// Copyright 2015 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include #include #include "src/base/platform/elapsed-timer.h" #include "src/wasm/wasm-macro-gen.h" #include "test/cctest/cctest.h" #include "test/cctest/compiler/value-helper.h" #include "test/cctest/wasm/test-signatures.h" #include "test/cctest/wasm/wasm-run-utils.h" using namespace v8::base; using namespace v8::internal; using namespace v8::internal::compiler; using namespace v8::internal::wasm; // for even shorter tests. #define B2(a, b) kExprBlock, a, b, kExprEnd #define B1(a) kExprBlock, a, kExprEnd #define RET(x) x, kExprReturn, 1 #define RET_I8(x) kExprI8Const, x, kExprReturn, 1 TEST(Run_WasmInt8Const) { WasmRunner r; const byte kExpectedValue = 121; // return(kExpectedValue) BUILD(r, WASM_I8(kExpectedValue)); CHECK_EQ(kExpectedValue, r.Call()); } TEST(Run_WasmInt8Const_fallthru1) { WasmRunner r; const byte kExpectedValue = 122; // kExpectedValue BUILD(r, WASM_I8(kExpectedValue)); CHECK_EQ(kExpectedValue, r.Call()); } TEST(Run_WasmInt8Const_fallthru2) { WasmRunner r; const byte kExpectedValue = 123; // -99 kExpectedValue BUILD(r, WASM_I8(-99), WASM_I8(kExpectedValue)); CHECK_EQ(kExpectedValue, r.Call()); } TEST(Run_WasmInt8Const_all) { for (int value = -128; value <= 127; value++) { WasmRunner r; // return(value) BUILD(r, WASM_I8(value)); int32_t result = r.Call(); CHECK_EQ(value, result); } } TEST(Run_WasmInt32Const) { WasmRunner r; const int32_t kExpectedValue = 0x11223344; // return(kExpectedValue) BUILD(r, WASM_I32V_5(kExpectedValue)); CHECK_EQ(kExpectedValue, r.Call()); } TEST(Run_WasmInt32Const_many) { FOR_INT32_INPUTS(i) { WasmRunner r; const int32_t kExpectedValue = *i; // return(kExpectedValue) BUILD(r, WASM_I32V(kExpectedValue)); CHECK_EQ(kExpectedValue, r.Call()); } } TEST(Run_WasmMemorySize) { TestingModule module; WasmRunner r(&module); module.AddMemory(1024); BUILD(r, kExprMemorySize); CHECK_EQ(1024, r.Call()); } TEST(Run_WasmInt32Param0) { WasmRunner r(MachineType::Int32()); // return(local[0]) BUILD(r, WASM_GET_LOCAL(0)); FOR_INT32_INPUTS(i) { CHECK_EQ(*i, r.Call(*i)); } } TEST(Run_WasmInt32Param0_fallthru) { WasmRunner r(MachineType::Int32()); // local[0] BUILD(r, WASM_GET_LOCAL(0)); FOR_INT32_INPUTS(i) { CHECK_EQ(*i, r.Call(*i)); } } TEST(Run_WasmInt32Param1) { WasmRunner r(MachineType::Int32(), MachineType::Int32()); // local[1] BUILD(r, WASM_GET_LOCAL(1)); FOR_INT32_INPUTS(i) { CHECK_EQ(*i, r.Call(-111, *i)); } } TEST(Run_WasmInt32Add) { WasmRunner r; // 11 + 44 BUILD(r, WASM_I32_ADD(WASM_I8(11), WASM_I8(44))); CHECK_EQ(55, r.Call()); } TEST(Run_WasmInt32Add_P) { WasmRunner r(MachineType::Int32()); // p0 + 13 BUILD(r, WASM_I32_ADD(WASM_I8(13), WASM_GET_LOCAL(0))); FOR_INT32_INPUTS(i) { CHECK_EQ(*i + 13, r.Call(*i)); } } TEST(Run_WasmInt32Add_P_fallthru) { WasmRunner r(MachineType::Int32()); // p0 + 13 BUILD(r, WASM_I32_ADD(WASM_I8(13), WASM_GET_LOCAL(0))); FOR_INT32_INPUTS(i) { CHECK_EQ(*i + 13, r.Call(*i)); } } TEST(Run_WasmInt32Add_P2) { WasmRunner r(MachineType::Int32(), MachineType::Int32()); // p0 + p1 BUILD(r, WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int32_t expected = static_cast(static_cast(*i) + static_cast(*j)); CHECK_EQ(expected, r.Call(*i, *j)); } } } TEST(Run_WasmFloat32Add) { WasmRunner r; // int(11.5f + 44.5f) BUILD(r, WASM_I32_SCONVERT_F32(WASM_F32_ADD(WASM_F32(11.5f), WASM_F32(44.5f)))); CHECK_EQ(56, r.Call()); } TEST(Run_WasmFloat64Add) { WasmRunner r; // return int(13.5d + 43.5d) BUILD(r, WASM_I32_SCONVERT_F64(WASM_F64_ADD(WASM_F64(13.5), WASM_F64(43.5)))); CHECK_EQ(57, r.Call()); } void TestInt32Binop(WasmOpcode opcode, int32_t expected, int32_t a, int32_t b) { { WasmRunner r; // K op K BUILD(r, WASM_BINOP(opcode, WASM_I32V(a), WASM_I32V(b))); CHECK_EQ(expected, r.Call()); } { WasmRunner r(MachineType::Int32(), MachineType::Int32()); // a op b BUILD(r, WASM_BINOP(opcode, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); CHECK_EQ(expected, r.Call(a, b)); } } TEST(Run_WasmInt32Binops) { TestInt32Binop(kExprI32Add, 88888888, 33333333, 55555555); TestInt32Binop(kExprI32Sub, -1111111, 7777777, 8888888); TestInt32Binop(kExprI32Mul, 65130756, 88734, 734); TestInt32Binop(kExprI32DivS, -66, -4777344, 72384); TestInt32Binop(kExprI32DivU, 805306368, 0xF0000000, 5); TestInt32Binop(kExprI32RemS, -3, -3003, 1000); TestInt32Binop(kExprI32RemU, 4, 4004, 1000); TestInt32Binop(kExprI32And, 0xEE, 0xFFEE, 0xFF0000FF); TestInt32Binop(kExprI32Ior, 0xF0FF00FF, 0xF0F000EE, 0x000F0011); TestInt32Binop(kExprI32Xor, 0xABCDEF01, 0xABCDEFFF, 0xFE); TestInt32Binop(kExprI32Shl, 0xA0000000, 0xA, 28); TestInt32Binop(kExprI32ShrU, 0x07000010, 0x70000100, 4); TestInt32Binop(kExprI32ShrS, 0xFF000000, 0x80000000, 7); TestInt32Binop(kExprI32Ror, 0x01000000, 0x80000000, 7); TestInt32Binop(kExprI32Ror, 0x01000000, 0x80000000, 39); TestInt32Binop(kExprI32Rol, 0x00000040, 0x80000000, 7); TestInt32Binop(kExprI32Rol, 0x00000040, 0x80000000, 39); TestInt32Binop(kExprI32Eq, 1, -99, -99); TestInt32Binop(kExprI32Ne, 0, -97, -97); TestInt32Binop(kExprI32LtS, 1, -4, 4); TestInt32Binop(kExprI32LeS, 0, -2, -3); TestInt32Binop(kExprI32LtU, 1, 0, -6); TestInt32Binop(kExprI32LeU, 1, 98978, 0xF0000000); TestInt32Binop(kExprI32GtS, 1, 4, -4); TestInt32Binop(kExprI32GeS, 0, -3, -2); TestInt32Binop(kExprI32GtU, 1, -6, 0); TestInt32Binop(kExprI32GeU, 1, 0xF0000000, 98978); } void TestInt32Unop(WasmOpcode opcode, int32_t expected, int32_t a) { { WasmRunner r; // return op K BUILD(r, WASM_UNOP(opcode, WASM_I32V(a))); CHECK_EQ(expected, r.Call()); } { WasmRunner r(MachineType::Int32()); // return op a BUILD(r, WASM_UNOP(opcode, WASM_GET_LOCAL(0))); CHECK_EQ(expected, r.Call(a)); } } TEST(Run_WasmInt32Clz) { TestInt32Unop(kExprI32Clz, 0, 0x80001000); TestInt32Unop(kExprI32Clz, 1, 0x40000500); TestInt32Unop(kExprI32Clz, 2, 0x20000300); TestInt32Unop(kExprI32Clz, 3, 0x10000003); TestInt32Unop(kExprI32Clz, 4, 0x08050000); TestInt32Unop(kExprI32Clz, 5, 0x04006000); TestInt32Unop(kExprI32Clz, 6, 0x02000000); TestInt32Unop(kExprI32Clz, 7, 0x010000a0); TestInt32Unop(kExprI32Clz, 8, 0x00800c00); TestInt32Unop(kExprI32Clz, 9, 0x00400000); TestInt32Unop(kExprI32Clz, 10, 0x0020000d); TestInt32Unop(kExprI32Clz, 11, 0x00100f00); TestInt32Unop(kExprI32Clz, 12, 0x00080000); TestInt32Unop(kExprI32Clz, 13, 0x00041000); TestInt32Unop(kExprI32Clz, 14, 0x00020020); TestInt32Unop(kExprI32Clz, 15, 0x00010300); TestInt32Unop(kExprI32Clz, 16, 0x00008040); TestInt32Unop(kExprI32Clz, 17, 0x00004005); TestInt32Unop(kExprI32Clz, 18, 0x00002050); TestInt32Unop(kExprI32Clz, 19, 0x00001700); TestInt32Unop(kExprI32Clz, 20, 0x00000870); TestInt32Unop(kExprI32Clz, 21, 0x00000405); TestInt32Unop(kExprI32Clz, 22, 0x00000203); TestInt32Unop(kExprI32Clz, 23, 0x00000101); TestInt32Unop(kExprI32Clz, 24, 0x00000089); TestInt32Unop(kExprI32Clz, 25, 0x00000041); TestInt32Unop(kExprI32Clz, 26, 0x00000022); TestInt32Unop(kExprI32Clz, 27, 0x00000013); TestInt32Unop(kExprI32Clz, 28, 0x00000008); TestInt32Unop(kExprI32Clz, 29, 0x00000004); TestInt32Unop(kExprI32Clz, 30, 0x00000002); TestInt32Unop(kExprI32Clz, 31, 0x00000001); TestInt32Unop(kExprI32Clz, 32, 0x00000000); } TEST(Run_WasmInt32Ctz) { TestInt32Unop(kExprI32Ctz, 32, 0x00000000); TestInt32Unop(kExprI32Ctz, 31, 0x80000000); TestInt32Unop(kExprI32Ctz, 30, 0x40000000); TestInt32Unop(kExprI32Ctz, 29, 0x20000000); TestInt32Unop(kExprI32Ctz, 28, 0x10000000); TestInt32Unop(kExprI32Ctz, 27, 0xa8000000); TestInt32Unop(kExprI32Ctz, 26, 0xf4000000); TestInt32Unop(kExprI32Ctz, 25, 0x62000000); TestInt32Unop(kExprI32Ctz, 24, 0x91000000); TestInt32Unop(kExprI32Ctz, 23, 0xcd800000); TestInt32Unop(kExprI32Ctz, 22, 0x09400000); TestInt32Unop(kExprI32Ctz, 21, 0xaf200000); TestInt32Unop(kExprI32Ctz, 20, 0xac100000); TestInt32Unop(kExprI32Ctz, 19, 0xe0b80000); TestInt32Unop(kExprI32Ctz, 18, 0x9ce40000); TestInt32Unop(kExprI32Ctz, 17, 0xc7920000); TestInt32Unop(kExprI32Ctz, 16, 0xb8f10000); TestInt32Unop(kExprI32Ctz, 15, 0x3b9f8000); TestInt32Unop(kExprI32Ctz, 14, 0xdb4c4000); TestInt32Unop(kExprI32Ctz, 13, 0xe9a32000); TestInt32Unop(kExprI32Ctz, 12, 0xfca61000); TestInt32Unop(kExprI32Ctz, 11, 0x6c8a7800); TestInt32Unop(kExprI32Ctz, 10, 0x8ce5a400); TestInt32Unop(kExprI32Ctz, 9, 0xcb7d0200); TestInt32Unop(kExprI32Ctz, 8, 0xcb4dc100); TestInt32Unop(kExprI32Ctz, 7, 0xdfbec580); TestInt32Unop(kExprI32Ctz, 6, 0x27a9db40); TestInt32Unop(kExprI32Ctz, 5, 0xde3bcb20); TestInt32Unop(kExprI32Ctz, 4, 0xd7e8a610); TestInt32Unop(kExprI32Ctz, 3, 0x9afdbc88); TestInt32Unop(kExprI32Ctz, 2, 0x9afdbc84); TestInt32Unop(kExprI32Ctz, 1, 0x9afdbc82); TestInt32Unop(kExprI32Ctz, 0, 0x9afdbc81); } TEST(Run_WasmInt32Popcnt) { TestInt32Unop(kExprI32Popcnt, 32, 0xffffffff); TestInt32Unop(kExprI32Popcnt, 0, 0x00000000); TestInt32Unop(kExprI32Popcnt, 1, 0x00008000); TestInt32Unop(kExprI32Popcnt, 13, 0x12345678); TestInt32Unop(kExprI32Popcnt, 19, 0xfedcba09); } TEST(Run_WasmI32Eqz) { TestInt32Unop(kExprI32Eqz, 0, 1); TestInt32Unop(kExprI32Eqz, 0, -1); TestInt32Unop(kExprI32Eqz, 0, -827343); TestInt32Unop(kExprI32Eqz, 0, 8888888); TestInt32Unop(kExprI32Eqz, 1, 0); } TEST(Run_WasmI32Shl) { WasmRunner