects()); } TEST(LeakNativeContextViaMapKeyed) { i::FLAG_allow_natives_syntax = true; v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope outer_scope(isolate); v8::Persistent ctx1p; v8::Persistent ctx2p; { v8::HandleScope scope(isolate); ctx1p.Reset(isolate, v8::Context::New(isolate)); ctx2p.Reset(isolate, v8::Context::New(isolate)); v8::Local::New(isolate, ctx1p)->Enter(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(2, NumberOfGlobalObjects()); { v8::HandleScope inner_scope(isolate); CompileRun("var v = [42, 43]"); v8::Local ctx1 = v8::Local::New(isolate, ctx1p); v8::Local ctx2 = v8::Local::New(isolate, ctx2p); v8::Local v = ctx1->Global()->Get(ctx1, v8_str("v")).ToLocalChecked(); ctx2->Enter(); CHECK(ctx2->Global()->Set(ctx2, v8_str("o"), v).FromJust()); v8::Local res = CompileRun( "function f() { return o[0]; }" "for (var i = 0; i < 10; ++i) f();" "%OptimizeFunctionOnNextCall(f);" "f();"); CHECK_EQ(42, res->Int32Value(ctx2).FromJust()); CHECK(ctx2->Global() ->Set(ctx2, v8_str("o"), v8::Int32::New(isolate, 0)) .FromJust()); ctx2->Exit(); ctx1->Exit(); ctx1p.Reset(); isolate->ContextDisposedNotification(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(1, NumberOfGlobalObjects()); ctx2p.Reset(); CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(0, NumberOfGlobalObjects()); } TEST(LeakNativeContextViaMapProto) { i::FLAG_allow_natives_syntax = true; v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope outer_scope(isolate); v8::Persistent ctx1p; v8::Persistent ctx2p; { v8::HandleScope scope(isolate); ctx1p.Reset(isolate, v8::Context::New(isolate)); ctx2p.Reset(isolate, v8::Context::New(isolate)); v8::Local::New(isolate, ctx1p)->Enter(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(2, NumberOfGlobalObjects()); { v8::HandleScope inner_scope(isolate); CompileRun("var v = { y: 42}"); v8::Local ctx1 = v8::Local::New(isolate, ctx1p); v8::Local ctx2 = v8::Local::New(isolate, ctx2p); v8::Local v = ctx1->Global()->Get(ctx1, v8_str("v")).ToLocalChecked(); ctx2->Enter(); CHECK(ctx2->Global()->Set(ctx2, v8_str("o"), v).FromJust()); v8::Local res = CompileRun( "function f() {" " var p = {x: 42};" " p.__proto__ = o;" " return p.x;" "}" "for (var i = 0; i < 10; ++i) f();" "%OptimizeFunctionOnNextCall(f);" "f();"); CHECK_EQ(42, res->Int32Value(ctx2).FromJust()); CHECK(ctx2->Global() ->Set(ctx2, v8_str("o"), v8::Int32::New(isolate, 0)) .FromJust()); ctx2->Exit(); ctx1->Exit(); ctx1p.Reset(); isolate->ContextDisposedNotification(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(1, NumberOfGlobalObjects()); ctx2p.Reset(); CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(0, NumberOfGlobalObjects()); } TEST(InstanceOfStubWriteBarrier) { i::FLAG_allow_natives_syntax = true; #ifdef VERIFY_HEAP i::FLAG_verify_heap = true; #endif CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft()) return; if (i::FLAG_force_marking_deque_overflows) return; v8::HandleScope outer_scope(CcTest::isolate()); v8::Local ctx = CcTest::isolate()->GetCurrentContext(); { v8::HandleScope scope(CcTest::isolate()); CompileRun( "function foo () { }" "function mkbar () { return new (new Function(\"\")) (); }" "function f (x) { return (x instanceof foo); }" "function g () { f(mkbar()); }" "f(new foo()); f(new foo());" "%OptimizeFunctionOnNextCall(f);" "f(new foo()); g();"); } IncrementalMarking* marking = CcTest::heap()->incremental_marking(); marking->Stop(); CcTest::heap()->StartIncrementalMarking(); i::Handle f = i::Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast( CcTest::global()->Get(ctx, v8_str("f")).ToLocalChecked()))); CHECK(f->IsOptimized()); while (!Marking::IsBlack(ObjectMarking::MarkBitFrom(f->code())) && !marking->IsStopped()) { // Discard any pending GC requests otherwise we will get GC when we enter // code below. marking->Step(MB, IncrementalMarking::NO_GC_VIA_STACK_GUARD); } CHECK(marking->IsMarking()); { v8::HandleScope scope(CcTest::isolate()); v8::Local global = CcTest::global(); v8::Local g = v8::Local::Cast( global->Get(ctx, v8_str("g")).ToLocalChecked()); g->Call(ctx, global, 0, nullptr).ToLocalChecked(); } CcTest::heap()->incremental_marking()->set_should_hurry(true); CcTest::heap()->CollectGarbage(OLD_SPACE); } namespace { int GetProfilerTicks(SharedFunctionInfo* shared) { return FLAG_ignition ? shared->profiler_ticks() : shared->code()->profiler_ticks(); } } // namespace TEST(ResetSharedFunctionInfoCountersDuringIncrementalMarking) { i::FLAG_stress_compaction = false; i::FLAG_allow_natives_syntax = true; #ifdef VERIFY_HEAP i::FLAG_verify_heap = true; #endif CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft()) return; v8::HandleScope outer_scope(CcTest::isolate()); v8::Local ctx = CcTest::isolate()->GetCurrentContext(); { v8::HandleScope scope(CcTest::isolate()); CompileRun( "function f () {" " var s = 0;" " for (var i = 0; i < 100; i++) s += i;" " return s;" "}" "f(); f();" "%OptimizeFunctionOnNextCall(f);" "f();"); } i::Handle f = i::Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast( CcTest::global()->Get(ctx, v8_str("f")).ToLocalChecked()))); CHECK(f->IsOptimized()); // Make sure incremental marking it not running. CcTest::heap()->incremental_marking()->Stop(); CcTest::heap()->StartIncrementalMarking(); // The following calls will increment CcTest::heap()->global_ic_age(). CcTest::isolate()->ContextDisposedNotification(); heap::SimulateIncrementalMarking(CcTest::heap()); CcTest::heap()->CollectAllGarbage(); CHECK_EQ(CcTest::heap()->global_ic_age(), f->shared()->ic_age()); CHECK_EQ(0, f->shared()->opt_count()); CHECK_EQ(0, GetProfilerTicks(f->shared())); } TEST(ResetSharedFunctionInfoCountersDuringMarkSweep) { i::FLAG_stress_compaction = false; i::FLAG_allow_natives_syntax = true; #ifdef VERIFY_HEAP i::FLAG_verify_heap = true; #endif CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft()) return; v8::HandleScope outer_scope(CcTest::isolate()); v8::Local ctx = CcTest::isolate()->GetCurrentContext(); { v8::HandleScope scope(CcTest::isolate()); CompileRun( "function f () {" " var s = 0;" " for (var i = 0; i < 100; i++) s += i;" " return s;" "}" "f(); f();" "%OptimizeFunctionOnNextCall(f);" "f();"); } i::Handle f = i::Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast( CcTest::global()->Get(ctx, v8_str("f")).ToLocalChecked()))); CHECK(f->IsOptimized()); // Make sure incremental marking it not running. CcTest::heap()->incremental_marking()->Stop(); // The following two calls will increment CcTest::heap()->global_ic_age(). CcTest::isolate()->ContextDisposedNotification(); CcTest::heap()->CollectAllGarbage(); CHECK_EQ(CcTest::heap()->global_ic_age(), f->shared()->ic_age()); CHECK_EQ(0, f->shared()->opt_count()); CHECK_EQ(0, GetProfilerTicks(f->shared())); } HEAP_TEST(GCFlags) { CcTest::InitializeVM(); Heap* heap = CcTest::heap(); heap->set_current_gc_flags(Heap::kNoGCFlags); CHECK_EQ(Heap::kNoGCFlags, heap->current_gc_flags_); // Set the flags to check whether we appropriately resets them after the GC. heap->set_current_gc_flags(Heap::kAbortIncrementalMarkingMask); heap->CollectAllGarbage(Heap::kReduceMemoryFootprintMask); CHECK_EQ(Heap::kNoGCFlags, heap->current_gc_flags_); MarkCompactCollector* collector = heap->mark_compact_collector(); if (collector->sweeping_in_progress()) { collector->EnsureSweepingCompleted(); } IncrementalMarking* marking = heap->incremental_marking(); marking->Stop(); heap->StartIncrementalMarking(Heap::kReduceMemoryFootprintMask); CHECK_NE(0, heap->current_gc_flags_ & Heap::kReduceMemoryFootprintMask); heap->CollectGarbage(NEW_SPACE); // NewSpace scavenges should not overwrite the flags. CHECK_NE(0, heap->current_gc_flags_ & Heap::kReduceMemoryFootprintMask); heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CHECK_EQ(Heap::kNoGCFlags, heap->current_gc_flags_); } TEST(IdleNotificationFinishMarking) { i::FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); const int initial_gc_count = CcTest::heap()->gc_count(); heap::SimulateFullSpace(CcTest::heap()->old_space()); IncrementalMarking* marking = CcTest::heap()->incremental_marking(); marking->Stop(); CcTest::heap()->StartIncrementalMarking(); CHECK_EQ(CcTest::heap()->gc_count(), initial_gc_count); // TODO(hpayer): We cannot write proper unit test right now for heap. // The ideal test would call kMaxIdleMarkingDelayCounter to test the // marking delay counter. // Perform a huge incremental marking step but don't complete marking. intptr_t bytes_processed = 0; do { bytes_processed = marking->Step(1 * MB, IncrementalMarking::NO_GC_VIA_STACK_GUARD, IncrementalMarking::FORCE_MARKING, IncrementalMarking::DO_NOT_FORCE_COMPLETION); CHECK(!marking->IsIdleMarkingDelayCounterLimitReached()); } while (bytes_processed); // The next invocations of incremental marking are not going to complete // marking // since the completion threshold is not reached for (size_t i = 0; i < IncrementalMarking::kMaxIdleMarkingDelayCounter - 2; i++) { marking->Step(1 * MB, IncrementalMarking::NO_GC_VIA_STACK_GUARD, IncrementalMarking::FORCE_MARKING, IncrementalMarking::DO_NOT_FORCE_COMPLETION); CHECK(!marking->IsIdleMarkingDelayCounterLimitReached()); } marking->SetWeakClosureWasOverApproximatedForTesting(true); // The next idle notification has to finish incremental marking. const double kLongIdleTime = 1000.0; CcTest::isolate()->IdleNotificationDeadline( (v8::base::TimeTicks::HighResolutionNow().ToInternalValue() / static_cast(v8::base::Time::kMicrosecondsPerSecond)) + kLongIdleTime); CHECK_EQ(CcTest::heap()->gc_count(), initial_gc_count + 1); } // Test that HAllocateObject will always return an object in new-space. TEST(OptimizedAllocationAlwaysInNewSpace) { i::FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return; if (i::FLAG_gc_global || i::FLAG_stress_compaction) return; v8::HandleScope scope(CcTest::isolate()); v8::Local ctx = CcTest::isolate()->GetCurrentContext(); heap::SimulateFullSpace(CcTest::heap()->new_space()); AlwaysAllocateScope always_allocate(CcTest::i_isolate()); v8::Local res = CompileRun( "function c(x) {" " this.x = x;" " for (var i = 0; i < 32; i++) {" " this['x' + i] = x;" " }" "}" "function f(x) { return new c(x); };" "f(1); f(2); f(3);" "%OptimizeFunctionOnNextCall(f);" "f(4);"); CHECK_EQ(4, res.As() ->GetRealNamedProperty(ctx, v8_str("x")) .ToLocalChecked() ->Int32Value(ctx) .FromJust()); i::Handle o = v8::Utils::OpenHandle(*v8::Local::Cast(res)); CHECK(CcTest::heap()->InNewSpace(*o)); } TEST(OptimizedPretenuringAllocationFolding) { i::FLAG_allow_natives_syntax = true; i::FLAG_expose_gc = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return; if (i::FLAG_gc_global || i::FLAG_stress_compaction) return; v8::HandleScope scope(CcTest::isolate()); v8::Local ctx = CcTest::isolate()->GetCurrentContext(); // Grow new space unitl maximum capacity reached. while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) { CcTest::heap()->new_space()->Grow(); } i::ScopedVector source(1024); i::SNPrintF( source, "var number_elements = %d;" "var elements = new Array();" "function f() {" " for (var i = 0; i < number_elements; i++) {" " elements[i] = [[{}], [1.1]];" " }" " return elements[number_elements-1]" "};" "f(); gc();" "f(); f();" "%%OptimizeFunctionOnNextCall(f);" "f();", AllocationSite::kPretenureMinimumCreated); v8::Local res = CompileRun(source.start()); v8::Local int_array = v8::Object::Cast(*res)->Get(ctx, v8_str("0")).ToLocalChecked(); i::Handle int_array_handle = i::Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast(int_array))); v8::Local double_array = v8::Object::Cast(*res)->Get(ctx, v8_str("1")).ToLocalChecked(); i::Handle double_array_handle = i::Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast(double_array))); i::Handle o = v8::Utils::OpenHandle(*v8::Local::Cast(res)); CHECK(CcTest::heap()->InOldSpace(*o)); CHECK(CcTest::heap()->InOldSpace(*int_array_handle)); CHECK(CcTest::heap()->InOldSpace(int_array_handle->elements())); CHECK(CcTest::heap()->InOldSpace(*double_array_handle)); CHECK(CcTest::heap()->InOldSpace(double_array_handle->elements())); } TEST(OptimizedPretenuringObjectArrayLiterals) { i::FLAG_allow_natives_syntax = true; i::FLAG_expose_gc = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return; if (i::FLAG_gc_global || i::FLAG_stress_compaction) return; v8::HandleScope scope(CcTest::isolate()); // Grow new space unitl maximum capacity reached. while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) { CcTest::heap()->new_space()->Grow(); } i::ScopedVector source(1024); i::SNPrintF( source, "var number_elements = %d;" "var elements = new Array(number_elements);" "function f() {" " for (var i = 0; i < number_elements; i++) {" " elements[i] = [{}, {}, {}];" " }" " return elements[number_elements - 1];" "};" "f(); gc();" "f(); f();" "%%OptimizeFunctionOnNextCall(f);" "f();", AllocationSite::kPretenureMinimumCreated); v8::Local res = CompileRun(source.start()); i::Handle o = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast(res))); CHECK(CcTest::heap()->InOldSpace(o->elements())); CHECK(CcTest::heap()->InOldSpace(*o)); } TEST(OptimizedPretenuringMixedInObjectProperties) { i::FLAG_allow_natives_syntax = true; i::FLAG_expose_gc = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return; if (i::FLAG_gc_global || i::FLAG_stress_compaction) return; v8::HandleScope scope(CcTest::isolate()); // Grow new space unitl maximum capacity reached. while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) { CcTest::heap()->new_space()->Grow(); } i::ScopedVector source(1024); i::SNPrintF( source, "var number_elements = %d;" "var elements = new Array(number_elements);" "function f() {" " for (var i = 0; i < number_elements; i++) {" " elements[i] = {a: {c: 2.2, d: {}}, b: 1.1};" " }" " return elements[number_elements - 1];" "};" "f(); gc();" "f(); f();" "%%OptimizeFunctionOnNextCall(f);" "f();", AllocationSite::kPretenureMinimumCreated); v8::Local res = CompileRun(source.start()); i::Handle o = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast(res))); CHECK(CcTest::heap()->InOldSpace(*o)); FieldIndex idx1 = FieldIndex::ForPropertyIndex(o->map(), 0); FieldIndex idx2 = FieldIndex::ForPropertyIndex(o->map(), 1); CHECK(CcTest::heap()->InOldSpace(o->RawFastPropertyAt(idx1))); if (!o->IsUnboxedDoubleField(idx2)) { CHECK(CcTest::heap()->InOldSpace(o->RawFastPropertyAt(idx2))); } else { CHECK_EQ(1.1, o->RawFastDoublePropertyAt(idx2)); } JSObject* inner_object = reinterpret_cast(o->RawFastPropertyAt(idx1)); CHECK(CcTest::heap()->InOldSpace(inner_object)); if (!inner_object->IsUnboxedDoubleField(idx1)) { CHECK(CcTest::heap()->InOldSpace(inner_object->RawFastPropertyAt(idx1))); } else { CHECK_EQ(2.2, inner_object->RawFastDoublePropertyAt(idx1)); } CHECK(CcTest::heap()->InOldSpace(inner_object->RawFastPropertyAt(idx2))); } TEST(OptimizedPretenuringDoubleArrayProperties) { i::FLAG_allow_natives_syntax = true; i::FLAG_expose_gc = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return; if (i::FLAG_gc_global || i::FLAG_stress_compaction) return; v8::HandleScope scope(CcTest::isolate()); // Grow new space unitl maximum capacity reached. while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) { CcTest::heap()->new_space()->Grow(); } i::ScopedVector source(1024); i::SNPrintF( source, "var number_elements = %d;" "var elements = new Array(number_elements);" "function f() {" " for (var i = 0; i < number_elements; i++) {" " elements[i] = {a: 1.1, b: 2.2};" " }" " return elements[i - 1];" "};" "f(); gc();" "f(); f();" "%%OptimizeFunctionOnNextCall(f);" "f();", AllocationSite::kPretenureMinimumCreated); v8::Local res = CompileRun(source.start()); i::Handle o = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast(res))); CHECK(CcTest::heap()->InOldSpace(*o)); CHECK(CcTest::heap()->InOldSpace(o->properties())); } TEST(OptimizedPretenuringdoubleArrayLiterals) { i::FLAG_allow_natives_syntax = true; i::FLAG_expose_gc = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return; if (i::FLAG_gc_global || i::FLAG_stress_compaction) return; v8::HandleScope scope(CcTest::isolate()); // Grow new space unitl maximum capacity reached. while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) { CcTest::heap()->new_space()->Grow(); } i::ScopedVector source(1024); i::SNPrintF( source, "var number_elements = %d;" "var elements = new Array(number_elements);" "function f() {" " for (var i = 0; i < number_elements; i++) {" " elements[i] = [1.1, 2.2, 3.3];" " }" " return elements[number_elements - 1];" "};" "f(); gc();" "f(); f();" "%%OptimizeFunctionOnNextCall(f);" "f();", AllocationSite::kPretenureMinimumCreated); v8::Local res = CompileRun(source.start()); i::Handle o = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast(res))); CHECK(CcTest::heap()->InOldSpace(o->elements())); CHECK(CcTest::heap()->InOldSpace(*o)); } TEST(OptimizedPretenuringNestedMixedArrayLiterals) { i::FLAG_allow_natives_syntax = true; i::FLAG_expose_gc = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return; if (i::FLAG_gc_global || i::FLAG_stress_compaction) return; v8::HandleScope scope(CcTest::isolate()); v8::Local ctx = CcTest::isolate()->GetCurrentContext(); // Grow new space unitl maximum capacity reached. while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) { CcTest::heap()->new_space()->Grow(); } i::ScopedVector source(1024); i::SNPrintF( source, "var number_elements = 100;" "var elements = new Array(number_elements);" "function f() {" " for (var i = 0; i < number_elements; i++) {" " elements[i] = [[{}, {}, {}], [1.1, 2.2, 3.3]];" " }" " return elements[number_elements - 1];" "};" "f(); gc();" "f(); f();" "%%OptimizeFunctionOnNextCall(f);" "f();"); v8::Local res = CompileRun(source.start()); v8::Local int_array = v8::Object::Cast(*res)->Get(ctx, v8_str("0")).ToLocalChecked(); i::Handle int_array_handle = i::Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast(int_array))); v8::Local double_array = v8::Object::Cast(*res)->Get(ctx, v8_str("1")).ToLocalChecked(); i::Handle double_array_handle = i::Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast(double_array))); Handle o = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast(res))); CHECK(CcTest::heap()->InOldSpace(*o)); CHECK(CcTest::heap()->InOldSpace(*int_array_handle)); CHECK(CcTest::heap()->InOldSpace(int_array_handle->elements())); CHECK(CcTest::heap()->InOldSpace(*double_array_handle)); CHECK(CcTest::heap()->InOldSpace(double_array_handle->elements())); } TEST(OptimizedPretenuringNestedObjectLiterals) { i::FLAG_allow_natives_syntax = true; i::FLAG_expose_gc = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return; if (i::FLAG_gc_global || i::FLAG_stress_compaction) return; v8::HandleScope scope(CcTest::isolate()); v8::Local ctx = CcTest::isolate()->GetCurrentContext(); // Grow new space unitl maximum capacity reached. while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) { CcTest::heap()->new_space()->Grow(); } i::ScopedVector source(1024); i::SNPrintF( source, "var number_elements = %d;" "var elements = new Array(number_elements);" "function f() {" " for (var i = 0; i < number_elements; i++) {" " elements[i] = [[{}, {}, {}],[{}, {}, {}]];" " }" " return elements[number_elements - 1];" "};" "f(); gc();" "f(); f();" "%%OptimizeFunctionOnNextCall(f);" "f();", AllocationSite::kPretenureMinimumCreated); v8::Local res = CompileRun(source.start()); v8::Local int_array_1 = v8::Object::Cast(*res)->Get(ctx, v8_str("0")).ToLocalChecked(); Handle int_array_handle_1 = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast(int_array_1))); v8::Local int_array_2 = v8::Object::Cast(*res)->Get(ctx, v8_str("1")).ToLocalChecked(); Handle int_array_handle_2 = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast(int_array_2))); Handle o = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast(res))); CHECK(CcTest::heap()->InOldSpace(*o)); CHECK(CcTest::heap()->InOldSpace(*int_array_handle_1)); CHECK(CcTest::heap()->InOldSpace(int_array_handle_1->elements())); CHECK(CcTest::heap()->InOldSpace(*int_array_handle_2)); CHECK(CcTest::heap()->InOldSpace(int_array_handle_2->elements())); } TEST(OptimizedPretenuringNestedDoubleLiterals) { i::FLAG_allow_natives_syntax = true; i::FLAG_expose_gc = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return; if (i::FLAG_gc_global || i::FLAG_stress_compaction) return; v8::HandleScope scope(CcTest::isolate()); v8::Local ctx = CcTest::isolate()->GetCurrentContext(); // Grow new space unitl maximum capacity reached. while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) { CcTest::heap()->new_space()->Grow(); } i::ScopedVector source(1024); i::SNPrintF( source, "var number_elements = %d;" "var elements = new Array(number_elements);" "function f() {" " for (var i = 0; i < number_elements; i++) {" " elements[i] = [[1.1, 1.2, 1.3],[2.1, 2.2, 2.3]];" " }" " return elements[number_elements - 1];" "};" "f(); gc();" "f(); f();" "%%OptimizeFunctionOnNextCall(f);" "f();", AllocationSite::kPretenureMinimumCreated); v8::Local res = CompileRun(source.start()); v8::Local double_array_1 = v8::Object::Cast(*res)->Get(ctx, v8_str("0")).ToLocalChecked(); i::Handle double_array_handle_1 = i::Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast(double_array_1))); v8::Local double_array_2 = v8::Object::Cast(*res)->Get(ctx, v8_str("1")).ToLocalChecked(); i::Handle double_array_handle_2 = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast(double_array_2))); i::Handle o = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast(res))); CHECK(CcTest::heap()->InOldSpace(*o)); CHECK(CcTest::heap()->InOldSpace(*double_array_handle_1)); CHECK(CcTest::heap()->InOldSpace(double_array_handle_1->elements())); CHECK(CcTest::heap()->InOldSpace(*double_array_handle_2)); CHECK(CcTest::heap()->InOldSpace(double_array_handle_2->elements())); } // Test regular array literals allocation. TEST(OptimizedAllocationArrayLiterals) { i::FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return; if (i::FLAG_gc_global || i::FLAG_stress_compaction) return; v8::HandleScope scope(CcTest::isolate()); v8::Local ctx = CcTest::isolate()->GetCurrentContext(); v8::Local res = CompileRun( "function f() {" " var numbers = new Array(1, 2, 3);" " numbers[0] = 3.14;" " return numbers;" "};" "f(); f(); f();" "%OptimizeFunctionOnNextCall(f);" "f();"); CHECK_EQ(static_cast(3.14), v8::Object::Cast(*res) ->Get(ctx, v8_str("0")) .ToLocalChecked() ->Int32Value(ctx) .FromJust()); i::Handle o = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast(res))); CHECK(CcTest::heap()->InNewSpace(o->elements())); } static int CountMapTransitions(Map* map) { return TransitionArray::NumberOfTransitions(map->raw_transitions()); } // Test that map transitions are cleared and maps are collected with // incremental marking as well. TEST(Regress1465) { i::FLAG_stress_compaction = false; i::FLAG_allow_natives_syntax = true; i::FLAG_trace_incremental_marking = true; i::FLAG_retain_maps_for_n_gc = 0; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); v8::Local ctx = CcTest::isolate()->GetCurrentContext(); static const int transitions_count = 256; CompileRun("function F() {}"); { AlwaysAllocateScope always_allocate(CcTest::i_isolate()); for (int i = 0; i < transitions_count; i++) { EmbeddedVector buffer; SNPrintF(buffer, "var o = new F; o.prop%d = %d;", i, i); CompileRun(buffer.start()); } CompileRun("var root = new F;"); } i::Handle root = v8::Utils::OpenHandle(*v8::Local::Cast( CcTest::global()->Get(ctx, v8_str("root")).ToLocalChecked())); // Count number of live transitions before marking. int transitions_before = CountMapTransitions(root->map()); CompileRun("%DebugPrint(root);"); CHECK_EQ(transitions_count, transitions_before); heap::SimulateIncrementalMarking(CcTest::heap()); CcTest::heap()->CollectAllGarbage(); // Count number of live transitions after marking. Note that one transition // is left, because 'o' still holds an instance of one transition target. int transitions_after = CountMapTransitions(root->map()); CompileRun("%DebugPrint(root);"); CHECK_EQ(1, transitions_after); } #ifdef DEBUG static void AddTransitions(int transitions_count) { AlwaysAllocateScope always_allocate(CcTest::i_isolate()); for (int i = 0; i < transitions_count; i++) { EmbeddedVector buffer; SNPrintF(buffer, "var o = new F; o.prop%d = %d;", i, i); CompileRun(buffer.start()); } } static i::Handle GetByName(const char* name) { return i::Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast( CcTest::global() ->Get(CcTest::isolate()->GetCurrentContext(), v8_str(name)) .ToLocalChecked()))); } static void AddPropertyTo( int gc_count, Handle object, const char* property_name) { Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); Handle prop_name = factory->InternalizeUtf8String(property_name); Handle twenty_three(Smi::FromInt(23), isolate); i::FLAG_gc_interval = gc_count; i::FLAG_gc_global = true; i::FLAG_retain_maps_for_n_gc = 0; CcTest::heap()->set_allocation_timeout(gc_count); JSReceiver::SetProperty(object, prop_name, twenty_three, SLOPPY).Check(); } TEST(TransitionArrayShrinksDuringAllocToZero) { i::FLAG_stress_compaction = false; i::FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); static const int transitions_count = 10; CompileRun("function F() { }"); AddTransitions(transitions_count); CompileRun("var root = new F;"); Handle root = GetByName("root"); // Count number of live transitions before marking. int transitions_before = CountMapTransitions(root->map()); CHECK_EQ(transitions_count, transitions_before); // Get rid of o CompileRun("o = new F;" "root = new F"); root = GetByName("root"); AddPropertyTo(2, root, "funny"); CcTest::heap()->CollectGarbage(NEW_SPACE); // Count number of live transitions after marking. Note that one transition // is left, because 'o' still holds an instance of one transition target. int transitions_after = CountMapTransitions( Map::cast(root->map()->GetBackPointer())); CHECK_EQ(1, transitions_after); } TEST(TransitionArrayShrinksDuringAllocToOne) { i::FLAG_stress_compaction = false; i::FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); static const int transitions_count = 10; CompileRun("function F() {}"); AddTransitions(transitions_count); CompileRun("var root = new F;"); Handle root = GetByName("root"); // Count number of live transitions before marking. int transitions_before = CountMapTransitions(root->map()); CHECK_EQ(transitions_count, transitions_before); root = GetByName("root"); AddPropertyTo(2, root, "funny"); CcTest::heap()->CollectGarbage(NEW_SPACE); // Count number of live transitions after marking. Note that one transition // is left, because 'o' still holds an instance of one transition target. int transitions_after = CountMapTransitions( Map::cast(root->map()->GetBackPointer())); CHECK_EQ(2, transitions_after); } TEST(TransitionArrayShrinksDuringAllocToOnePropertyFound) { i::FLAG_stress_compaction = false; i::FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); static const int transitions_count = 10; CompileRun("function F() {}"); AddTransitions(transitions_count); CompileRun("var root = new F;"); Handle root = GetByName("root"); // Count number of live transitions before marking. int transitions_before = CountMapTransitions(root->map()); CHECK_EQ(transitions_count, transitions_before); root = GetByName("root"); AddPropertyTo(0, root, "prop9"); CcTest::i_isolate()->heap()->CollectGarbage(OLD_SPACE); // Count number of live transitions after marking. Note that one transition // is left, because 'o' still holds an instance of one transition target. int transitions_after = CountMapTransitions( Map::cast(root->map()->GetBackPointer())); CHECK_EQ(1, transitions_after); } TEST(TransitionArraySimpleToFull) { i::FLAG_stress_compaction = false; i::FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); static const int transitions_count = 1; CompileRun("function F() {}"); AddTransitions(transitions_count); CompileRun("var root = new F;"); Handle root = GetByName("root"); // Count number of live transitions before marking. int transitions_before = CountMapTransitions(root->map()); CHECK_EQ(transitions_count, transitions_before); CompileRun("o = new F;" "root = new F"); root = GetByName("root"); CHECK(TransitionArray::IsSimpleTransition(root->map()->raw_transitions())); AddPropertyTo(2, root, "happy"); // Count number of live transitions after marking. Note that one transition // is left, because 'o' still holds an instance of one transition target. int transitions_after = CountMapTransitions( Map::cast(root->map()->GetBackPointer())); CHECK_EQ(1, transitions_after); } #endif // DEBUG TEST(Regress2143a) { i::FLAG_incremental_marking = true; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); // Prepare a map transition from the root object together with a yet // untransitioned root object. CompileRun("var root = new Object;" "root.foo = 0;" "root = new Object;"); heap::SimulateIncrementalMarking(CcTest::heap()); // Compile a StoreIC that performs the prepared map transition. This // will restart incremental marking and should make sure the root is // marked grey again. CompileRun("function f(o) {" " o.foo = 0;" "}" "f(new Object);" "f(root);"); // This bug only triggers with aggressive IC clearing. CcTest::heap()->AgeInlineCaches(); // Explicitly request GC to perform final marking step and sweeping. CcTest::heap()->CollectAllGarbage(); Handle root = v8::Utils::OpenHandle(*v8::Local::Cast( CcTest::global() ->Get(CcTest::isolate()->GetCurrentContext(), v8_str("root")) .ToLocalChecked())); // The root object should be in a sane state. CHECK(root->IsJSObject()); CHECK(root->map()->IsMap()); } TEST(Regress2143b) { i::FLAG_incremental_marking = true; i::FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); // Prepare a map transition from the root object together with a yet // untransitioned root object. CompileRun("var root = new Object;" "root.foo = 0;" "root = new Object;"); heap::SimulateIncrementalMarking(CcTest::heap()); // Compile an optimized LStoreNamedField that performs the prepared // map transition. This will restart incremental marking and should // make sure the root is marked grey again. CompileRun("function f(o) {" " o.foo = 0;" "}" "f(new Object);" "f(new Object);" "%OptimizeFunctionOnNextCall(f);" "f(root);" "%DeoptimizeFunction(f);"); // This bug only triggers with aggressive IC clearing. CcTest::heap()->AgeInlineCaches(); // Explicitly request GC to perform final marking step and sweeping. CcTest::heap()->CollectAllGarbage(); Handle root = v8::Utils::OpenHandle(*v8::Local::Cast( CcTest::global() ->Get(CcTest::isolate()->GetCurrentContext(), v8_str("root")) .ToLocalChecked())); // The root object should be in a sane state. CHECK(root->IsJSObject()); CHECK(root->map()->IsMap()); } TEST(ReleaseOverReservedPages) { if (FLAG_never_compact) return; i::FLAG_trace_gc = true; // The optimizer can allocate stuff, messing up the test. i::FLAG_crankshaft = false; i::FLAG_always_opt = false; // Parallel compaction increases fragmentation, depending on how existing // memory is distributed. Since this is non-deterministic because of // concurrent sweeping, we disable it for this test. i::FLAG_parallel_compaction = false; // Concurrent sweeping adds non determinism, depending on when memory is // available for further reuse. i::FLAG_concurrent_sweeping = false; // Fast evacuation of pages may result in a different page count in old space. i::FLAG_page_promotion = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); Heap* heap = isolate->heap(); v8::HandleScope scope(CcTest::isolate()); static const int number_of_test_pages = 20; // Prepare many pages with low live-bytes count. PagedSpace* old_space = heap->old_space(); const int initial_page_count = old_space->CountTotalPages(); const int overall_page_count = number_of_test_pages + initial_page_count; for (int i = 0; i < number_of_test_pages; i++) { AlwaysAllocateScope always_allocate(isolate); heap::SimulateFullSpace(old_space); factory->NewFixedArray(1, TENURED); } CHECK_EQ(overall_page_count, old_space->CountTotalPages()); // Triggering one GC will cause a lot of garbage to be discovered but // even spread across all allocated pages. heap->CollectAllGarbage(Heap::kFinalizeIncrementalMarkingMask, "triggered for preparation"); CHECK_GE(overall_page_count, old_space->CountTotalPages()); // Triggering subsequent GCs should cause at least half of the pages // to be released to the OS after at most two cycles. heap->CollectAllGarbage(Heap::kFinalizeIncrementalMarkingMask, "triggered by test 1"); CHECK_GE(overall_page_count, old_space->CountTotalPages()); heap->CollectAllGarbage(Heap::kFinalizeIncrementalMarkingMask, "triggered by test 2"); CHECK_GE(overall_page_count, old_space->CountTotalPages() * 2); // Triggering a last-resort GC should cause all pages to be released to the // OS so that other processes can seize the memory. If we get a failure here // where there are 2 pages left instead of 1, then we should increase the // size of the first page a little in SizeOfFirstPage in spaces.cc. The // first page should be small in order to reduce memory used when the VM // boots, but if the 20 small arrays don't fit on the first page then that's // an indication that it is too