// Copyright 2009 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if defined(V8_TARGET_ARCH_ARM) #include "codegen-inl.h" #include "compiler.h" #include "debug.h" #include "full-codegen.h" #include "parser.h" #include "scopes.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm_) // Generate code for a JS function. On entry to the function the receiver // and arguments have been pushed on the stack left to right. The actual // argument count matches the formal parameter count expected by the // function. // // The live registers are: // o r1: the JS function object being called (ie, ourselves) // o cp: our context // o fp: our caller's frame pointer // o sp: stack pointer // o lr: return address // // The function builds a JS frame. Please see JavaScriptFrameConstants in // frames-arm.h for its layout. void FullCodeGenerator::Generate(CompilationInfo* info, Mode mode) { ASSERT(info_ == NULL); info_ = info; SetFunctionPosition(function()); Comment cmnt(masm_, "[ function compiled by full code generator"); if (mode == PRIMARY) { int locals_count = scope()->num_stack_slots(); __ Push(lr, fp, cp, r1); if (locals_count > 0) { // Load undefined value here, so the value is ready for the loop // below. __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); } // Adjust fp to point to caller's fp. __ add(fp, sp, Operand(2 * kPointerSize)); { Comment cmnt(masm_, "[ Allocate locals"); for (int i = 0; i < locals_count; i++) { __ push(ip); } } bool function_in_register = true; // Possibly allocate a local context. int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; if (heap_slots > 0) { Comment cmnt(masm_, "[ Allocate local context"); // Argument to NewContext is the function, which is in r1. __ push(r1); if (heap_slots <= FastNewContextStub::kMaximumSlots) { FastNewContextStub stub(heap_slots); __ CallStub(&stub); } else { __ CallRuntime(Runtime::kNewContext, 1); } function_in_register = false; // Context is returned in both r0 and cp. It replaces the context // passed to us. It's saved in the stack and kept live in cp. __ str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); // Copy any necessary parameters into the context. int num_parameters = scope()->num_parameters(); for (int i = 0; i < num_parameters; i++) { Slot* slot = scope()->parameter(i)->slot(); if (slot != NULL && slot->type() == Slot::CONTEXT) { int parameter_offset = StandardFrameConstants::kCallerSPOffset + (num_parameters - 1 - i) * kPointerSize; // Load parameter from stack. __ ldr(r0, MemOperand(fp, parameter_offset)); // Store it in the context. __ mov(r1, Operand(Context::SlotOffset(slot->index()))); __ str(r0, MemOperand(cp, r1)); // Update the write barrier. This clobbers all involved // registers, so we have to use two more registers to avoid // clobbering cp. __ mov(r2, Operand(cp)); __ RecordWrite(r2, Operand(r1), r3, r0); } } } Variable* arguments = scope()->arguments()->AsVariable(); if (arguments != NULL) { // Function uses arguments object. Comment cmnt(masm_, "[ Allocate arguments object"); if (!function_in_register) { // Load this again, if it's used by the local context below. __ ldr(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); } else { __ mov(r3, r1); } // Receiver is just before the parameters on the caller's stack. int offset = scope()->num_parameters() * kPointerSize; __ add(r2, fp, Operand(StandardFrameConstants::kCallerSPOffset + offset)); __ mov(r1, Operand(Smi::FromInt(scope()->num_parameters()))); __ Push(r3, r2, r1); // Arguments to ArgumentsAccessStub: // function, receiver address, parameter count. // The stub will rewrite receiever and parameter count if the previous // stack frame was an arguments adapter frame. ArgumentsAccessStub stub(ArgumentsAccessStub::NEW_OBJECT); __ CallStub(&stub); // Duplicate the value; move-to-slot operation might clobber registers. __ mov(r3, r0); Move(arguments->slot(), r0, r1, r2); Slot* dot_arguments_slot = scope()->arguments_shadow()->AsVariable()->slot(); Move(dot_arguments_slot, r3, r1, r2); } } { Comment cmnt(masm_, "[ Declarations"); // For named function expressions, declare the function name as a // constant. if (scope()->is_function_scope() && scope()->function() != NULL) { EmitDeclaration(scope()->function(), Variable::CONST, NULL); } // Visit all the explicit declarations unless there is an illegal // redeclaration. if (scope()->HasIllegalRedeclaration()) { scope()->VisitIllegalRedeclaration(this); } else { VisitDeclarations(scope()->declarations()); } } // Check the stack for overflow or break request. // Put the lr setup instruction in the delay slot. The kInstrSize is // added to the implicit 8 byte offset that always applies to operations // with pc and gives a return address 12 bytes down. { Comment cmnt(masm_, "[ Stack check"); __ LoadRoot(r2, Heap::kStackLimitRootIndex); __ add(lr, pc, Operand(Assembler::kInstrSize)); __ cmp(sp, Operand(r2)); StackCheckStub stub; __ mov(pc, Operand(reinterpret_cast(stub.GetCode().location()), RelocInfo::CODE_TARGET), LeaveCC, lo); } if (FLAG_trace) { __ CallRuntime(Runtime::kTraceEnter, 0); } { Comment cmnt(masm_, "[ Body"); ASSERT(loop_depth() == 0); VisitStatements(function()->body()); ASSERT(loop_depth() == 0); } { Comment cmnt(masm_, "[ return ;"); // Emit a 'return undefined' in case control fell off the end of the // body. __ LoadRoot(r0, Heap::kUndefinedValueRootIndex); } EmitReturnSequence(); } void FullCodeGenerator::EmitReturnSequence() { Comment cmnt(masm_, "[ Return sequence"); if (return_label_.is_bound()) { __ b(&return_label_); } else { __ bind(&return_label_); if (FLAG_trace) { // Push the return value on the stack as the parameter. // Runtime::TraceExit returns its parameter in r0. __ push(r0); __ CallRuntime(Runtime::kTraceExit, 1); } #ifdef DEBUG // Add a label for checking the size of the code used for returning. Label check_exit_codesize; masm_->bind(&check_exit_codesize); #endif // Make sure that the constant pool is not emitted inside of the return // sequence. { Assembler::BlockConstPoolScope block_const_pool(masm_); // Here we use masm_-> instead of the __ macro to avoid the code coverage // tool from instrumenting as we rely on the code size here. int32_t sp_delta = (scope()->num_parameters() + 1) * kPointerSize; CodeGenerator::RecordPositions(masm_, function()->end_position() - 1); __ RecordJSReturn(); masm_->mov(sp, fp); masm_->ldm(ia_w, sp, fp.bit() | lr.bit()); masm_->add(sp, sp, Operand(sp_delta)); masm_->Jump(lr); } #ifdef DEBUG // Check that the size of the code used for returning matches what is // expected by the debugger. If the sp_delts above cannot be encoded in the // add instruction the add will generate two instructions. int return_sequence_length = masm_->InstructionsGeneratedSince(&check_exit_codesize); CHECK(return_sequence_length == Assembler::kJSReturnSequenceInstructions || return_sequence_length == Assembler::kJSReturnSequenceInstructions + 1); #endif } } void FullCodeGenerator::Apply(Expression::Context context, Register reg) { switch (context) { case Expression::kUninitialized: UNREACHABLE(); case Expression::kEffect: // Nothing to do. break; case Expression::kValue: // Move value into place. switch (location_) { case kAccumulator: if (!reg.is(result_register())) __ mov(result_register(), reg); break; case kStack: __ push(reg); break; } break; case Expression::kValueTest: case Expression::kTestValue: // Push an extra copy of the value in case it's needed. __ push(reg); // Fall through. case Expression::kTest: // We always call the runtime on ARM, so push the value as argument. __ push(reg); DoTest(context); break; } } void FullCodeGenerator::Apply(Expression::Context context, Slot* slot) { switch (context) { case Expression::kUninitialized: UNREACHABLE(); case Expression::kEffect: // Nothing to do. break; case Expression::kValue: case Expression::kTest: case Expression::kValueTest: case Expression::kTestValue: // On ARM we have to move the value into a register to do anything // with it. Move(result_register(), slot); Apply(context, result_register()); break; } } void FullCodeGenerator::Apply(Expression::Context context, Literal* lit) { switch (context) { case Expression::kUninitialized: UNREACHABLE(); case Expression::kEffect: break; // Nothing to do. case Expression::kValue: case Expression::kTest: case Expression::kValueTest: case Expression::kTestValue: // On ARM we have to move the value into a register to do anything // with it. __ mov(result_register(), Operand(lit->handle())); Apply(context, result_register()); break; } } void FullCodeGenerator::ApplyTOS(Expression::Context context) { switch (context) { case Expression::kUninitialized: UNREACHABLE(); case Expression::kEffect: __ Drop(1); break; case Expression::kValue: switch (location_) { case kAccumulator: __ pop(result_register()); break; case kStack: break; } break; case Expression::kValueTest: case Expression::kTestValue: // Duplicate the value on the stack in case it's needed. __ ldr(ip, MemOperand(sp)); __ push(ip); // Fall through. case Expression::kTest: DoTest(context); break; } } void FullCodeGenerator::DropAndApply(int count, Expression::Context context, Register reg) { ASSERT(count > 0); ASSERT(!reg.is(sp)); switch (context) { case Expression::kUninitialized: UNREACHABLE(); case Expression::kEffect: __ Drop(count); break; case Expression::kValue: switch (location_) { case kAccumulator: __ Drop(count); if (!reg.is(result_register())) __ mov(result_register(), reg); break; case kStack: if (count > 1) __ Drop(count - 1); __ str(reg, MemOperand(sp)); break; } break; case Expression::kTest: if (count > 1) __ Drop(count - 1); __ str(reg, MemOperand(sp)); DoTest(context); break; case Expression::kValueTest: case Expression::kTestValue: if (count == 1) { __ str(reg, MemOperand(sp)); __ push(reg); } else { // count > 1 __ Drop(count - 2); __ str(reg, MemOperand(sp, kPointerSize)); __ str(reg, MemOperand(sp)); } DoTest(context); break; } } void FullCodeGenerator::PrepareTest(Label* materialize_true, Label* materialize_false, Label** if_true, Label** if_false) { switch (context_) { case Expression::kUninitialized: UNREACHABLE(); break; case Expression::kEffect: // In an effect context, the true and the false case branch to the // same label. *if_true = *if_false = materialize_true; break; case Expression::kValue: *if_true = materialize_true; *if_false = materialize_false; break; case Expression::kTest: *if_true = true_label_; *if_false = false_label_; break; case Expression::kValueTest: *if_true = materialize_true; *if_false = false_label_; break; case Expression::kTestValue: *if_true = true_label_; *if_false = materialize_false; break; } } void