r(MachineType::Uint32(), MachineType::Uint32()); BUILD(r, WASM_I32_SHL(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t expected = (*i) << (*j & 0x1f); CHECK_EQ(expected, r.Call(*i, *j)); } } } TEST(Run_WasmI32Shr) { WasmRunner r(MachineType::Uint32(), MachineType::Uint32()); BUILD(r, WASM_I32_SHR(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_UINT32_INPUTS(i) { FOR_UINT32_INPUTS(j) { uint32_t expected = (*i) >> (*j & 0x1f); CHECK_EQ(expected, r.Call(*i, *j)); } } } TEST(Run_WasmI32Sar) { WasmRunner r(MachineType::Int32(), MachineType::Int32()); BUILD(r, WASM_I32_SAR(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int32_t expected = (*i) >> (*j & 0x1f); CHECK_EQ(expected, r.Call(*i, *j)); } } } TEST(Run_WASM_Int32DivS_trap) { WasmRunner r(MachineType::Int32(), MachineType::Int32()); BUILD(r, WASM_I32_DIVS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); const int32_t kMin = std::numeric_limits::min(); CHECK_EQ(0, r.Call(0, 100)); CHECK_TRAP(r.Call(100, 0)); CHECK_TRAP(r.Call(-1001, 0)); CHECK_TRAP(r.Call(kMin, -1)); CHECK_TRAP(r.Call(kMin, 0)); } TEST(Run_WASM_Int32RemS_trap) { WasmRunner r(MachineType::Int32(), MachineType::Int32()); BUILD(r, WASM_I32_REMS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); const int32_t kMin = std::numeric_limits::min(); CHECK_EQ(33, r.Call(133, 100)); CHECK_EQ(0, r.Call(kMin, -1)); CHECK_TRAP(r.Call(100, 0)); CHECK_TRAP(r.Call(-1001, 0)); CHECK_TRAP(r.Call(kMin, 0)); } TEST(Run_WASM_Int32DivU_trap) { WasmRunner r(MachineType::Int32(), MachineType::Int32()); BUILD(r, WASM_I32_DIVU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); const int32_t kMin = std::numeric_limits::min(); CHECK_EQ(0, r.Call(0, 100)); CHECK_EQ(0, r.Call(kMin, -1)); CHECK_TRAP(r.Call(100, 0)); CHECK_TRAP(r.Call(-1001, 0)); CHECK_TRAP(r.Call(kMin, 0)); } TEST(Run_WASM_Int32RemU_trap) { WasmRunner r(MachineType::Int32(), MachineType::Int32()); BUILD(r, WASM_I32_REMU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); CHECK_EQ(17, r.Call(217, 100)); const int32_t kMin = std::numeric_limits::min(); CHECK_TRAP(r.Call(100, 0)); CHECK_TRAP(r.Call(-1001, 0)); CHECK_TRAP(r.Call(kMin, 0)); CHECK_EQ(kMin, r.Call(kMin, -1)); } TEST(Run_WASM_Int32DivS_asmjs) { TestingModule module; module.origin = kAsmJsOrigin; WasmRunner r(&module, MachineType::Int32(), MachineType::Int32()); BUILD(r, WASM_I32_DIVS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); const int32_t kMin = std::numeric_limits::min(); CHECK_EQ(0, r.Call(0, 100)); CHECK_EQ(0, r.Call(100, 0)); CHECK_EQ(0, r.Call(-1001, 0)); CHECK_EQ(kMin, r.Call(kMin, -1)); CHECK_EQ(0, r.Call(kMin, 0)); } TEST(Run_WASM_Int32RemS_asmjs) { TestingModule module; module.origin = kAsmJsOrigin; WasmRunner r(&module, MachineType::Int32(), MachineType::Int32()); BUILD(r, WASM_I32_REMS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); const int32_t kMin = std::numeric_limits::min(); CHECK_EQ(33, r.Call(133, 100)); CHECK_EQ(0, r.Call(kMin, -1)); CHECK_EQ(0, r.Call(100, 0)); CHECK_EQ(0, r.Call(-1001, 0)); CHECK_EQ(0, r.Call(kMin, 0)); } TEST(Run_WASM_Int32DivU_asmjs) { TestingModule module; module.origin = kAsmJsOrigin; WasmRunner r(&module, MachineType::Int32(), MachineType::Int32()); BUILD(r, WASM_I32_DIVU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); const int32_t kMin = std::numeric_limits::min(); CHECK_EQ(0, r.Call(0, 100)); CHECK_EQ(0, r.Call(kMin, -1)); CHECK_EQ(0, r.Call(100, 0)); CHECK_EQ(0, r.Call(-1001, 0)); CHECK_EQ(0, r.Call(kMin, 0)); } TEST(Run_WASM_Int32RemU_asmjs) { TestingModule module; module.origin = kAsmJsOrigin; WasmRunner r(&module, MachineType::Int32(), MachineType::Int32()); BUILD(r, WASM_I32_REMU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); const int32_t kMin = std::numeric_limits::min(); CHECK_EQ(17, r.Call(217, 100)); CHECK_EQ(0, r.Call(100, 0)); CHECK_EQ(0, r.Call(-1001, 0)); CHECK_EQ(0, r.Call(kMin, 0)); CHECK_EQ(kMin, r.Call(kMin, -1)); } TEST(Run_WASM_Int32DivS_byzero_const) { for (int8_t denom = -2; denom < 8; denom++) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_I32_DIVS(WASM_GET_LOCAL(0), WASM_I8(denom))); for (int32_t val = -7; val < 8; val++) { if (denom == 0) { CHECK_TRAP(r.Call(val)); } else { CHECK_EQ(val / denom, r.Call(val)); } } } } TEST(Run_WASM_Int32DivU_byzero_const) { for (uint32_t denom = 0xfffffffe; denom < 8; denom++) { WasmRunner r(MachineType::Uint32()); BUILD(r, WASM_I32_DIVU(WASM_GET_LOCAL(0), WASM_I32V_1(denom))); for (uint32_t val = 0xfffffff0; val < 8; val++) { if (denom == 0) { CHECK_TRAP(r.Call(val)); } else { CHECK_EQ(val / denom, r.Call(val)); } } } } TEST(Run_WASM_Int32DivS_trap_effect) { TestingModule module; module.AddMemoryElems(8); WasmRunner r(&module, MachineType::Int32(), MachineType::Int32()); BUILD(r, WASM_IF_ELSE(WASM_GET_LOCAL(0), WASM_I32_DIVS(WASM_STORE_MEM(MachineType::Int8(), WASM_ZERO, WASM_GET_LOCAL(0)), WASM_GET_LOCAL(1)), WASM_I32_DIVS(WASM_STORE_MEM(MachineType::Int8(), WASM_ZERO, WASM_GET_LOCAL(0)), WASM_GET_LOCAL(1)))); CHECK_EQ(0, r.Call(0, 100)); CHECK_TRAP(r.Call(8, 0)); CHECK_TRAP(r.Call(4, 0)); CHECK_TRAP(r.Call(0, 0)); } void TestFloat32Binop(WasmOpcode opcode, int32_t expected, float a, float b) { { WasmRunner r; // return K op K BUILD(r, WASM_BINOP(opcode, WASM_F32(a), WASM_F32(b))); CHECK_EQ(expected, r.Call()); } { WasmRunner r(MachineType::Float32(), MachineType::Float32()); // return a op b BUILD(r, WASM_BINOP(opcode, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); CHECK_EQ(expected, r.Call(a, b)); } } void TestFloat32BinopWithConvert(WasmOpcode opcode, int32_t expected, float a, float b) { { WasmRunner r; // return int(K op K) BUILD(r, WASM_I32_SCONVERT_F32(WASM_BINOP(opcode, WASM_F32(a), WASM_F32(b)))); CHECK_EQ(expected, r.Call()); } { WasmRunner r(MachineType::Float32(), MachineType::Float32()); // return int(a op b) BUILD(r, WASM_I32_SCONVERT_F32( WASM_BINOP(opcode, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)))); CHECK_EQ(expected, r.Call(a, b)); } } void TestFloat32UnopWithConvert(WasmOpcode opcode, int32_t expected, float a) { { WasmRunner r; // return int(op(K)) BUILD(r, WASM_I32_SCONVERT_F32(WASM_UNOP(opcode, WASM_F32(a)))); CHECK_EQ(expected, r.Call()); } { WasmRunner r(MachineType::Float32()); // return int(op(a)) BUILD(r, WASM_I32_SCONVERT_F32(WASM_UNOP(opcode, WASM_GET_LOCAL(0)))); CHECK_EQ(expected, r.Call(a)); } } void TestFloat64Binop(WasmOpcode opcode, int32_t expected, double a, double b) { { WasmRunner r; // return K op K BUILD(r, WASM_BINOP(opcode, WASM_F64(a), WASM_F64(b))); CHECK_EQ(expected, r.Call()); } { WasmRunner r(MachineType::Float64(), MachineType::Float64()); // return a op b BUILD(r, WASM_BINOP(opcode, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); CHECK_EQ(expected, r.Call(a, b)); } } void TestFloat64BinopWithConvert(WasmOpcode opcode, int32_t expected, double a, double b) { { WasmRunner r; // return int(K op K) BUILD(r, WASM_I32_SCONVERT_F64(WASM_BINOP(opcode, WASM_F64(a), WASM_F64(b)))); CHECK_EQ(expected, r.Call()); } { WasmRunner r(MachineType::Float64(), MachineType::Float64()); BUILD(r, WASM_I32_SCONVERT_F64( WASM_BINOP(opcode, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)))); CHECK_EQ(expected, r.Call(a, b)); } } void TestFloat64UnopWithConvert(WasmOpcode opcode, int32_t expected, double a) { { WasmRunner r; // return int(op(K)) BUILD(r, WASM_I32_SCONVERT_F64(WASM_UNOP(opcode, WASM_F64(a)))); CHECK_EQ(expected, r.Call()); } { WasmRunner r(MachineType::Float64()); // return int(op(a)) BUILD(r, WASM_I32_SCONVERT_F64(WASM_UNOP(opcode, WASM_GET_LOCAL(0)))); CHECK_EQ(expected, r.Call(a)); } } TEST(Run_WasmFloat32Binops) { TestFloat32Binop(kExprF32Eq, 1, 8.125f, 8.125f); TestFloat32Binop(kExprF32Ne, 1, 8.125f, 8.127f); TestFloat32Binop(kExprF32Lt, 1, -9.5f, -9.0f); TestFloat32Binop(kExprF32Le, 1, -1111.0f, -1111.0f); TestFloat32Binop(kExprF32Gt, 1, -9.0f, -9.5f); TestFloat32Binop(kExprF32Ge, 1, -1111.0f, -1111.0f); TestFloat32BinopWithConvert(kExprF32Add, 10, 3.5f, 6.5f); TestFloat32BinopWithConvert(kExprF32Sub, 2, 44.5f, 42.5f); TestFloat32BinopWithConvert(kExprF32Mul, -66, -132.1f, 0.5f); TestFloat32BinopWithConvert(kExprF32Div, 11, 22.1f, 2.0f); } TEST(Run_WasmFloat32Unops) { TestFloat32UnopWithConvert(kExprF32Abs, 8, 8.125f); TestFloat32UnopWithConvert(kExprF32Abs, 9, -9.125f); TestFloat32UnopWithConvert(kExprF32Neg, -213, 213.125f); TestFloat32UnopWithConvert(kExprF32Sqrt, 12, 144.4f); } TEST(Run_WasmFloat64Binops) { TestFloat64Binop(kExprF64Eq, 1, 16.25, 16.25); TestFloat64Binop(kExprF64Ne, 1, 16.25, 16.15); TestFloat64Binop(kExprF64Lt, 1, -32.4, 11.7); TestFloat64Binop(kExprF64Le, 1, -88.9, -88.9); TestFloat64Binop(kExprF64Gt, 1, 11.7, -32.4); TestFloat64Binop(kExprF64Ge, 1, -88.9, -88.9); TestFloat64BinopWithConvert(kExprF64Add, 100, 43.5, 56.5); TestFloat64BinopWithConvert(kExprF64Sub, 200, 12200.1, 12000.1); TestFloat64BinopWithConvert(kExprF64Mul, -33, 134, -0.25); TestFloat64BinopWithConvert(kExprF64Div, -1111, -2222.3, 2); } TEST(Run_WasmFloat64Unops) { TestFloat64UnopWithConvert(kExprF64Abs, 108, 108.125); TestFloat64UnopWithConvert(kExprF64Abs, 209, -209.125); TestFloat64UnopWithConvert(kExprF64Neg, -209, 209.125); TestFloat64UnopWithConvert(kExprF64Sqrt, 13, 169.4); } TEST(Run_WasmFloat32Neg) { WasmRunner r(MachineType::Float32()); BUILD(r, WASM_F32_NEG(WASM_GET_LOCAL(0))); FOR_FLOAT32_INPUTS(i) { CHECK_EQ(0x80000000, bit_cast(*i) ^ bit_cast(r.Call(*i))); } } TEST(Run_WasmFloat64Neg) { WasmRunner r(MachineType::Float64()); BUILD(r, WASM_F64_NEG(WASM_GET_LOCAL(0))); FOR_FLOAT64_INPUTS(i) { CHECK_EQ(0x8000000000000000, bit_cast(*i) ^ bit_cast(r.Call(*i))); } } TEST(Run_Wasm_IfElse_P) { WasmRunner r(MachineType::Int32()); // if (p0) return 11; else return 22; BUILD(r, WASM_IF_ELSE(WASM_GET_LOCAL(0), // -- WASM_I8(11), // -- WASM_I8(22))); // -- FOR_INT32_INPUTS(i) { int32_t expected = *i ? 