small. heap->CollectAllAvailableGarbage("triggered really hard"); CHECK_EQ(initial_page_count, old_space->CountTotalPages()); } static int forced_gc_counter = 0; void MockUseCounterCallback(v8::Isolate* isolate, v8::Isolate::UseCounterFeature feature) { isolate->GetCurrentContext(); if (feature == v8::Isolate::kForcedGC) { forced_gc_counter++; } } TEST(CountForcedGC) { i::FLAG_expose_gc = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); v8::HandleScope scope(CcTest::isolate()); isolate->SetUseCounterCallback(MockUseCounterCallback); forced_gc_counter = 0; const char* source = "gc();"; CompileRun(source); CHECK_GT(forced_gc_counter, 0); } #ifdef OBJECT_PRINT TEST(PrintSharedFunctionInfo) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); v8::Local ctx = CcTest::isolate()->GetCurrentContext(); const char* source = "f = function() { return 987654321; }\n" "g = function() { return 123456789; }\n"; CompileRun(source); i::Handle g = i::Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast( CcTest::global()->Get(ctx, v8_str("g")).ToLocalChecked()))); OFStream os(stdout); g->shared()->Print(os); os << std::endl; } #endif // OBJECT_PRINT TEST(IncrementalMarkingPreservesMonomorphicCallIC) { if (i::FLAG_always_opt) return; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); v8::Local fun1, fun2; v8::Local ctx = CcTest::isolate()->GetCurrentContext(); { CompileRun("function fun() {};"); fun1 = CcTest::global()->Get(ctx, v8_str("fun")).ToLocalChecked(); } { CompileRun("function fun() {};"); fun2 = CcTest::global()->Get(ctx, v8_str("fun")).ToLocalChecked(); } // Prepare function f that contains type feedback for the two closures. CHECK(CcTest::global()->Set(ctx, v8_str("fun1"), fun1).FromJust()); CHECK(CcTest::global()->Set(ctx, v8_str("fun2"), fun2).FromJust()); CompileRun("function f(a, b) { a(); b(); } f(fun1, fun2);"); Handle f = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast( CcTest::global()->Get(ctx, v8_str("f")).ToLocalChecked()))); Handle feedback_vector(f->feedback_vector()); FeedbackVectorHelper feedback_helper(feedback_vector); int expected_slots = 2; CHECK_EQ(expected_slots, feedback_helper.slot_count()); int slot1 = 0; int slot2 = 1; CHECK(feedback_vector->Get(feedback_helper.slot(slot1))->IsWeakCell()); CHECK(feedback_vector->Get(feedback_helper.slot(slot2))->IsWeakCell()); heap::SimulateIncrementalMarking(CcTest::heap()); CcTest::heap()->CollectAllGarbage(); CHECK(!WeakCell::cast(feedback_vector->Get(feedback_helper.slot(slot1))) ->cleared()); CHECK(!WeakCell::cast(feedback_vector->Get(feedback_helper.slot(slot2))) ->cleared()); } static Code* FindFirstIC(Code* code, Code::Kind kind) { int mask = RelocInfo::ModeMask(RelocInfo::CODE_TARGET) | RelocInfo::ModeMask(RelocInfo::CODE_TARGET_WITH_ID); for (RelocIterator it(code, mask); !it.done(); it.next()) { RelocInfo* info = it.rinfo(); Code* target = Code::GetCodeFromTargetAddress(info->target_address()); if (target->is_inline_cache_stub() && target->kind() == kind) { return target; } } return NULL; } static void CheckVectorIC(Handle f, int slot_index, InlineCacheState desired_state) { Handle vector = Handle(f->feedback_vector()); FeedbackVectorHelper helper(vector); FeedbackVectorSlot slot = helper.slot(slot_index); if (vector->GetKind(slot) == FeedbackVectorSlotKind::LOAD_IC) { LoadICNexus nexus(vector, slot); CHECK(nexus.StateFromFeedback() == desired_state); } else { CHECK_EQ(FeedbackVectorSlotKind::KEYED_LOAD_IC, vector->GetKind(slot)); KeyedLoadICNexus nexus(vector, slot); CHECK(nexus.StateFromFeedback() == desired_state); } } TEST(IncrementalMarkingPreservesMonomorphicConstructor) { if (i::FLAG_always_opt) return; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); v8::Local ctx = CcTest::isolate()->GetCurrentContext(); // Prepare function f that contains a monomorphic IC for object // originating from the same native context. CompileRun( "function fun() { this.x = 1; };" "function f(o) { return new o(); } f(fun); f(fun);"); Handle f = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast( CcTest::global()->Get(ctx, v8_str("f")).ToLocalChecked()))); Handle vector(f->feedback_vector()); CHECK(vector->Get(FeedbackVectorSlot(0))->IsWeakCell()); heap::SimulateIncrementalMarking(CcTest::heap()); CcTest::heap()->CollectAllGarbage(); CHECK(vector->Get(FeedbackVectorSlot(0))->IsWeakCell()); } TEST(IncrementalMarkingPreservesMonomorphicIC) { if (i::FLAG_always_opt) return; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); v8::Local ctx = CcTest::isolate()->GetCurrentContext(); // Prepare function f that contains a monomorphic IC for object // originating from the same native context. CompileRun("function fun() { this.x = 1; }; var obj = new fun();" "function f(o) { return o.x; } f(obj); f(obj);"); Handle f = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast( CcTest::global()->Get(ctx, v8_str("f")).ToLocalChecked()))); CheckVectorIC(f, 0, MONOMORPHIC); heap::SimulateIncrementalMarking(CcTest::heap()); CcTest::heap()->CollectAllGarbage(); CheckVectorIC(f, 0, MONOMORPHIC); } TEST(IncrementalMarkingPreservesPolymorphicIC) { if (i::FLAG_always_opt) return; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); v8::Local obj1, obj2; v8::Local ctx = CcTest::isolate()->GetCurrentContext(); { LocalContext env; CompileRun("function fun() { this.x = 1; }; var obj = new fun();"); obj1 = env->Global()->Get(env.local(), v8_str("obj")).ToLocalChecked(); } { LocalContext env; CompileRun("function fun() { this.x = 2; }; var obj = new fun();"); obj2 = env->Global()->Get(env.local(), v8_str("obj")).ToLocalChecked(); } // Prepare function f that contains a polymorphic IC for objects // originating from two different native contexts. CHECK(CcTest::global()->Set(ctx, v8_str("obj1"), obj1).FromJust()); CHECK(CcTest::global()->Set(ctx, v8_str("obj2"), obj2).FromJust()); CompileRun("function f(o) { return o.x; } f(obj1); f(obj1); f(obj2);"); Handle f = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast( CcTest::global()->Get(ctx, v8_str("f")).ToLocalChecked()))); CheckVectorIC(f, 0, POLYMORPHIC); // Fire context dispose notification. heap::SimulateIncrementalMarking(CcTest::heap()); CcTest::heap()->CollectAllGarbage(); CheckVectorIC(f, 0, POLYMORPHIC); } TEST(ContextDisposeDoesntClearPolymorphicIC) { if (i::FLAG_always_opt) return; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); v8::Local obj1, obj2; v8::Local ctx = CcTest::isolate()->GetCurrentContext(); { LocalContext env; CompileRun("function fun() { this.x = 1; }; var obj = new fun();"); obj1 = env->Global()->Get(env.local(), v8_str("obj")).ToLocalChecked(); } { LocalContext env; CompileRun("function fun() { this.x = 2; }; var obj = new fun();"); obj2 = env->Global()->Get(env.local(), v8_str("obj")).ToLocalChecked(); } // Prepare function f that contains a polymorphic IC for objects // originating from two different native contexts. CHECK(CcTest::global()->Set(ctx, v8_str("obj1"), obj1).FromJust()); CHECK(CcTest::global()->Set(ctx, v8_str("obj2"), obj2).FromJust()); CompileRun("function f(o) { return o.x; } f(obj1); f(obj1); f(obj2);"); Handle f = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast( CcTest::global()->Get(ctx, v8_str("f")).ToLocalChecked()))); CheckVectorIC(f, 0, POLYMORPHIC); // Fire context dispose notification. CcTest::isolate()->ContextDisposedNotification(); heap::SimulateIncrementalMarking(CcTest::heap()); CcTest::heap()->CollectAllGarbage(); CheckVectorIC(f, 0, POLYMORPHIC); } class SourceResource : public v8::String::ExternalOneByteStringResource { public: explicit SourceResource(const char* data) : data_(data), length_(strlen(data)) { } virtual void Dispose() { i::DeleteArray(data_); data_ = NULL; } const char* data() const { return data_; } size_t length() const { return length_; } bool IsDisposed() { return data_ == NULL; } private: const char* data_; size_t length_; }; void ReleaseStackTraceDataTest(v8::Isolate* isolate, const char* source, const char* accessor) { // Test that the data retained by the Error.stack accessor is released // after the first time the accessor is fired. We use external string // to check whether the data is being released since the external string // resource's callback is fired when the external string is GC'ed. i::Isolate* i_isolate = reinterpret_cast(isolate); v8::HandleScope scope(isolate); SourceResource* resource = new SourceResource(i::StrDup(source)); { v8::HandleScope scope(isolate); v8::Local ctx = isolate->GetCurrentContext(); v8::Local source_string = v8::String::NewExternalOneByte(isolate, resource).ToLocalChecked(); i_isolate->heap()->CollectAllAvailableGarbage(); v8::Script::Compile(ctx, source_string) .ToLocalChecked() ->Run(ctx) .ToLocalChecked(); CHECK(!resource->IsDisposed()); } // i_isolate->heap()->CollectAllAvailableGarbage(); CHECK(!resource->IsDisposed()); CompileRun(accessor); i_isolate->heap()->CollectAllAvailableGarbage(); // External source has been released. CHECK(resource->IsDisposed()); delete resource; } UNINITIALIZED_TEST(ReleaseStackTraceData) { if (i::FLAG_always_opt) { // TODO(ulan): Remove this once the memory leak via code_next_link is fixed. // See: https://codereview.chromium.org/181833004/ return; } FLAG_use_ic = false; // ICs retain objects. FLAG_concurrent_recompilation = false; v8::Isolate::CreateParams create_params; create_params.array_buffer_allocator = CcTest::array_buffer_allocator(); v8::Isolate* isolate = v8::Isolate::New(create_params); { v8::Isolate::Scope isolate_scope(isolate); v8::HandleScope handle_scope(isolate); v8::Context::New(isolate)->Enter(); static const char* source1 = "var error = null; " /* Normal Error */ "try { " " throw new Error(); " "} catch (e) { " " error = e; " "} "; static const char* source2 = "var error = null; " /* Stack overflow */ "try { " " (function f() { f(); })(); " "} catch (e) { " " error = e; " "} "; static const char* source3 = "var error = null; " /* Normal Error */ "try { " /* as prototype */ " throw new Error(); " "} catch (e) { " " error = {}; " " error.__proto__ = e; " "} "; static const char* source4 = "var error = null; " /* Stack overflow */ "try { " /* as prototype */ " (function f() { f(); })(); " "} catch (e) { " " error = {}; " " error.__proto__ = e; " "} "; static const char* getter = "error.stack"; static const char* setter = "error.stack = 0"; ReleaseStackTraceDataTest(isolate, source1, setter); ReleaseStackTraceDataTest(isolate, source2, setter); // We do not test source3 and source4 with setter, since the setter is // supposed to (untypically) write to the receiver, not the holder. This is // to emulate the behavior of a data property. ReleaseStackTraceDataTest(isolate, source1, getter); ReleaseStackTraceDataTest(isolate, source2, getter); ReleaseStackTraceDataTest(isolate, source3, getter); ReleaseStackTraceDataTest(isolate, source4, getter); } isolate->Dispose(); } TEST(Regress159140) { i::FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); LocalContext env; Heap* heap = isolate->heap(); HandleScope scope(isolate); // Perform one initial GC to enable code flushing. heap->CollectAllGarbage(); // Prepare several closures that are all eligible for code flushing // because all reachable ones are not optimized. Make sure that the // optimized code object is directly reachable through a handle so // that it is marked black during incremental marking. Handle code; { HandleScope inner_scope(isolate); CompileRun("function h(x) {}" "function mkClosure() {" " return function(x) { return x + 1; };" "}" "var f = mkClosure();" "var g = mkClosure();" "f(1); f(2);" "g(1); g(2);" "h(1); h(2);" "%OptimizeFunctionOnNextCall(f); f(3);" "%OptimizeFunctionOnNextCall(h); h(3);"); Handle f = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast( CcTest::global()->Get(env.local(), v8_str("f")).ToLocalChecked()))); CHECK(f->is_compiled()); CompileRun("f = null;"); Handle g = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast( CcTest::global()->Get(env.local(), v8_str("g")).ToLocalChecked()))); CHECK(g->is_compiled()); const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { g->code()->MakeOlder(static_cast(i % 2)); } code = inner_scope.CloseAndEscape(Handle(f->code())); } // Simulate incremental marking so that the functions are enqueued as // code flushing candidates. Then optimize one function. Finally // finish the GC to complete code flushing. heap::SimulateIncrementalMarking(heap); CompileRun("%OptimizeFunctionOnNextCall(g); g(3);"); heap->CollectAllGarbage(); // Unoptimized code is missing and the deoptimizer will go ballistic. CompileRun("g('bozo');"); } TEST(Regress165495) { i::FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); HandleScope scope(isolate); // Perform one initial GC to enable code flushing. heap->CollectAllGarbage(); // Prepare an optimized closure that the optimized code map will get // populated. Then age the unoptimized code to trigger code flushing // but make sure the optimized code is unreachable. { HandleScope inner_scope(isolate); LocalContext env; CompileRun("function mkClosure() {" " return function(x) { return x + 1; };" "}" "var f = mkClosure();" "f(1); f(2);" "%OptimizeFunctionOnNextCall(f); f(3);"); Handle f = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast( CcTest::global()->Get(env.local(), v8_str("f")).ToLocalChecked()))); CHECK(f->is_compiled()); const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { f->shared()->code()->MakeOlder(static_cast(i % 2)); } CompileRun("f = null;"); } // Simulate incremental marking so that unoptimized code is flushed // even though it still is cached in the optimized code map. heap::SimulateIncrementalMarking(heap); heap->CollectAllGarbage(); // Make a new closure that will get code installed from the code map. // Unoptimized code is missing and the deoptimizer will go ballistic. CompileRun("var g = mkClosure(); g('bozo');"); } TEST(Regress169209) { i::FLAG_stress_compaction = false; i::FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); HandleScope scope(isolate); // Perform one initial GC to enable code flushing. heap->CollectAllGarbage(); // Prepare a shared function info eligible for code flushing for which // the unoptimized code will be replaced during optimization. Handle shared1; { HandleScope inner_scope(isolate); LocalContext env; CompileRun("function f() { return 'foobar'; }" "function g(x) { if (x) f(); }" "f();" "g(false);" "g(false);"); Handle f = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast( CcTest::global()->Get(env.local(), v8_str("f")).ToLocalChecked()))); CHECK(f->is_compiled()); const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { f->shared()->code()->MakeOlder(static_cast(i % 2)); } shared1 = inner_scope.CloseAndEscape(handle(f->shared(), isolate)); } // Prepare a shared function info eligible for code flushing that will // represent the dangling tail of the candidate list. Handle shared2; { HandleScope inner_scope(isolate); LocalContext env; CompileRun("function flushMe() { return 0; }" "flushMe(1);"); Handle f = Handle::cast(v8::Utils::OpenHandle( *v8::Local::Cast(CcTest::global() ->Get(env.local(), v8_str("flushMe")) .ToLocalChecked()))); CHECK(f->is_compiled()); const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { f->shared()->code()->MakeOlder(static_cast(i % 2)); } shared2 = inner_scope.CloseAndEscape(handle(f->shared(), isolate)); } // Simulate incremental marking and collect code flushing candidates. heap::SimulateIncrementalMarking(heap); CHECK(shared1->code()->gc_metadata() != NULL); // Optimize function and make sure the unoptimized code is replaced. CompileRun("%OptimizeFunctionOnNextCall(g);" "g(false);"); // Finish garbage collection cycle. heap->CollectAllGarbage(); CHECK(shared1->code()->gc_metadata() == NULL); } TEST(Regress169928) { i::FLAG_allow_natives_syntax = true; i::FLAG_crankshaft = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); LocalContext env; Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); // Some flags turn Scavenge collections into Mark-sweep collections // and hence are incompatible with this test case. if (FLAG_gc_global || FLAG_stress_compaction) return; // Prepare the environment CompileRun("function fastliteralcase(literal, value) {" " literal[0] = value;" " return literal;" "}" "function get_standard_literal() {" " var literal = [1, 2, 3];" " return literal;" "}" "obj = fastliteralcase(get_standard_literal(), 1);" "obj = fastliteralcase(get_standard_literal(), 1.5);" "obj = fastliteralcase(get_standard_literal(), 2);"); // prepare the heap v8::Local mote_code_string = v8_str("fastliteralcase(mote, 