FullCodeGenerator::Apply(Expression::Context context, Label* materialize_true, Label* materialize_false) { switch (context) { case Expression::kUninitialized: case Expression::kEffect: ASSERT_EQ(materialize_true, materialize_false); __ bind(materialize_true); break; case Expression::kValue: { Label done; switch (location_) { case kAccumulator: __ bind(materialize_true); __ LoadRoot(result_register(), Heap::kTrueValueRootIndex); __ jmp(&done); __ bind(materialize_false); __ LoadRoot(result_register(), Heap::kFalseValueRootIndex); break; case kStack: __ bind(materialize_true); __ LoadRoot(ip, Heap::kTrueValueRootIndex); __ push(ip); __ jmp(&done); __ bind(materialize_false); __ LoadRoot(ip, Heap::kFalseValueRootIndex); __ push(ip); break; } __ bind(&done); break; } case Expression::kTest: break; case Expression::kValueTest: __ bind(materialize_true); switch (location_) { case kAccumulator: __ LoadRoot(result_register(), Heap::kTrueValueRootIndex); break; case kStack: __ LoadRoot(ip, Heap::kTrueValueRootIndex); __ push(ip); break; } __ jmp(true_label_); break; case Expression::kTestValue: __ bind(materialize_false); switch (location_) { case kAccumulator: __ LoadRoot(result_register(), Heap::kFalseValueRootIndex); break; case kStack: __ LoadRoot(ip, Heap::kFalseValueRootIndex); __ push(ip); break; } __ jmp(false_label_); break; } } // Convert constant control flow (true or false) to the result expected for // a given expression context. void FullCodeGenerator::Apply(Expression::Context context, bool flag) { switch (context) { case Expression::kUninitialized: UNREACHABLE(); break; case Expression::kEffect: break; case Expression::kValue: { Heap::RootListIndex value_root_index = flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex; switch (location_) { case kAccumulator: __ LoadRoot(result_register(), value_root_index); break; case kStack: __ LoadRoot(ip, value_root_index); __ push(ip); break; } break; } case Expression::kTest: __ b(flag ? true_label_ : false_label_); break; case Expression::kTestValue: switch (location_) { case kAccumulator: // If value is false it's needed. if (!flag) __ LoadRoot(result_register(), Heap::kFalseValueRootIndex); break; case kStack: // If value is false it's needed. if (!flag) { __ LoadRoot(ip, Heap::kFalseValueRootIndex); __ push(ip); } break; } __ b(flag ? true_label_ : false_label_); break; case Expression::kValueTest: switch (location_) { case kAccumulator: // If value is true it's needed. if (flag) __ LoadRoot(result_register(), Heap::kTrueValueRootIndex); break; case kStack: // If value is true it's needed. if (flag) { __ LoadRoot(ip, Heap::kTrueValueRootIndex); __ push(ip); } break; } __ b(flag ? true_label_ : false_label_); break; } } void FullCodeGenerator::DoTest(Expression::Context context) { // The value to test is pushed on the stack, and duplicated on the stack // if necessary (for value/test and test/value contexts). ASSERT_NE(NULL, true_label_); ASSERT_NE(NULL, false_label_); // Call the runtime to find the boolean value of the source and then // translate it into control flow to the pair of labels. __ CallRuntime(Runtime::kToBool, 1); __ LoadRoot(ip, Heap::kTrueValueRootIndex); __ cmp(r0, ip); // Complete based on the context. switch (context) { case Expression::kUninitialized: case Expression::kEffect: case Expression::kValue: UNREACHABLE(); case Expression::kTest: __ b(eq, true_label_); __ jmp(false_label_); break; case Expression::kValueTest: { Label discard; switch (location_) { case kAccumulator: __ b(ne, &discard); __ pop(result_register()); __ jmp(true_label_); break; case kStack: __ b(eq, true_label_); break; } __ bind(&discard); __ Drop(1); __ jmp(false_label_); break; } case Expression::kTestValue: { Label discard; switch (location_) { case kAccumulator: __ b(eq, &discard); __ pop(result_register()); __ jmp(false_label_); break; case kStack: __ b(ne, false_label_); break; } __ bind(&discard); __ Drop(1); __ jmp(true_label_); break; } } } MemOperand FullCodeGenerator::EmitSlotSearch(Slot* slot, Register scratch) { switch (slot->type()) { case Slot::PARAMETER: case Slot::LOCAL: return MemOperand(fp, SlotOffset(slot)); case Slot::CONTEXT: { int context_chain_length = scope()->ContextChainLength(slot->var()->scope()); __ LoadContext(scratch, context_chain_length); return CodeGenerator::ContextOperand(scratch, slot->index()); } case Slot::LOOKUP: UNREACHABLE(); } UNREACHABLE(); return MemOperand(r0, 0); } void FullCodeGenerator::Move(Register destination, Slot* source) { // Use destination as scratch. MemOperand slot_operand = EmitSlotSearch(source, destination); __ ldr(destination, slot_operand); } void FullCodeGenerator::Move(Slot* dst, Register src, Register scratch1, Register scratch2) { ASSERT(dst->type() != Slot::LOOKUP); // Not yet implemented. ASSERT(!scratch1.is(src) && !scratch2.is(src)); MemOperand location = EmitSlotSearch(dst, scratch1); __ str(src, location); // Emit the write barrier code if the location is in the heap. if (dst->type() == Slot::CONTEXT) { __ RecordWrite(scratch1, Operand(Context::SlotOffset(dst->index())), scratch2, src); } } void FullCodeGenerator::EmitDeclaration(Variable* variable, Variable::Mode mode, FunctionLiteral* function) { Comment cmnt(masm_, "[ Declaration"); ASSERT(variable != NULL); // Must have been resolved. Slot* slot = variable->slot(); Property* prop = variable->AsProperty(); if (slot != NULL) { switch (slot->type()) { case Slot::PARAMETER: case Slot::LOCAL: if (mode == Variable::CONST) { __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); __ str(ip, MemOperand(fp, SlotOffset(slot))); } else if (function != NULL) { VisitForValue(function, kAccumulator); __ str(result_register(), MemOperand(fp, SlotOffset(slot))); } break; case Slot::CONTEXT: // We bypass the general EmitSlotSearch because we know more about // this specific context. // The variable in the decl always resides in the current context. ASSERT_EQ(0, scope()->ContextChainLength(variable->scope())); if (FLAG_debug_code) { // Check if we have the correct context pointer. __ ldr(r1, CodeGenerator::ContextOperand(cp, Context::FCONTEXT_INDEX)); __ cmp(r1, cp); __ Check(eq, "Unexpected declaration in current context."); } if (mode == Variable::CONST) { __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); __ str(ip, CodeGenerator::ContextOperand(cp, slot->index())); // No write barrier since the_hole_value is in old space. } else if (function != NULL) { VisitForValue(function, kAccumulator); __ str(result_register(), CodeGenerator::ContextOperand(cp, slot->index())); int offset = Context::SlotOffset(slot->index()); // We know that we have written a function, which is not a smi. __ mov(r1, Operand(cp)); __ RecordWrite(r1, Operand(offset), r2, result_register()); } break; case Slot::LOOKUP: { __ mov(r2, Operand(variable->name())); // Declaration nodes are always introduced in one of two modes. ASSERT(mode == Variable::VAR || mode == Variable::CONST); PropertyAttributes attr = (mode == Variable::VAR) ? NONE : READ_ONLY; __ mov(r1, Operand(Smi::FromInt(attr))); // Push initial value, if any. // Note: For variables we must not push an initial value (such as // 'undefined') because we may have a (legal) redeclaration and we // must not destroy the current value. if (mode == Variable::CONST) { __ LoadRoot(r0, Heap::kTheHoleValueRootIndex); __ Push(cp, r2, r1, r0); } else if (function != NULL) { __ Push(cp, r2, r1); // Push initial value for function declaration. VisitForValue(function, kStack); } else { __ mov(r0, Operand(Smi::FromInt(0))); // No initial value! __ Push(cp, r2, r1, r0); } __ CallRuntime(Runtime::kDeclareContextSlot, 4); break; } } } else if (prop != NULL) { if (function != NULL || mode == Variable::CONST) { // We are declaring a function or constant that rewrites to a // property. Use (keyed) IC to set the initial value. VisitForValue(prop->obj(), kStack); if (function != NULL) { VisitForValue(prop->key(), kStack); VisitForValue(function, kAccumulator); __ pop(r1); // Key. } else { VisitForValue(prop->key(), kAccumulator); __ mov(r1, result_register()); // Key. __ LoadRoot(result_register(), Heap::kTheHoleValueRootIndex); } __ pop(r2); // Receiver. Handle ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); // Value in r0 is ignored (declarations are statements). } } } void FullCodeGenerator::VisitDeclaration(Declaration* decl) { EmitDeclaration(decl->proxy()->var(), decl->mode(), decl->fun()); } void FullCodeGenerator::DeclareGlobals(Handle pairs) { // Call the runtime to declare the globals. // The context is the first argument. __ mov(r1, Operand(pairs)); __ mov(r0, Operand(Smi::FromInt(is_eval() ? 1 : 0))); __ Push(cp, r1, r0); __ CallRuntime(Runtime::kDeclareGlobals, 3); // Return value is ignored. } void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) { Comment cmnt(masm_, "[ SwitchStatement"); Breakable nested_statement(this, stmt); SetStatementPosition(stmt); // Keep the switch value on the stack until a case matches. VisitForValue(stmt->tag(), kStack); ZoneList* clauses = stmt->cases(); CaseClause* default_clause = NULL; // Can occur anywhere in the list. Label next_test; // Recycled for each test. // Compile all the tests with branches to their bodies. for (int i = 0; i < clauses->length(); i++) { CaseClause* clause = clauses->at(i); // The default is not a test, but remember it as final fall through. if (clause->is_default()) { default_clause = clause; continue; } Comment cmnt(masm_, "[ Case comparison"); __ bind(&next_test); next_test.Unuse(); // Compile the label expression. VisitForValue(clause->label(), kAccumulator); // Perform the comparison as if via '==='. The comparison stub expects // the smi vs. smi case to be handled before it is called. Label slow_case; __ ldr(r1, MemOperand(sp, 0)); // Switch value. __ orr(r2, r1, r0); __ tst(r2, Operand(kSmiTagMask)); __ b(ne, &slow_case); __ cmp(r1, r0); __ b(ne, &next_test); __ Drop(1); // Switch value is no longer needed. __ b(clause->body_target()->entry_label()); __ bind(&slow_case); CompareStub stub(eq, true, kBothCouldBeNaN, true, r1, r0); __ CallStub(&stub); __ cmp(r0, Operand(0)); __ b(ne, &next_test); __ Drop(1); // Switch value is no longer needed. __ b(clause->body_target()->entry_label()); } // Discard the test value and jump to the default if present, otherwise to // the end of the statement. __ bind(&next_test); __ Drop(1); // Switch value is no longer needed. if (default_clause == NULL) { __ b(nested_statement.break_target()); } else { __ b(default_clause->body_target()->entry_label()); } // Compile all the case bodies. for (int i = 0; i < clauses->length(); i++) { Comment