11 : 22; CHECK_EQ(expected, r.Call(*i)); } } TEST(Run_Wasm_If_chain) { WasmRunner r(MachineType::Int32()); // if (p0) 13; if (p0) 14; 15 BUILD(r, WASM_IF(WASM_GET_LOCAL(0), WASM_I8(13)), WASM_IF(WASM_GET_LOCAL(0), WASM_I8(14)), WASM_I8(15)); FOR_INT32_INPUTS(i) { CHECK_EQ(15, r.Call(*i)); } } TEST(Run_Wasm_If_chain_set) { WasmRunner r(MachineType::Int32(), MachineType::Int32()); // if (p0) p1 = 73; if (p0) p1 = 74; p1 BUILD(r, WASM_IF(WASM_GET_LOCAL(0), WASM_SET_LOCAL(1, WASM_I8(73))), WASM_IF(WASM_GET_LOCAL(0), WASM_SET_LOCAL(1, WASM_I8(74))), WASM_GET_LOCAL(1)); FOR_INT32_INPUTS(i) { int32_t expected = *i ? 74 : *i; CHECK_EQ(expected, r.Call(*i, *i)); } } TEST(Run_Wasm_IfElse_Unreachable1) { WasmRunner r; // if (0) unreachable; else return 22; BUILD(r, WASM_IF_ELSE(WASM_ZERO, // -- WASM_UNREACHABLE, // -- WASM_I8(27))); // -- CHECK_EQ(27, r.Call()); } TEST(Run_Wasm_Return12) { WasmRunner r; BUILD(r, RET_I8(12)); CHECK_EQ(12, r.Call()); } TEST(Run_Wasm_Return17) { WasmRunner r; BUILD(r, B1(RET_I8(17))); CHECK_EQ(17, r.Call()); } TEST(Run_Wasm_Return_I32) { WasmRunner r(MachineType::Int32()); BUILD(r, RET(WASM_GET_LOCAL(0))); FOR_INT32_INPUTS(i) { CHECK_EQ(*i, r.Call(*i)); } } TEST(Run_Wasm_Return_F32) { WasmRunner r(MachineType::Float32()); BUILD(r, RET(WASM_GET_LOCAL(0))); FOR_FLOAT32_INPUTS(i) { float expect = *i; float result = r.Call(expect); if (std::isnan(expect)) { CHECK(std::isnan(result)); } else { CHECK_EQ(expect, result); } } } TEST(Run_Wasm_Return_F64) { WasmRunner r(MachineType::Float64()); BUILD(r, RET(WASM_GET_LOCAL(0))); FOR_FLOAT64_INPUTS(i) { double expect = *i; double result = r.Call(expect); if (std::isnan(expect)) { CHECK(std::isnan(result)); } else { CHECK_EQ(expect, result); } } } TEST(Run_Wasm_Select) { WasmRunner r(MachineType::Int32()); // return select(11, 22, a); BUILD(r, WASM_SELECT(WASM_I8(11), WASM_I8(22), WASM_GET_LOCAL(0))); FOR_INT32_INPUTS(i) { int32_t expected = *i ? 11 : 22; CHECK_EQ(expected, r.Call(*i)); } } TEST(Run_Wasm_Select_strict1) { WasmRunner r(MachineType::Int32()); // select(a=0, a=1, a=2); return a BUILD(r, B2(WASM_SELECT(WASM_SET_LOCAL(0, WASM_I8(0)), WASM_SET_LOCAL(0, WASM_I8(1)), WASM_SET_LOCAL(0, WASM_I8(2))), WASM_GET_LOCAL(0))); FOR_INT32_INPUTS(i) { CHECK_EQ(2, r.Call(*i)); } } TEST(Run_Wasm_Select_strict2) { WasmRunner r(MachineType::Int32()); r.AllocateLocal(kAstI32); r.AllocateLocal(kAstI32); // select(b=5, c=6, a) BUILD(r, WASM_SELECT(WASM_SET_LOCAL(1, WASM_I8(5)), WASM_SET_LOCAL(2, WASM_I8(6)), WASM_GET_LOCAL(0))); FOR_INT32_INPUTS(i) { int32_t expected = *i ? 5 : 6; CHECK_EQ(expected, r.Call(*i)); } } TEST(Run_Wasm_Select_strict3) { WasmRunner r(MachineType::Int32()); r.AllocateLocal(kAstI32); r.AllocateLocal(kAstI32); // select(b=5, c=6, a=b) BUILD(r, WASM_SELECT(WASM_SET_LOCAL(1, WASM_I8(5)), WASM_SET_LOCAL(2, WASM_I8(6)), WASM_SET_LOCAL(0, WASM_GET_LOCAL(1)))); FOR_INT32_INPUTS(i) { int32_t expected = 5; CHECK_EQ(expected, r.Call(*i)); } } TEST(Run_Wasm_BrIf_strict) { WasmRunner r(MachineType::Int32()); BUILD( r, B2(B1(WASM_BRV_IF(0, WASM_GET_LOCAL(0), WASM_SET_LOCAL(0, WASM_I8(99)))), WASM_GET_LOCAL(0))); FOR_INT32_INPUTS(i) { CHECK_EQ(99, r.Call(*i)); } } TEST(Run_Wasm_BrTable0a) { WasmRunner r(MachineType::Int32()); BUILD(r, B2(B1(WASM_BR_TABLE(WASM_GET_LOCAL(0), 0, BR_TARGET(0))), WASM_I8(91))); FOR_INT32_INPUTS(i) { CHECK_EQ(91, r.Call(*i)); } } TEST(Run_Wasm_BrTable0b) { WasmRunner r(MachineType::Int32()); BUILD(r, B2(B1(WASM_BR_TABLE(WASM_GET_LOCAL(0), 1, BR_TARGET(0), BR_TARGET(0))), WASM_I8(92))); FOR_INT32_INPUTS(i) { CHECK_EQ(92, r.Call(*i)); } } TEST(Run_Wasm_BrTable0c) { WasmRunner r(MachineType::Int32()); BUILD( r, B2(B2(B1(WASM_BR_TABLE(WASM_GET_LOCAL(0), 1, BR_TARGET(0), BR_TARGET(1))), RET_I8(76)), WASM_I8(77))); FOR_INT32_INPUTS(i) { int32_t expected = *i == 0 ? 76 : 77; CHECK_EQ(expected, r.Call(*i)); } } TEST(Run_Wasm_BrTable1) { WasmRunner r(MachineType::Int32()); BUILD(r, B1(WASM_BR_TABLE(WASM_GET_LOCAL(0), 0, BR_TARGET(0))), RET_I8(93)); FOR_INT32_INPUTS(i) { CHECK_EQ(93, r.Call(*i)); } } TEST(Run_Wasm_BrTable_loop) { WasmRunner r(MachineType::Int32()); BUILD(r, B2(WASM_LOOP(1, WASM_BR_TABLE(WASM_INC_LOCAL_BY(0, 1), 2, BR_TARGET(2), BR_TARGET(1), BR_TARGET(0))), RET_I8(99)), WASM_I8(98)); CHECK_EQ(99, r.Call(0)); CHECK_EQ(98, r.Call(-1)); CHECK_EQ(98, r.Call(-2)); CHECK_EQ(98, r.Call(-3)); CHECK_EQ(98, r.Call(-100)); } TEST(Run_Wasm_BrTable_br) { WasmRunner r(MachineType::Int32()); BUILD(r, B2(B1(WASM_BR_TABLE(WASM_GET_LOCAL(0), 1, BR_TARGET(1), BR_TARGET(0))), RET_I8(91)), WASM_I8(99)); CHECK_EQ(99, r.Call(0)); CHECK_EQ(91, r.Call(1)); CHECK_EQ(91, r.Call(2)); CHECK_EQ(91, r.Call(3)); } TEST(Run_Wasm_BrTable_br2) { WasmRunner r(MachineType::Int32()); BUILD(r, B2(B2(B2(B1(WASM_BR_TABLE(WASM_GET_LOCAL(0), 3, BR_TARGET(1), BR_TARGET(2), BR_TARGET(3), BR_TARGET(0))), RET_I8(85)), RET_I8(86)), RET_I8(87)), WASM_I8(88)); CHECK_EQ(86, r.Call(0)); CHECK_EQ(87, r.Call(1)); CHECK_EQ(88, r.Call(2)); CHECK_EQ(85, r.Call(3)); CHECK_EQ(85, r.Call(4)); CHECK_EQ(85, r.Call(5)); } TEST(Run_Wasm_BrTable4) { for (int i = 0; i < 4; i++) { for (int t = 0; t < 4; t++) { uint32_t cases[] = {0, 1, 2, 3}; cases[i] = t; byte code[] = {B2(B2(B2(B2(B1(WASM_BR_TABLE( WASM_GET_LOCAL(0), 3, BR_TARGET(cases[0]), BR_TARGET(cases[1]), BR_TARGET(cases[2]), BR_TARGET(cases[3]))), RET_I8(70)), RET_I8(71)), RET_I8(72)), RET_I8(73)), WASM_I8(75)}; WasmRunner r(MachineType::Int32()); r.Build(code, code + arraysize(code)); for (int x = -3; x < 50; x++) { int index = (x > 3 || x < 0) ? 3 : x; int32_t expected = 70 + cases[index]; CHECK_EQ(expected, r.Call(x)); } } } } TEST(Run_Wasm_BrTable4x4) { for (byte a = 0; a < 4; a++) { for (byte b = 0; b < 4; b++) { for (byte c = 0; c < 4; c++) { for (byte d = 0; d < 4; d++) { for (int i = 0; i < 4; i++) { uint32_t cases[] = {a, b, c, d}; byte code[] = { B2(B2(B2(B2(B1(WASM_BR_TABLE( WASM_GET_LOCAL(0), 3, BR_TARGET(cases[0]), BR_TARGET(cases[1]), BR_TARGET(cases[2]), BR_TARGET(cases[3]))), RET_I8(50)), RET_I8(51)), RET_I8(52)), RET_I8(53)), WASM_I8(55)}; WasmRunner r(MachineType::Int32()); r.Build(code, code + arraysize(code)); for (int x = -6; x < 47; x++) { int index = (x > 3 || x < 0) ? 3 : x; int32_t expected = 50 + cases[index]; CHECK_EQ(expected, r.Call(x)); } } } } } } } TEST(Run_Wasm_BrTable4_fallthru) { byte code[] = { B2(B2(B2(B2(B1(WASM_BR_TABLE(WASM_GET_LOCAL(0), 3, BR_TARGET(0), BR_TARGET(1), BR_TARGET(2), BR_TARGET(3))), WASM_INC_LOCAL_BY(1, 1)), WASM_INC_LOCAL_BY(1, 2)), WASM_INC_LOCAL_BY(1, 4)), WASM_INC_LOCAL_BY(1, 8)), WASM_GET_LOCAL(1)}; WasmRunner r(MachineType::Int32(), MachineType::Int32()); r.Build(code, code + arraysize(code)); CHECK_EQ(15, r.Call(0, 0)); CHECK_EQ(14, r.Call(1, 0)); CHECK_EQ(12, r.Call(2, 0)); CHECK_EQ(8, r.Call(3, 0)); CHECK_EQ(8, r.Call(4, 0)); CHECK_EQ(115, r.Call(0, 100)); CHECK_EQ(114, r.Call(1, 100)); CHECK_EQ(112, r.Call(2, 100)); CHECK_EQ(108, r.Call(3, 100)); CHECK_EQ(108, r.Call(4, 100)); } TEST(Run_Wasm_F32ReinterpretI32) { TestingModule module; int32_t* memory = module.AddMemoryElems(8); WasmRunner r(&module); BUILD(r, WASM_I32_REINTERPRET_F32( WASM_LOAD_MEM(MachineType::Float32(), WASM_ZERO))); FOR_INT32_INPUTS(i) { int32_t expected = *i; memory[0] = expected; CHECK_EQ(expected, r.Call()); } } TEST(Run_Wasm_I32ReinterpretF32) { TestingModule module; int32_t* memory = module.AddMemoryElems(8); WasmRunner r(&module, MachineType::Int32()); BUILD(r, WASM_BLOCK( 2, WASM_STORE_MEM(MachineType::Float32(), WASM_ZERO, WASM_F32_REINTERPRET_I32(WASM_GET_LOCAL(0))), WASM_I8(107))); FOR_INT32_INPUTS(i) { int32_t expected = *i; CHECK_EQ(107, r.Call(expected)); CHECK_EQ(expected, memory[0]); } } TEST(Run_Wasm_ReturnStore) { TestingModule module; int32_t* memory = module.AddMemoryElems(8); WasmRunner r(&module); BUILD(r, WASM_STORE_MEM(MachineType::Int32(), WASM_ZERO, WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO))); FOR_INT32_INPUTS(i) { int32_t expected = *i; memory[0] = expected; CHECK_EQ(expected, r.Call()); } } TEST(Run_Wasm_VoidReturn1) { // We use a wrapper function because WasmRunner does not exist. // Build the test function. TestSignatures sigs; TestingModule module; WasmFunctionCompiler t(sigs.v_v(), &module); BUILD(t, kExprNop); uint32_t index = t.CompileAndAdd(); const int32_t kExpected = -414444; // Build the calling function. WasmRunner r(&module); BUILD(r, B2(WASM_CALL_FUNCTION0(index), WASM_I32V_3(kExpected))); int32_t result = r.Call(); CHECK_EQ(kExpected, result); } TEST(Run_Wasm_VoidReturn2) { // We use a wrapper function because WasmRunner does not exist. // Build the test function. TestSignatures sigs; TestingModule module; WasmFunctionCompiler t(sigs.v_v(), &module); BUILD(t, WASM_RETURN0); uint32_t index = t.CompileAndAdd(); const int32_t kExpected = -414444; // Build the calling function. WasmRunner r(&module); BUILD(r, B2(WASM_CALL_FUNCTION0(index), WASM_I32V_3(kExpected))); int32_t result = r.Call(); CHECK_EQ(kExpected, result); } TEST(Run_Wasm_Block_If_P) { WasmRunner r(MachineType::Int32()); // { if (p0) return 51; return 52; } BUILD(r, B2( // -- WASM_IF(WASM_GET_LOCAL(0), // -- WASM_BRV(1, WASM_I8(51))), // -- WASM_I8(52))); // -- FOR_INT32_INPUTS(i) { int32_t expected = *i ? 