2.5);"); v8::Local array_name = v8_str("mote"); CHECK(CcTest::global() ->Set(env.local(), array_name, v8::Int32::New(CcTest::isolate(), 0)) .FromJust()); // First make sure we flip spaces CcTest::heap()->CollectGarbage(NEW_SPACE); // Allocate the object. Handle array_data = factory->NewFixedArray(2, NOT_TENURED); array_data->set(0, Smi::FromInt(1)); array_data->set(1, Smi::FromInt(2)); heap::AllocateAllButNBytes( CcTest::heap()->new_space(), JSArray::kSize + AllocationMemento::kSize + kPointerSize); Handle array = factory->NewJSArrayWithElements(array_data, FAST_SMI_ELEMENTS); CHECK_EQ(Smi::FromInt(2), array->length()); CHECK(array->HasFastSmiOrObjectElements()); // We need filler the size of AllocationMemento object, plus an extra // fill pointer value. HeapObject* obj = NULL; AllocationResult allocation = CcTest::heap()->new_space()->AllocateRawUnaligned( AllocationMemento::kSize + kPointerSize); CHECK(allocation.To(&obj)); Address addr_obj = obj->address(); CcTest::heap()->CreateFillerObjectAt(addr_obj, AllocationMemento::kSize + kPointerSize, ClearRecordedSlots::kNo); // Give the array a name, making sure not to allocate strings. v8::Local array_obj = v8::Utils::ToLocal(array); CHECK(CcTest::global()->Set(env.local(), array_name, array_obj).FromJust()); // This should crash with a protection violation if we are running a build // with the bug. AlwaysAllocateScope aa_scope(isolate); v8::Script::Compile(env.local(), mote_code_string) .ToLocalChecked() ->Run(env.local()) .ToLocalChecked(); } #ifdef DEBUG TEST(Regress513507) { i::FLAG_flush_optimized_code_cache = false; i::FLAG_allow_natives_syntax = true; i::FLAG_gc_global = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); LocalContext env; Heap* heap = isolate->heap(); HandleScope scope(isolate); // Prepare function whose optimized code map we can use. Handle shared; { HandleScope inner_scope(isolate); CompileRun("function f() { return 1 }" "f(); %OptimizeFunctionOnNextCall(f); f();"); Handle f = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast( CcTest::global()->Get(env.local(), v8_str("f")).ToLocalChecked()))); shared = inner_scope.CloseAndEscape(handle(f->shared(), isolate)); CompileRun("f = null"); } // Prepare optimized code that we can use. Handle code; { HandleScope inner_scope(isolate); CompileRun("function g() { return 2 }" "g(); %OptimizeFunctionOnNextCall(g); g();"); Handle g = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast( CcTest::global()->Get(env.local(), v8_str("g")).ToLocalChecked()))); code = inner_scope.CloseAndEscape(handle(g->code(), isolate)); if (!code->is_optimized_code()) return; } Handle vector = TypeFeedbackVector::New(isolate, handle(shared->feedback_metadata())); Handle lit = LiteralsArray::New(isolate, vector, shared->num_literals()); Handle context(isolate->context()); // Add the new code several times to the optimized code map and also set an // allocation timeout so that expanding the code map will trigger a GC. heap->set_allocation_timeout(5); FLAG_gc_interval = 1000; for (int i = 0; i < 10; ++i) { BailoutId id = BailoutId(i); SharedFunctionInfo::AddToOptimizedCodeMap(shared, context, code, lit, id); } } #endif // DEBUG TEST(Regress514122) { i::FLAG_flush_optimized_code_cache = false; i::FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); LocalContext env; Heap* heap = isolate->heap(); HandleScope scope(isolate); // Perfrom one initial GC to enable code flushing. CcTest::heap()->CollectAllGarbage(); // Prepare function whose optimized code map we can use. Handle shared; { HandleScope inner_scope(isolate); CompileRun("function f() { return 1 }" "f(); %OptimizeFunctionOnNextCall(f); f();"); Handle f = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast( CcTest::global()->Get(env.local(), v8_str("f")).ToLocalChecked()))); shared = inner_scope.CloseAndEscape(handle(f->shared(), isolate)); CompileRun("f = null"); } // Prepare optimized code that we can use. Handle code; { HandleScope inner_scope(isolate); CompileRun("function g() { return 2 }" "g(); %OptimizeFunctionOnNextCall(g); g();"); Handle g = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast( CcTest::global()->Get(env.local(), v8_str("g")).ToLocalChecked()))); code = inner_scope.CloseAndEscape(handle(g->code(), isolate)); if (!code->is_optimized_code()) return; } Handle vector = TypeFeedbackVector::New(isolate, handle(shared->feedback_metadata())); Handle lit = LiteralsArray::New(isolate, vector, shared->num_literals(), TENURED); Handle context(isolate->context()); // Add the code several times to the optimized code map. for (int i = 0; i < 3; ++i) { HandleScope inner_scope(isolate); BailoutId id = BailoutId(i); SharedFunctionInfo::AddToOptimizedCodeMap(shared, context, code, lit, id); } shared->optimized_code_map()->Print(); // Add the code with a literals array to be evacuated. Page* evac_page; { HandleScope inner_scope(isolate); AlwaysAllocateScope always_allocate(isolate); // Make sure literal is placed on an old-space evacuation candidate. heap::SimulateFullSpace(heap->old_space()); // Make sure there the number of literals is > 0. Handle lit = LiteralsArray::New(isolate, vector, 23); evac_page = Page::FromAddress(lit->address()); BailoutId id = BailoutId(100); SharedFunctionInfo::AddToOptimizedCodeMap(shared, context, code, lit, id); } // Heap is ready, force {lit_page} to become an evacuation candidate and // simulate incremental marking to enqueue optimized code map. FLAG_manual_evacuation_candidates_selection = true; evac_page->SetFlag(MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING); heap::SimulateIncrementalMarking(heap); // No matter whether reachable or not, {boomer} is doomed. Handle boomer(shared->optimized_code_map(), isolate); // Add the code several times to the optimized code map. This will leave old // copies of the optimized code map unreachable but still marked. for (int i = 3; i < 6; ++i) { HandleScope inner_scope(isolate); BailoutId id = BailoutId(i); SharedFunctionInfo::AddToOptimizedCodeMap(shared, context, code, lit, id); } // Trigger a GC to flush out the bug. heap->CollectGarbage(i::OLD_SPACE, "fire in the hole"); boomer->Print(); } TEST(OptimizedCodeMapReuseEntries) { i::FLAG_flush_optimized_code_cache = false; i::FLAG_allow_natives_syntax = true; // BUG(v8:4598): Since TurboFan doesn't treat maps in code weakly, we can't // run this test. if (i::FLAG_turbo) return; CcTest::InitializeVM(); v8::Isolate* v8_isolate = CcTest::isolate(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); HandleScope scope(isolate); // Create 3 contexts, allow the 2nd one to be disposed, and verify that // a 4th context will re-use the weak slots in the optimized code map // to hold data, rather than expanding the map. v8::Local c1 = v8::Context::New(v8_isolate); const char* source = "function foo(x) { var l = [1]; return x+l[0]; }"; v8::ScriptCompiler::Source script_source( v8::String::NewFromUtf8(v8_isolate, source, v8::NewStringType::kNormal) .ToLocalChecked()); v8::Local indep = v8::ScriptCompiler::CompileUnboundScript(v8_isolate, &script_source) .ToLocalChecked(); const char* toplevel = "foo(3); %OptimizeFunctionOnNextCall(foo); foo(3);"; // Perfrom one initial GC to enable code flushing. heap->CollectAllGarbage(); c1->Enter(); indep->BindToCurrentContext()->Run(c1).ToLocalChecked(); CompileRun(toplevel); Handle shared; Handle foo = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast( CcTest::global()->Get(c1, v8_str("foo")).ToLocalChecked()))); CHECK(foo->shared()->is_compiled()); shared = handle(foo->shared()); c1->Exit(); { HandleScope scope(isolate); v8::Local c2 = v8::Context::New(v8_isolate); c2->Enter(); indep->BindToCurrentContext()->Run(c2).ToLocalChecked(); CompileRun(toplevel); c2->Exit(); } { HandleScope scope(isolate); v8::Local c3 = v8::Context::New(v8_isolate); c3->Enter(); indep->BindToCurrentContext()->Run(c3).ToLocalChecked(); CompileRun(toplevel); c3->Exit(); // Now, collect garbage. Context c2 should have no roots to it, and it's // entry in the optimized code map should be free for a new context. for (int i = 0; i < 4; i++) { heap->CollectAllGarbage(); } Handle optimized_code_map = handle(shared->optimized_code_map()); // There should be 3 entries in the map. CHECK_EQ( 3, ((optimized_code_map->length() - SharedFunctionInfo::kEntriesStart) / SharedFunctionInfo::kEntryLength)); // But one of them (formerly for c2) should be cleared. int cleared_count = 0; for (int i = SharedFunctionInfo::kEntriesStart; i < optimized_code_map->length(); i += SharedFunctionInfo::kEntryLength) { cleared_count += WeakCell::cast( optimized_code_map->get(i + SharedFunctionInfo::kContextOffset)) ->cleared() ? 1 : 0; } CHECK_EQ(1, cleared_count); // Verify that a new context uses the cleared entry rather than creating a // new // optimized code map array. v8::Local c4 = v8::Context::New(v8_isolate); c4->Enter(); indep->BindToCurrentContext()->Run(c4).ToLocalChecked(); CompileRun(toplevel); c4->Exit(); CHECK_EQ(*optimized_code_map, shared->optimized_code_map()); // Now each entry is in use. cleared_count = 0; for (int i = SharedFunctionInfo::kEntriesStart; i < optimized_code_map->length(); i += SharedFunctionInfo::kEntryLength) { cleared_count += WeakCell::cast( optimized_code_map->get(i + SharedFunctionInfo::kContextOffset)) ->cleared() ? 1 : 0; } CHECK_EQ(0, cleared_count); } } TEST(Regress513496) { i::FLAG_flush_optimized_code_cache = false; i::FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); HandleScope scope(isolate); // Perfrom one initial GC to enable code flushing. CcTest::heap()->CollectAllGarbage(); // Prepare an optimized closure with containing an inlined function. Then age // the inlined unoptimized code to trigger code flushing but make sure the // outer optimized code is kept in the optimized code map. Handle shared; { LocalContext context; HandleScope inner_scope(isolate); CompileRun( "function g(x) { return x + 1 }" "function mkClosure() {" " return function(x) { return g(x); };" "}" "var f = mkClosure();" "f(1); f(2);" "%OptimizeFunctionOnNextCall(f); f(3);"); Handle g = Handle::cast(v8::Utils::OpenHandle( *v8::Local::Cast(CcTest::global() ->Get(context.local(), v8_str("g")) .ToLocalChecked()))); CHECK(g->shared()->is_compiled()); const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { g->shared()->code()->MakeOlder(static_cast(i % 2)); } Handle f = Handle::cast(v8::Utils::OpenHandle( *v8::Local::Cast(CcTest::global() ->Get(context.local(), v8_str("f")) .ToLocalChecked()))); CHECK(f->is_compiled()); shared = inner_scope.CloseAndEscape(handle(f->shared(), isolate)); CompileRun("f = null"); } // Lookup the optimized code and keep it alive. CodeAndLiterals result = shared->SearchOptimizedCodeMap( isolate->context()->native_context(), BailoutId::None()); Handle optimized_code(result.code, isolate); // Finish a full GC cycle so that the unoptimized code of 'g' is flushed even // though the optimized code for 'f' is reachable via the optimized code map. heap->CollectAllGarbage(); // Make a new closure that will get code installed from the code map. // Unoptimized code is missing and the deoptimizer will go ballistic. CompileRun("var h = mkClosure(); h('bozo');"); } TEST(LargeObjectSlotRecording) { FLAG_manual_evacuation_candidates_selection = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); HandleScope scope(isolate); // Create an object on an evacuation candidate. heap::SimulateFullSpace(heap->old_space()); Handle lit = isolate->factory()->NewFixedArray(4, TENURED); Page* evac_page = Page::FromAddress(lit->address()); evac_page->SetFlag(MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING); FixedArray* old_location = *lit; // Allocate a large object. int size = Max(1000000, Page::kMaxRegularHeapObjectSize + KB); CHECK(size > Page::kMaxRegularHeapObjectSize); Handle lo = isolate->factory()->NewFixedArray(size, TENURED); CHECK(heap->lo_space()->Contains(*lo)); // Start incremental marking to active write barrier. heap::SimulateIncrementalMarking(heap, false); heap->incremental_marking()->AdvanceIncrementalMarking( 10000000, IncrementalMarking::IdleStepActions()); // Create references from the large object to the object on the evacuation // candidate. const int kStep = size / 10; for (int i = 0; i < size; i += kStep) { lo->set(i, *lit); CHECK(lo->get(i) == old_location); } // Move the evaucation candidate object. CcTest::heap()->CollectAllGarbage(); // Verify that the pointers in the large object got updated. for (int i = 0; i < size; i += kStep) { CHECK_EQ(lo->get(i), *lit); CHECK(lo->get(i) != old_location); } } class DummyVisitor : public ObjectVisitor { public: void VisitPointers(Object** start, Object** end) override {} }; TEST(DeferredHandles) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); v8::HandleScope scope(reinterpret_cast(isolate)); HandleScopeData* data = isolate->handle_scope_data(); Handle init(heap->empty_string(), isolate); while (data->next < data->limit) { Handle obj(heap->empty_string(), isolate); } // An entire block of handles has been filled. // Next handle would require a new block. CHECK(data->next == data->limit); DeferredHandleScope deferred(isolate); DummyVisitor visitor; isolate->handle_scope_implementer()->Iterate(&visitor); delete deferred.Detach(); } TEST(IncrementalMarkingStepMakesBigProgressWithLargeObjects) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); CompileRun("function f(n) {" " var a = new Array(n);" " for (var i = 0; i < n; i += 100) a[i] = i;" "};" "f(10 * 1024 * 1024);"); IncrementalMarking* marking = CcTest::heap()->incremental_marking(); if (marking->IsStopped()) { CcTest::heap()->StartIncrementalMarking(); } // This big step should be sufficient to mark the whole array. marking->Step(100 * MB, IncrementalMarking::NO_GC_VIA_STACK_GUARD); CHECK(marking->IsComplete() || marking->IsReadyToOverApproximateWeakClosure()); } TEST(DisableInlineAllocation) { i::FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); CompileRun("function test() {" " var x = [];" " for (var i = 0; i < 10; i++) {" " x[i] = [ {}, [1,2,3], [1,x,3] ];" " }" "}" "function run() {" " %OptimizeFunctionOnNextCall(test);" " test();" " %DeoptimizeFunction(test);" "}"); // Warm-up with inline allocation enabled. CompileRun("test(); test(); run();"); // Run test with inline allocation disabled. CcTest::heap()->DisableInlineAllocation(); CompileRun("run()"); // Run test with inline allocation re-enabled. CcTest::heap()->EnableInlineAllocation(); CompileRun("run()"); } static int AllocationSitesCount(Heap* heap) { int count = 0; for (Object* site = heap->allocation_sites_list(); !