cmnt(masm_, "[ Case body"); CaseClause* clause = clauses->at(i); __ bind(clause->body_target()->entry_label()); VisitStatements(clause->statements()); } __ bind(nested_statement.break_target()); } void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) { Comment cmnt(masm_, "[ ForInStatement"); SetStatementPosition(stmt); Label loop, exit; ForIn loop_statement(this, stmt); increment_loop_depth(); // Get the object to enumerate over. Both SpiderMonkey and JSC // ignore null and undefined in contrast to the specification; see // ECMA-262 section 12.6.4. VisitForValue(stmt->enumerable(), kAccumulator); __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); __ cmp(r0, ip); __ b(eq, &exit); __ LoadRoot(ip, Heap::kNullValueRootIndex); __ cmp(r0, ip); __ b(eq, &exit); // Convert the object to a JS object. Label convert, done_convert; __ BranchOnSmi(r0, &convert); __ CompareObjectType(r0, r1, r1, FIRST_JS_OBJECT_TYPE); __ b(hs, &done_convert); __ bind(&convert); __ push(r0); __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS); __ bind(&done_convert); __ push(r0); // TODO(kasperl): Check cache validity in generated code. This is a // fast case for the JSObject::IsSimpleEnum cache validity // checks. If we cannot guarantee cache validity, call the runtime // system to check cache validity or get the property names in a // fixed array. // Get the set of properties to enumerate. __ push(r0); // Duplicate the enumerable object on the stack. __ CallRuntime(Runtime::kGetPropertyNamesFast, 1); // If we got a map from the runtime call, we can do a fast // modification check. Otherwise, we got a fixed array, and we have // to do a slow check. Label fixed_array; __ mov(r2, r0); __ ldr(r1, FieldMemOperand(r2, HeapObject::kMapOffset)); __ LoadRoot(ip, Heap::kMetaMapRootIndex); __ cmp(r1, ip); __ b(ne, &fixed_array); // We got a map in register r0. Get the enumeration cache from it. __ ldr(r1, FieldMemOperand(r0, Map::kInstanceDescriptorsOffset)); __ ldr(r1, FieldMemOperand(r1, DescriptorArray::kEnumerationIndexOffset)); __ ldr(r2, FieldMemOperand(r1, DescriptorArray::kEnumCacheBridgeCacheOffset)); // Setup the four remaining stack slots. __ push(r0); // Map. __ ldr(r1, FieldMemOperand(r2, FixedArray::kLengthOffset)); __ mov(r0, Operand(Smi::FromInt(0))); // Push enumeration cache, enumeration cache length (as smi) and zero. __ Push(r2, r1, r0); __ jmp(&loop); // We got a fixed array in register r0. Iterate through that. __ bind(&fixed_array); __ mov(r1, Operand(Smi::FromInt(0))); // Map (0) - force slow check. __ Push(r1, r0); __ ldr(r1, FieldMemOperand(r0, FixedArray::kLengthOffset)); __ mov(r0, Operand(Smi::FromInt(0))); __ Push(r1, r0); // Fixed array length (as smi) and initial index. // Generate code for doing the condition check. __ bind(&loop); // Load the current count to r0, load the length to r1. __ Ldrd(r0, r1, MemOperand(sp, 0 * kPointerSize)); __ cmp(r0, r1); // Compare to the array length. __ b(hs, loop_statement.break_target()); // Get the current entry of the array into register r3. __ ldr(r2, MemOperand(sp, 2 * kPointerSize)); __ add(r2, r2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ ldr(r3, MemOperand(r2, r0, LSL, kPointerSizeLog2 - kSmiTagSize)); // Get the expected map from the stack or a zero map in the // permanent slow case into register r2. __ ldr(r2, MemOperand(sp, 3 * kPointerSize)); // Check if the expected map still matches that of the enumerable. // If not, we have to filter the key. Label update_each; __ ldr(r1, MemOperand(sp, 4 * kPointerSize)); __ ldr(r4, FieldMemOperand(r1, HeapObject::kMapOffset)); __ cmp(r4, Operand(r2)); __ b(eq, &update_each); // Convert the entry to a string or null if it isn't a property // anymore. If the property has been removed while iterating, we // just skip it. __ push(r1); // Enumerable. __ push(r3); // Current entry. __ InvokeBuiltin(Builtins::FILTER_KEY, CALL_JS); __ mov(r3, Operand(r0)); __ LoadRoot(ip, Heap::kNullValueRootIndex); __ cmp(r3, ip); __ b(eq, loop_statement.continue_target()); // Update the 'each' property or variable from the possibly filtered // entry in register r3. __ bind(&update_each); __ mov(result_register(), r3); // Perform the assignment as if via '='. EmitAssignment(stmt->each()); // Generate code for the body of the loop. Label stack_limit_hit, stack_check_done; Visit(stmt->body()); __ StackLimitCheck(&stack_limit_hit); __ bind(&stack_check_done); // Generate code for the going to the next element by incrementing // the index (smi) stored on top of the stack. __ bind(loop_statement.continue_target()); __ pop(r0); __ add(r0, r0, Operand(Smi::FromInt(1))); __ push(r0); __ b(&loop); // Slow case for the stack limit check. StackCheckStub stack_check_stub; __ bind(&stack_limit_hit); __ CallStub(&stack_check_stub); __ b(&stack_check_done); // Remove the pointers stored on the stack. __ bind(loop_statement.break_target()); __ Drop(5); // Exit and decrement the loop depth. __ bind(&exit); decrement_loop_depth(); } void FullCodeGenerator::EmitNewClosure(Handle info) { // Use the fast case closure allocation code that allocates in new // space for nested functions that don't need literals cloning. if (scope()->is_function_scope() && info->num_literals() == 0) { FastNewClosureStub stub; __ mov(r0, Operand(info)); __ push(r0); __ CallStub(&stub); } else { __ mov(r0, Operand(info)); __ Push(cp, r0); __ CallRuntime(Runtime::kNewClosure, 2); } Apply(context_, r0); } void FullCodeGenerator::VisitVariableProxy(VariableProxy* expr) { Comment cmnt(masm_, "[ VariableProxy"); EmitVariableLoad(expr->var(), context_); } void FullCodeGenerator::EmitVariableLoad(Variable* var, Expression::Context context) { // Four cases: non-this global variables, lookup slots, all other // types of slots, and parameters that rewrite to explicit property // accesses on the arguments object. Slot* slot = var->slot(); Property* property = var->AsProperty(); if (var->is_global() && !var->is_this()) { Comment cmnt(masm_, "Global variable"); // Use inline caching. Variable name is passed in r2 and the global // object (receiver) in r0. __ ldr(r0, CodeGenerator::GlobalObject()); __ mov(r2, Operand(var->name())); Handle ic(Builtins::builtin(Builtins::LoadIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET_CONTEXT); Apply(context, r0); } else if (slot != NULL && slot->type() == Slot::LOOKUP) { Comment cmnt(masm_, "Lookup slot"); __ mov(r1, Operand(var->name())); __ Push(cp, r1); // Context and name. __ CallRuntime(Runtime::kLoadContextSlot, 2); Apply(context, r0); } else if (slot != NULL) { Comment cmnt(masm_, (slot->type() == Slot::CONTEXT) ? "Context slot" : "Stack slot"); if (var->mode() == Variable::CONST) { // Constants may be the hole value if they have not been initialized. // Unhole them. Label done; MemOperand slot_operand = EmitSlotSearch(slot, r0); __ ldr(r0, slot_operand); __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); __ cmp(r0, ip); __ b(ne, &done); __ LoadRoot(r0, Heap::kUndefinedValueRootIndex); __ bind(&done); Apply(context, r0); } else { Apply(context, slot); } } else { Comment cmnt(masm_, "Rewritten parameter"); ASSERT_NOT_NULL(property); // Rewritten parameter accesses are of the form "slot[literal]". // Assert that the object is in a slot. Variable* object_var = property->obj()->AsVariableProxy()->AsVariable(); ASSERT_NOT_NULL(object_var); Slot* object_slot = object_var->slot(); ASSERT_NOT_NULL(object_slot); // Load the object. Move(r1, object_slot); // Assert that the key is a smi. Literal* key_literal = property->key()->AsLiteral(); ASSERT_NOT_NULL(key_literal); ASSERT(key_literal->handle()->IsSmi()); // Load the key. __ mov(r0, Operand(key_literal->handle())); // Call keyed load IC. It has arguments key and receiver in r0 and r1. Handle ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); Apply(context, r0); } } void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) { Comment cmnt(masm_, "[ RegExpLiteral"); Label done; // Registers will be used as follows: // r4 = JS function, literals array // r3 = literal index // r2 = RegExp pattern // r1 = RegExp flags // r0 = temp + return value (RegExp literal) __ ldr(r0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ ldr(r4, FieldMemOperand(r0, JSFunction::kLiteralsOffset)); int literal_offset = FixedArray::kHeaderSize + expr->literal_index() * kPointerSize; __ ldr(r0, FieldMemOperand(r4, literal_offset)); __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); __ cmp(r0, ip); __ b(ne, &done); __ mov(r3, Operand(Smi::FromInt(expr->literal_index()))); __ mov(r2, Operand(expr->pattern())); __ mov(r1, Operand(expr->flags())); __ Push(r4, r3, r2, r1); __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4); __ bind(&done); Apply(context_, r0); } void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) { Comment cmnt(masm_, "[ ObjectLiteral"); __ ldr(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ ldr(r3, FieldMemOperand(r3, JSFunction::kLiteralsOffset)); __ mov(r2, Operand(Smi::FromInt(expr->literal_index()))); __ mov(r1, Operand(expr->constant_properties())); __ mov(r0, Operand(Smi::FromInt(expr->fast_elements() ? 