51 : 52; CHECK_EQ(expected, r.Call(*i)); } } TEST(Run_Wasm_Block_BrIf_P) { WasmRunner r(MachineType::Int32()); BUILD(r, B2(WASM_BRV_IF(0, WASM_I8(51), WASM_GET_LOCAL(0)), WASM_I8(52))); FOR_INT32_INPUTS(i) { int32_t expected = *i ? 51 : 52; CHECK_EQ(expected, r.Call(*i)); } } TEST(Run_Wasm_Block_IfElse_P_assign) { WasmRunner r(MachineType::Int32()); // { if (p0) p0 = 71; else p0 = 72; return p0; } BUILD(r, B2( // -- WASM_IF_ELSE(WASM_GET_LOCAL(0), // -- WASM_SET_LOCAL(0, WASM_I8(71)), // -- WASM_SET_LOCAL(0, WASM_I8(72))), // -- WASM_GET_LOCAL(0))); FOR_INT32_INPUTS(i) { int32_t expected = *i ? 71 : 72; CHECK_EQ(expected, r.Call(*i)); } } TEST(Run_Wasm_Block_IfElse_P_return) { WasmRunner r(MachineType::Int32()); // if (p0) return 81; else return 82; BUILD(r, // -- WASM_IF_ELSE(WASM_GET_LOCAL(0), // -- RET_I8(81), // -- RET_I8(82))); // -- FOR_INT32_INPUTS(i) { int32_t expected = *i ? 81 : 82; CHECK_EQ(expected, r.Call(*i)); } } TEST(Run_Wasm_Block_If_P_assign) { WasmRunner r(MachineType::Int32()); // { if (p0) p0 = 61; p0; } BUILD(r, WASM_BLOCK( 2, WASM_IF(WASM_GET_LOCAL(0), WASM_SET_LOCAL(0, WASM_I8(61))), WASM_GET_LOCAL(0))); FOR_INT32_INPUTS(i) { int32_t expected = *i ? 61 : *i; CHECK_EQ(expected, r.Call(*i)); } } TEST(Run_Wasm_DanglingAssign) { WasmRunner r(MachineType::Int32()); // { return 0; p0 = 0; } BUILD(r, B2(RET_I8(99), WASM_SET_LOCAL(0, WASM_ZERO))); CHECK_EQ(99, r.Call(1)); } TEST(Run_Wasm_ExprIf_P) { WasmRunner r(MachineType::Int32()); // p0 ? 11 : 22; BUILD(r, WASM_IF_ELSE(WASM_GET_LOCAL(0), // -- WASM_I8(11), // -- WASM_I8(22))); // -- FOR_INT32_INPUTS(i) { int32_t expected = *i ? 11 : 22; CHECK_EQ(expected, r.Call(*i)); } } TEST(Run_Wasm_ExprIf_P_fallthru) { WasmRunner r(MachineType::Int32()); // p0 ? 11 : 22; BUILD(r, WASM_IF_ELSE(WASM_GET_LOCAL(0), // -- WASM_I8(11), // -- WASM_I8(22))); // -- FOR_INT32_INPUTS(i) { int32_t expected = *i ? 11 : 22; CHECK_EQ(expected, r.Call(*i)); } } TEST(Run_Wasm_CountDown) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_BLOCK( 2, WASM_LOOP( 1, WASM_IF(WASM_GET_LOCAL(0), WASM_BRV(1, WASM_SET_LOCAL( 0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I8(1)))))), WASM_GET_LOCAL(0))); CHECK_EQ(0, r.Call(1)); CHECK_EQ(0, r.Call(10)); CHECK_EQ(0, r.Call(100)); } TEST(Run_Wasm_CountDown_fallthru) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_BLOCK( 2, WASM_LOOP(3, WASM_IF(WASM_NOT(WASM_GET_LOCAL(0)), WASM_BREAK(1)), WASM_SET_LOCAL( 0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I8(1))), WASM_CONTINUE(0)), WASM_GET_LOCAL(0))); CHECK_EQ(0, r.Call(1)); CHECK_EQ(0, r.Call(10)); CHECK_EQ(0, r.Call(100)); } TEST(Run_Wasm_WhileCountDown) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_BLOCK( 2, WASM_WHILE(WASM_GET_LOCAL(0), WASM_SET_LOCAL(0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I8(1)))), WASM_GET_LOCAL(0))); CHECK_EQ(0, r.Call(1)); CHECK_EQ(0, r.Call(10)); CHECK_EQ(0, r.Call(100)); } TEST(Run_Wasm_Loop_if_break1) { WasmRunner r(MachineType::Int32()); BUILD(r, B2(WASM_LOOP(2, WASM_IF(WASM_GET_LOCAL(0), WASM_BREAK(1)), WASM_SET_LOCAL(0, WASM_I8(99))), WASM_GET_LOCAL(0))); CHECK_EQ(99, r.Call(0)); CHECK_EQ(3, r.Call(3)); CHECK_EQ(10000, r.Call(10000)); CHECK_EQ(-29, r.Call(-29)); } TEST(Run_Wasm_Loop_if_break2) { WasmRunner r(MachineType::Int32()); BUILD(r, B2(WASM_LOOP(2, WASM_BR_IF(1, WASM_GET_LOCAL(0)), WASM_SET_LOCAL(0, WASM_I8(99))), WASM_GET_LOCAL(0))); CHECK_EQ(99, r.Call(0)); CHECK_EQ(3, r.Call(3)); CHECK_EQ(10000, r.Call(10000)); CHECK_EQ(-29, r.Call(-29)); } TEST(Run_Wasm_Loop_if_break_fallthru) { WasmRunner r(MachineType::Int32()); BUILD(r, B1(WASM_LOOP(2, WASM_IF(WASM_GET_LOCAL(0), WASM_BREAK(1)), WASM_SET_LOCAL(0, WASM_I8(93)))), WASM_GET_LOCAL(0)); CHECK_EQ(93, r.Call(0)); CHECK_EQ(3, r.Call(3)); CHECK_EQ(10001, r.Call(10001)); CHECK_EQ(-22, r.Call(-22)); } TEST(Run_Wasm_IfBreak1) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_IF(WASM_GET_LOCAL(0), WASM_SEQ(WASM_BR(0), WASM_UNREACHABLE)), WASM_I8(91)); CHECK_EQ(91, r.Call(0)); CHECK_EQ(91, r.Call(1)); CHECK_EQ(91, r.Call(-8734)); } TEST(Run_Wasm_IfBreak2) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_IF(WASM_GET_LOCAL(0), WASM_SEQ(WASM_BR(0), RET_I8(77))), WASM_I8(81)); CHECK_EQ(81, r.Call(0)); CHECK_EQ(81, r.Call(1)); CHECK_EQ(81, r.Call(-8734)); } TEST(Run_Wasm_LoadMemI32) { TestingModule module; int32_t* memory = module.AddMemoryElems(8); WasmRunner r(&module, MachineType::Int32()); module.RandomizeMemory(1111); BUILD(r, WASM_LOAD_MEM(MachineType::Int32(), WASM_I8(0))); memory[0] = 99999999; CHECK_EQ(99999999, r.Call(0)); memory[0] = 88888888; CHECK_EQ(88888888, r.Call(0)); memory[0] = 77777777; CHECK_EQ(77777777, r.Call(0)); } TEST(Run_Wasm_LoadMemI32_oob) { TestingModule module; int32_t* memory = module.AddMemoryElems(8); WasmRunner r(&module, MachineType::Uint32()); module.RandomizeMemory(1111); BUILD(r, WASM_LOAD_MEM(MachineType::Int32(), WASM_GET_LOCAL(0))); memory[0] = 88888888; CHECK_EQ(88888888, r.Call(0u)); for (uint32_t offset = 29; offset < 40; offset++) { CHECK_TRAP(r.Call(offset)); } for (uint32_t offset = 0x80000000; offset < 0x80000010; offset++) { CHECK_TRAP(r.Call(offset)); } } TEST(Run_Wasm_LoadMemI32_oob_asm) { TestingModule module; module.origin = kAsmJsOrigin; int32_t* memory = module.AddMemoryElems(8); WasmRunner r(&module, MachineType::Uint32()); module.RandomizeMemory(1112); BUILD(r, WASM_LOAD_MEM(MachineType::Int32(), WASM_GET_LOCAL(0))); memory[0] = 999999; CHECK_EQ(999999, r.Call(0u)); // TODO(titzer): offset 29-31 should also be OOB. for (uint32_t offset = 32; offset < 40; offset++) { CHECK_EQ(0, r.Call(offset)); } for (uint32_t offset = 0x80000000; offset < 0x80000010; offset++) { CHECK_EQ(0, r.Call(offset)); } } TEST(Run_Wasm_LoadMem_offset_oob) { TestingModule module; module.AddMemoryElems(8); static const MachineType machineTypes[] = { MachineType::Int8(), MachineType::Uint8(), MachineType::Int16(), MachineType::Uint16(), MachineType::Int32(), MachineType::Uint32(), MachineType::Int64(), MachineType::Uint64(), MachineType::Float32(), MachineType::Float64()}; for (size_t m = 0; m < arraysize(machineTypes); m++) { module.RandomizeMemory(1116 + static_cast(m)); WasmRunner r(&module, MachineType::Uint32()); uint32_t boundary = 24 - WasmOpcodes::MemSize(machineTypes[m]); BUILD(r, WASM_LOAD_MEM_OFFSET(machineTypes[m], 8, WASM_GET_LOCAL(0)), WASM_ZERO); CHECK_EQ(0, r.Call(boundary)); // in bounds. for (uint32_t offset = boundary + 1; offset < boundary + 19; offset++) { CHECK_TRAP(r.Call(offset)); // out of bounds. } } } TEST(Run_Wasm_LoadMemI32_offset) { TestingModule module; int32_t* memory = module.AddMemoryElems(4); WasmRunner r(&module, MachineType::Int32()); module.RandomizeMemory(1111); BUILD(r, WASM_LOAD_MEM_OFFSET(MachineType::Int32(), 4, WASM_GET_LOCAL(0))); memory[0] = 66666666; memory[1] = 77777777; memory[2] = 88888888; memory[3] = 99999999; CHECK_EQ(77777777, r.Call(0)); CHECK_EQ(88888888, r.Call(4)); CHECK_EQ(99999999, r.Call(8)); memory[0] = 11111111; memory[1] = 22222222; memory[2] = 33333333; memory[3] = 44444444; CHECK_EQ(22222222, r.Call(0)); CHECK_EQ(33333333, r.Call(4)); CHECK_EQ(44444444, r.Call(8)); } #if !V8_TARGET_ARCH_MIPS && !V8_TARGET_ARCH_MIPS64 TEST(Run_Wasm_LoadMemI32_const_oob_misaligned) { const int kMemSize = 12; // TODO(titzer): Fix misaligned accesses on MIPS and re-enable. for (int offset = 0; offset < kMemSize + 5; offset++) { for (int index = 0; index < kMemSize + 5; index++) { TestingModule module; module.AddMemoryElems(kMemSize); WasmRunner r(&module); module.RandomizeMemory(); BUILD(r, WASM_LOAD_MEM_OFFSET(MachineType::Int32(), offset, WASM_I8(index))); if ((offset + index) <= (kMemSize - sizeof(int32_t))) { CHECK_EQ(module.raw_val_at(offset + index), r.Call()); } else { CHECK_TRAP(r.Call()); } } } } #endif TEST(Run_Wasm_LoadMemI32_const_oob) { const int kMemSize = 24; for (int offset = 0; offset < kMemSize + 5; offset += 4) { for (int index = 0; index < kMemSize + 5; index += 4) { TestingModule module; module.AddMemoryElems(kMemSize); WasmRunner r(&module); module.RandomizeMemory(); BUILD(r, WASM_LOAD_MEM_OFFSET(MachineType::Int32(), offset, WASM_I8(index))); if ((offset + index) <= (kMemSize - sizeof(int32_t))) { CHECK_EQ(module.raw_val_at(offset + index), r.Call()); } else { CHECK_TRAP(r.Call()); } } } } TEST(Run_Wasm_StoreMemI32_offset) { TestingModule module; int32_t* memory = module.AddMemoryElems(4); WasmRunner r(&module, MachineType::Int32()); const int32_t kWritten = 0xaabbccdd; BUILD(r, WASM_STORE_MEM_OFFSET(MachineType::Int32(), 4, WASM_GET_LOCAL(0), WASM_I32V_5(kWritten))); for (int i = 0; i < 2; i++) { module.RandomizeMemory(1111); memory[0] = 66666666; memory[1] = 77777777; memory[2] = 88888888; memory[3] = 99999999; CHECK_EQ(kWritten, r.Call(i * 4)); CHECK_EQ(66666666, memory[0]); CHECK_EQ(i == 0 ? kWritten : 77777777, memory[1]); CHECK_EQ(i == 1 ? kWritten : 88888888, memory[2]); CHECK_EQ(i == 2 ? kWritten : 99999999, memory[3]); } } TEST(Run_Wasm_StoreMem_offset_oob) { TestingModule module; byte* memory = module.AddMemoryElems(32); #if WASM_64 static const MachineType machineTypes[] = { MachineType::Int8(), MachineType::Uint8(), MachineType::Int16(), MachineType::Uint16(), MachineType::Int32(), MachineType::Uint32(), MachineType::Int64(), MachineType::Uint64(), MachineType::Float32(), MachineType::Float64()}; #else static const MachineType machineTypes[] = { MachineType::Int8(), MachineType::Uint8(), MachineType::Int16(), MachineType::Uint16(), MachineType::Int32(), MachineType::Uint32(), MachineType::Float32(), MachineType::Float64()}; #endif for (size_t m = 0; m < arraysize(machineTypes); m++) { module.RandomizeMemory(1119 + static_cast(m)); WasmRunner r(&module, MachineType::Uint32()); BUILD(r, WASM_STORE_MEM_OFFSET(machineTypes[m], 8, WASM_GET_LOCAL(0), WASM_LOAD_MEM(machineTypes[m], WASM_ZERO)), WASM_ZERO); byte memsize = WasmOpcodes::MemSize(machineTypes[m]); uint32_t boundary = 24 - memsize; CHECK_EQ(0, r.Call(boundary)); // in bounds. CHECK_EQ(0, memcmp(&memory[0], &memory[8 + boundary], memsize)); for (uint32_t offset = boundary + 1; offset < boundary + 19; offset++) { CHECK_TRAP(r.Call(offset)); // out of bounds. } } } TEST(Run_Wasm_LoadMemI32_P) { const int kNumElems = 8; TestingModule module; int32_t* memory = module.AddMemoryElems(kNumElems); WasmRunner r(&module, MachineType::Int32()); module.RandomizeMemory(2222); BUILD(r, WASM_LOAD_MEM(MachineType::Int32(), WASM_GET_LOCAL(0))); for (int i = 0; i < kNumElems; i++) { CHECK_EQ(memory[i], r.Call(i * 4)); } } TEST(Run_Wasm_MemI32_Sum) { const int kNumElems = 20; TestingModule module; uint32_t* memory = module.AddMemoryElems(kNumElems); WasmRunner r(&module, MachineType::Int32()); const byte kSum = r.AllocateLocal(kAstI32); BUILD(r, WASM_BLOCK( 2, WASM_WHILE( WASM_GET_LOCAL(0), WASM_BLOCK( 2, WASM_SET_LOCAL( kSum, WASM_I32_ADD( WASM_GET_LOCAL(kSum), WASM_LOAD_MEM(MachineType::Int32(), WASM_GET_LOCAL(0)))), WASM_SET_LOCAL( 0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I8(4))))), WASM_GET_LOCAL(1))); // Run 4 trials. for (int i = 0; i < 3; i++) { module.RandomizeMemory(i * 33); uint32_t expected = 0; for (size_t j = kNumElems - 1; j > 0; j--) { expected += memory[j]; } uint32_t result = r.Call(static_cast(4 * (kNumElems - 1))); CHECK_EQ(expected, result); } } TEST(Run_Wasm_CheckMachIntsZero) { const int kNumElems = 55; TestingModule module; module.AddMemoryElems(kNumElems); WasmRunner r(&module, MachineType::Int32()); BUILD(r, kExprLoop, kExprGetLocal, 0, kExprIf, kExprGetLocal, 0, kExprI32LoadMem, 0, 0, kExprIf, kExprI8Const, 255, kExprReturn, ARITY_1, kExprEnd, kExprGetLocal, 0, kExprI8Const, 4, kExprI32Sub, kExprSetLocal, 0, kExprBr, ARITY_1, DEPTH_0, kExprEnd, kExprEnd, kExprI8Const, 0); module.BlankMemory(); CHECK_EQ(0, r.Call((kNumElems - 1) * 4)); } TEST(Run_Wasm_MemF32_Sum) { const int kSize = 5; TestingModule module; module.AddMemoryElems(kSize); float* buffer = module.raw_mem_start(); buffer[0] = -99.25; buffer[1] = -888.25; buffer[2] = -77.25; buffer[3] = 66666.25; buffer[4] = 5555.25; WasmRunner r(&module, MachineType::Int32()); const byte kSum = r.AllocateLocal(kAstF32); BUILD(r, WASM_BLOCK( 3, WASM_WHILE( WASM_GET_LOCAL(0), WASM_BLOCK( 2, WASM_SET_LOCAL( kSum, WASM_F32_ADD( WASM_GET_LOCAL(kSum), WASM_LOAD_MEM(MachineType::Float32(), WASM_GET_LOCAL(0)))), WASM_SET_LOCAL( 0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I8(4))))), WASM_STORE_MEM(MachineType::Float32(), WASM_ZERO, WASM_GET_LOCAL(kSum)), WASM_GET_LOCAL(0))); CHECK_EQ(0, r.Call(4 * (kSize - 1))); CHECK_NE(-99.25, buffer[0]); CHECK_EQ(71256.0f, buffer[0]); } template T GenerateAndRunFold(WasmOpcode binop, T* buffer, size_t size, LocalType astType, MachineType memType) { TestingModule module; module.AddMemoryElems(size); for (size_t i = 0; i < size; i++) { module.raw_mem_start()[i] = buffer[i]; } WasmRunner r(&module, MachineType::Int32()); const byte kAccum = r.AllocateLocal(astType); BUILD( r, WASM_BLOCK( 4, WASM_SET_LOCAL(kAccum, WASM_LOAD_MEM(memType, WASM_ZERO)), WASM_WHILE( WASM_GET_LOCAL(0), WASM_BLOCK( 2, WASM_SET_LOCAL( kAccum, WASM_BINOP(binop, WASM_GET_LOCAL(kAccum), WASM_LOAD_MEM(memType, WASM_GET_LOCAL(0)))), WASM_SET_LOCAL( 0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I8(sizeof(T)))))), WASM_STORE_MEM(memType, WASM_ZERO, WASM_GET_LOCAL(kAccum)), WASM_GET_LOCAL(0))); r.Call(static_cast(sizeof(T) * (size - 1))); return module.raw_mem_at(0); } TEST(Run_Wasm_MemF64_Mul) { const size_t kSize = 6; double buffer[kSize] = {1, 2, 2, 2, 2, 2}; double result = GenerateAndRunFold(kExprF64Mul, buffer, kSize, kAstF64, MachineType::Float64()); CHECK_EQ(32, result); } TEST(Build_Wasm_Infinite_Loop) { WasmRunner r(MachineType::Int32()); // Only build the graph and compile, don't run. BUILD(r, WASM_INFINITE_LOOP); } TEST(Build_Wasm_Infinite_Loop_effect) { TestingModule module; module.AddMemoryElems(16); WasmRunner r(&module, MachineType::Int32()); // Only build the graph and compile, don't run. BUILD(r, WASM_LOOP(1, WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO))); } TEST(Run_Wasm_Unreachable0a) { WasmRunner r(MachineType::Int32()); BUILD(r, B2(WASM_BRV(0, WASM_I8(9)), RET(WASM_GET_LOCAL(0)))); CHECK_EQ(9, r.Call(0)); CHECK_EQ(9, r.Call(1)); } TEST(Run_Wasm_Unreachable0b) { WasmRunner r(MachineType::Int32()); BUILD(r, B2(WASM_BRV(0, WASM_I8(7)), WASM_UNREACHABLE)); CHECK_EQ(7, r.Call(0)); CHECK_EQ(7, r.Call(1)); } TEST(Build_Wasm_Unreachable1) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_UNREACHABLE); } TEST(Build_Wasm_Unreachable2) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_UNREACHABLE, WASM_UNREACHABLE); } TEST(Build_Wasm_Unreachable3) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_UNREACHABLE, WASM_UNREACHABLE, WASM_UNREACHABLE); } TEST(Build_Wasm_UnreachableIf1) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_UNREACHABLE, WASM_IF(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0))); } TEST(Build_Wasm_UnreachableIf2) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_UNREACHABLE, WASM_IF_ELSE(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0), WASM_UNREACHABLE)); } TEST(Run_Wasm_Unreachable_Load) { WasmRunner r(MachineType::Int32()); BUILD(r, B2(WASM_BRV(0, WASM_GET_LOCAL(0)), WASM_LOAD_MEM(MachineType::Int8(), WASM_GET_LOCAL(0)))); CHECK_EQ(11, r.Call(11)); CHECK_EQ(21, r.Call(21)); } TEST(Run_Wasm_Infinite_Loop_not_taken1) { WasmRunner r(MachineType::Int32()); BUILD(r, B2(WASM_IF(WASM_GET_LOCAL(0), WASM_INFINITE_LOOP), WASM_I8(45))); // Run the code, but don't go into the infinite loop. CHECK_EQ(45, r.Call(0)); } TEST(Run_Wasm_Infinite_Loop_not_taken2) { WasmRunner r(MachineType::Int32()); BUILD(r, B1(WASM_IF_ELSE(WASM_GET_LOCAL(0), WASM_BRV(1, WASM_I8(45)), WASM_INFINITE_LOOP))); // Run the code, but don't go into the infinite loop. CHECK_EQ(45, r.Call(1)); } TEST(Run_Wasm_Infinite_Loop_not_taken2_brif) { WasmRunner r(MachineType::Int32()); BUILD(r, B2(WASM_BRV_IF(0, WASM_I8(45), WASM_GET_LOCAL(0)), WASM_INFINITE_LOOP)); // Run the code, but don't go into the infinite loop. CHECK_EQ(45, r.Call(1)); } static void TestBuildGraphForSimpleExpression(WasmOpcode opcode) { Isolate* isolate = CcTest::InitIsolateOnce(); Zone zone(isolate->allocator()); HandleScope scope(isolate); // Enable all optional operators. CommonOperatorBuilder common(&zone); MachineOperatorBuilder machine(&zone, MachineType::PointerRepresentation(), MachineOperatorBuilder::kAllOptionalOps); Graph graph(&zone); JSGraph jsgraph(isolate, &graph, &common, nullptr, nullptr, &machine); FunctionSig* sig = WasmOpcodes::Signature(opcode); if (sig->parameter_count() == 1) { byte code[] = {WASM_NO_LOCALS, kExprGetLocal, 0, static_cast(opcode)}; TestBuildingGraph(&zone, &jsgraph, nullptr, sig, nullptr, code, code + arraysize(code)); } else { CHECK_EQ(2, sig->parameter_count()); byte code[] = {WASM_NO_LOCALS, kExprGetLocal, 0, kExprGetLocal, 1, static_cast(opcode)}; TestBuildingGraph(&zone, &jsgraph, nullptr, sig, nullptr, code, code + arraysize(code)); } } TEST(Build_Wasm_SimpleExprs) { // Test that the decoder can build a graph for all supported simple expressions. #define GRAPH_BUILD_TEST(name, opcode, sig) \ TestBuildGraphForSimpleExpression(kExpr##name); FOREACH_SIMPLE_OPCODE(GRAPH_BUILD_TEST); #undef GRAPH_BUILD_TEST } TEST(Run_Wasm_Int32LoadInt8_signext) { TestingModule