(site->IsUndefined(heap->isolate())); site = AllocationSite::cast(site)->weak_next()) { count++; } return count; } TEST(EnsureAllocationSiteDependentCodesProcessed) { if (i::FLAG_always_opt || !i::FLAG_crankshaft) return; i::FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); v8::internal::Heap* heap = CcTest::heap(); GlobalHandles* global_handles = isolate->global_handles(); if (!isolate->use_crankshaft()) return; // The allocation site at the head of the list is ours. Handle site; { LocalContext context; v8::HandleScope scope(context->GetIsolate()); int count = AllocationSitesCount(heap); CompileRun("var bar = function() { return (new Array()); };" "var a = bar();" "bar();" "bar();"); // One allocation site should have been created. int new_count = AllocationSitesCount(heap); CHECK_EQ(new_count, (count + 1)); site = Handle::cast( global_handles->Create( AllocationSite::cast(heap->allocation_sites_list()))); CompileRun("%OptimizeFunctionOnNextCall(bar); bar();"); Handle bar_handle = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast( CcTest::global() ->Get(context.local(), v8_str("bar")) .ToLocalChecked()))); int dependency_group_count = 0; DependentCode* dependency = site->dependent_code(); while (dependency != heap->empty_fixed_array()) { CHECK(dependency->group() == DependentCode::kAllocationSiteTransitionChangedGroup || dependency->group() == DependentCode::kAllocationSiteTenuringChangedGroup); CHECK_EQ(1, dependency->count()); CHECK(dependency->object_at(0)->IsWeakCell()); Code* function_bar = Code::cast(WeakCell::cast(dependency->object_at(0))->value()); CHECK_EQ(bar_handle->code(), function_bar); dependency = dependency->next_link(); dependency_group_count++; } // TurboFan respects pretenuring feedback from allocation sites, Crankshaft // does not. Either is fine for the purposes of this test. CHECK(dependency_group_count == 1 || dependency_group_count == 2); } // Now make sure that a gc should get rid of the function, even though we // still have the allocation site alive. for (int i = 0; i < 4; i++) { heap->CollectAllGarbage(); } // The site still exists because of our global handle, but the code is no // longer referred to by dependent_code(). CHECK(site->dependent_code()->object_at(0)->IsWeakCell() && WeakCell::cast(site->dependent_code()->object_at(0))->cleared()); } TEST(CellsInOptimizedCodeAreWeak) { if (i::FLAG_always_opt || !i::FLAG_crankshaft) return; i::FLAG_weak_embedded_objects_in_optimized_code = true; i::FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); v8::internal::Heap* heap = CcTest::heap(); if (!isolate->use_crankshaft()) return; HandleScope outer_scope(heap->isolate()); Handle code; { LocalContext context; HandleScope scope(heap->isolate()); CompileRun( "bar = (function() {" " function bar() {" " return foo(1);" " };" " var foo = function(x) { with (x) { return 1 + x; } };" " %NeverOptimizeFunction(foo);" " bar(foo);" " bar(foo);" " bar(foo);" " %OptimizeFunctionOnNextCall(bar);" " bar(foo);" " return bar;})();"); Handle bar = Handle::cast(v8::Utils::OpenHandle( *v8::Local::Cast(CcTest::global() ->Get(context.local(), v8_str("bar")) .ToLocalChecked()))); code = scope.CloseAndEscape(Handle(bar->code())); } // Now make sure that a gc should get rid of the function for (int i = 0; i < 4; i++) { heap->CollectAllGarbage(); } CHECK(code->marked_for_deoptimization()); } TEST(ObjectsInOptimizedCodeAreWeak) { if (i::FLAG_always_opt || !i::FLAG_crankshaft) return; i::FLAG_weak_embedded_objects_in_optimized_code = true; i::FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); v8::internal::Heap* heap = CcTest::heap(); if (!isolate->use_crankshaft()) return; HandleScope outer_scope(heap->isolate()); Handle code; { LocalContext context; HandleScope scope(heap->isolate()); CompileRun( "function bar() {" " return foo(1);" "};" "function foo(x) { with (x) { return 1 + x; } };" "%NeverOptimizeFunction(foo);" "bar();" "bar();" "bar();" "%OptimizeFunctionOnNextCall(bar);" "bar();"); Handle bar = Handle::cast(v8::Utils::OpenHandle( *v8::Local::Cast(CcTest::global() ->Get(context.local(), v8_str("bar")) .ToLocalChecked()))); code = scope.CloseAndEscape(Handle(bar->code())); } // Now make sure that a gc should get rid of the function for (int i = 0; i < 4; i++) { heap->CollectAllGarbage(); } CHECK(code->marked_for_deoptimization()); } TEST(NewSpaceObjectsInOptimizedCode) { if (i::FLAG_always_opt || !i::FLAG_crankshaft || i::FLAG_turbo) return; i::FLAG_weak_embedded_objects_in_optimized_code = true; i::FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); v8::internal::Heap* heap = CcTest::heap(); if (!isolate->use_crankshaft()) return; HandleScope outer_scope(heap->isolate()); Handle code; { LocalContext context; HandleScope scope(heap->isolate()); CompileRun( "var foo;" "var bar;" "(function() {" " function foo_func(x) { with (x) { return 1 + x; } };" " %NeverOptimizeFunction(foo_func);" " function bar_func() {" " return foo(1);" " };" " bar = bar_func;" " foo = foo_func;" " bar_func();" " bar_func();" " bar_func();" " %OptimizeFunctionOnNextCall(bar_func);" " bar_func();" "})();"); Handle bar = Handle::cast(v8::Utils::OpenHandle( *v8::Local::Cast(CcTest::global() ->Get(context.local(), v8_str("bar")) .ToLocalChecked()))); Handle foo = Handle::cast(v8::Utils::OpenHandle( *v8::Local::Cast(CcTest::global() ->Get(context.local(), v8_str("foo")) .ToLocalChecked()))); CHECK(heap->InNewSpace(*foo)); heap->CollectGarbage(NEW_SPACE); heap->CollectGarbage(NEW_SPACE); CHECK(!heap->InNewSpace(*foo)); #ifdef VERIFY_HEAP heap->Verify(); #endif CHECK(!bar->code()->marked_for_deoptimization()); code = scope.CloseAndEscape(Handle(bar->code())); } // Now make sure that a gc should get rid of the function for (int i = 0; i < 4; i++) { heap->CollectAllGarbage(); } CHECK(code->marked_for_deoptimization()); } TEST(NoWeakHashTableLeakWithIncrementalMarking) { if (i::FLAG_always_opt || !i::FLAG_crankshaft) return; if (!i::FLAG_incremental_marking) return; i::FLAG_weak_embedded_objects_in_optimized_code = true; i::FLAG_allow_natives_syntax = true; i::FLAG_compilation_cache = false; i::FLAG_retain_maps_for_n_gc = 0; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); // Do not run for no-snap builds. if (!i::Snapshot::HasContextSnapshot(isolate, 0)) return; v8::internal::Heap* heap = CcTest::heap(); // Get a clean slate regarding optimized functions on the heap. i::Deoptimizer::DeoptimizeAll(isolate); heap->CollectAllGarbage(); if (!isolate->use_crankshaft()) return; HandleScope outer_scope(heap->isolate()); for (int i = 0; i < 3; i++) { heap::SimulateIncrementalMarking(heap); { LocalContext context; HandleScope scope(heap->isolate()); EmbeddedVector source; SNPrintF(source, "function bar%d() {" " return foo%d(1);" "};" "function foo%d(x) { with (x) { return 1 + x; } };" "bar%d();" "bar%d();" "bar%d();" "%%OptimizeFunctionOnNextCall(bar%d);" "bar%d();", i, i, i, i, i, i, i, i); CompileRun(source.start()); } // We have to abort incremental marking here to abandon black pages. heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); } int elements = 0; if (heap->weak_object_to_code_table()->IsHashTable()) { WeakHashTable* t = WeakHashTable::cast(heap->weak_object_to_code_table()); elements = t->NumberOfElements(); } CHECK_EQ(0, elements); } static Handle OptimizeDummyFunction(v8::Isolate* isolate, const char* name) { EmbeddedVector source; SNPrintF(source, "function %s() { return 0; }" "%s(); %s();" "%%OptimizeFunctionOnNextCall(%s);" "%s();", name, name, name, name, name); CompileRun(source.start()); i::Handle fun = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast( CcTest::global() ->Get(isolate->GetCurrentContext(), v8_str(name)) .ToLocalChecked()))); return fun; } static int GetCodeChainLength(Code* code) { int result = 0; while (code->next_code_link()->IsCode()) { result++; code = Code::cast(code->next_code_link()); } return result; } TEST(NextCodeLinkIsWeak) { i::FLAG_always_opt = false; i::FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); v8::internal::Heap* heap = CcTest::heap(); if (!isolate->use_crankshaft()) return; HandleScope outer_scope(heap->isolate()); Handle code; heap->CollectAllAvailableGarbage(); int code_chain_length_before, code_chain_length_after; { HandleScope scope(heap->isolate()); Handle mortal = OptimizeDummyFunction(CcTest::isolate(), "mortal"); Handle immortal = OptimizeDummyFunction(CcTest::isolate(), "immortal"); CHECK_EQ(immortal->code()->next_code_link(), mortal->code()); code_chain_length_before = GetCodeChainLength(immortal->code()); // Keep the immortal code and let the mortal code die. code = scope.CloseAndEscape(Handle(immortal->code())); CompileRun("mortal = null; immortal = null;"); } heap->CollectAllAvailableGarbage(); // Now mortal code should be dead. code_chain_length_after = GetCodeChainLength(*code); CHECK_EQ(code_chain_length_before - 1, code_chain_length_after); } static Handle DummyOptimizedCode(Isolate* isolate) { i::byte buffer[i::Assembler::kMinimalBufferSize]; MacroAssembler masm(isolate, buffer, sizeof(buffer), v8::internal::CodeObjectRequired::kYes); CodeDesc desc; masm.Push(isolate->factory()->undefined_value()); masm.Drop(1); masm.GetCode(&desc); Handle undefined(isolate->heap()->undefined_value(), isolate); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::OPTIMIZED_FUNCTION), undefined); CHECK(code->IsCode()); return code; } TEST(NextCodeLinkIsWeak2) { i::FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); v8::internal::Heap* heap = CcTest::heap(); if (!isolate->use_crankshaft()) return; HandleScope outer_scope(heap->isolate()); heap->CollectAllAvailableGarbage(); Handle context(Context::cast(heap->native_contexts_list()), isolate); Handle new_head; Handle old_head(context->get(Context::OPTIMIZED_CODE_LIST), isolate); { HandleScope scope(heap->isolate()); Handle immortal = DummyOptimizedCode(isolate); Handle mortal = DummyOptimizedCode(isolate); mortal->set_next_code_link(*old_head); immortal->set_next_code_link(*mortal); context->set(Context::OPTIMIZED_CODE_LIST, *immortal); new_head = scope.CloseAndEscape(immortal); } heap->CollectAllAvailableGarbage(); // Now mortal code should be dead. CHECK_EQ(*old_head, new_head->next_code_link()); } static bool weak_ic_cleared = false; static void ClearWeakIC( const v8::WeakCallbackInfo>& data) { printf("clear weak is called\n"); weak_ic_cleared = true; data.GetParameter()->Reset(); } TEST(WeakFunctionInConstructor) { if (i::FLAG_always_opt) return; i::FLAG_stress_compaction = false; CcTest::InitializeVM(); v8::Isolate* isolate = CcTest::isolate(); LocalContext env; v8::HandleScope scope(isolate); CompileRun( "function createObj(obj) {" " return new obj();" "}"); i::Handle createObj = Handle::cast( v8::Utils::OpenHandle(*v8::Local::Cast( CcTest::global() ->Get(env.local(), v8_str("createObj")) .ToLocalChecked()))); v8::Persistent garbage; { v8::HandleScope scope(isolate); const char* source = " (function() {" " function hat() { this.x = 5; }" " createObj(hat);" " createObj(hat);" " return hat;" " })();"; garbage.Reset(isolate, CompileRun(env.local(), source) .ToLocalChecked() ->ToObject(env.local()) .ToLocalChecked()); } weak_ic_cleared = false; garbage.SetWeak(&garbage, &ClearWeakIC, v8::WeakCallbackType::kParameter); Heap* heap = CcTest::i_isolate()->heap(); heap->CollectAllGarbage(); CHECK(weak_ic_cleared); // We've determined the constructor in createObj has had it's weak cell // cleared. Now, verify that one additional call with a new function // allows monomorphicity. Handle feedback_vector = Handle( createObj->feedback_vector(), CcTest::i_isolate()); for (int i = 0; i < 20; i++) { Object* slot_value = feedback_vector->Get(FeedbackVectorSlot(0)); CHECK(slot_value->IsWeakCell()); if (WeakCell::cast(slot_value)->cleared()) break; heap->CollectAllGarbage(); } Object* slot_value = feedback_vector->Get(FeedbackVectorSlot(0)); CHECK(slot_value->IsWeakCell() && WeakCell::cast(slot_value)->cleared()); CompileRun( "function coat() { this.x = 6; }" "createObj(coat);"); slot_value = feedback_vector->Get(FeedbackVectorSlot(0)); CHECK(slot_value->IsWeakCell() && !WeakCell::cast(slot_value)->cleared()); } // Checks that the value returned by execution of the source is weak. void CheckWeakness(const char* source) { i::FLAG_stress_compaction = false; CcTest::InitializeVM(); v8::Isolate* isolate = CcTest::isolate(); LocalContext env; v8::HandleScope scope(isolate); v8::Persistent garbage; { v8::HandleScope scope(isolate); garbage.Reset(isolate, CompileRun(env.local(), source) .ToLocalChecked() ->ToObject(env.local()) .ToLocalChecked()); } weak_ic_cleared = false; garbage.SetWeak(&garbage, &ClearWeakIC, v8::WeakCallbackType::kParameter); Heap* heap = CcTest::i_isolate()->heap(); heap->CollectAllGarbage(); CHECK(weak_ic_cleared); } // Each of the following "weak IC" tests creates an IC that embeds a map with // the prototype pointing to _proto_ and checks that the _proto_ dies on GC. TEST(WeakMapInMonomorphicLoadIC) { CheckWeakness("function loadIC(obj) {" " return obj.name;" "}" " (function() {" " var proto = {'name' : 'weak'};" " var obj = Object.create(proto);" " loadIC(obj);" " loadIC(obj);" " loadIC(obj);" " return proto;" " })();"); } TEST(WeakMapInPolymorphicLoadIC) { CheckWeakness( "function loadIC(obj) {" " return obj.name;" "}" " (function() {" " var proto = {'name' : 'weak'};" " var obj = Object.create(proto);" " loadIC(obj);" " loadIC(obj);" " loadIC(obj);" " var poly = Object.create(proto);" " poly.x = true;" " loadIC(poly);" " return proto;" " })();"); } TEST(WeakMapInMonomorphicKeyedLoadIC) { CheckWeakness("function keyedLoadIC(obj, field) {" " return obj[field];" "}" " (function() {" " var proto = {'name' : 'weak'};" " var obj = Object.create(proto);" " keyedLoadIC(obj, 'name');" " keyedLoadIC(obj, 'name');" " keyedLoadIC(obj, 'name');" " return proto;" " })();"); } TEST(WeakMapInPolymorphicKeyedLoadIC) { CheckWeakness( "function keyedLoadIC(obj, field) {" " return obj[field];" "}" " (function() {" " var proto = {'name' : 'weak'};" " var obj = Object.create(proto);" " keyedLoadIC(obj, 'name');" " keyedLoadIC(obj, 'name');" " keyedLoadIC(obj, 'name');" " var poly = Object.create(proto);" " poly.x = true;" " keyedLoadIC(poly, 'name');" " return proto;" " })();"); } TEST(WeakMapInMonomorphicStoreIC) { CheckWeakness("function storeIC(obj, value) {" " obj.name = value;" "}" " (function() {" " var proto = {'name' : 'weak'};" " var obj = Object.create(proto);" " storeIC(obj, 'x');" " storeIC(obj, 'x');" " storeIC(obj, 'x');" " return proto;" " })();"); } TEST(WeakMapInPolymorphicStoreIC) { CheckWeakness( "function storeIC(obj, value) {" " obj.name = value;" "}" " (function() {" " var proto = {'name' : 'weak'};" " var obj = Object.create(proto);" " storeIC(obj, 'x');" " storeIC(obj, 'x');" " storeIC(obj, 'x');" " var poly = Object.create(proto);" " poly.x = true;" " storeIC(poly, 'x');" " return proto;" " })();"); } TEST(WeakMapInMonomorphicKeyedStoreIC) { CheckWeakness("function keyedStoreIC(obj, field, value) {" " obj[field] = value;" "}" " (function() {" " var proto = {'name' : 'weak'};" " var obj = Object.create(proto);" " keyedStoreIC(obj, 'x');" " keyedStoreIC(obj, 'x');" " keyedStoreIC(obj, 'x');" " return proto;" " })();"); } TEST(WeakMapInPolymorphicKeyedStoreIC) { CheckWeakness( "function keyedStoreIC(obj, field, value) {" " obj[field] = value;" "}" " (function() {" " var proto = {'name' : 'weak'};" " var obj = Object.create(proto);" " keyedStoreIC(obj, 'x');" " keyedStoreIC(obj, 'x');" " keyedStoreIC(obj, 'x');" " var poly = Object.create(proto);" " poly.x = true;" " keyedStoreIC(poly, 'x');" " return proto;" " })();"); } TEST(WeakMapInMonomorphicCompareNilIC) { CheckWeakness("function compareNilIC(obj) {" " return obj == null;" "}" " (function() {" " var proto = {'name' : 'weak'};" " var obj = Object.create(proto);" " compareNilIC(obj);" " compareNilIC(obj);" " compareNilIC(obj);" " return proto;" " })();"); } Handle GetFunctionByName(Isolate* isolate, const char* name) { Handle str = isolate->factory()->InternalizeUtf8String(name); Handle obj = Object::GetProperty(isolate->global_object(), str).ToHandleChecked(); return Handle::cast(obj); } void CheckIC(Handle function, Code::Kind kind, int slot_index, InlineCacheState state) { if (kind == Code::LOAD_IC || kind == Code::KEYED_LOAD_IC || kind == Code::CALL_IC) { TypeFeedbackVector* vector = function->feedback_vector(); FeedbackVectorSlot slot(slot_index); if (kind == Code::LOAD_IC) { LoadICNexus nexus(vector, slot); CHECK_EQ(nexus.StateFromFeedback(), state); } else if (kind == Code::KEYED_LOAD_IC) { KeyedLoadICNexus nexus(vector, slot); CHECK_EQ(nexus.StateFromFeedback(), state); } else if (kind == Code::CALL_IC) { CallICNexus nexus(vector, slot); CHECK_EQ(nexus.StateFromFeedback(), state); } } else { Code* ic = FindFirstIC(function->code(), kind); CHECK(ic->is_inline_cache_stub()); CHECK(!IC::ICUseVector(kind)); CHECK_EQ(state, IC::StateFromCode(ic)); } } TEST(MonomorphicStaysMonomorphicAfterGC) { if (FLAG_always_opt) return; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); v8::HandleScope scope(CcTest::isolate()); CompileRun( "function loadIC(obj) {" " return obj.name;" "}" "function testIC() {" " var proto = {'name' : 'weak'};" " var obj = Object.create(proto);" " loadIC(obj);" " loadIC(obj);" " loadIC(obj);" " return proto;" "};"); Handle loadIC = GetFunctionByName(isolate, "loadIC"); { v8::HandleScope scope(CcTest::isolate()); CompileRun("(testIC())"); } heap->CollectAllGarbage(); CheckIC(loadIC, Code::LOAD_IC, 0, MONOMORPHIC); { v8::HandleScope scope(CcTest::isolate()); CompileRun("(testIC())"); } CheckIC(loadIC, Code::LOAD_IC, 0, MONOMORPHIC); } TEST(PolymorphicStaysPolymorphicAfterGC) { if (FLAG_always_opt) return; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); v8::HandleScope scope(CcTest::isolate()); CompileRun( "function loadIC(obj) {" " return obj.name;" "}" "function testIC() {" " var proto = {'name' : 'weak'};" " var obj = Object.create(proto);" " loadIC(obj);" " loadIC(obj);" " loadIC(obj);" " var poly = Object.create(proto);" " poly.x = true;" " loadIC(poly);" " return proto;" "};"); Handle loadIC = GetFunctionByName(isolate, "loadIC"); { v8::HandleScope scope(CcTest::isolate()); CompileRun("(testIC())"); } heap->CollectAllGarbage(); CheckIC(loadIC, Code::LOAD_IC, 0, POLYMORPHIC); { v8::HandleScope scope(CcTest::isolate()); CompileRun("(testIC())"); } CheckIC(loadIC, Code::LOAD_IC, 0, POLYMORPHIC); } TEST(WeakCell) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); v8::internal::Heap* heap = CcTest::heap(); v8::internal::Factory* factory = isolate->factory(); HandleScope outer_scope(isolate); Handle weak_cell1; { HandleScope inner_scope(isolate); Handle value = factory->NewFixedArray(1, NOT_TENURED); weak_cell1 = inner_scope.CloseAndEscape(factory->NewWeakCell(value)); } Handle survivor = factory->NewFixedArray(1, NOT_TENURED); Handle weak_cell2; { HandleScope inner_scope(isolate); weak_cell2 = inner_scope.CloseAndEscape(factory->NewWeakCell(survivor)); } CHECK(weak_cell1->value()->IsFixedArray()); CHECK_EQ(*survivor, weak_cell2->value()); heap->CollectGarbage(NEW_SPACE); CHECK(weak_cell1->value()->IsFixedArray()); CHECK_EQ(*survivor, weak_cell2->value()); heap->CollectGarbage(NEW_SPACE); CHECK(weak_cell1->value()->IsFixedArray()); CHECK_EQ(*survivor, weak_cell2->value()); heap->CollectAllAvailableGarbage(); CHECK(weak_cell1->cleared()); CHECK_EQ(*survivor, weak_cell2->value()); } TEST(WeakCellsWithIncrementalMarking) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); v8::internal::Heap* heap = CcTest::heap(); v8::internal::Factory* factory = isolate->factory(); const int N = 16; HandleScope outer_scope(isolate); Handle survivor = factory->NewFixedArray(1, NOT_TENURED); Handle weak_cells[N]; for (int i = 0; i < N; i++) { HandleScope inner_scope(isolate); Handle value = i == 0 ? survivor : factory->NewFixedArray(1, NOT_TENURED); Handle weak_cell = factory->NewWeakCell(value); CHECK(weak_cell->value()->IsFixedArray()); IncrementalMarking* marking = heap->incremental_marking(); if (marking->IsStopped()) { heap->StartIncrementalMarking(); } marking->Step(128, IncrementalMarking::NO_GC_VIA_STACK_GUARD); heap->CollectGarbage(NEW_SPACE); CHECK(weak_cell->value()->IsFixedArray()); weak_cells[i] = inner_scope.CloseAndEscape(weak_cell); } // Call collect all twice to make sure that we also cleared // weak cells that were allocated on black pages. heap->CollectAllGarbage(); heap->CollectAllGarbage(); CHECK_EQ(*survivor, weak_cells[0]->value()); for (int i = 1; i < N; i++) { CHECK(weak_cells[i]->cleared()); } } #ifdef DEBUG TEST(AddInstructionChangesNewSpacePromotion) { i::FLAG_allow_natives_syntax = true; i::FLAG_expose_gc = true; i::FLAG_stress_compaction = true; i::FLAG_gc_interval = 1000; CcTest::InitializeVM(); if (!i::FLAG_allocation_site_pretenuring) return; v8::HandleScope scope(CcTest::isolate()); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); LocalContext env; CompileRun( "function add(a, b) {" " return a + b;" "}" "add(1, 2);" "add(\"a\", \"b\");" "var oldSpaceObject;" "gc();" "function crash(x) {" " var object = {a: null, b: null};" " var result = add(1.5, x | 0);" " object.a = result;" " oldSpaceObject = object;" " return object;" "}" "crash(1);" "crash(1);" "%OptimizeFunctionOnNextCall(crash);" "crash(1);"); v8::Local global = CcTest::global(); v8::Local g = v8::Local::Cast( global->Get(env.local(), v8_str("crash")).ToLocalChecked()); v8::Local args1[] = {v8_num(1)}; heap->DisableInlineAllocation(); heap->set_allocation_timeout(1); g->Call(env.local(), global, 1, args1).ToLocalChecked(); heap->CollectAllGarbage(); } void OnFatalErrorExpectOOM(const char* location, const char* message) { // Exit with 0 if the location matches our expectation. exit(strcmp(location, "CALL_AND_RETRY_LAST")); } TEST(CEntryStubOOM) { i::FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); CcTest::isolate()->SetFatalErrorHandler(OnFatalErrorExpectOOM); v8::Local result = CompileRun( "%SetFlags('--gc-interval=1');" "var a = [];" "a.__proto__ = [];" "a.unshift(1)"); CHECK(result->IsNumber()); } #endif // DEBUG static void InterruptCallback357137(v8::Isolate* isolate, void* data) { } static void RequestInterrupt(const v8::FunctionCallbackInfo& args) { CcTest::isolate()->RequestInterrupt(&InterruptCallback357137, NULL); } UNINITIALIZED_TEST(Regress538257) { i::FLAG_manual_evacuation_candidates_selection = true; v8::Isolate::CreateParams create_params; // Set heap limits. create_params.constraints.set_max_semi_space_size(1 * Page::kPageSize / MB); create_params.constraints.set_max_old_space_size(6 * Page::kPageSize / MB); create_params.array_buffer_allocator = CcTest::array_buffer_allocator(); v8::Isolate* isolate = v8::Isolate::New(create_params); isolate->Enter(); { i::Isolate* i_isolate = reinterpret_cast(isolate); Heap* heap = i_isolate->heap(); HandleScope handle_scope(i_isolate); PagedSpace* old_space = heap->old_space(); const int kMaxObjects = 10000; const int kFixedArrayLen = 512; Handle objects[kMaxObjects]; for (int i = 0; (i < kMaxObjects) && heap->CanExpandOldGeneration(old_space->AreaSize()); i++) { objects[i] = i_isolate->factory()->NewFixedArray(kFixedArrayLen, TENURED); Page::FromAddress(objects[i]->address()) ->SetFlag(MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING); } heap::SimulateFullSpace(old_space); heap->CollectGarbage(OLD_SPACE); // If we get this far, we've successfully aborted compaction. Any further // allocations might trigger OOM. } isolate->Exit(); isolate->Dispose(); } TEST(Regress357137) { CcTest::InitializeVM(); v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope hscope(isolate); v8::Local global = v8::ObjectTemplate::New(isolate); global->Set( v8::String::NewFromUtf8(isolate, "interrupt", v8::NewStringType::kNormal) .ToLocalChecked(), v8::FunctionTemplate::New(isolate, RequestInterrupt)); v8::Local context = v8::Context::New(isolate, NULL, global); CHECK(!context.IsEmpty()); v8::Context::Scope cscope(context); v8::Local result = CompileRun( "var locals = '';" "for (var i = 0; i < 512; i++) locals += 'var v' + i + '= 42;';" "eval('function f() {' + locals + 'return function() { return v0; }; }');" "interrupt();" // This triggers a fake stack overflow in f. "f()()"); CHECK_EQ(42.0, result->ToNumber(context).ToLocalChecked()->Value()); } TEST(Regress507979) { const int kFixedArrayLen = 10; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); HandleScope handle_scope(isolate); Handle o1 = isolate->factory()->NewFixedArray(kFixedArrayLen); Handle o2 = isolate->factory()->NewFixedArray(kFixedArrayLen); CHECK(heap->InNewSpace(*o1)); CHECK(heap->InNewSpace(*o2)); HeapIterator it(heap, i::HeapIterator::kFilterUnreachable); // Replace parts of an object placed before a live object with a filler. This // way the filler object shares the mark bits with the following live object. o1->Shrink(kFixedArrayLen - 1); for (HeapObject* obj = it.next(); obj != NULL; obj = it.next()) { // Let's not optimize the loop away. CHECK(obj->address() != nullptr); } } UNINITIALIZED_TEST(PromotionQueue) { i::FLAG_expose_gc = true; i::FLAG_max_semi_space_size = 2 * Page::kPageSize / MB; i::FLAG_min_semi_space_size = i::FLAG_max_semi_space_size; v8::Isolate::CreateParams create_params; create_params.array_buffer_allocator = CcTest::array_buffer_allocator(); v8::Isolate* isolate = v8::Isolate::New(create_params); i::Isolate* i_isolate = reinterpret_cast(isolate); { v8::Isolate::Scope isolate_scope(isolate); v8::HandleScope handle_scope(isolate); v8::Context::New(isolate)->Enter(); Heap* heap = i_isolate->heap(); NewSpace* new_space = heap->new_space(); // In this test we will try to overwrite the promotion queue which is at the // end of to-space. To actually make that possible, we need at least two // semi-space pages and take advantage of fragmentation. // (1) Use a semi-space consisting of two pages. // (2) Create a few small long living objects and call the scavenger to // move them to the other semi-space. // (3) Create a huge object, i.e., remainder of first semi-space page and // create another huge object which should be of maximum allocatable memory // size of the second semi-space page. // (4) Call the scavenger again. // What will happen is: the scavenger will promote the objects created in // (2) and will create promotion queue entries at the end of the second // semi-space page during the next scavenge when it promotes the objects to // the old generation. The first allocation of (3) will fill up the first // semi-space page. The second allocation in (3) will not fit into the // first semi-space page, but it will overwrite the promotion queue which // are in the second semi-space page. If the right guards are in place, the // promotion queue will be evacuated in that case. CHECK(new_space->IsAtMaximumCapacity()); CHECK(i::FLAG_min_semi_space_size * MB == new_space->TotalCapacity()); // Call the scavenger two times to get an empty new space heap->CollectGarbage(NEW_SPACE); heap->CollectGarbage(NEW_SPACE); // First create a few objects which will survive a scavenge, and will get // promoted to the old generation later on. These objects will create // promotion queue entries at the end of the second semi-space page. const int number_handles = 12; Handle handles[number_handles]; for (int i = 0; i < number_handles; i++) { handles[i] = i_isolate->factory()->NewFixedArray(1, NOT_TENURED); } heap->CollectGarbage(NEW_SPACE); CHECK(i::FLAG_min_semi_space_size * MB == new_space->TotalCapacity()); // Fill-up the first semi-space page. heap::FillUpOnePage(new_space); // Create a small object to initialize the bump pointer on the second // semi-space page. Handle small = i_isolate->factory()->NewFixedArray(1, NOT_TENURED); CHECK(heap->InNewSpace(*small)); // Fill-up the second semi-space page. heap::FillUpOnePage(new_space); // This scavenge will corrupt memory if the promotion queue is not // evacuated. heap->CollectGarbage(NEW_SPACE); } isolate->Dispose(); } TEST(Regress388880) { i::FLAG_expose_gc = true; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); Heap* heap = isolate->heap(); Handle map1 = Map::Create(isolate, 1); Handle name = factory->NewStringFromStaticChars("foo"); name = factory->InternalizeString(name); Handle map2 = Map::CopyWithField(map1, name, FieldType::Any(isolate), NONE, Representation::Tagged(), OMIT_TRANSITION) .ToHandleChecked(); int desired_offset = Page::kPageSize - map1->instance_size(); // Allocate padding objects in old pointer space so, that object allocated // afterwards would end at the end of the page. heap::SimulateFullSpace(heap->old_space()); int padding_size = desired_offset - Page::kObjectStartOffset; heap::CreatePadding(heap, padding_size, TENURED); Handle o = factory->NewJSObjectFromMap(map1, TENURED); o->set_properties(*factory->empty_fixed_array()); // Ensure that the object allocated where we need it. Page* page = Page::FromAddress(o->address()); CHECK_EQ(desired_offset, page->Offset(o->address())); // Now we have an object right at the end of the page. // Enable incremental marking to trigger actions in Heap::AdjustLiveBytes() // that would cause crash. IncrementalMarking* marking = CcTest::heap()->incremental_marking(); marking->Stop(); CcTest::heap()->StartIncrementalMarking(); CHECK(marking->IsMarking()); // Now everything is set up for crashing in JSObject::MigrateFastToFast() // when it calls heap->AdjustLiveBytes(...). JSObject::MigrateToMap(o, map2); } TEST(Regress3631) { i::FLAG_expose_gc = true; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); IncrementalMarking* marking = CcTest::heap()->incremental_marking(); v8::Local result = CompileRun( "var weak_map = new WeakMap();" "var future_keys = [];" "for (var i = 0; i < 50; i++) {" " var key = {'k' : i + 0.1};" " weak_map.set(key, 1);" " future_keys.push({'x' : i + 0.2});" "}" "weak_map"); if (marking->IsStopped()) { CcTest::heap()->StartIncrementalMarking(); } // Incrementally mark the backing store. Handle obj = v8::Utils::OpenHandle(*v8::Local::Cast(result)); Handle weak_map(reinterpret_cast(*obj)); while (!Marking::IsBlack( ObjectMarking::MarkBitFrom(HeapObject::cast(weak_map->table()))) && !marking->IsStopped()) { marking->Step(MB, IncrementalMarking::NO_GC_VIA_STACK_GUARD); } // Stash the backing store in a handle. Handle save(weak_map->table(), isolate); // The following line will update the backing store. CompileRun( "for (var i = 0; i < 50; i++) {" " weak_map.set(future_keys[i], i);" "}"); heap->incremental_marking()->set_should_hurry(true); heap->CollectGarbage(OLD_SPACE); } TEST(Regress442710) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); HandleScope sc(isolate); Handle global( CcTest::i_isolate()->context()->global_object()); Handle array = factory->NewJSArray(2); Handle name = factory->InternalizeUtf8String("testArray"); JSReceiver::SetProperty(global, name, array, SLOPPY).Check(); CompileRun("testArray[0] = 1; testArray[1] = 2; testArray.shift();"); heap->CollectGarbage(OLD_SPACE); } HEAP_TEST(NumberStringCacheSize) { // Test that the number-string cache has not been resized in the snapshot. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); if (!isolate->snapshot_available()) return; Heap* heap = isolate->heap(); CHECK_EQ(Heap::kInitialNumberStringCacheSize * 2, heap->number_string_cache()->length()); } TEST(Regress3877) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); HandleScope scope(isolate); CompileRun("function cls() { this.x = 10; }"); Handle weak_prototype; { HandleScope inner_scope(isolate); v8::Local result = CompileRun("cls.prototype"); Handle proto = v8::Utils::OpenHandle(*v8::Local::Cast(result)); weak_prototype = inner_scope.CloseAndEscape(factory->NewWeakCell(proto)); } CHECK(!weak_prototype->cleared()); CompileRun( "var a = { };" "a.x = new cls();" "cls.prototype = null;"); for (int i = 0; i < 4; i++) { heap->CollectAllGarbage(); } // The map of a.x keeps prototype alive CHECK(!weak_prototype->cleared()); // Change the map of a.x and make the previous map garbage collectable. CompileRun("a.x.__proto__ = {};"); for (int i = 0; i < 4; i++) { heap->CollectAllGarbage(); } CHECK(weak_prototype->cleared()); } Handle AddRetainedMap(Isolate* isolate, Heap* heap) { HandleScope inner_scope(isolate); Handle map = Map::Create(isolate, 1); v8::Local result = CompileRun("(function () { return {x : 10}; })();"); Handle proto = v8::Utils::OpenHandle(*v8::Local::Cast(result)); Map::SetPrototype(map, proto); heap->AddRetainedMap(map); return inner_scope.CloseAndEscape(Map::WeakCellForMap(map)); } void CheckMapRetainingFor(int n) { FLAG_retain_maps_for_n_gc = n; Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); Handle weak_cell = AddRetainedMap(isolate, heap); CHECK(!weak_cell->cleared()); for (int i = 0; i < n; i++) { heap::SimulateIncrementalMarking(heap); heap->CollectGarbage(OLD_SPACE); } CHECK(!weak_cell->cleared()); heap::SimulateIncrementalMarking(heap); heap->CollectGarbage(OLD_SPACE); CHECK(weak_cell->cleared()); } TEST(MapRetaining) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); CheckMapRetainingFor(FLAG_retain_maps_for_n_gc); CheckMapRetainingFor(0); CheckMapRetainingFor(1); CheckMapRetainingFor(7); } TEST(RegressArrayListGC) { FLAG_retain_maps_for_n_gc = 1; FLAG_incremental_marking = 0; FLAG_gc_global = true; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); AddRetainedMap(isolate, heap); Handle map = Map::Create(isolate, 1); heap->CollectGarbage(OLD_SPACE); // Force GC in old space on next addition of retained map. Map::WeakCellForMap(map); heap::SimulateFullSpace(CcTest::heap()->new_space()); for (int i = 0; i < 10; i++) { heap->AddRetainedMap(map); } heap->CollectGarbage(OLD_SPACE); } #ifdef DEBUG TEST(PathTracer) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); v8::Local result = CompileRun("'abc'"); Handle o = v8::Utils::OpenHandle(*result); CcTest::i_isolate()->heap()->TracePathToObject(*o); } #endif // DEBUG TEST(WritableVsImmortalRoots) { for (int i = 0; i < Heap::kStrongRootListLength; ++i) { Heap::RootListIndex root_index = static_cast(i); bool writable = Heap::RootCanBeWrittenAfterInitialization(root_index); bool immortal = Heap::RootIsImmortalImmovable(root_index); // A root value can be writable, immortal, or neither, but not both. CHECK(!immortal || !writable); } } static void TestRightTrimFixedTypedArray(i::ExternalArrayType type, int initial_length, int elements_to_trim) { v8::HandleScope scope(CcTest::isolate()); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); Heap* heap = isolate->heap(); Handle array = factory->NewFixedTypedArray(initial_length, type, true); int old_size = array->size(); heap->RightTrimFixedArray(*array, elements_to_trim); // Check that free space filler is at the right place and did not smash the // array header. CHECK(array->IsFixedArrayBase()); CHECK_EQ(initial_length - elements_to_trim, array->length()); int new_size = array->size(); if (new_size != old_size) { // Free space filler should be created in this case. Address next_obj_address = array->address() + array->size(); CHECK(HeapObject::FromAddress(next_obj_address)->IsFiller()); } heap->CollectAllAvailableGarbage(); } TEST(Regress472513) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); // The combination of type/initial_length/elements_to_trim triggered // typed array header smashing with free space filler (crbug/472513). // 64-bit cases. TestRightTrimFixedTypedArray(i::kExternalUint8Array, 32, 6); TestRightTrimFixedTypedArray(i::kExternalUint8Array, 32 - 7, 6); TestRightTrimFixedTypedArray(i::kExternalUint16Array, 16, 6); TestRightTrimFixedTypedArray(i::kExternalUint16Array, 16 - 3, 6); TestRightTrimFixedTypedArray(i::kExternalUint32Array, 8, 6); TestRightTrimFixedTypedArray(i::kExternalUint32Array, 8 - 1, 6); // 32-bit cases. TestRightTrimFixedTypedArray(i::kExternalUint8Array, 16, 3); TestRightTrimFixedTypedArray(i::kExternalUint8Array, 16 - 3, 3); TestRightTrimFixedTypedArray(i::kExternalUint16Array, 8, 3); TestRightTrimFixedTypedArray(i::kExternalUint16Array, 8 - 1, 3); TestRightTrimFixedTypedArray(i::kExternalUint32Array, 4, 3); } TEST(WeakFixedArray) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Handle number = CcTest::i_isolate()->factory()->NewHeapNumber(1); Handle array = WeakFixedArray::Add(Handle(), number); array->Remove(number); array->Compact(); WeakFixedArray::Add(array, number); } TEST(PreprocessStackTrace) { // Do not automatically trigger early GC. FLAG_gc_interval = -1; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); v8::TryCatch try_catch(CcTest::isolate()); CompileRun("throw new Error();"); CHECK(try_catch.HasCaught()); Isolate* isolate = CcTest::i_isolate(); Handle exception = v8::Utils::OpenHandle(*try_catch.Exception()); Handle key = isolate->factory()->stack_trace_symbol(); Handle stack_trace = Object::GetProperty(exception, key).ToHandleChecked(); Handle code = Object::GetElement(isolate, stack_trace, 3).ToHandleChecked(); CHECK(code->IsCode()); isolate->heap()->CollectAllAvailableGarbage("stack trace preprocessing"); Handle pos = Object::GetElement(isolate, stack_trace, 3).ToHandleChecked(); CHECK(pos->IsSmi()); Handle stack_trace_array = Handle::cast(stack_trace); int array_length = Smi::cast(stack_trace_array->length())->value(); for (int i = 0; i < array_length; i++) { Handle element = Object::GetElement(isolate, stack_trace, i).ToHandleChecked(); CHECK(!element->IsCode()); } } static bool utils_has_been_collected = false; static void UtilsHasBeenCollected( const v8::WeakCallbackInfo>& data) { utils_has_been_collected = true; data.GetParameter()->Reset(); } TEST(BootstrappingExports) { // Expose utils object and delete it to observe that it is indeed // being garbage-collected. FLAG_expose_natives_as = "utils"; CcTest::InitializeVM(); v8::Isolate* isolate = CcTest::isolate(); LocalContext env; if (Snapshot::HasContextSnapshot(CcTest::i_isolate(), 0)) return; utils_has_been_collected = false; v8::Persistent utils; { v8::HandleScope scope(isolate); v8::Local name = v8_str("utils"); utils.Reset(isolate, CcTest::global() ->Get(env.local(), name) .ToLocalChecked() ->ToObject(env.local()) .ToLocalChecked()); CHECK(CcTest::global()->Delete(env.local(), name).FromJust()); } utils.SetWeak(&utils, UtilsHasBeenCollected, v8::WeakCallbackType::kParameter); CcTest::heap()->CollectAllAvailableGarbage("fire weak callbacks"); CHECK(utils_has_been_collected); } TEST(Regress1878) { FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope scope(isolate); v8::Local constructor = v8::Utils::CallableToLocal( CcTest::i_isolate()->internal_array_function()); LocalContext env; CHECK(CcTest::global() ->Set(env.local(), v8_str("InternalArray"), constructor) .FromJust()); v8::TryCatch try_catch(isolate); CompileRun( "var a = Array();" "for (var i = 0; i < 1000; i++) {" " var ai = new InternalArray(10000);" " if (%HaveSameMap(ai, a)) throw Error();" " if (!%HasFastObjectElements(ai)) throw Error();" "}" "for (var i = 0; i < 1000; i++) {" " var ai = new InternalArray(10000);" " if (%HaveSameMap(ai, a)) throw Error();" " if (!%HasFastObjectElements(ai)) throw Error();" "}"); CHECK(!try_catch.HasCaught()); } void AllocateInSpace(Isolate* isolate, size_t bytes, AllocationSpace space) { CHECK(bytes >= FixedArray::kHeaderSize); CHECK(bytes % kPointerSize == 0); Factory* factory = isolate->factory(); HandleScope scope(isolate); AlwaysAllocateScope always_allocate(isolate); int elements = static_cast((bytes - FixedArray::kHeaderSize) / kPointerSize); Handle array = factory->NewFixedArray( elements, space == NEW_SPACE ? NOT_TENURED : TENURED); CHECK((space == NEW_SPACE) == isolate->heap()->InNewSpace(*array)); CHECK_EQ(bytes, static_cast(array->Size())); } TEST(NewSpaceAllocationCounter) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); size_t counter1 = heap->NewSpaceAllocationCounter(); heap->CollectGarbage(NEW_SPACE); const size_t kSize = 1024; AllocateInSpace(isolate, kSize, NEW_SPACE); size_t counter2 = heap->NewSpaceAllocationCounter(); CHECK_EQ(kSize, counter2 - counter1); heap->CollectGarbage(NEW_SPACE); size_t counter3 = heap->NewSpaceAllocationCounter(); CHECK_EQ(0U, counter3 - counter2); // Test counter overflow. size_t max_counter = -1; heap->set_new_space_allocation_counter(max_counter - 10 * kSize); size_t start = heap->NewSpaceAllocationCounter(); for (int i = 0; i < 20; i++) { AllocateInSpace(isolate, kSize, NEW_SPACE); size_t counter = heap->NewSpaceAllocationCounter(); CHECK_EQ(kSize, counter - start); start = counter; } } TEST(OldSpaceAllocationCounter) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); size_t counter1 = heap->OldGenerationAllocationCounter(); heap->CollectGarbage(NEW_SPACE); heap->CollectGarbage(NEW_SPACE); const size_t kSize = 1024; AllocateInSpace(isolate, kSize, OLD_SPACE); size_t counter2 = heap->OldGenerationAllocationCounter(); // TODO(ulan): replace all CHECK_LE with CHECK_EQ after v8:4148 is fixed. CHECK_LE(kSize, counter2 - counter1); heap->CollectGarbage(NEW_SPACE); size_t counter3 = heap->OldGenerationAllocationCounter(); CHECK_EQ(0u, counter3 - counter2); AllocateInSpace(isolate, kSize, OLD_SPACE); heap->CollectGarbage(OLD_SPACE); size_t counter4 = heap->OldGenerationAllocationCounter(); CHECK_LE(kSize, counter4 - counter3); // Test counter overflow. size_t max_counter = -1; heap->set_old_generation_allocation_counter(max_counter - 10 * kSize); size_t start = heap->OldGenerationAllocationCounter(); for (int i = 0; i < 20; i++) { AllocateInSpace(isolate, kSize, OLD_SPACE); size_t counter = heap->OldGenerationAllocationCounter(); CHECK_LE(kSize, counter - start); start = counter; } } static void CheckLeak(const v8::FunctionCallbackInfo& args) { Isolate* isolate = CcTest::i_isolate(); Object* message = *reinterpret_cast(isolate->pending_message_obj_address()); CHECK(message->IsTheHole(isolate)); } TEST(MessageObjectLeak) { CcTest::InitializeVM(); v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope scope(isolate); v8::Local global = v8::ObjectTemplate::New(isolate); global->Set( v8::String::NewFromUtf8(isolate, "check", v8::NewStringType::kNormal) .ToLocalChecked(), v8::FunctionTemplate::New(isolate, CheckLeak)); v8::Local context = v8::Context::New(isolate, NULL, global); v8::Context::Scope cscope(context); const char* test = "try {" " throw 'message 1';" "} catch (e) {" "}" "check();" "L: try {" " throw 'message 2';" "} finally {" " break L;" "}" "check();"; CompileRun(test); const char* flag = "--turbo-filter=*"; FlagList::SetFlagsFromString(flag, StrLength(flag)); FLAG_always_opt = true; CompileRun(test); } static void CheckEqualSharedFunctionInfos( const v8::FunctionCallbackInfo& args) { Handle obj1 = v8::Utils::OpenHandle(*args[0]); Handle obj2 = v8::Utils::OpenHandle(*args[1]); Handle fun1 = Handle::cast(obj1); Handle fun2 = Handle::cast(obj2); CHECK(fun1->shared() == fun2->shared()); } static void RemoveCodeAndGC(const v8::FunctionCallbackInfo& args) { Isolate* isolate = CcTest::i_isolate(); Handle obj = v8::Utils::OpenHandle(*args[0]); Handle fun = Handle::cast(obj); fun->ReplaceCode(*isolate->builtins()->CompileLazy()); fun->shared()->ReplaceCode(*isolate->builtins()->CompileLazy()); fun->shared()->ClearBytecodeArray(); // Bytecode is code too. isolate->heap()->CollectAllAvailableGarbage("remove code and gc"); } TEST(CanonicalSharedFunctionInfo) { CcTest::InitializeVM(); v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope scope(isolate); v8::Local global = v8::ObjectTemplate::New(isolate); global->Set(isolate, "check", v8::FunctionTemplate::New( isolate, CheckEqualSharedFunctionInfos)); global->Set(isolate, "remove", v8::FunctionTemplate::New(isolate, RemoveCodeAndGC)); v8::Local context = v8::Context::New(isolate, NULL, global); v8::Context::Scope cscope(context); CompileRun( "function f() { return function g() {}; }" "var g1 = f();" "remove(f);" "var g2 = f();" "check(g1, g2);"); CompileRun( "function f() { return (function() { return function g() {}; })(); }" "var g1 = f();" "remove(f);" "var g2 = f();" "check(g1, g2);"); } TEST(RemoveCodeFromSharedFunctionInfoButNotFromClosure) { CcTest::InitializeVM(); v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope scope(isolate); v8::Local global = v8::ObjectTemplate::New(isolate); global->Set(isolate, "check", v8::FunctionTemplate::New( isolate, CheckEqualSharedFunctionInfos)); global->Set(isolate, "remove", v8::FunctionTemplate::New(isolate, RemoveCodeAndGC)); v8::Local context = v8::Context::New(isolate, NULL, global); v8::Context::Scope cscope(context); CompileRun( "function f() { return function g() {}; }" "var g1 = f();" "var g2 = f();" "check(g1, g2);" "g1();" "g2();" "remove(g1);" "g2();" "check(g1, g2);"); } TEST(ContextMeasure) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Isolate* isolate = CcTest::i_isolate(); LocalContext context; int size_upper_limit = 0; int count_upper_limit = 0; HeapIterator it(CcTest::heap()); for (HeapObject* obj = it.next(); obj != NULL; obj = it.next()) { size_upper_limit += obj->Size(); count_upper_limit++; } ContextMeasure measure(*isolate->native_context()); PrintF("Context size : %d bytes\n", measure.Size()); PrintF("Context object count: %d\n", measure.Count()); CHECK_LE(1000, measure.Count()); CHECK_LE(50000, measure.Size()); CHECK_LE(measure.Count(), count_upper_limit); CHECK_LE(measure.Size(), size_upper_limit); } TEST(ScriptIterator) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Isolate* isolate = CcTest::i_isolate(); Heap* heap = CcTest::heap(); LocalContext context; heap->CollectAllGarbage(); int script_count = 0; { HeapIterator it(heap); for (HeapObject* obj = it.next(); obj != NULL; obj = it.next()) { if (obj->IsScript()) script_count++; } } { Script::Iterator iterator(isolate); while (iterator.Next()) script_count--; } CHECK_EQ(0, script_count); } TEST(SharedFunctionInfoIterator) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Isolate* isolate = CcTest::i_isolate(); Heap* heap = CcTest::heap(); LocalContext context; heap->CollectAllGarbage(); heap->CollectAllGarbage(); int sfi_count = 0; { HeapIterator it(heap); for (HeapObject* obj = it.next(); obj != NULL; obj = it.next()) { if (!obj->IsSharedFunctionInfo()) continue; sfi_count++; } } { SharedFunctionInfo::Iterator iterator(isolate); while (iterator.Next()) sfi_count--; } CHECK_EQ(0, sfi_count); } template static UniqueId MakeUniqueId(const Persistent& p) { return UniqueId(reinterpret_cast(*v8::Utils::OpenPersistent(p))); } TEST(Regress519319) { CcTest::InitializeVM(); v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope scope(isolate); Heap* heap = CcTest::heap(); LocalContext context; v8::Persistent parent; v8::Persistent child; parent.Reset(isolate, v8::Object::New(isolate)); child.Reset(isolate, v8::Object::New(isolate)); heap::SimulateFullSpace(heap->old_space()); heap->CollectGarbage(OLD_SPACE); { UniqueId id = MakeUniqueId(parent); isolate->SetObjectGroupId(parent, id); isolate->SetReferenceFromGroup(id, child); } // The CollectGarbage call above starts sweeper threads. // The crash will happen if the following two functions // are called before sweeping finishes. heap->StartIncrementalMarking(); heap->FinalizeIncrementalMarkingIfComplete("test"); } HEAP_TEST(TestMemoryReducerSampleJsCalls) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Heap* heap = CcTest::heap(); Isolate* isolate = CcTest::i_isolate(); MemoryReducer* memory_reducer = heap->memory_reducer_; memory_reducer->SampleAndGetJsCallsPerMs(0); isolate->IncrementJsCallsFromApiCounter(); isolate->IncrementJsCallsFromApiCounter(); isolate->IncrementJsCallsFromApiCounter(); double calls_per_ms = memory_reducer->SampleAndGetJsCallsPerMs(1); CheckDoubleEquals(3, calls_per_ms); calls_per_ms = memory_reducer->SampleAndGetJsCallsPerMs(2); CheckDoubleEquals(0, calls_per_ms); isolate->IncrementJsCallsFromApiCounter(); isolate->IncrementJsCallsFromApiCounter(); isolate->IncrementJsCallsFromApiCounter(); isolate->IncrementJsCallsFromApiCounter(); calls_per_ms = memory_reducer->SampleAndGetJsCallsPerMs(4); CheckDoubleEquals(2, calls_per_ms); } HEAP_TEST(Regress587004) { FLAG_concurrent_sweeping = false; #ifdef VERIFY_HEAP FLAG_verify_heap = false; #endif CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Heap* heap = CcTest::heap(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); const int N = (Page::kMaxRegularHeapObjectSize - FixedArray::kHeaderSize) / kPointerSize; Handle array = factory->NewFixedArray(N, TENURED); CHECK(heap->old_space()->Contains(*array)); Handle number = factory->NewHeapNumber(1.0); CHECK(heap->InNewSpace(*number)); for (int i = 0; i < N; i++) { array->set(i, *number); } heap->CollectGarbage(OLD_SPACE); heap::SimulateFullSpace(heap->old_space()); heap->RightTrimFixedArray(*array, N - 1); heap->mark_compact_collector()->EnsureSweepingCompleted(); ByteArray* byte_array; const int M = 256; // Don't allow old space expansion. The test works without this flag too, // but becomes very slow. heap->set_force_oom(true); while (heap->AllocateByteArray(M, TENURED).To(&byte_array)) { for (int j = 0; j < M; j++) { byte_array->set(j, 0x31); } } // Re-enable old space expansion to avoid OOM crash. heap->set_force_oom(false); heap->CollectGarbage(NEW_SPACE); } HEAP_TEST(Regress589413) { FLAG_stress_compaction = true; FLAG_manual_evacuation_candidates_selection = true; FLAG_parallel_compaction = false; FLAG_concurrent_sweeping = false; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Heap* heap = CcTest::heap(); // Get the heap in clean state. heap->CollectGarbage(OLD_SPACE); heap->CollectGarbage(OLD_SPACE); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); // Fill the new space with byte arrays with elements looking like pointers. const int M = 256; ByteArray* byte_array; while (heap->AllocateByteArray(M).To(&byte_array)) { for (int j = 0; j < M; j++) { byte_array->set(j, 0x31); } // Add the array in root set. handle(byte_array); } // Make sure the byte arrays will be promoted on the next GC. heap->CollectGarbage(NEW_SPACE); // This number is close to large free list category threshold. const int N = 0x3eee; { std::vector arrays; std::set pages; FixedArray* array; // Fill all pages with fixed arrays. heap->set_force_oom(true); while (heap->AllocateFixedArray(N, TENURED).To(&array)) { arrays.push_back(array); pages.insert(Page::FromAddress(array->address())); // Add the array in root set. handle(array); } // Expand and full one complete page with fixed arrays. heap->set_force_oom(false); while (heap->AllocateFixedArray(N, TENURED).To(&array)) { arrays.push_back(array); pages.insert(Page::FromAddress(array->address())); // Add the array in root set. handle(array); // Do not expand anymore. heap->set_force_oom(true); } // Expand and mark the new page as evacuation candidate. heap->set_force_oom(false); { AlwaysAllocateScope always_allocate(isolate); Handle ec_obj = factory->NewFixedArray(5000, TENURED); Page* ec_page = Page::FromAddress(ec_obj->address()); ec_page->SetFlag(MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING); // Make all arrays point to evacuation candidate so that // slots are recorded for them. for (size_t j = 0; j < arrays.size(); j++) { array = arrays[j]; for (int i = 0; i < N; i++) { array->set(i, *ec_obj); } } } heap::SimulateIncrementalMarking(heap); for (size_t j = 0; j < arrays.size(); j++) { heap->RightTrimFixedArray(arrays[j], N - 1); } } // Force allocation from the free list. heap->set_force_oom(true); heap->CollectGarbage(OLD_SPACE); } TEST(Regress598319) { // This test ensures that no white objects can cross the progress bar of large // objects during incremental marking. It checks this by using Shift() during // incremental marking. CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Heap* heap = CcTest::heap(); Isolate* isolate = heap->isolate(); const int kNumberOfObjects = Page::kMaxRegularHeapObjectSize / kPointerSize; struct Arr { Arr(Isolate* isolate, int number_of_objects) { root = isolate->factory()->NewFixedArray(1, TENURED); { // Temporary scope to avoid getting any other objects into the root set. v8::HandleScope scope(CcTest::isolate()); Handle tmp = isolate->factory()->NewFixedArray(number_of_objects); root->set(0, *tmp); for (int i = 0; i < get()->length(); i++) { tmp = isolate->factory()->NewFixedArray(100, TENURED); get()->set(i, *tmp); } } } FixedArray* get() { return FixedArray::cast(root->get(0)); } Handle root; } arr(isolate, kNumberOfObjects); CHECK_EQ(arr.get()->length(), kNumberOfObjects); CHECK(heap->lo_space()->Contains(arr.get())); LargePage* page = heap->lo_space()->FindPage(arr.get()->address()); CHECK_NOT_NULL(page); // GC to cleanup state heap->CollectGarbage(OLD_SPACE); MarkCompactCollector* collector = heap->mark_compact_collector(); if (collector->sweeping_in_progress()) { collector->EnsureSweepingCompleted(); } CHECK(heap->lo_space()->Contains(arr.get())); CHECK(Marking::IsWhite(ObjectMarking::MarkBitFrom(arr.get()))); for (int i = 0; i < arr.get()->length(); i++) { CHECK(Marking::IsWhite( ObjectMarking::MarkBitFrom(HeapObject::cast(arr.get()->get(i))))); } // Start incremental marking. IncrementalMarking* marking = heap->incremental_marking(); CHECK(marking->IsMarking() || marking->IsStopped()); if (marking->IsStopped()) { heap->StartIncrementalMarking(); } CHECK(marking->IsMarking()); // Check that we have not marked the interesting array during root scanning. for (int i = 0; i < arr.get()->length(); i++) { CHECK(Marking::IsWhite( ObjectMarking::MarkBitFrom(HeapObject::cast(arr.get()->get(i))))); } // Now we search for a state where we are in incremental marking and have // only partially marked the large object. while (!marking->IsComplete()) { marking->Step(i::KB, i::IncrementalMarking::NO_GC_VIA_STACK_GUARD); if (page->IsFlagSet(Page::HAS_PROGRESS_BAR) && page->progress_bar() > 0) { CHECK_NE(page->progress_bar(), arr.get()->Size()); { // Shift by 1, effectively moving one white object across the progress // bar, meaning that we will miss marking it. v8::HandleScope scope(CcTest::isolate()); Handle js_array = isolate->factory()->NewJSArrayWithElements( Handle(arr.get())); js_array->GetElementsAccessor()->Shift(js_array); } break; } } // Finish marking with bigger steps to speed up test. while (!marking->IsComplete()) { marking->Step(10 * i::MB, i::IncrementalMarking::NO_GC_VIA_STACK_GUARD); if (marking->IsReadyToOverApproximateWeakClosure()) { marking->FinalizeIncrementally(); } } CHECK(marking->IsComplete()); // All objects need to be black after marking. If a white object crossed the // progress bar, we would fail here. for (int i = 0; i < arr.get()->length(); i++) { CHECK(Marking::IsBlack( ObjectMarking::MarkBitFrom(HeapObject::cast(arr.get()->get(i))))); } } TEST(Regress609761) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Heap* heap = CcTest::heap(); Isolate* isolate = heap->isolate(); intptr_t size_before = heap->SizeOfObjects(); Handle array = isolate->factory()->NewFixedArray(200000); array->Shrink(1); intptr_t size_after = heap->SizeOfObjects(); CHECK_EQ(size_after, size_before + array->Size()); } TEST(Regress615489) { FLAG_black_allocation = true; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Heap* heap = CcTest::heap(); Isolate* isolate = heap->isolate(); heap->CollectAllGarbage(); i::MarkCompactCollector* collector = heap->mark_compact_collector(); i::IncrementalMarking* marking = heap->incremental_marking(); if (collector->sweeping_in_progress()) { collector->EnsureSweepingCompleted(); } CHECK(marking->IsMarking() || marking->IsStopped()); if (marking->IsStopped()) { heap->StartIncrementalMarking(); } CHECK(marking->IsMarking()); marking->StartBlackAllocationForTesting(); { AlwaysAllocateScope always_allocate(CcTest::i_isolate()); v8::HandleScope inner(CcTest::isolate()); isolate->factory()->NewFixedArray(500, TENURED)->Size(); } while (!marking->IsComplete()) { marking->Step(i::MB, i::IncrementalMarking::NO_GC_VIA_STACK_GUARD); if (marking->IsReadyToOverApproximateWeakClosure()) { marking->FinalizeIncrementally(); } } CHECK(marking->IsComplete()); intptr_t size_before = heap->SizeOfObjects(); CcTest::heap()->CollectAllGarbage(); intptr_t size_after = heap->SizeOfObjects(); // Live size does not increase after garbage collection. CHECK_LE(size_after, size_before); } class StaticOneByteResource : public v8::String::ExternalOneByteStringResource { public: explicit StaticOneByteResource(const char* data) : data_(data) {} ~StaticOneByteResource() {} const char* data() const { return data_; } size_t length() const { return strlen(data_); } private: const char* data_; }; TEST(Regress631969) { FLAG_manual_evacuation_candidates_selection = true; FLAG_parallel_compaction = false; FLAG_concurrent_sweeping = false; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Heap* heap = CcTest::heap(); // Get the heap in clean state. heap->CollectGarbage(OLD_SPACE); heap->CollectGarbage(OLD_SPACE); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); // Allocate two strings in a fresh page and mark the page as evacuation // candidate. heap::SimulateFullSpace(heap->old_space()); Handle s1 = factory->NewStringFromStaticChars("123456789", TENURED); Handle s2 = factory->NewStringFromStaticChars("01234", TENURED); Page::FromAddress(s1->address()) ->SetFlag(MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING); heap::SimulateIncrementalMarking(heap, false); // Allocate a cons string and promote it to a fresh page in the old space. heap::SimulateFullSpace(heap->old_space()); Handle s3; factory->NewConsString(s1, s2).ToHandle(&s3); heap->CollectGarbage(NEW_SPACE); heap->CollectGarbage(NEW_SPACE); // Finish incremental marking. IncrementalMarking* marking = heap->incremental_marking(); while (!marking->IsComplete()) { marking->Step(MB, i::IncrementalMarking::NO_GC_VIA_STACK_GUARD); if (marking->IsReadyToOverApproximateWeakClosure()) { marking->FinalizeIncrementally(); } } { StaticOneByteResource external_string("12345678901234"); s3->MakeExternal(&external_string); heap->CollectGarbage(OLD_SPACE); } } TEST(LeftTrimFixedArrayInBlackArea) { FLAG_black_allocation = true; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Heap* heap = CcTest::heap(); Isolate* isolate = heap->isolate(); heap->CollectAllGarbage(); i::MarkCompactCollector* collector = heap->mark_compact_collector(); i::IncrementalMarking* marking = heap->incremental_marking(); if (collector->sweeping_in_progress()) { collector->EnsureSweepingCompleted(); } CHECK(marking->IsMarking() || marking->IsStopped()); if (marking->IsStopped()) { heap->StartIncrementalMarking(); } CHECK(marking->IsMarking()); marking->StartBlackAllocationForTesting(); // Ensure that we allocate a new page, set up a bump pointer area, and // perform the allocation in a black area. heap::SimulateFullSpace(heap->old_space()); isolate->factory()->NewFixedArray(4, TENURED); Handle array = isolate->factory()->NewFixedArray(50, TENURED); CHECK(heap->old_space()->Contains(*array)); CHECK(Marking::IsBlack(ObjectMarking::MarkBitFrom(*array))); // Now left trim the allocated black area. A filler has to be installed // for the trimmed area and all mark bits of the trimmed area have to be // cleared. FixedArrayBase* trimmed = heap->LeftTrimFixedArray(*array, 10); CHECK(Marking::IsBlack(ObjectMarking::MarkBitFrom(trimmed))); heap::GcAndSweep(heap, OLD_SPACE); } TEST(ContinuousLeftTrimFixedArrayInBlackArea) { FLAG_black_allocation = true; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Heap* heap = CcTest::heap(); Isolate* isolate = heap->isolate(); heap->CollectAllGarbage(); i::MarkCompactCollector* collector = heap->mark_compact_collector(); i::IncrementalMarking* marking = heap->incremental_marking(); if (collector->sweeping_in_progress()) { collector->EnsureSweepingCompleted(); } CHECK(marking->IsMarking() || marking->IsStopped()); if (marking->IsStopped()) { heap->StartIncrementalMarking(); } CHECK(marking->IsMarking()); marking->StartBlackAllocationForTesting(); // Ensure that we allocate a new page, set up a bump pointer area, and // perform the allocation in a black area. heap::SimulateFullSpace(heap->old_space()); isolate->factory()->NewFixedArray(10, TENURED); // Allocate the fixed array that will be trimmed later. Handle array = isolate->factory()->NewFixedArray(100, TENURED); Address start_address = array->address(); Address end_address = start_address + array->Size(); Page* page = Page::FromAddress(start_address); CHECK(Marking::IsBlack(ObjectMarking::MarkBitFrom(*array))); CHECK(page->markbits()->AllBitsSetInRange( page->AddressToMarkbitIndex(start_address), page->AddressToMarkbitIndex(end_address))); CHECK(heap->old_space()->Contains(*array)); FixedArrayBase* previous = *array; FixedArrayBase* trimmed; // First trim in one word steps. for (int i = 0; i < 10; i++) { trimmed = heap->LeftTrimFixedArray(previous, 1); HeapObject* filler = HeapObject::FromAddress(previous->address()); CHECK(filler->IsFiller()); CHECK(Marking::IsBlack(ObjectMarking::MarkBitFrom(trimmed))); CHECK(Marking::IsImpossible(ObjectMarking::MarkBitFrom(previous))); previous = trimmed; } // Then trim in two and three word steps. for (int i = 2; i <= 3; i++) { for (int j = 0; j < 10; j++) { trimmed = heap->LeftTrimFixedArray(previous, i); HeapObject* filler = HeapObject::FromAddress(previous->address()); CHECK(filler->IsFiller()); CHECK(Marking::IsBlack(ObjectMarking::MarkBitFrom(trimmed))); CHECK(Marking::IsWhite(ObjectMarking::MarkBitFrom(previous))); previous = trimmed; } } heap::GcAndSweep(heap, OLD_SPACE); } TEST(ContinuousRightTrimFixedArrayInBlackArea) { FLAG_black_allocation = true; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Heap* heap = CcTest::heap(); Isolate* isolate = heap->isolate(); heap->CollectAllGarbage(); i::MarkCompactCollector* collector = heap->mark_compact_collector(); i::IncrementalMarking* marking = heap->incremental_marking(); if (collector->sweeping_in_progress()) { collector->EnsureSweepingCompleted(); } CHECK(marking->IsMarking() || marking->IsStopped()); if (marking->IsStopped()) { heap->StartIncrementalMarking(); } CHECK(marking->IsMarking()); marking->StartBlackAllocationForTesting(); // Ensure that we allocate a new page, set up a bump pointer area, and // perform the allocation in a black area. heap::SimulateFullSpace(heap->old_space()); isolate->factory()->NewFixedArray(10, TENURED); // Allocate the fixed array that will be trimmed later. Handle array = isolate->factory()->NewFixedArray(100, TENURED); Address start_address = array->address(); Address end_address = start_address + array->Size(); Page* page = Page::FromAddress(start_address); CHECK(Marking::IsBlack(ObjectMarking::MarkBitFrom(*array))); CHECK(page->markbits()->AllBitsSetInRange( page->AddressToMarkbitIndex(start_address), page->AddressToMarkbitIndex(end_address))); CHECK(heap->old_space()->Contains(*array)); // Trim it once by one word to make checking for white marking color uniform. Address previous = end_address - kPointerSize; heap->RightTrimFixedArray(*array, 1); HeapObject* filler = HeapObject::FromAddress(previous); CHECK(filler->IsFiller()); CHECK(Marking::IsImpossible(ObjectMarking::MarkBitFrom(previous))); // Trim 10 times by one, two, and three word. for (int i = 1; i <= 3; i++) { for (int j = 0; j < 10; j++) { previous -= kPointerSize * i; heap->RightTrimFixedArray(*array, i); HeapObject* filler = HeapObject::FromAddress(previous); CHECK(filler->IsFiller()); CHECK(Marking::IsWhite(ObjectMarking::MarkBitFrom(previous))); } } heap::GcAndSweep(heap, OLD_SPACE); } TEST(SlotFilteringAfterBlackAreas) { FLAG_black_allocation = true; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Heap* heap = CcTest::heap(); Isolate* isolate = heap->isolate(); MarkCompactCollector* mark_compact_collector = heap->mark_compact_collector(); heap->CollectAllGarbage(); i::MarkCompactCollector* collector = heap->mark_compact_collector(); i::IncrementalMarking* marking = heap->incremental_marking(); if (collector->sweeping_in_progress()) { collector->EnsureSweepingCompleted(); } CHECK(marking->IsMarking() || marking->IsStopped()); if (marking->IsStopped()) { heap->StartIncrementalMarking(); } CHECK(marking->IsMarking()); marking->StartBlackAllocationForTesting(); // Ensure that we allocate a new page, set up a bump pointer area, and // perform the allocation in a black area. heap::SimulateFullSpace(heap->old_space()); Handle array = isolate->factory()->NewFixedArray(10, TENURED); Page* page = Page::FromAddress(array->address()); // After allocation we empty the allocation info to limit the black area // only on the allocated array. heap->old_space()->EmptyAllocationInfo(); // Slots in the black area are part of the black object. CHECK(mark_compact_collector->IsSlotInBlackObject(page, array->address())); CHECK(mark_compact_collector->IsSlotInBlackObject( page, array->address() + array->Size() - kPointerSize)); // Slots after the black area are not part of the black object and have to // be filtered out. CHECK(!mark_compact_collector->IsSlotInBlackObject( page, array->address() + array->Size())); } TEST(Regress618958) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Heap* heap = CcTest::heap(); bool isolate_is_locked = true; heap->update_external_memory(100 * MB); int mark_sweep_count_before = heap->ms_count(); heap->MemoryPressureNotification(MemoryPressureLevel::kCritical, isolate_is_locked); int mark_sweep_count_after = heap->ms_count(); int mark_sweeps_performed = mark_sweep_count_after - mark_sweep_count_before; // The memory pressuer handler either performed two GCs or performed one and // started incremental marking. CHECK(mark_sweeps_performed == 2 || (mark_sweeps_performed == 1 && !heap->incremental_marking()->IsStopped())); } TEST(UncommitUnusedLargeObjectMemory) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Heap* heap = CcTest::heap(); Isolate* isolate = heap->isolate(); Handle array = isolate->factory()->NewFixedArray(200000); MemoryChunk* chunk = MemoryChunk::FromAddress(array->address()); CHECK(chunk->owner()->identity() == LO_SPACE); intptr_t size_before = array->Size(); size_t committed_memory_before = chunk->CommittedPhysicalMemory(); array->Shrink(1); CHECK(array->Size() < size_before); CcTest::heap()->CollectAllGarbage(); CHECK(chunk->CommittedPhysicalMemory() < committed_memory_before); size_t shrinked_size = RoundUp((array->address() - chunk->address()) + array->Size(), base::OS::CommitPageSize()); CHECK_EQ(shrinked_size, chunk->CommittedPhysicalMemory()); } TEST(RememberedSetRemoveRange) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Heap* heap = CcTest::heap(); Isolate* isolate = heap->isolate(); Handle array = isolate->factory()->NewFixedArray(Page::kPageSize / kPointerSize); MemoryChunk* chunk = MemoryChunk::FromAddress(array->address()); CHECK(chunk->owner()->identity() == LO_SPACE); Address start = array->address(); // Maps slot to boolean indicator of whether the slot should be in the set. std::map slots; slots[start + 0] = true; slots[start + kPointerSize] = true; slots[start + Page::kPageSize - kPointerSize] = true; slots[start + Page::kPageSize] = true; slots[start + Page::kPageSize + kPointerSize] = true; slots[chunk->area_end() - kPointerSize] = true; for (auto x : slots) { RememberedSet::Insert(chunk, x.first); } RememberedSet::Iterate(chunk, [&slots](Address addr) { CHECK(slots[addr]); return KEEP_SLOT; }); RememberedSet::RemoveRange(chunk, start, start + kPointerSize); slots[start] = false; RememberedSet::Iterate(chunk, [&slots](Address addr) { CHECK(slots[addr]); return KEEP_SLOT; }); RememberedSet::RemoveRange(chunk, start + kPointerSize, start + Page::kPageSize); slots[start + kPointerSize] = false; slots[start + Page::kPageSize - kPointerSize] = false; RememberedSet::Iterate(chunk, [&slots](Address addr) { CHECK(slots[addr]); return KEEP_SLOT; }); RememberedSet::RemoveRange( chunk, start, start + Page::kPageSize + kPointerSize); slots[start + Page::kPageSize] = false; RememberedSet::Iterate(chunk, [&slots](Address addr) { CHECK(slots[addr]); return KEEP_SLOT; }); RememberedSet::RemoveRange( chunk, chunk->area_end() - kPointerSize, chunk->area_end()); slots[chunk->area_end() - kPointerSize] = false; RememberedSet::Iterate(chunk, [&slots](Address addr) { CHECK(slots[addr]); return KEEP_SLOT; }); } } // namespace internal } // namespace v8