1 : 0))); __ Push(r3, r2, r1, r0); if (expr->depth() > 1) { __ CallRuntime(Runtime::kCreateObjectLiteral, 4); } else { __ CallRuntime(Runtime::kCreateObjectLiteralShallow, 4); } // If result_saved is true the result is on top of the stack. If // result_saved is false the result is in r0. bool result_saved = false; for (int i = 0; i < expr->properties()->length(); i++) { ObjectLiteral::Property* property = expr->properties()->at(i); if (property->IsCompileTimeValue()) continue; Literal* key = property->key(); Expression* value = property->value(); if (!result_saved) { __ push(r0); // Save result on stack result_saved = true; } switch (property->kind()) { case ObjectLiteral::Property::CONSTANT: UNREACHABLE(); case ObjectLiteral::Property::MATERIALIZED_LITERAL: ASSERT(!CompileTimeValue::IsCompileTimeValue(property->value())); // Fall through. case ObjectLiteral::Property::COMPUTED: if (key->handle()->IsSymbol()) { VisitForValue(value, kAccumulator); __ mov(r2, Operand(key->handle())); __ ldr(r1, MemOperand(sp)); Handle ic(Builtins::builtin(Builtins::StoreIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); break; } // Fall through. case ObjectLiteral::Property::PROTOTYPE: // Duplicate receiver on stack. __ ldr(r0, MemOperand(sp)); __ push(r0); VisitForValue(key, kStack); VisitForValue(value, kStack); __ CallRuntime(Runtime::kSetProperty, 3); break; case ObjectLiteral::Property::GETTER: case ObjectLiteral::Property::SETTER: // Duplicate receiver on stack. __ ldr(r0, MemOperand(sp)); __ push(r0); VisitForValue(key, kStack); __ mov(r1, Operand(property->kind() == ObjectLiteral::Property::SETTER ? Smi::FromInt(1) : Smi::FromInt(0))); __ push(r1); VisitForValue(value, kStack); __ CallRuntime(Runtime::kDefineAccessor, 4); break; } } if (result_saved) { ApplyTOS(context_); } else { Apply(context_, r0); } } void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) { Comment cmnt(masm_, "[ ArrayLiteral"); ZoneList* subexprs = expr->values(); int length = subexprs->length(); __ ldr(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ ldr(r3, FieldMemOperand(r3, JSFunction::kLiteralsOffset)); __ mov(r2, Operand(Smi::FromInt(expr->literal_index()))); __ mov(r1, Operand(expr->constant_elements())); __ Push(r3, r2, r1); if (expr->depth() > 1) { __ CallRuntime(Runtime::kCreateArrayLiteral, 3); } else if (length > FastCloneShallowArrayStub::kMaximumLength) { __ CallRuntime(Runtime::kCreateArrayLiteralShallow, 3); } else { FastCloneShallowArrayStub stub(length); __ CallStub(&stub); } bool result_saved = false; // Is the result saved to the stack? // Emit code to evaluate all the non-constant subexpressions and to store // them into the newly cloned array. for (int i = 0; i < length; i++) { Expression* subexpr = subexprs->at(i); // If the subexpression is a literal or a simple materialized literal it // is already set in the cloned array. if (subexpr->AsLiteral() != NULL || CompileTimeValue::IsCompileTimeValue(subexpr)) { continue; } if (!result_saved) { __ push(r0); result_saved = true; } VisitForValue(subexpr, kAccumulator); // Store the subexpression value in the array's elements. __ ldr(r1, MemOperand(sp)); // Copy of array literal. __ ldr(r1, FieldMemOperand(r1, JSObject::kElementsOffset)); int offset = FixedArray::kHeaderSize + (i * kPointerSize); __ str(result_register(), FieldMemOperand(r1, offset)); // Update the write barrier for the array store with r0 as the scratch // register. __ RecordWrite(r1, Operand(offset), r2, result_register()); } if (result_saved) { ApplyTOS(context_); } else { Apply(context_, r0); } } void FullCodeGenerator::VisitAssignment(Assignment* expr) { Comment cmnt(masm_, "[ Assignment"); // Invalid left-hand sides are rewritten to have a 'throw ReferenceError' // on the left-hand side. if (!expr->target()->IsValidLeftHandSide()) { VisitForEffect(expr->target()); return; } // Left-hand side can only be a property, a global or a (parameter or local) // slot. Variables with rewrite to .arguments are treated as KEYED_PROPERTY. enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY }; LhsKind assign_type = VARIABLE; Property* prop = expr->target()->AsProperty(); if (prop != NULL) { assign_type = (prop->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY; } // Evaluate LHS expression. switch (assign_type) { case VARIABLE: // Nothing to do here. break; case NAMED_PROPERTY: if (expr->is_compound()) { // We need the receiver both on the stack and in the accumulator. VisitForValue(prop->obj(), kAccumulator); __ push(result_register()); } else { VisitForValue(prop->obj(), kStack); } break; case KEYED_PROPERTY: // We need the key and receiver on both the stack and in r0 and r1. if (expr->is_compound()) { VisitForValue(prop->obj(), kStack); VisitForValue(prop->key(), kAccumulator); __ ldr(r1, MemOperand(sp, 0)); __ push(r0); } else { VisitForValue(prop->obj(), kStack); VisitForValue(prop->key(), kStack); } break; } // If we have a compound assignment: Get value of LHS expression and // store in on top of the stack. if (expr->is_compound()) { Location saved_location = location_; location_ = kStack; switch (assign_type) { case VARIABLE: EmitVariableLoad(expr->target()->AsVariableProxy()->var(), Expression::kValue); break; case NAMED_PROPERTY: EmitNamedPropertyLoad(prop); __ push(result_register()); break; case KEYED_PROPERTY: EmitKeyedPropertyLoad(prop); __ push(result_register()); break; } location_ = saved_location; } // Evaluate RHS expression. Expression* rhs = expr->value(); VisitForValue(rhs, kAccumulator); // If we have a compound assignment: Apply operator. if (expr->is_compound()) { Location saved_location = location_; location_ = kAccumulator; EmitBinaryOp(expr->binary_op(), Expression::kValue); location_ = saved_location; } // Record source position before possible IC call. SetSourcePosition(expr->position()); // Store the value. switch (assign_type) { case VARIABLE: EmitVariableAssignment(expr->target()->AsVariableProxy()->var(), expr->op(), context_); break; case NAMED_PROPERTY: EmitNamedPropertyAssignment(expr); break; case KEYED_PROPERTY: EmitKeyedPropertyAssignment(expr); break; } } void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) { SetSourcePosition(prop->position()); Literal* key = prop->key()->AsLiteral(); __ mov(r2, Operand(key->handle())); // Call load IC. It has arguments receiver and property name r0 and r2. Handle ic(Builtins::builtin(Builtins::LoadIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); } void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) { SetSourcePosition(prop->position()); // Call keyed load IC. It has arguments key and receiver in r0 and r1. Handle ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); } void FullCodeGenerator::EmitBinaryOp(Token::Value op, Expression::Context context) { __ pop(r1); GenericBinaryOpStub stub(op, NO_OVERWRITE, r1, r0); __ CallStub(&stub); Apply(context, r0); } void FullCodeGenerator::EmitAssignment(Expression* expr) { // Invalid left-hand sides are rewritten to have a 'throw // ReferenceError' on the left-hand side. if (!expr->IsValidLeftHandSide()) { VisitForEffect(expr); return; } // Left-hand side can only be a property, a global or a (parameter or local) // slot. Variables with rewrite to .arguments are treated as KEYED_PROPERTY. enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY }; LhsKind assign_type = VARIABLE; Property* prop = expr->AsProperty(); if (prop != NULL) { assign_type = (prop->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY; } switch (assign_type) { case VARIABLE: { Variable* var = expr->AsVariableProxy()->var(); EmitVariableAssignment(var, Token::ASSIGN, Expression::kEffect); break; } case NAMED_PROPERTY: { __ push(r0); // Preserve value. VisitForValue(prop->obj(), kAccumulator); __ mov(r1, r0); __ pop(r0); // Restore value. __ mov(r2, Operand(prop->key()->AsLiteral()->handle())); Handle ic(Builtins::builtin(Builtins::StoreIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); break; } case KEYED_PROPERTY: { __ push(r0); // Preserve value. VisitForValue(prop->obj(), kStack); VisitForValue(prop->key(), kAccumulator); __ mov(r1, r0); __ pop(r2); __ pop(r0); // Restore value. Handle ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); break; } } } void FullCodeGenerator::EmitVariableAssignment(Variable* var, Token::Value op, Expression::Context context) { // Left-hand sides that rewrite to explicit property accesses do not reach // here. ASSERT(var != NULL); ASSERT(var->is_global() || var->slot() != NULL); if (var->is_global()) { ASSERT(!var->is_this()); // Assignment to a global variable. Use inline caching for the // assignment. Right-hand-side value is passed in r0, variable name in // r2, and the global object in r1. __ mov(r2, Operand(var->name())); __ ldr(r1, CodeGenerator::GlobalObject()); Handle ic(Builtins::builtin(Builtins::StoreIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); } else if (var->mode() != Variable::CONST || op == Token::INIT_CONST) { // Perform the assignment for non-const variables and for initialization // of const variables. Const assignments are simply skipped. Label done; Slot* slot = var->slot(); switch (slot->type()) { case Slot::PARAMETER: case Slot::LOCAL: if (op == Token::INIT_CONST) { // Detect const reinitialization by checking for the hole value. __ ldr(r1, MemOperand(fp, SlotOffset(slot))); __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); __ cmp(r1, ip); __ b(ne, &done); } // Perform the assignment. __ str(result_register(), MemOperand(fp, SlotOffset(slot))); break; case Slot::CONTEXT: { MemOperand target = EmitSlotSearch(slot, r1); if (op == Token::INIT_CONST) { // Detect const reinitialization by checking for the hole value. __ ldr(r2, target); __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); __ cmp(r2, ip); __ b(ne, &done); } // Perform the assignment and issue the write barrier. __ str(result_register(), target); // RecordWrite may destroy all its register arguments. __ mov(r3, result_register()); int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize; __ RecordWrite(r1, Operand(offset), r2, r3); break; } case Slot::LOOKUP: // Call the runtime for the assignment. The runtime will ignore // const reinitialization. __ push(r0); // Value. __ mov(r0, Operand(slot->var()->name())); __ Push(cp, r0); // Context and name. if (op == Token::INIT_CONST) { // The runtime will ignore const redeclaration. __ CallRuntime(Runtime::kInitializeConstContextSlot, 3); } else { __ CallRuntime(Runtime::kStoreContextSlot, 3); } break; } __ bind(&done); } Apply(context, result_register()); } void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) { // Assignment to a property, using a named store IC. Property* prop = expr->target()->AsProperty(); ASSERT(prop != NULL); ASSERT(prop->key()->AsLiteral() != NULL); // If the assignment starts a block of assignments to the same object, // change to slow case to avoid the quadratic behavior of repeatedly // adding fast properties. if (expr->starts_initialization_block()) { __ push(result_register()); __ ldr(ip, MemOperand(sp, kPointerSize)); // Receiver is now under value. __ push(ip); __ CallRuntime(Runtime::kToSlowProperties, 1); __ pop(result_register()); } // Record source code position before IC call. SetSourcePosition(expr->position()); __ mov(r2, Operand(prop->key()->AsLiteral()->handle())); // Load receiver to r1. Leave a copy in the stack if needed for turning the // receiver into fast case. if (expr->ends_initialization_block()) { __ ldr(r1, MemOperand(sp)); } else { __ pop(r1); } Handle ic(Builtins::builtin(Builtins::StoreIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); // If the assignment ends an initialization block, revert to fast case. if (expr->ends_initialization_block()) { __ push(r0); // Result of assignment, saved even if not needed. // Receiver is under the result value. __ ldr(ip, MemOperand(sp, kPointerSize)); __ push(ip); __ CallRuntime(Runtime::kToFastProperties, 1); __ pop(r0); DropAndApply(1, context_, r0); } else { Apply(context_, r0); } } void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) { // Assignment to a property, using a keyed store