module; const int kNumElems = 16; int8_t* memory = module.AddMemoryElems(kNumElems); module.RandomizeMemory(); memory[0] = -1; WasmRunner r(&module, MachineType::Int32()); BUILD(r, WASM_LOAD_MEM(MachineType::Int8(), WASM_GET_LOCAL(0))); for (size_t i = 0; i < kNumElems; i++) { CHECK_EQ(memory[i], r.Call(static_cast(i))); } } TEST(Run_Wasm_Int32LoadInt8_zeroext) { TestingModule module; const int kNumElems = 16; byte* memory = module.AddMemory(kNumElems); module.RandomizeMemory(77); memory[0] = 255; WasmRunner r(&module, MachineType::Int32()); BUILD(r, WASM_LOAD_MEM(MachineType::Uint8(), WASM_GET_LOCAL(0))); for (size_t i = 0; i < kNumElems; i++) { CHECK_EQ(memory[i], r.Call(static_cast(i))); } } TEST(Run_Wasm_Int32LoadInt16_signext) { TestingModule module; const int kNumBytes = 16; byte* memory = module.AddMemory(kNumBytes); module.RandomizeMemory(888); memory[1] = 200; WasmRunner r(&module, MachineType::Int32()); BUILD(r, WASM_LOAD_MEM(MachineType::Int16(), WASM_GET_LOCAL(0))); for (size_t i = 0; i < kNumBytes; i += 2) { int32_t expected = memory[i] | (static_cast(memory[i + 1]) << 8); CHECK_EQ(expected, r.Call(static_cast(i))); } } TEST(Run_Wasm_Int32LoadInt16_zeroext) { TestingModule module; const int kNumBytes = 16; byte* memory = module.AddMemory(kNumBytes); module.RandomizeMemory(9999); memory[1] = 204; WasmRunner r(&module, MachineType::Int32()); BUILD(r, WASM_LOAD_MEM(MachineType::Uint16(), WASM_GET_LOCAL(0))); for (size_t i = 0; i < kNumBytes; i += 2) { int32_t expected = memory[i] | (memory[i + 1] << 8); CHECK_EQ(expected, r.Call(static_cast(i))); } } TEST(Run_WasmInt32Global) { TestingModule module; int32_t* global = module.AddGlobal(MachineType::Int32()); WasmRunner r(&module, MachineType::Int32()); // global = global + p0 BUILD(r, WASM_STORE_GLOBAL( 0, WASM_I32_ADD(WASM_LOAD_GLOBAL(0), WASM_GET_LOCAL(0)))); *global = 116; for (int i = 9; i < 444444; i += 111111) { int32_t expected = *global + i; r.Call(i); CHECK_EQ(expected, *global); } } TEST(Run_WasmInt32Globals_DontAlias) { const int kNumGlobals = 3; TestingModule module; int32_t* globals[] = {module.AddGlobal(MachineType::Int32()), module.AddGlobal(MachineType::Int32()), module.AddGlobal(MachineType::Int32())}; for (int g = 0; g < kNumGlobals; g++) { // global = global + p0 WasmRunner r(&module, MachineType::Int32()); BUILD(r, WASM_STORE_GLOBAL( g, WASM_I32_ADD(WASM_LOAD_GLOBAL(g), WASM_GET_LOCAL(0)))); // Check that reading/writing global number {g} doesn't alter the others. *globals[g] = 116 * g; int32_t before[kNumGlobals]; for (int i = 9; i < 444444; i += 111113) { int32_t sum = *globals[g] + i; for (int j = 0; j < kNumGlobals; j++) before[j] = *globals[j]; r.Call(i); for (int j = 0; j < kNumGlobals; j++) { int32_t expected = j == g ? sum : before[j]; CHECK_EQ(expected, *globals[j]); } } } } TEST(Run_WasmFloat32Global) { TestingModule module; float* global = module.AddGlobal(MachineType::Float32()); WasmRunner r(&module, MachineType::Int32()); // global = global + p0 BUILD(r, B2(WASM_STORE_GLOBAL( 0, WASM_F32_ADD(WASM_LOAD_GLOBAL(0), WASM_F32_SCONVERT_I32(WASM_GET_LOCAL(0)))), WASM_ZERO)); *global = 1.25; for (int i = 9; i < 4444; i += 1111) { volatile float expected = *global + i; r.Call(i); CHECK_EQ(expected, *global); } } TEST(Run_WasmFloat64Global) { TestingModule module; double* global = module.AddGlobal(MachineType::Float64()); WasmRunner r(&module, MachineType::Int32()); // global = global + p0 BUILD(r, B2(WASM_STORE_GLOBAL( 0, WASM_F64_ADD(WASM_LOAD_GLOBAL(0), WASM_F64_SCONVERT_I32(WASM_GET_LOCAL(0)))), WASM_ZERO)); *global = 1.25; for (int i = 9; i < 4444; i += 1111) { volatile double expected = *global + i; r.Call(i); CHECK_EQ(expected, *global); } } TEST(Run_WasmMixedGlobals) { TestingModule module; int32_t* unused = module.AddGlobal(MachineType::Int32()); byte* memory = module.AddMemory(32); int8_t* var_int8 = module.AddGlobal(MachineType::Int8()); uint8_t* var_uint8 = module.AddGlobal(MachineType::Uint8()); int16_t* var_int16 = module.AddGlobal(MachineType::Int16()); uint16_t* var_uint16 = module.AddGlobal(MachineType::Uint16()); int32_t* var_int32 = module.AddGlobal(MachineType::Int32()); uint32_t* var_uint32 = module.AddGlobal(MachineType::Uint32()); float* var_float = module.AddGlobal(MachineType::Float32()); double* var_double = module.AddGlobal(MachineType::Float64()); WasmRunner r(&module, MachineType::Int32()); BUILD( r, WASM_BLOCK( 9, WASM_STORE_GLOBAL(1, WASM_LOAD_MEM(MachineType::Int8(), WASM_ZERO)), WASM_STORE_GLOBAL(2, WASM_LOAD_MEM(MachineType::Uint8(), WASM_ZERO)), WASM_STORE_GLOBAL(3, WASM_LOAD_MEM(MachineType::Int16(), WASM_ZERO)), WASM_STORE_GLOBAL(4, WASM_LOAD_MEM(MachineType::Uint16(), WASM_ZERO)), WASM_STORE_GLOBAL(5, WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO)), WASM_STORE_GLOBAL(6, WASM_LOAD_MEM(MachineType::Uint32(), WASM_ZERO)), WASM_STORE_GLOBAL(7, WASM_LOAD_MEM(MachineType::Float32(), WASM_ZERO)), WASM_STORE_GLOBAL(8, WASM_LOAD_MEM(MachineType::Float64(), WASM_ZERO)), WASM_ZERO)); memory[0] = 0xaa; memory[1] = 0xcc; memory[2] = 0x55; memory[3] = 0xee; memory[4] = 0x33; memory[5] = 0x22; memory[6] = 0x11; memory[7] = 0x99; r.Call(1); CHECK(static_cast(0xaa) == *var_int8); CHECK(static_cast(0xaa) == *var_uint8); CHECK(static_cast(0xccaa) == *var_int16); CHECK(static_cast(0xccaa) == *var_uint16); CHECK(static_cast(0xee55ccaa) == *var_int32); CHECK(static_cast(0xee55ccaa) == *var_uint32); CHECK(bit_cast(0xee55ccaa) == *var_float); CHECK(bit_cast(0x99112233ee55ccaaULL) == *var_double); USE(unused); } TEST(Run_WasmCallEmpty) { const int32_t kExpected = -414444; // Build the target function. TestSignatures sigs; TestingModule module; WasmFunctionCompiler t(sigs.i_v(), &module); BUILD(t, WASM_I32V_3(kExpected)); uint32_t index = t.CompileAndAdd(); // Build the calling function. WasmRunner r(&module); BUILD(r, WASM_CALL_FUNCTION0(index)); int32_t result = r.Call(); CHECK_EQ(kExpected, result); } TEST(Run_WasmCallF32StackParameter) { // Build the target function. LocalType param_types[20]; for (int i = 0; i < 20; i++) param_types[i] = kAstF32; FunctionSig sig(1, 19, param_types); TestingModule module; WasmFunctionCompiler t(&sig, &module); BUILD(t, WASM_GET_LOCAL(17)); uint32_t index = t.CompileAndAdd(); // Build the calling function. WasmRunner r(&module); BUILD(r, WASM_CALL_FUNCTIONN( 19, index, WASM_F32(1.0f), WASM_F32(2.0f), WASM_F32(4.0f), WASM_F32(8.0f), WASM_F32(16.0f), WASM_F32(32.0f), WASM_F32(64.0f), WASM_F32(128.0f), WASM_F32(256.0f), WASM_F32(1.5f), WASM_F32(2.5f), WASM_F32(4.5f), WASM_F32(8.5f), WASM_F32(16.5f), WASM_F32(32.5f), WASM_F32(64.5f), WASM_F32(128.5f), WASM_F32(256.5f), WASM_F32(512.5f))); float result = r.Call(); CHECK_EQ(256.5f, result); } TEST(Run_WasmCallF64StackParameter) { // Build the target function. LocalType param_types[20]; for (int i = 0; i < 20; i++) param_types[i] = kAstF64; FunctionSig sig(1, 19, param_types); TestingModule module; WasmFunctionCompiler t(&sig, &module); BUILD(t, WASM_GET_LOCAL(17)); uint32_t index = t.CompileAndAdd(); // Build the calling function. WasmRunner r(&module); BUILD(r, WASM_CALL_FUNCTIONN(19, index, WASM_F64(1.0), WASM_F64(2.0), WASM_F64(4.0), WASM_F64(8.0), WASM_F64(16.0), WASM_F64(32.0), WASM_F64(64.0), WASM_F64(128.0), WASM_F64(256.0), WASM_F64(1.5), WASM_F64(2.5), WASM_F64(4.5), WASM_F64(8.5), WASM_F64(16.5), WASM_F64(32.5), WASM_F64(64.5), WASM_F64(128.5), WASM_F64(256.5), WASM_F64(512.5))); float result = r.Call(); CHECK_EQ(256.5, result); } TEST(Run_WasmCallVoid) { const byte kMemOffset = 8; const int32_t kElemNum = kMemOffset / sizeof(int32_t); const int32_t kExpected = -414444; // Build the target function. TestSignatures sigs; TestingModule module; module.AddMemory(16); module.RandomizeMemory(); WasmFunctionCompiler t(sigs.v_v(), &module); BUILD(t, WASM_STORE_MEM(MachineType::Int32(), WASM_I8(kMemOffset), WASM_I32V_3(kExpected))); uint32_t index = t.CompileAndAdd(); // Build the calling function. WasmRunner r(&module); BUILD(r, WASM_CALL_FUNCTION0(index), WASM_LOAD_MEM(MachineType::Int32(), WASM_I8(kMemOffset))); int32_t result = r.Call(); CHECK_EQ(kExpected, result); CHECK_EQ(kExpected, module.raw_mem_start()[kElemNum]); } TEST(Run_WasmCall_Int32Add) { // Build the target function. TestSignatures sigs; TestingModule module; WasmFunctionCompiler t(sigs.i_ii(), &module); BUILD(t, WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); uint32_t index = t.CompileAndAdd(); // Build the caller function. WasmRunner r(&module, MachineType::Int32(), MachineType::Int32()); BUILD(r, WASM_CALL_FUNCTION2(index, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { int32_t expected = static_cast(static_cast(*i) + static_cast(*j)); CHECK_EQ(expected, r.Call(*i, *j)); } } } TEST(Run_WasmCall_Float32Sub) { TestSignatures sigs; TestingModule module; WasmFunctionCompiler t(sigs.f_ff(), &module); // Build the target function. BUILD(t, WASM_F32_SUB(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); uint32_t index = t.CompileAndAdd(); // Builder the caller function. WasmRunner