// Copyright 2016 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include #include "include/v8.h" #include "src/isolate.h" #include "src/objects-inl.h" #include "src/objects.h" #include "src/utils.h" #include "src/wasm/wasm-interpreter.h" #include "src/wasm/wasm-module-builder.h" #include "src/wasm/wasm-module.h" #include "test/common/wasm/test-signatures.h" #include "test/common/wasm/wasm-module-runner.h" #include "test/fuzzer/fuzzer-support.h" #include "test/fuzzer/wasm-fuzzer-common.h" namespace v8 { namespace internal { namespace wasm { namespace fuzzer { static constexpr uint32_t kMaxNumFunctions = 3; static constexpr uint32_t kMaxNumParams = 3; class WasmCallFuzzer : public WasmExecutionFuzzer { template static inline V read_value(const uint8_t** data, size_t* size, bool* ok) { // The status flag {ok} checks that the decoding up until now was okay, and // that a value of type V can be read without problems. *ok &= (*size > sizeof(V)); if (!(*ok)) return 0; V result = ReadLittleEndianValue(*data); *data += sizeof(V); *size -= sizeof(V); return result; } static void add_argument(Isolate* isolate, ValueType type, WasmValue* interpreter_args, Handle* compiler_args, int* argc, const uint8_t** data, size_t* size, bool* ok) { if (!(*ok)) return; switch (type) { case kWasmF32: { float value = read_value(data, size, ok); interpreter_args[*argc] = WasmValue(value); compiler_args[*argc] = isolate->factory()->NewNumber(static_cast(value)); break; } case kWasmF64: { double value = read_value(data, size, ok); interpreter_args[*argc] = WasmValue(value); compiler_args[*argc] = isolate->factory()->NewNumber(value); break; } case kWasmI32: { int32_t value = read_value(data, size, ok); interpreter_args[*argc] = WasmValue(value); compiler_args[*argc] = isolate->factory()->NewNumber(static_cast(value)); break; } default: UNREACHABLE(); } (*argc)++; } bool GenerateModule( Isolate* isolate, Zone* zone, const uint8_t* data, size_t size, ZoneBuffer& buffer, int32_t& num_args, std::unique_ptr& interpreter_args, std::unique_ptr[]>& compiler_args) override { bool ok = true; uint8_t num_functions = (read_value(&data, &size, &ok) % kMaxNumFunctions) + 1; ValueType types[] = {kWasmF32, kWasmF64, kWasmI32, kWasmI64}; interpreter_args.reset(new WasmValue[3]); compiler_args.reset(new Handle[3]); WasmModuleBuilder builder(zone); for (int fun = 0; fun < num_functions; fun++) { size_t num_params = static_cast( (read_value(&data, &size, &ok) % kMaxNumParams) + 1); FunctionSig::Builder sig_builder(zone, 1, num_params); sig_builder.AddReturn(kWasmI32); for (size_t param = 0; param < num_params; param++) { // The main function cannot handle int64 parameters. ValueType param_type = types[(read_value(&data, &size, &ok) % (arraysize(types) - (fun == 0 ? 1 : 0)))]; sig_builder.AddParam(param_type); if (fun == 0) { add_argument(isolate, param_type, interpreter_args.get(), compiler_args.get(), &num_args, &data, &size, &ok); } } WasmFunctionBuilder* f = builder.AddFunction(sig_builder.Build()); uint32_t code_size = static_cast(size / num_functions); f->EmitCode(data, code_size); uint8_t end_opcode = kExprEnd; f->EmitCode(&end_opcode, 1); data += code_size; size -= code_size; if (fun == 0) { builder.AddExport(CStrVector("main"), f); } } builder.SetMaxMemorySize(32); builder.WriteTo(buffer); if (!ok) { // The input data was too short. return 0; } return true; } }; extern "C" int LLVMFuzzerTestOneInput(const uint8_t* data, size_t size) { return WasmCallFuzzer().FuzzWasmModule(data, size); } } // namespace fuzzer } // namespace wasm } // namespace internal } // namespace v8