// Copyright 2009 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef V8_X64_ASSEMBLER_X64_INL_H_ #define V8_X64_ASSEMBLER_X64_INL_H_ #include "cpu.h" namespace v8 { namespace internal { Condition NegateCondition(Condition cc) { return static_cast(cc ^ 1); } // ----------------------------------------------------------------------------- // Implementation of Assembler void Assembler::emitl(uint32_t x) { Memory::uint32_at(pc_) = x; pc_ += sizeof(uint32_t); } void Assembler::emitq(uint64_t x, RelocInfo::Mode rmode) { Memory::uint64_at(pc_) = x; RecordRelocInfo(rmode, x); } // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B. // REX.W is set. REX.X is cleared. void Assembler::emit_rex_64(Register reg, Register rm_reg) { emit(0x48 | (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3); } // The high bit of reg is used for REX.R, the high bit of op's base // register is used for REX.B, and the high bit of op's index register // is used for REX.X. REX.W is set. void Assembler::emit_rex_64(Register reg, const Operand& op) { emit(0x48 | (reg.code() & 0x8) >> 1 | op.rex_); } // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B. // REX.W is set. REX.X is cleared. void Assembler::emit_rex_32(Register reg, Register rm_reg) { emit(0x40 | (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3); } // The high bit of reg is used for REX.R, the high bit of op's base // register is used for REX.B, and the high bit of op's index register // is used for REX.X. REX.W is cleared. void Assembler::emit_rex_32(Register reg, const Operand& op) { emit(0x40 | (reg.code() & 0x8) >> 1 | op.rex_); } // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B. // REX.W and REX.X are cleared. If no REX bits are set, no byte is emitted. void Assembler::emit_optional_rex_32(Register reg, Register rm_reg) { byte rex_bits = (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3; if (rex_bits) emit(0x40 | rex_bits); } // The high bit of reg is used for REX.R, the high bit of op's base // register is used for REX.B, and the high bit of op's index register // is used for REX.X. REX.W is cleared. If no REX bits are set, nothing // is emitted. void Assembler::emit_optional_rex_32(Register reg, const Operand& op) { byte rex_bits = (reg.code() & 0x8) >> 1 | op.rex_; if (rex_bits) emit(0x40 | rex_bits); } void Assembler::set_target_address_at(byte* location, byte* value) { UNIMPLEMENTED(); } byte* Assembler::target_address_at(byte* location) { UNIMPLEMENTED(); return NULL; } // ----------------------------------------------------------------------------- // Implementation of RelocInfo // The modes possibly affected by apply must be in kApplyMask. void RelocInfo::apply(int delta) { if (rmode_ == RUNTIME_ENTRY || IsCodeTarget(rmode_)) { intptr_t* p = reinterpret_cast(pc_); *p -= delta; // relocate entry } else if (rmode_ == JS_RETURN && IsCallInstruction()) { // Special handling of js_return when a break point is set (call // instruction has been inserted). intptr_t* p = reinterpret_cast(pc_ + 1); *p -= delta; // relocate entry } else if (IsInternalReference(rmode_)) { // absolute code pointer inside code object moves with the code object. intptr_t* p = reinterpret_cast(pc_); *p += delta; // relocate entry } } Address RelocInfo::target_address() { ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY); return Assembler::target_address_at(pc_); } Address RelocInfo::target_address_address() { ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY); return reinterpret_cast
(pc_); } void RelocInfo::set_target_address(Address target) { ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY); Assembler::set_target_address_at(pc_, target); } Object* RelocInfo::target_object() { ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); return *reinterpret_cast(pc_); } Object** RelocInfo::target_object_address() { ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); return reinterpret_cast(pc_); } Address* RelocInfo::target_reference_address() { ASSERT(rmode_ == RelocInfo::EXTERNAL_REFERENCE); return reinterpret_cast(pc_); } void RelocInfo::set_target_object(Object* target) { ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); *reinterpret_cast(pc_) = target; } bool RelocInfo::IsCallInstruction() { UNIMPLEMENTED(); // IA32 code below. return *pc_ == 0xE8; } Address RelocInfo::call_address() { UNIMPLEMENTED(); // IA32 code below. ASSERT(IsCallInstruction()); return Assembler::target_address_at(pc_ + 1); } void RelocInfo::set_call_address(Address target) { UNIMPLEMENTED(); // IA32 code below. ASSERT(IsCallInstruction()); Assembler::set_target_address_at(pc_ + 1, target); } Object* RelocInfo::call_object() { UNIMPLEMENTED(); // IA32 code below. ASSERT(IsCallInstruction()); return *call_object_address(); } void RelocInfo::set_call_object(Object* target) { UNIMPLEMENTED(); // IA32 code below. ASSERT(IsCallInstruction()); *call_object_address() = target; } Object** RelocInfo::call_object_address() { UNIMPLEMENTED(); // IA32 code below. ASSERT(IsCallInstruction()); return reinterpret_cast(pc_ + 1); } // ----------------------------------------------------------------------------- // Implementation of Operand Operand::Operand(Register base, int32_t disp) { len_ = 1; if (base.is(rsp) || base.is(r12)) { // SIB byte is needed to encode (rsp + offset) or (r12 + offset). set_sib(times_1, rsp, base); } if (disp == 0 && !base.is(rbp) && !base.is(r13)) { set_modrm(0, rsp); } else if (is_int8(disp)) { set_modrm(1, base); set_disp8(disp); } else { set_modrm(2, base); set_disp32(disp); } } void Operand::set_modrm(int mod, Register rm) { ASSERT((mod & -4) == 0); buf_[0] = mod << 6 | (rm.code() & 0x7); // Set REX.B to the high bit of rm.code(). rex_ |= (rm.code() >> 3); } void Operand::set_sib(ScaleFactor scale, Register index, Register base) { ASSERT(len_ == 1); ASSERT((scale & -4) == 0); // Use SIB with no index register only for base rsp or r12. ASSERT(!index.is(rsp) || base.is(rsp) || base.is(r12)); buf_[1] = scale << 6 | (index.code() & 0x7) << 3 | (base.code() & 0x7); rex_ |= (index.code() >> 3) << 1 | base.code() >> 3; len_ = 2; } void Operand::set_disp8(int disp) { ASSERT(is_int8(disp)); ASSERT(len_ == 1 || len_ == 2); int8_t* p = reinterpret_cast(&buf_[len_]); *p = disp; len_ += sizeof(int8_t); } void Operand::set_disp32(int disp) { ASSERT(len_ == 1 || len_ == 2); int32_t* p = reinterpret_cast(&buf_[len_]); *p = disp; len_ += sizeof(int32_t); } } } // namespace v8::internal #endif // V8_X64_ASSEMBLER_X64_INL_H_