IC. // If the assignment starts a block of assignments to the same object, // change to slow case to avoid the quadratic behavior of repeatedly // adding fast properties. if (expr->starts_initialization_block()) { __ push(result_register()); // Receiver is now under the key and value. __ ldr(ip, MemOperand(sp, 2 * kPointerSize)); __ push(ip); __ CallRuntime(Runtime::kToSlowProperties, 1); __ pop(result_register()); } // Record source code position before IC call. SetSourcePosition(expr->position()); __ pop(r1); // Key. // Load receiver to r2. Leave a copy in the stack if needed for turning the // receiver into fast case. if (expr->ends_initialization_block()) { __ ldr(r2, MemOperand(sp)); } else { __ pop(r2); } Handle ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); // If the assignment ends an initialization block, revert to fast case. if (expr->ends_initialization_block()) { __ push(r0); // Result of assignment, saved even if not needed. // Receiver is under the result value. __ ldr(ip, MemOperand(sp, kPointerSize)); __ push(ip); __ CallRuntime(Runtime::kToFastProperties, 1); __ pop(r0); DropAndApply(1, context_, r0); } else { Apply(context_, r0); } } void FullCodeGenerator::VisitProperty(Property* expr) { Comment cmnt(masm_, "[ Property"); Expression* key = expr->key(); if (key->IsPropertyName()) { VisitForValue(expr->obj(), kAccumulator); EmitNamedPropertyLoad(expr); Apply(context_, r0); } else { VisitForValue(expr->obj(), kStack); VisitForValue(expr->key(), kAccumulator); __ pop(r1); EmitKeyedPropertyLoad(expr); Apply(context_, r0); } } void FullCodeGenerator::EmitCallWithIC(Call* expr, Handle name, RelocInfo::Mode mode) { // Code common for calls using the IC. ZoneList* args = expr->arguments(); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { VisitForValue(args->at(i), kStack); } __ mov(r2, Operand(name)); // Record source position for debugger. SetSourcePosition(expr->position()); // Call the IC initialization code. InLoopFlag in_loop = (loop_depth() > 0) ? IN_LOOP : NOT_IN_LOOP; Handle ic = CodeGenerator::ComputeCallInitialize(arg_count, in_loop); __ Call(ic, mode); // Restore context register. __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); Apply(context_, r0); } void FullCodeGenerator::EmitKeyedCallWithIC(Call* expr, Expression* key, RelocInfo::Mode mode) { // Code common for calls using the IC. ZoneList* args = expr->arguments(); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { VisitForValue(args->at(i), kStack); } VisitForValue(key, kAccumulator); __ mov(r2, r0); // Record source position for debugger. SetSourcePosition(expr->position()); // Call the IC initialization code. InLoopFlag in_loop = (loop_depth() > 0) ? IN_LOOP : NOT_IN_LOOP; Handle ic = CodeGenerator::ComputeKeyedCallInitialize(arg_count, in_loop); __ Call(ic, mode); // Restore context register. __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); Apply(context_, r0); } void FullCodeGenerator::EmitCallWithStub(Call* expr) { // Code common for calls using the call stub. ZoneList* args = expr->arguments(); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { VisitForValue(args->at(i), kStack); } // Record source position for debugger. SetSourcePosition(expr->position()); InLoopFlag in_loop = (loop_depth() > 0) ? IN_LOOP : NOT_IN_LOOP; CallFunctionStub stub(arg_count, in_loop, RECEIVER_MIGHT_BE_VALUE); __ CallStub(&stub); // Restore context register. __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); DropAndApply(1, context_, r0); } void FullCodeGenerator::VisitCall(Call* expr) { Comment cmnt(masm_, "[ Call"); Expression* fun = expr->expression(); Variable* var = fun->AsVariableProxy()->AsVariable(); if (var != NULL && var->is_possibly_eval()) { // In a call to eval, we first call %ResolvePossiblyDirectEval to // resolve the function we need to call and the receiver of the // call. Then we call the resolved function using the given // arguments. VisitForValue(fun, kStack); __ LoadRoot(r2, Heap::kUndefinedValueRootIndex); __ push(r2); // Reserved receiver slot. // Push the arguments. ZoneList* args = expr->arguments(); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { VisitForValue(args->at(i), kStack); } // Push copy of the function - found below the arguments. __ ldr(r1, MemOperand(sp, (arg_count + 1) * kPointerSize)); __ push(r1); // Push copy of the first argument or undefined if it doesn't exist. if (arg_count > 0) { __ ldr(r1, MemOperand(sp, arg_count * kPointerSize)); __ push(r1); } else { __ push(r2); } // Push the receiver of the enclosing function and do runtime call. __ ldr(r1, MemOperand(fp, (2 + scope()->num_parameters()) * kPointerSize)); __ push(r1); __ CallRuntime(Runtime::kResolvePossiblyDirectEval, 3); // The runtime call returns a pair of values in r0 (function) and // r1 (receiver). Touch up the stack with the right values. __ str(r0, MemOperand(sp, (arg_count + 1) * kPointerSize)); __ str(r1, MemOperand(sp, arg_count * kPointerSize)); // Record source position for debugger. SetSourcePosition(expr->position()); InLoopFlag in_loop = (loop_depth() > 0) ? IN_LOOP : NOT_IN_LOOP; CallFunctionStub stub(arg_count, in_loop, RECEIVER_MIGHT_BE_VALUE); __ CallStub(&stub); // Restore context register. __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); DropAndApply(1, context_, r0); } else if (var != NULL && !var->is_this() && var->is_global()) { // Push global object as receiver for the call IC. __ ldr(r0, CodeGenerator::GlobalObject()); __ push(r0); EmitCallWithIC(expr, var->name(), RelocInfo::CODE_TARGET_CONTEXT); } else if (var != NULL && var->slot() != NULL && var->slot()->type() == Slot::LOOKUP) { // Call to a lookup slot (dynamically introduced variable). Call the // runtime to find the function to call (returned in eax) and the object // holding it (returned in edx). __ push(context_register()); __ mov(r2, Operand(var->name())); __ push(r2); __ CallRuntime(Runtime::kLoadContextSlot, 2); __ push(r0); // Function. __ push(r1); // Receiver. EmitCallWithStub(expr); } else if (fun->AsProperty() != NULL) { // Call to an object property. Property* prop = fun->AsProperty(); Literal* key = prop->key()->AsLiteral(); if (key != NULL && key->handle()->IsSymbol()) { // Call to a named property, use call IC. VisitForValue(prop->obj(), kStack); EmitCallWithIC(expr, key->handle(), RelocInfo::CODE_TARGET); } else { // Call to a keyed property. // For a synthetic property use keyed load IC followed by function call, // for a regular property use keyed CallIC. VisitForValue(prop->obj(), kStack); if (prop->is_synthetic()) { VisitForValue(prop->key(), kAccumulator); // Record source code position for IC call. SetSourcePosition(prop->position()); __ pop(r1); // We do not need to keep the receiver. Handle ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); // Push result (function). __ push(r0); // Push Global receiver. __ ldr(r1, CodeGenerator::GlobalObject()); __ ldr(r1, FieldMemOperand(r1, GlobalObject::kGlobalReceiverOffset)); __ push(r1); EmitCallWithStub(expr); } else { EmitKeyedCallWithIC(expr, prop->key(), RelocInfo::CODE_TARGET); } } } else { // Call to some other expression. If the expression is an anonymous // function literal not called in a loop, mark it as one that should // also use the fast code generator. FunctionLiteral* lit = fun->AsFunctionLiteral(); if (lit != NULL && lit->name()->Equals(Heap::empty_string()) && loop_depth() == 0) { lit->set_try_full_codegen(true); } VisitForValue(fun, kStack); // Load global receiver object. __ ldr(r1, CodeGenerator::GlobalObject()); __ ldr(r1, FieldMemOperand(r1, GlobalObject::kGlobalReceiverOffset)); __ push(r1); // Emit function call. EmitCallWithStub(expr); } } void FullCodeGenerator::VisitCallNew(CallNew* expr) { Comment cmnt(masm_, "[ CallNew"); // According to ECMA-262, section 11.2.2, page 44, the function // expression in new calls must be evaluated before the // arguments. // Push function on the stack. VisitForValue(expr->expression(), kStack); // Push global object (receiver). __ ldr(r0, CodeGenerator::GlobalObject()); __ push(r0); // Push the arguments ("left-to-right") on the stack. ZoneList* args = expr->arguments(); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { VisitForValue(args->at(i), kStack); } // Call the construct call builtin that handles allocation and // constructor invocation. SetSourcePosition(expr->position()); // Load function, arg_count into r1 and r0. __ mov(r0, Operand(arg_count)); // Function is in sp[arg_count + 1]. __ ldr(r1, MemOperand(sp, (arg_count + 1) * kPointerSize)); Handle construct_builtin(Builtins::builtin(Builtins::JSConstructCall)); __ Call(construct_builtin, RelocInfo::CONSTRUCT_CALL); // Replace function on TOS with result in r0, or pop it. DropAndApply(1, context_, r0); } void FullCodeGenerator::EmitIsSmi(ZoneList* args) { ASSERT(args->length() == 1); VisitForValue(args->at(0), kAccumulator); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false); __ BranchOnSmi(r0, if_true); __ b(if_false); Apply(context_, if_true, if_false); } void FullCodeGenerator::EmitIsNonNegativeSmi(ZoneList* args) { ASSERT(args->length() == 1); VisitForValue(args->at(0), kAccumulator); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false); __ tst(r0, Operand(kSmiTagMask | 0x80000000)); __ b(eq, if_true); __ b(if_false); Apply(context_, if_true, if_false); } void FullCodeGenerator::EmitIsObject(ZoneList* args) { ASSERT(args->length() == 1); VisitForValue(args->at(0), kAccumulator); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false); __ BranchOnSmi(r0, if_false); __ LoadRoot(ip, Heap::kNullValueRootIndex); __ cmp(r0, ip); __ b(eq, if_true); __ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset)); // Undetectable objects behave like undefined when tested with typeof. __ ldrb(r1, FieldMemOperand(r2, Map::kBitFieldOffset)); __ tst(r1, Operand(1 << Map::kIsUndetectable)); __ b(ne, if_false); __ ldrb(r1, FieldMemOperand(r2, Map::kInstanceTypeOffset)); __ cmp(r1, Operand(FIRST_JS_OBJECT_TYPE)); __ b(lt, if_false); __ cmp(r1, Operand(LAST_JS_OBJECT_TYPE)); __ b(le, if_true); __ b(if_false); Apply(context_, if_true, if_false); } void FullCodeGenerator::EmitIsSpecObject(ZoneList* args) { ASSERT(args->length() == 1); VisitForValue(args->at(0), kAccumulator); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false); __ BranchOnSmi(r0, if_false); __ CompareObjectType(r0, r1, r1, FIRST_JS_OBJECT_TYPE); __ b(ge, if_true); __ b(if_false); Apply(context_, if_true, if_false); } void FullCodeGenerator::EmitIsUndetectableObject(ZoneList* args) { ASSERT(args->length() == 1); VisitForValue(args->at(0), kAccumulator); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false); __ BranchOnSmi(r0, if_false); __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset)); __ ldrb(r1, FieldMemOperand(r1, Map::kBitFieldOffset)); __ tst(r1, Operand(1 << Map::kIsUndetectable)); __ b(ne, if_true); __ b(if_false); Apply(context_, if_true, if_false); } void FullCodeGenerator::EmitIsFunction(ZoneList* args) { ASSERT(args->length() == 1); VisitForValue(args->at(0), kAccumulator); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false); __ BranchOnSmi(r0, if_false); __ CompareObjectType(r0, r1, r1, JS_FUNCTION_TYPE); __ b(eq, if_true); __ b(if_false); Apply(context_, if_true, if_false); } void FullCodeGenerator::EmitIsArray(ZoneList* args) { ASSERT(args->length() == 1); VisitForValue(args->at(0), kAccumulator); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false); __ BranchOnSmi(r0, if_false); __ CompareObjectType(r0, r1, r1, JS_ARRAY_TYPE); __ b(eq, if_true); __ b(if_false); Apply(context_, if_true, if_false); } void FullCodeGenerator::EmitIsRegExp(ZoneList* args) { ASSERT(args->length() == 1); VisitForValue(args->at(0), kAccumulator); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false); __ BranchOnSmi(r0, if_false); __ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE); __ b(eq, if_true); __ b(if_false); Apply(context_, if_true, if_false); } void FullCodeGenerator::EmitIsConstructCall(ZoneList* args) { ASSERT(args->length() == 0); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false); // Get the frame pointer for the calling frame. __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); // Skip the arguments adaptor frame if it exists. Label check_frame_marker; __ ldr(r1, MemOperand(r2, StandardFrameConstants::kContextOffset)); __ cmp(r1, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ b(ne, &check_frame_marker); __ ldr(r2, MemOperand(r2, StandardFrameConstants::kCallerFPOffset)); // Check the marker in the calling frame. __ bind(&check_frame_marker); __ ldr(r1, MemOperand(r2, StandardFrameConstants::kMarkerOffset)); __ cmp(r1, Operand(Smi::FromInt(StackFrame::CONSTRUCT))); __ b(eq, if_true); __ b(if_false); Apply(context_, if_true, if_false); } void FullCodeGenerator::EmitObjectEquals(ZoneList* args) { ASSERT(args->length() == 2); // Load the two objects into registers and perform the comparison. VisitForValue(args->at(0), kStack); VisitForValue(args->at(1), kAccumulator); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false); __ pop(r1); __ cmp(r0, r1); __ b(eq, if_true); __ b(if_false); Apply(context_, if_true, if_false); } void FullCodeGenerator::EmitArguments(ZoneList* args) { ASSERT(args->length() == 1); // ArgumentsAccessStub expects the key in edx and the formal // parameter count in eax. VisitForValue(args->at(0), kAccumulator); __ mov(r1, r0); __ mov(r0, Operand(Smi::FromInt(scope()->num_parameters()))); ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT); __ CallStub(&stub); Apply(context_, r0); } void FullCodeGenerator::EmitArgumentsLength(ZoneList* args) { ASSERT(args->length() == 0); Label exit; // Get the number of formal parameters. __ mov(r0, Operand(Smi::FromInt(scope()->num_parameters()))); // Check if the calling frame is an arguments adaptor frame. __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset)); __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ b(ne, &exit); // Arguments adaptor case: Read the arguments length from the // adaptor frame. __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ bind(&exit); Apply(context_, r0); } void FullCodeGenerator::EmitClassOf(ZoneList* args) { ASSERT(args->length() == 1); Label done, null, function, non_function_constructor; VisitForValue(args->at(0), kAccumulator); // If the object is a smi, we return null. __ BranchOnSmi(r0, &null); // Check that the object is a JS object but take special care of JS // functions to make sure they have 'Function' as their class. __ CompareObjectType(r0, r0, r1, FIRST_JS_OBJECT_TYPE); // Map is now in r0. __ b(lt, &null); // As long as JS_FUNCTION_TYPE is the last instance type and it is // right after LAST_JS_OBJECT_TYPE, we can avoid checking for // LAST_JS_OBJECT_TYPE. ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1); __ cmp(r1, Operand(JS_FUNCTION_TYPE)); __ b(eq, &function); // Check if the constructor in the map is a function. __ ldr(r0, FieldMemOperand(r0, Map::kConstructorOffset)); __ CompareObjectType(r0, r1, r1, JS_FUNCTION_TYPE); __ b(ne, &non_function_constructor); // r0 now contains the constructor function. Grab the // instance class name from there. __ ldr(r0, FieldMemOperand(r0, JSFunction::kSharedFunctionInfoOffset)); __ ldr(r0, FieldMemOperand(r0, SharedFunctionInfo::kInstanceClassNameOffset)); __ b(&done); // Functions have class 'Function'. __ bind(&function); __ LoadRoot(r0, Heap::kfunction_class_symbolRootIndex); __ jmp(&done); // Objects with a non-function constructor have class 'Object'. __ bind(&non_function_constructor); __ LoadRoot(r0, Heap::kfunction_class_symbolRootIndex); __ jmp(&done); // Non-JS objects have class null. __ bind(&null); __ LoadRoot(r0, Heap::kNullValueRootIndex); // All done. __ bind(&done); Apply(context_, r0); } void FullCodeGenerator::EmitLog(ZoneList* args) { // Conditionally generate a log call. // Args: // 0 (literal string): The type of logging (corresponds to the flags). // This is used to determine whether or not to generate the log call. // 1 (string): Format string. Access the string at argument index 2 // with '%2s' (see Logger::LogRuntime for all the formats). // 2 (array): Arguments to the format string. ASSERT_EQ(args->length(), 3); #ifdef ENABLE_LOGGING_AND_PROFILING if (CodeGenerator::ShouldGenerateLog(args->at(0))) { VisitForValue(args->at(1), kStack); VisitForValue(args->at(2), kStack); __ CallRuntime(Runtime::kLog, 2); } #endif // Finally, we're expected to leave a value on the top of the stack. __ LoadRoot(r0, Heap::kUndefinedValueRootIndex); Apply(context_, r0); } void FullCodeGenerator::EmitRandomHeapNumber(ZoneList* args) { ASSERT(args->length() == 0); Label slow_allocate_heapnumber; Label heapnumber_allocated; __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex); __ AllocateHeapNumber(r4, r1, r2, r6, &slow_allocate_heapnumber); __ jmp(&heapnumber_allocated); __ bind(&slow_allocate_heapnumber); // Allocate a heap number. __ CallRuntime(Runtime::kNumberAlloc, 0); __ mov(r4, Operand(r0)); __ bind(&heapnumber_allocated); // Convert 32 random bits in r0 to 0.(32 random bits) in a double // by computing: // ( 1.(20 0s)(32 random bits) x 2^20 ) - (1.0 x 2^20)). if (CpuFeatures::IsSupported(VFP3)) { __ PrepareCallCFunction(0, r1); __ CallCFunction(ExternalReference::random_uint32_function(), 0); CpuFeatures::Scope scope(VFP3); // 0x41300000 is the top half of 1.0 x 2^20 as a double. // Create this constant using mov/orr to avoid PC relative load. __ mov(r1, Operand(0x41000000)); __ orr(r1, r1, Operand(0x300000)); // Move 0x41300000xxxxxxxx (x = random bits) to VFP. __ vmov(d7, r0, r1); // Move 0x4130000000000000 to VFP. __ mov(r0, Operand(0)); __ vmov(d8, r0, r1); // Subtract and store the result in the heap number. __ vsub(d7, d7, d8); __ sub(r0, r4, Operand(kHeapObjectTag)); __ vstr(d7, r0, HeapNumber::kValueOffset); __ mov(r0, r4); } else { __ mov(r0, Operand(r4)); __ PrepareCallCFunction(1, r1); __ CallCFunction( ExternalReference::fill_heap_number_with_random_function(), 1); } Apply(context_, r0); } void FullCodeGenerator::EmitSubString(ZoneList* args) { // Load the arguments on the stack and call the stub. SubStringStub stub; ASSERT(args->length() == 3); VisitForValue(args->at(0), kStack); VisitForValue(args->at(1), kStack); VisitForValue(args->at(2), kStack); __ CallStub(&stub); Apply(context_, r0); } void FullCodeGenerator::EmitRegExpExec(ZoneList* args) { // Load the arguments on the stack and call the stub. RegExpExecStub stub; ASSERT(args->length() == 4); VisitForValue(args->at(0), kStack); VisitForValue(args->at(1), kStack); VisitForValue(args->at(2), kStack); VisitForValue(args->at(3), kStack); __ CallStub(&stub); Apply(context_, r0); } void FullCodeGenerator::EmitValueOf(ZoneList* args) { ASSERT(args->length() == 1); VisitForValue(args->at(0), kAccumulator); // Load the object. Label done; // If the object is a smi return the object. __ BranchOnSmi(r0, &done); // If the object is not a value type, return the object. __ CompareObjectType(r0, r1, r1, JS_VALUE_TYPE); __ b(ne, &done); __ ldr(r0, FieldMemOperand(r0, JSValue::kValueOffset)); __ bind(&done); Apply(context_, r0); } void FullCodeGenerator::EmitMathPow(ZoneList* args) { // Load the arguments on the stack and call the runtime function. ASSERT(args->length() == 2); VisitForValue(args->at(0), kStack); VisitForValue(args->at(1), kStack); __ CallRuntime(Runtime::kMath_pow, 2); Apply(context_, r0); } void FullCodeGenerator::EmitSetValueOf(ZoneList* args) { ASSERT(args->length() == 2); VisitForValue(args->at(0), kStack); // Load the object. VisitForValue(args->at(1), kAccumulator); // Load the value. __ pop(r1); // r0 = value. r1 = object. Label done; // If the object is a smi, return the value. __ BranchOnSmi(r1, &done); // If the object is not a value type, return the value. __ CompareObjectType(r1, r2, r2, JS_VALUE_TYPE); __ b(ne, &done); // Store the value. __ str(r0, FieldMemOperand(r1, JSValue::kValueOffset)); // Update the write barrier. Save the value as it will be // overwritten by the write barrier code and is needed afterward. __ RecordWrite(r1, Operand(JSValue::kValueOffset - kHeapObjectTag), r2, r3); __ bind(&done); Apply(context_, r0); } void FullCodeGenerator::EmitNumberToString(ZoneList* args) { ASSERT_EQ(args->length(), 1); // Load the argument on the stack and call the stub. VisitForValue(args->at(0), kStack); NumberToStringStub stub; __ CallStub(&stub); Apply(context_, r0); } void FullCodeGenerator::EmitStringCharFromCode(ZoneList* args) { ASSERT(args->length() == 1); VisitForValue(args->at(0), kAccumulator); Label done; StringCharFromCodeGenerator generator(r0, r1); generator.GenerateFast(masm_); __ jmp(&done); NopRuntimeCallHelper call_helper; generator.GenerateSlow(masm_, call_helper); __ bind(&done); Apply(context_, r1); } void FullCodeGenerator::EmitStringCharCodeAt(ZoneList* args) { ASSERT(args->length() == 2); VisitForValue(args->at(0), kStack); VisitForValue(args->at(1), kAccumulator); Register object = r1; Register index = r0; Register scratch = r2; Register result = r3; __ pop(object); Label need_conversion; Label index_out_of_range; Label done; StringCharCodeAtGenerator generator(object, index, scratch, result, &need_conversion, &need_conversion, &index_out_of_range, STRING_INDEX_IS_NUMBER); generator.GenerateFast(masm_); __ jmp(&done); __ bind(&index_out_of_range); // When the index is out of range, the spec requires us to return // NaN. __ LoadRoot(result, Heap::kNanValueRootIndex); __ jmp(&done); __ bind(&need_conversion); // Load the undefined value into the result register, which will // trigger conversion. __ LoadRoot(result, Heap::kUndefinedValueRootIndex); __ jmp(&done); NopRuntimeCallHelper call_helper; generator.GenerateSlow(masm_, call_helper); __ bind(&done); Apply(context_, result); } void FullCodeGenerator::EmitStringCharAt(ZoneList* args) { ASSERT(args->length() == 2); VisitForValue(args->at(0), kStack); VisitForValue(args->at(1), kAccumulator); Register object = r1; Register index = r0; Register scratch1 = r2; Register scratch2 = r3; Register result = r0; __ pop(object); Label need_conversion; Label index_out_of_range; Label done; StringCharAtGenerator generator(object, index, scratch1, scratch2, result, &need_conversion, &need_conversion, &index_out_of_range, STRING_INDEX_IS_NUMBER); generator.GenerateFast(masm_); __ jmp(&done); __ bind(&index_out_of_range); // When the index is out of range, the spec requires us to return // the empty string. __ LoadRoot(result, Heap::kEmptyStringRootIndex); __ jmp(&done); __ bind(&need_conversion); // Move smi zero into the result register, which will trigger // conversion. __ mov(result, Operand(Smi::FromInt(0))); __ jmp(&done); NopRuntimeCallHelper call_helper; generator.GenerateSlow(masm_, call_helper); __ bind(&done); Apply(context_, result); } void FullCodeGenerator::EmitStringAdd(ZoneList* args) { ASSERT_EQ(2, args->length()); VisitForValue(args->at(0), kStack); VisitForValue(args->at(1), kStack); StringAddStub stub(NO_STRING_ADD_FLAGS); __ CallStub(&stub); Apply(context_, r0); } void FullCodeGenerator::EmitStringCompare(ZoneList* args) { ASSERT_EQ(2, args->length()); VisitForValue(args->at(0), kStack); VisitForValue(args->at(1), kStack); StringCompareStub stub; __ CallStub(&stub); Apply(context_, r0); } void FullCodeGenerator::EmitMathSin(ZoneList* args) { // Load the argument on the stack and call the runtime. ASSERT(args->length() == 1); VisitForValue(args->at(0), kStack); __ CallRuntime(Runtime::kMath_sin, 1); Apply(context_, r0); } void FullCodeGenerator::EmitMathCos(ZoneList* args) { // Load the argument on the stack and call the runtime. ASSERT(args->length() == 1); VisitForValue(args->at(0), kStack); __ CallRuntime(Runtime::kMath_cos, 1); Apply(context_, r0); } void FullCodeGenerator::EmitMathSqrt(ZoneList* args) { // Load the argument on the stack and call the runtime function. ASSERT(args->length() == 1); VisitForValue(args->at(0), kStack); __ CallRuntime(Runtime::kMath_sqrt, 1); Apply(context_, r0); } void FullCodeGenerator::EmitCallFunction(ZoneList* args) { ASSERT(args->length() >= 2); int arg_count = args->length() - 2; // For receiver and function. VisitForValue(args->at(0), kStack); // Receiver. for (int i = 0; i < arg_count; i++) { VisitForValue(args->at(i + 1), kStack); } VisitForValue(args->at(arg_count + 1), kAccumulator); // Function. // InvokeFunction requires function in r1. Move it in there. if (!result_register().is(r1)) __ mov(r1, result_register()); ParameterCount count(arg_count); __ InvokeFunction(r1, count, CALL_FUNCTION); __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); Apply(context_, r0); } void FullCodeGenerator::EmitRegExpConstructResult(ZoneList* args) { ASSERT(args->length() == 3); VisitForValue(args->at(0), kStack); VisitForValue(args->at(1), kStack); VisitForValue(args->at(2), kStack); __ CallRuntime(Runtime::kRegExpConstructResult, 3); Apply(context_, r0); } void FullCodeGenerator::EmitSwapElements(ZoneList* args) { ASSERT(args->length() == 3); VisitForValue(args->at(0), kStack); VisitForValue(args->at(1), kStack); VisitForValue(args->at(2), kStack); __ CallRuntime(Runtime::kSwapElements, 3); Apply(context_, r0); } void FullCodeGenerator::EmitGetFromCache(ZoneList* args) { ASSERT_EQ(2, args->length()); ASSERT_NE(NULL, args->at(0)->AsLiteral()); int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->handle()))->value(); Handle jsfunction_result_caches( Top::global_context()->jsfunction_result_caches()); if (jsfunction_result_caches->length() <= cache_id) { __ Abort("Attempt to use undefined cache."); __ LoadRoot(r0, Heap::kUndefinedValueRootIndex); Apply(context_, r0); return; } VisitForValue(args->at(1), kAccumulator); Register key = r0; Register cache = r1; __ ldr(cache, CodeGenerator::ContextOperand(cp, Context::GLOBAL_INDEX)); __ ldr(cache, FieldMemOperand(cache, GlobalObject::kGlobalContextOffset)); __ ldr(cache, CodeGenerator::ContextOperand( cache, Context::JSFUNCTION_RESULT_CACHES_INDEX)); __ ldr(cache, FieldMemOperand(cache, FixedArray::OffsetOfElementAt(cache_id))); Label done, not_found; // tmp now holds finger offset as a smi. ASSERT(kSmiTag == 0 && kSmiTagSize == 1); __ ldr(r2, FieldMemOperand(cache, JSFunctionResultCache::kFingerOffset)); // r2 now holds finger offset as a smi. __ add(r3, cache, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); // r3 now points to the start of fixed array elements. __ ldr(r2, MemOperand(r3, r2, LSL, kPointerSizeLog2 - kSmiTagSize, PreIndex)); // Note side effect of PreIndex: r3 now points to the key of the pair. __ cmp(key, r2); __ b(ne, ¬_found); __ ldr(r0, MemOperand(r3, kPointerSize)); __ b(&done); __ bind(¬_found); // Call runtime to perform the lookup. __ Push(cache, key); __ CallRuntime(Runtime::kGetFromCache, 2); __ bind(&done); Apply(context_, r0); } void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) { Handle name = expr->name(); if (name->length() > 0 && name->Get(0) == '_') { Comment cmnt(masm_, "[ InlineRuntimeCall"); EmitInlineRuntimeCall(expr); return; } Comment cmnt(masm_, "[ CallRuntime"); ZoneList* args = expr->arguments(); if (expr->is_jsruntime()) { // Prepare for calling JS runtime function. __ ldr(r0, CodeGenerator::GlobalObject()); __ ldr(r0, FieldMemOperand(r0, GlobalObject::kBuiltinsOffset)); __ push(r0); } // Push the arguments ("left-to-right"). int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { VisitForValue(args->at(i), kStack); } if (expr->is_jsruntime()) { // Call the JS runtime function. __ mov(r2, Operand(expr->name())); Handle ic = CodeGenerator::ComputeCallInitialize(arg_count, NOT_IN_LOOP); __ Call(ic, RelocInfo::CODE_TARGET); // Restore context register. __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); } else { // Call the C runtime function. __ CallRuntime(expr->function(), arg_count); } Apply(context_, r0); } void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) { switch (expr->op()) { case Token::DELETE: { Comment cmnt(masm_, "[ UnaryOperation (DELETE)"); Property* prop = expr->expression()->AsProperty(); Variable* var = expr->expression()->AsVariableProxy()->AsVariable(); if (prop == NULL && var == NULL) { // Result of deleting non-property, non-variable reference is true. // The subexpression may have side effects. VisitForEffect(expr->expression()); Apply(context_, true); } else if (var != NULL && !var->is_global() && var->slot() != NULL && var->slot()->type() != Slot::LOOKUP) { // Result of deleting non-global, non-dynamic variables is false. // The subexpression does not have side effects. Apply(context_, false); } else { // Property or variable reference. Call the delete builtin with // object and property name as arguments. if (prop != NULL) { VisitForValue(prop->obj(), kStack); VisitForValue(prop->key(), kStack); } else if (var->is_global()) { __ ldr(r1, CodeGenerator::GlobalObject()); __ mov(r0, Operand(var->name())); __ Push(r1, r0); } else { // Non-global variable. Call the runtime to look up the context // where the variable was introduced. __ push(context_register()); __ mov(r2, Operand(var->name())); __ push(r2); __ CallRuntime(Runtime::kLookupContext, 2); __ push(r0); __ mov(r2, Operand(var->name())); __ push(r2); } __ InvokeBuiltin(Builtins::DELETE, CALL_JS); Apply(context_, r0); } break; } case Token::VOID: { Comment cmnt(masm_, "[ UnaryOperation (VOID)"); VisitForEffect(expr->expression()); switch (context_) { case Expression::kUninitialized: UNREACHABLE(); break; case Expression::kEffect: break; case Expression::kValue: __ LoadRoot(result_register(), Heap::kUndefinedValueRootIndex); switch (location_) { case kAccumulator: break; case kStack: __ push(result_register()); break; } break; case Expression::kTestValue: // Value is false so it's needed. __ LoadRoot(result_register(), Heap::kUndefinedValueRootIndex); switch (location_) { case kAccumulator: break; case kStack: __ push(result_register()); break; } // Fall through. case Expression::kTest: case Expression::kValueTest: __ jmp(false_label_); break; } break; } case Token::NOT: { Comment cmnt(masm_, "[ UnaryOperation (NOT)"); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; // Notice that the labels are swapped. PrepareTest(&materialize_true, &materialize_false, &if_false, &if_true); VisitForControl(expr->expression(), if_true, if_false); Apply(context_, if_false, if_true); // Labels swapped. break; } case Token::TYPEOF: { Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)"); VariableProxy* proxy = expr->expression()->AsVariableProxy(); if (proxy != NULL && !proxy->var()->is_this() && proxy->var()->is_global()) { Comment cmnt(masm_, "Global variable"); __ ldr(r0, CodeGenerator::GlobalObject()); __ mov(r2, Operand(proxy->name())); Handle ic(Builtins::builtin(Builtins::LoadIC_Initialize)); // Use a regular load, not a contextual load, to avoid a reference // error. __ Call(ic, RelocInfo::CODE_TARGET); __ push(r0); } else if (proxy != NULL && proxy->var()->slot() != NULL && proxy->var()->slot()->type() == Slot::LOOKUP) { __ mov(r0, Operand(proxy->name())); __ Push(cp, r0); __ CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2); __ push(r0); } else { // This expression cannot throw a reference error at the top level. VisitForValue(expr->expression(), kStack); } __ CallRuntime(Runtime::kTypeof, 1); Apply(context_, r0); break; } case Token::ADD: { Comment cmt(masm_, "[ UnaryOperation (ADD)"); VisitForValue(expr->expression(), kAccumulator); Label no_conversion; __ tst(result_register(), Operand(kSmiTagMask)); __ b(eq, &no_conversion); __ push(r0); __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_JS); __ bind(&no_conversion); Apply(context_, result_register()); break; } case Token::SUB: { Comment cmt(masm_, "[ UnaryOperation (SUB)"); bool can_overwrite = (expr->expression()->AsBinaryOperation() != NULL && expr->expression()->AsBinaryOperation()->ResultOverwriteAllowed()); UnaryOverwriteMode