r(&module, MachineType::Float32(), MachineType::Float32()); BUILD(r, WASM_CALL_FUNCTION2(index, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_FLOAT32_INPUTS(i) { FOR_FLOAT32_INPUTS(j) { CHECK_FLOAT_EQ(*i - *j, r.Call(*i, *j)); } } } TEST(Run_WasmCall_Float64Sub) { TestingModule module; double* memory = module.AddMemoryElems(16); WasmRunner r(&module); BUILD(r, WASM_BLOCK( 2, WASM_STORE_MEM( MachineType::Float64(), WASM_ZERO, WASM_F64_SUB( WASM_LOAD_MEM(MachineType::Float64(), WASM_ZERO), WASM_LOAD_MEM(MachineType::Float64(), WASM_I8(8)))), WASM_I8(107))); FOR_FLOAT64_INPUTS(i) { FOR_FLOAT64_INPUTS(j) { memory[0] = *i; memory[1] = *j; double expected = *i - *j; CHECK_EQ(107, r.Call()); if (expected != expected) { CHECK(memory[0] != memory[0]); } else { CHECK_EQ(expected, memory[0]); } } } } #define ADD_CODE(vec, ...) \ do { \ byte __buf[] = {__VA_ARGS__}; \ for (size_t i = 0; i < sizeof(__buf); i++) vec.push_back(__buf[i]); \ } while (false) static void Run_WasmMixedCall_N(int start) { const int kExpected = 6333; const int kElemSize = 8; TestSignatures sigs; #if WASM_64 static MachineType mixed[] = { MachineType::Int32(), MachineType::Float32(), MachineType::Int64(), MachineType::Float64(), MachineType::Float32(), MachineType::Int64(), MachineType::Int32(), MachineType::Float64(), MachineType::Float32(), MachineType::Float64(), MachineType::Int32(), MachineType::Int64(), MachineType::Int32(), MachineType::Int32()}; #else static MachineType mixed[] = { MachineType::Int32(), MachineType::Float32(), MachineType::Float64(), MachineType::Float32(), MachineType::Int32(), MachineType::Float64(), MachineType::Float32(), MachineType::Float64(), MachineType::Int32(), MachineType::Int32(), MachineType::Int32()}; #endif int num_params = static_cast(arraysize(mixed)) - start; for (int which = 0; which < num_params; which++) { v8::base::AccountingAllocator allocator; Zone zone(&allocator); TestingModule module; module.AddMemory(1024); MachineType* memtypes = &mixed[start]; MachineType result = memtypes[which]; // ========================================================================= // Build the selector function. // ========================================================================= uint32_t index; FunctionSig::Builder b(&zone, 1, num_params); b.AddReturn(WasmOpcodes::LocalTypeFor(result)); for (int i = 0; i < num_params; i++) { b.AddParam(WasmOpcodes::LocalTypeFor(memtypes[i])); } WasmFunctionCompiler t(b.Build(), &module); BUILD(t, WASM_GET_LOCAL(which)); index = t.CompileAndAdd(); // ========================================================================= // Build the calling function. // ========================================================================= WasmRunner r(&module); std::vector code; // Load the offset for the store. ADD_CODE(code, WASM_ZERO); // Load the arguments. for (int i = 0; i < num_params; i++) { int offset = (i + 1) * kElemSize; ADD_CODE(code, WASM_LOAD_MEM(memtypes[i], WASM_I8(offset))); } // Call the selector function. ADD_CODE(code, kExprCallFunction, static_cast(num_params), static_cast(index)); // Store the result in memory. ADD_CODE(code, static_cast(WasmOpcodes::LoadStoreOpcodeOf(result, true)), ZERO_ALIGNMENT, ZERO_OFFSET); // Return the expected value. ADD_CODE(code, WASM_I32V_2(kExpected)); r.Build(&code[0], &code[0] + code.size()); // Run the code. for (int t = 0; t < 10; t++) { module.RandomizeMemory(); CHECK_EQ(kExpected, r.Call()); int size = WasmOpcodes::MemSize(result); for (int i = 0; i < size; i++) { int base = (which + 1) * kElemSize; byte expected = module.raw_mem_at(base + i); byte result = module.raw_mem_at(i); CHECK_EQ(expected, result); } } } } TEST(Run_WasmMixedCall_0) { Run_WasmMixedCall_N(0); } TEST(Run_WasmMixedCall_1) { Run_WasmMixedCall_N(1); } TEST(Run_WasmMixedCall_2) { Run_WasmMixedCall_N(2); } TEST(Run_WasmMixedCall_3) { Run_WasmMixedCall_N(3); } TEST(Run_Wasm_AddCall) { TestSignatures sigs; TestingModule module; WasmFunctionCompiler t1(sigs.i_ii(), &module); BUILD(t1, WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); t1.CompileAndAdd(); WasmRunner r(&module, MachineType::Int32()); byte local = r.AllocateLocal(kAstI32); BUILD(r, B2(WASM_SET_LOCAL(local, WASM_I8(99)), WASM_I32_ADD( WASM_CALL_FUNCTION2(t1.function_index_, WASM_GET_LOCAL(0), WASM_GET_LOCAL(0)), WASM_CALL_FUNCTION2(t1.function_index_, WASM_GET_LOCAL(1), WASM_GET_LOCAL(local))))); CHECK_EQ(198, r.Call(0)); CHECK_EQ(200, r.Call(1)); CHECK_EQ(100, r.Call(-49)); } TEST(Run_Wasm_CountDown_expr) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_LOOP( 3, WASM_IF(WASM_NOT(WASM_GET_LOCAL(0)), WASM_BREAKV(1, WASM_GET_LOCAL(0))), WASM_SET_LOCAL(0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I8(1))), WASM_CONTINUE(0))); CHECK_EQ(0, r.Call(1)); CHECK_EQ(0, r.Call(10)); CHECK_EQ(0, r.Call(100)); } TEST(Run_Wasm_ExprBlock2a) { WasmRunner r(MachineType::Int32()); BUILD(r, B2(WASM_IF(WASM_GET_LOCAL(0), WASM_BRV(1, WASM_I8(1))), WASM_I8(1))); CHECK_EQ(1, r.Call(0)); CHECK_EQ(1, r.Call(1)); } TEST(Run_Wasm_ExprBlock2b) { WasmRunner r(MachineType::Int32()); BUILD(r, B2(WASM_IF(WASM_GET_LOCAL(0), WASM_BRV(1, WASM_I8(1))), WASM_I8(2))); CHECK_EQ(2, r.Call(0)); CHECK_EQ(1, r.Call(1)); } TEST(Run_Wasm_ExprBlock2c) { WasmRunner r(MachineType::Int32()); BUILD(r, B2(WASM_BRV_IF(0, WASM_I8(1), WASM_GET_LOCAL(0)), WASM_I8(1))); CHECK_EQ(1, r.Call(0)); CHECK_EQ(1, r.Call(1)); } TEST(Run_Wasm_ExprBlock2d) { WasmRunner r(MachineType::Int32()); BUILD(r, B2(WASM_BRV_IF(0, WASM_I8(1), WASM_GET_LOCAL(0)), WASM_I8(2))); CHECK_EQ(2, r.Call(0)); CHECK_EQ(1, r.Call(1)); } TEST(Run_Wasm_ExprBlock_ManualSwitch) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_BLOCK(6, WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(1)), WASM_BRV(1, WASM_I8(11))), WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(2)), WASM_BRV(1, WASM_I8(12))), WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(3)), WASM_BRV(1, WASM_I8(13))), WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(4)), WASM_BRV(1, WASM_I8(14))), WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(5)), WASM_BRV(1, WASM_I8(15))), WASM_I8(99))); CHECK_EQ(99, r.Call(0)); CHECK_EQ(11, r.Call(1)); CHECK_EQ(12, r.Call(2)); CHECK_EQ(13, r.Call(3)); CHECK_EQ(14, r.Call(4)); CHECK_EQ(15, r.Call(5)); CHECK_EQ(99, r.Call(6)); } TEST(Run_Wasm_ExprBlock_ManualSwitch_brif) { WasmRunner r(MachineType::Int32()); BUILD(r, WASM_BLOCK(6, WASM_BRV_IF(0, WASM_I8(11), WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(1))), WASM_BRV_IF(0, WASM_I8(12), WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(2))), WASM_BRV_IF(0, WASM_I8(13), WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(3))), WASM_BRV_IF(0, WASM_I8(14), WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(4))), WASM_BRV_IF(0, WASM_I8(15), WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(5))), WASM_I8(99))); CHECK_EQ(99, r.Call(0)); CHECK_EQ(11, r.Call(1)); CHECK_EQ(12, r.Call(2)); CHECK_EQ(13, r.Call(3)); CHECK_EQ(14, r.Call(4)); CHECK_EQ(15, r.Call(5)); CHECK_EQ(99, r.Call(6)); } TEST(Run_Wasm_nested_ifs) { WasmRunner r(MachineType::Int32(), MachineType::Int32()); BUILD(r, WASM_IF_ELSE( WASM_GET_LOCAL(0), WASM_IF_ELSE(WASM_GET_LOCAL(1), WASM_I8(11), WASM_I8(12)), WASM_IF_ELSE(WASM_GET_LOCAL(1), WASM_I8(13), WASM_I8(14)))); CHECK_EQ(11, r.Call(1, 1)); CHECK_EQ(12, r.Call(1, 0)); CHECK_EQ(13, r.Call(0, 1)); CHECK_EQ(14, r.Call(0, 0)); } TEST(Run_Wasm_ExprBlock_if) { WasmRunner r(MachineType::Int32()); BUILD(r, B1(WASM_IF_ELSE(WASM_GET_LOCAL(0), WASM_BRV(0, WASM_I8(11)), WASM_BRV(1, WASM_I8(14))))); CHECK_EQ(11, r.Call(1)); CHECK_EQ(14, r.Call(0)); } TEST(Run_Wasm_ExprBlock_nested_ifs) { WasmRunner r(MachineType::Int32(), MachineType::Int32()); BUILD(r, WASM_BLOCK( 1, WASM_IF_ELSE( WASM_GET_LOCAL(0), WASM_IF_ELSE(WASM_GET_LOCAL(1), WASM_BRV(0, WASM_I8(11)), WASM_BRV(1, WASM_I8(12))), WASM_IF_ELSE(WASM_GET_LOCAL(1), WASM_BRV(0, WASM_I8(13)), WASM_BRV(1, WASM_I8(14)))))); CHECK_EQ(11, r.Call(1, 1)); CHECK_EQ(12, r.Call(1, 0)); CHECK_EQ(13, r.Call(0, 1)); CHECK_EQ(14, r.Call(0, 0)); } TEST(Run_Wasm_ExprLoop_nested_ifs) { WasmRunner r(MachineType::Int32(), MachineType::Int32()); BUILD(r, WASM_LOOP( 1, WASM_IF_ELSE( WASM_GET_LOCAL(0), WASM_IF_ELSE(WASM_GET_LOCAL(1), WASM_BRV(1, WASM_I8(11)), WASM_BRV(3, WASM_I8(12))), WASM_IF_ELSE(WASM_GET_LOCAL(1), WASM_BRV(1, WASM_I8(13)), WASM_BRV(3, WASM_I8(14)))))); CHECK_EQ(11, r.Call(1, 1)); CHECK_EQ(12, r.Call(1, 0)); CHECK_EQ(13, r.Call(0, 1)); CHECK_EQ(14, r.Call(0, 0)); } TEST(Run_Wasm_SimpleCallIndirect) { TestSignatures sigs; TestingModule module; WasmFunctionCompiler t1(sigs.i_ii(), &module); BUILD(t1, WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); t1.CompileAndAdd(/*sig_index*/ 1); WasmFunctionCompiler t2(sigs.i_ii(), &module); BUILD(t2, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); t2.CompileAndAdd(/*sig_index*/ 1); // Signature table. module.AddSignature(sigs.f_ff()); module.AddSignature(sigs.i_ii()); module.AddSignature(sigs.d_dd()); // Function table. int table[] = {0, 1}; module.AddIndirectFunctionTable(table, 2); module.PopulateIndirectFunctionTable(); // Builder