overwrite = can_overwrite ? UNARY_OVERWRITE : UNARY_NO_OVERWRITE; GenericUnaryOpStub stub(Token::SUB, overwrite); // GenericUnaryOpStub expects the argument to be in the // accumulator register r0. VisitForValue(expr->expression(), kAccumulator); __ CallStub(&stub); Apply(context_, r0); break; } case Token::BIT_NOT: { Comment cmt(masm_, "[ UnaryOperation (BIT_NOT)"); bool can_overwrite = (expr->expression()->AsBinaryOperation() != NULL && expr->expression()->AsBinaryOperation()->ResultOverwriteAllowed()); UnaryOverwriteMode overwrite = can_overwrite ? UNARY_OVERWRITE : UNARY_NO_OVERWRITE; GenericUnaryOpStub stub(Token::BIT_NOT, overwrite); // GenericUnaryOpStub expects the argument to be in the // accumulator register r0. VisitForValue(expr->expression(), kAccumulator); // Avoid calling the stub for Smis. Label smi, done; __ BranchOnSmi(result_register(), &smi); // Non-smi: call stub leaving result in accumulator register. __ CallStub(&stub); __ b(&done); // Perform operation directly on Smis. __ bind(&smi); __ mvn(result_register(), Operand(result_register())); // Bit-clear inverted smi-tag. __ bic(result_register(), result_register(), Operand(kSmiTagMask)); __ bind(&done); Apply(context_, result_register()); break; } default: UNREACHABLE(); } } void FullCodeGenerator::VisitCountOperation(CountOperation* expr) { Comment cmnt(masm_, "[ CountOperation"); // Invalid left-hand sides are rewritten to have a 'throw ReferenceError' // as the left-hand side. if (!expr->expression()->IsValidLeftHandSide()) { VisitForEffect(expr->expression()); return; } // Expression can only be a property, a global or a (parameter or local) // slot. Variables with rewrite to .arguments are treated as KEYED_PROPERTY. enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY }; LhsKind assign_type = VARIABLE; Property* prop = expr->expression()->AsProperty(); // In case of a property we use the uninitialized expression context // of the key to detect a named property. if (prop != NULL) { assign_type = (prop->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY; } // Evaluate expression and get value. if (assign_type == VARIABLE) { ASSERT(expr->expression()->AsVariableProxy()->var() != NULL); Location saved_location = location_; location_ = kAccumulator; EmitVariableLoad(expr->expression()->AsVariableProxy()->var(), Expression::kValue); location_ = saved_location; } else { // Reserve space for result of postfix operation. if (expr->is_postfix() && context_ != Expression::kEffect) { __ mov(ip, Operand(Smi::FromInt(0))); __ push(ip); } if (assign_type == NAMED_PROPERTY) { // Put the object both on the stack and in the accumulator. VisitForValue(prop->obj(), kAccumulator); __ push(r0); EmitNamedPropertyLoad(prop); } else { VisitForValue(prop->obj(), kStack); VisitForValue(prop->key(), kAccumulator); __ ldr(r1, MemOperand(sp, 0)); __ push(r0); EmitKeyedPropertyLoad(prop); } } // Call ToNumber only if operand is not a smi. Label no_conversion; __ BranchOnSmi(r0, &no_conversion); __ push(r0); __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_JS); __ bind(&no_conversion); // Save result for postfix expressions. if (expr->is_postfix()) { switch (context_) { case Expression::kUninitialized: UNREACHABLE(); case Expression::kEffect: // Do not save result. break; case Expression::kValue: case Expression::kTest: case Expression::kValueTest: case Expression::kTestValue: // Save the result on the stack. If we have a named or keyed property // we store the result under the receiver that is currently on top // of the stack. switch (assign_type) { case VARIABLE: __ push(r0); break; case NAMED_PROPERTY: __ str(r0, MemOperand(sp, kPointerSize)); break; case KEYED_PROPERTY: __ str(r0, MemOperand(sp, 2 * kPointerSize)); break; } break; } } // Inline smi case if we are in a loop. Label stub_call, done; int count_value = expr->op() == Token::INC ? 1 : -1; if (loop_depth() > 0) { __ add(r0, r0, Operand(Smi::FromInt(count_value)), SetCC); __ b(vs, &stub_call); // We could eliminate this smi check if we split the code at // the first smi check before calling ToNumber. __ BranchOnSmi(r0, &done); __ bind(&stub_call); // Call stub. Undo operation first. __ sub(r0, r0, Operand(Smi::FromInt(count_value))); } __ mov(r1, Operand(Smi::FromInt(count_value))); GenericBinaryOpStub stub(Token::ADD, NO_OVERWRITE, r1, r0); __ CallStub(&stub); __ bind(&done); // Store the value returned in r0. switch (assign_type) { case VARIABLE: if (expr->is_postfix()) { EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(), Token::ASSIGN, Expression::kEffect); // For all contexts except kEffect: We have the result on // top of the stack. if (context_ != Expression::kEffect) { ApplyTOS(context_); } } else { EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(), Token::ASSIGN, context_); } break; case NAMED_PROPERTY: { __ mov(r2, Operand(prop->key()->AsLiteral()->handle())); __ pop(r1); Handle ic(Builtins::builtin(Builtins::StoreIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); if (expr->is_postfix()) { if (context_ != Expression::kEffect) { ApplyTOS(context_); } } else { Apply(context_, r0); } break; } case KEYED_PROPERTY: { __ pop(r1); // Key. __ pop(r2); // Receiver. Handle ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); if (expr->is_postfix()) { if (context_ != Expression::kEffect) { ApplyTOS(context_); } } else { Apply(context_, r0); } break; } } } void FullCodeGenerator::VisitBinaryOperation(BinaryOperation* expr) { Comment cmnt(masm_, "[ BinaryOperation"); switch (expr->op()) { case Token::COMMA: VisitForEffect(expr->left()); Visit(expr->right()); break; case Token::OR: case Token::AND: EmitLogicalOperation(expr); break; case Token::ADD: case Token::SUB: case Token::DIV: case Token::MOD: case Token::MUL: case Token::BIT_OR: case Token::BIT_AND: case Token::BIT_XOR: case Token::SHL: case Token::SHR: case Token::SAR: VisitForValue(expr->left(), kStack); VisitForValue(expr->right(), kAccumulator); EmitBinaryOp(expr->op(), context_); break; default: UNREACHABLE(); } } void FullCodeGenerator::EmitNullCompare(bool strict, Register obj, Register null_const, Label* if_true, Label* if_false, Register scratch) { __ cmp(obj, null_const); if (strict) { __ b(eq, if_true); } else { __ b(eq, if_true); __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); __ cmp(obj, ip); __ b(eq, if_true); __ BranchOnSmi(obj, if_false); // It can be an undetectable object. __ ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); __ ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset)); __ tst(scratch, Operand(1 << Map::kIsUndetectable)); __ b(ne, if_true); } __ jmp(if_false); } void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) { Comment cmnt(masm_, "[ CompareOperation"); // Always perform the comparison for its control flow. Pack the result // into the expression's context after the comparison is performed. Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false); VisitForValue(expr->left(), kStack); switch (expr->op()) { case Token::IN: VisitForValue(expr->right(), kStack); __ InvokeBuiltin(Builtins::IN, CALL_JS); __ LoadRoot(ip, Heap::kTrueValueRootIndex); __ cmp(r0, ip); __ b(eq, if_true); __ jmp(if_false); break; case Token::INSTANCEOF: { VisitForValue(expr->right(), kStack); InstanceofStub stub; __ CallStub(&stub); __ tst(r0, r0); __ b(eq, if_true); // The stub returns 0 for true. __ jmp(if_false); break; } default: { VisitForValue(expr->right(), kAccumulator); Condition cc = eq; bool strict = false; switch (expr->op()) { case Token::EQ_STRICT: strict = true; // Fall through case Token::EQ: { cc = eq; __ pop(r1); // If either operand is constant null we do a fast compare // against null. Literal* right_literal = expr->right()->AsLiteral(); Literal* left_literal = expr->left()->AsLiteral(); if (right_literal != NULL && right_literal->handle()->IsNull()) { EmitNullCompare(strict, r1, r0, if_true, if_false, r2); Apply(context_, if_true, if_false); return; } else if (left_literal != NULL && left_literal->handle()->IsNull()) { EmitNullCompare(strict, r0, r1, if_true, if_false, r2); Apply(context_, if_true, if_false); return; } break; } case Token::LT: cc = lt; __ pop(r1); break; case Token::GT: // Reverse left and right sides to obtain ECMA-262 conversion order. cc = lt; __ mov(r1, result_register()); __ pop(r0); break; case Token::LTE: // Reverse left and right sides to obtain ECMA-262 conversion order. cc = ge; __ mov(r1, result_register()); __ pop(r0); break; case Token::GTE: cc = ge; __ pop(r1); break; case Token::IN: case Token::INSTANCEOF: default: UNREACHABLE(); } // The comparison stub expects the smi vs. smi case to be handled // before it is called. Label slow_case; __ orr(r2, r0, Operand(r1)); __ BranchOnNotSmi(r2, &slow_case); __ cmp(r1, r0); __ b(cc, if_true); __ jmp(if_false); __ bind(&slow_case); CompareStub stub(cc, strict, kBothCouldBeNaN, true, r1, r0); __ CallStub(&stub); __ cmp(r0, Operand(0)); __ b(cc, if_true); __ jmp(if_false); } } // Convert the result of the comparison into one expected for this // expression's context. Apply(context_, if_true, if_false); } void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) { __ ldr(r0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); Apply(context_, r0); } Register FullCodeGenerator::result_register() { return r0; } Register FullCodeGenerator::context_register() { return cp; } void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) { ASSERT_EQ(POINTER_SIZE_ALIGN(frame_offset), frame_offset); __ str(value, MemOperand(fp, frame_offset)); } void FullCodeGenerator::LoadContextField(Register dst, int context_index) { __ ldr(dst, CodeGenerator::ContextOperand(cp, context_index)); } // ---------------------------------------------------------------------------- // Non-local control flow support. void FullCodeGenerator::EnterFinallyBlock() { ASSERT(!result_register().is(r1)); // Store result register while executing finally block. __ push(result_register()); // Cook return address in link register to stack (smi encoded Code* delta) __ sub(r1, lr, Operand(masm_->CodeObject())); ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize); ASSERT_EQ(0, kSmiTag); __ add(r1, r1, Operand(r1)); // Convert to smi. __ push(r1); } void FullCodeGenerator::ExitFinallyBlock() { ASSERT(!result_register().is(r1)); // Restore result register from stack. __ pop(r1); // Uncook return address and return. __ pop(result_register()); ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize); __ mov(r1, Operand(r1, ASR, 1)); // Un-smi-tag value. __ add(pc, r1, Operand(masm_->CodeObject())); } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_ARM