the caller function. WasmRunner r(&module, MachineType::Int32()); BUILD(r, WASM_CALL_INDIRECT2(1, WASM_GET_LOCAL(0), WASM_I8(66), WASM_I8(22))); CHECK_EQ(88, r.Call(0)); CHECK_EQ(44, r.Call(1)); CHECK_TRAP(r.Call(2)); } TEST(Run_Wasm_MultipleCallIndirect) { TestSignatures sigs; TestingModule module; WasmFunctionCompiler t1(sigs.i_ii(), &module); BUILD(t1, WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); t1.CompileAndAdd(/*sig_index*/ 1); WasmFunctionCompiler t2(sigs.i_ii(), &module); BUILD(t2, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); t2.CompileAndAdd(/*sig_index*/ 1); // Signature table. module.AddSignature(sigs.f_ff()); module.AddSignature(sigs.i_ii()); module.AddSignature(sigs.d_dd()); // Function table. int table[] = {0, 1}; module.AddIndirectFunctionTable(table, 2); module.PopulateIndirectFunctionTable(); // Builder the caller function. WasmRunner r(&module, MachineType::Int32(), MachineType::Int32(), MachineType::Int32()); BUILD(r, WASM_I32_ADD( WASM_CALL_INDIRECT2(1, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1), WASM_GET_LOCAL(2)), WASM_CALL_INDIRECT2(1, WASM_GET_LOCAL(1), WASM_GET_LOCAL(2), WASM_GET_LOCAL(0)))); CHECK_EQ(5, r.Call(0, 1, 2)); CHECK_EQ(19, r.Call(0, 1, 9)); CHECK_EQ(1, r.Call(1, 0, 2)); CHECK_EQ(1, r.Call(1, 0, 9)); CHECK_TRAP(r.Call(0, 2, 1)); CHECK_TRAP(r.Call(1, 2, 0)); CHECK_TRAP(r.Call(2, 0, 1)); CHECK_TRAP(r.Call(2, 1, 0)); } TEST(Run_Wasm_CallIndirect_NoTable) { TestSignatures sigs; TestingModule module; // One function. WasmFunctionCompiler t1(sigs.i_ii(), &module); BUILD(t1, WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); t1.CompileAndAdd(/*sig_index*/ 1); // Signature table. module.AddSignature(sigs.f_ff()); module.AddSignature(sigs.i_ii()); // Builder the caller function. WasmRunner r(&module, MachineType::Int32()); BUILD(r, WASM_CALL_INDIRECT2(1, WASM_GET_LOCAL(0), WASM_I8(66), WASM_I8(22))); CHECK_TRAP(r.Call(0)); CHECK_TRAP(r.Call(1)); CHECK_TRAP(r.Call(2)); } TEST(Run_Wasm_F32Floor) { WasmRunner r(MachineType::Float32()); BUILD(r, WASM_F32_FLOOR(WASM_GET_LOCAL(0))); FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(floorf(*i), r.Call(*i)); } } TEST(Run_Wasm_F32Ceil) { WasmRunner r(MachineType::Float32()); BUILD(r, WASM_F32_CEIL(WASM_GET_LOCAL(0))); FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(ceilf(*i), r.Call(*i)); } } TEST(Run_Wasm_F32Trunc) { WasmRunner r(MachineType::Float32()); BUILD(r, WASM_F32_TRUNC(WASM_GET_LOCAL(0))); FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(truncf(*i), r.Call(*i)); } } TEST(Run_Wasm_F32NearestInt) { WasmRunner r(MachineType::Float32()); BUILD(r, WASM_F32_NEARESTINT(WASM_GET_LOCAL(0))); FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(nearbyintf(*i), r.Call(*i)); } } TEST(Run_Wasm_F64Floor) { WasmRunner r(MachineType::Float64()); BUILD(r, WASM_F64_FLOOR(WASM_GET_LOCAL(0))); FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(floor(*i), r.Call(*i)); } } TEST(Run_Wasm_F64Ceil) { WasmRunner r(MachineType::Float64()); BUILD(r, WASM_F64_CEIL(WASM_GET_LOCAL(0))); FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(ceil(*i), r.Call(*i)); } } TEST(Run_Wasm_F64Trunc) { WasmRunner r(MachineType::Float64()); BUILD(r, WASM_F64_TRUNC(WASM_GET_LOCAL(0))); FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(trunc(*i), r.Call(*i)); } } TEST(Run_Wasm_F64NearestInt) { WasmRunner r(MachineType::Float64()); BUILD(r, WASM_F64_NEARESTINT(WASM_GET_LOCAL(0))); FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(nearbyint(*i), r.Call(*i)); } } TEST(Run_Wasm_F32Min) { WasmRunner r(MachineType::Float32(), MachineType::Float32()); BUILD(r, WASM_F32_MIN(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_FLOAT32_INPUTS(i) { FOR_FLOAT32_INPUTS(j) { float expected; if (*i < *j) { expected = *i; } else if (*j < *i) { expected = *j; } else if (*i != *i) { // If *i or *j is NaN, then the result is NaN. expected = *i; } else { expected = *j; } CHECK_FLOAT_EQ(expected, r.Call(*i, *j)); } } } TEST(Run_Wasm_F64Min) { WasmRunner r(MachineType::Float64(), MachineType::Float64()); BUILD(r, WASM_F64_MIN(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_FLOAT64_INPUTS(i) { FOR_FLOAT64_INPUTS(j) { double expected; if (*i < *j) { expected = *i; } else if (*j < *i) { expected = *j; } else if (*i != *i) { // If *i or *j is NaN, then the result is NaN. expected = *i; } else { expected = *j; } CHECK_DOUBLE_EQ(expected, r.Call(*i, *j)); } } } TEST(Run_Wasm_F32Max) { WasmRunner r(MachineType::Float32(), MachineType::Float32()); BUILD(r, WASM_F32_MAX(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_FLOAT32_INPUTS(i) { FOR_FLOAT32_INPUTS(j) { float expected; if (*i > *j) { expected = *i; } else if (*j > *i) { expected = *j; } else if (*i != *i) { // If *i or *j is NaN, then the result is NaN. expected = *i; } else { expected = *j; } CHECK_FLOAT_EQ(expected, r.Call(*i, *j)); } } } TEST(Run_Wasm_F64Max) { WasmRunner r(MachineType::Float64(), MachineType::Float64()); BUILD(r, WASM_F64_MAX(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_FLOAT64_INPUTS(i) { FOR_FLOAT64_INPUTS(j) { double expected; if (*i > *j) { expected = *i; } else if (*j > *i) { expected = *j; } else if (*i != *i) { // If *i or *j is NaN, then the result is NaN. expected = *i; } else { expected = *j; } CHECK_DOUBLE_EQ(expected, r.Call(*i, *j)); } } } // TODO(ahaas): Fix on mips and reenable. #if !V8_TARGET_ARCH_MIPS && !V8_TARGET_ARCH_MIPS64 TEST(Run_Wasm_F32Min_Snan) { // Test that the instruction does not return a signalling NaN. { WasmRunner r; BUILD(r, WASM_F32_MIN(WASM_F32(bit_cast(0xff80f1e2)), WASM_F32(57.67))); CHECK_EQ(0xffc0f1e2, bit_cast(r.Call())); } { WasmRunner r; BUILD(r, WASM_F32_MIN(WASM_F32(45.73), WASM_F32(bit_cast(0x7f80f1e2)))); CHECK_EQ(0x7fc0f1e2, bit_cast(r.Call())); } } TEST(Run_Wasm_F32Max_Snan) { // Test that the instruction does not return a signalling NaN. { WasmRunner r; BUILD(r, WASM_F32_MAX(WASM_F32(bit_cast(0xff80f1e2)), WASM_F32(57.67))); CHECK_EQ(0xffc0f1e2, bit_cast(r.Call())); } { WasmRunner r; BUILD(r, WASM_F32_MAX(WASM_F32(45.73), WASM_F32(bit_cast(0x7f80f1e2)))); CHECK_EQ(0x7fc0f1e2, bit_cast(r.Call())); } } TEST(Run_Wasm_F64Min_Snan) { // Test that the instruction does not return a signalling NaN. { WasmRunner r; BUILD(r, WASM_F64_MIN(WASM_F64(bit_cast(0xfff000000000f1e2)), WASM_F64(57.67))); CHECK_EQ(0xfff800000000f1e2, bit_cast(r.Call())); } { WasmRunner r; BUILD(r, WASM_F64_MIN(WASM_F64(45.73), WASM_F64(bit_cast(0x7ff000000000f1e2)))); CHECK_EQ(0x7ff800000000f1e2, bit_cast(r.Call())); } } TEST(Run_Wasm_F64Max_Snan) { // Test that the instruction does not return a signalling NaN. { WasmRunner r; BUILD(r, WASM_F64_MAX(WASM_F64(bit_cast(0xfff000000000f1e2)), WASM_F64(57.67))); CHECK_EQ(0xfff800000000f1e2, bit_cast(r.Call())); } { WasmRunner r; BUILD(r, WASM_F64_MAX(WASM_F64(45.73), WASM_F64(bit_cast(0x7ff000000000f1e2)))); CHECK_EQ(0x7ff800000000f1e2, bit_cast(r.Call())); } } #endif TEST(Run_Wasm_I32SConvertF32) { WasmRunner r(MachineType::Float32()); BUILD(r, WASM_I32_SCONVERT_F32(WASM_GET_LOCAL(0))); FOR_FLOAT32_INPUTS(i) { if (*i < static_cast(INT32_MAX) && *i >= static_cast(INT32_MIN)) { CHECK_EQ(static_cast(*i), r.Call(*i)); } else { CHECK_TRAP32(r.Call(*i)); } } } TEST(Run_Wasm_I32SConvertF64) { WasmRunner r(MachineType::Float64()); BUILD(r, WASM_I32_SCONVERT_F64(WASM_GET_LOCAL(0))); FOR_FLOAT64_INPUTS(i) { if (*i < (static_cast(INT32_MAX) + 1.0) && *i > (static_cast(INT32_MIN) - 1.0)) { CHECK_EQ(static_cast(*i), r.Call(*i)); } else { CHECK_TRAP32(r.Call(*i)); } } } TEST(Run_Wasm_I32UConvertF32) { WasmRunner r(MachineType::Float32()); BUILD(r, WASM_I32_UCONVERT_F32(WASM_GET_LOCAL(0))); FOR_FLOAT32_INPUTS(i) { if (*i < (static_cast(UINT32_MAX) + 1.0) && *i > -1) { CHECK_EQ(static_cast(*i), r.Call(*i)); } else { CHECK_TRAP32(r.Call(*i)); } } } TEST(Run_Wasm_I32UConvertF64) { WasmRunner r(MachineType::Float64()); BUILD(r, WASM_I32_UCONVERT_F64(WASM_GET_LOCAL(0))); FOR_FLOAT64_INPUTS(i) { if (*i < (static_cast(UINT32_MAX) + 1.0) && *i > -1) { CHECK_EQ(static_cast(*i), r.Call(*i)); } else { CHECK_TRAP32(r.Call(*i)); } } } TEST(Run_Wasm_F64CopySign) { WasmRunner r(MachineType::Float64(), MachineType::Float64()); BUILD(r, WASM_F64_COPYSIGN(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_FLOAT64_INPUTS(i) { FOR_FLOAT64_INPUTS(j) { CHECK_DOUBLE_EQ(copysign(*i, *j), r.Call(*i, *j)); } } } TEST(Run_Wasm_F32CopySign) { WasmRunner r(MachineType::Float32(), MachineType::Float32()); BUILD(r, WASM_F32_COPYSIGN(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); FOR_FLOAT32_INPUTS(i) { FOR_FLOAT32_INPUTS(j) { CHECK_FLOAT_EQ(copysignf(*i, *j), r.Call(*i, *j)); } } } void CompileCallIndirectMany(LocalType param) { // Make sure we don't run out of registers when compiling indirect calls // with many many parameters. TestSignatures sigs; for (byte num_params = 0; num_params < 40; num_params++) { v8::base::AccountingAllocator allocator; Zone zone(&allocator); HandleScope scope(CcTest::InitIsolateOnce()); TestingModule module; FunctionSig* sig = sigs.many(&zone, kAstStmt, param, num_params); module.AddSignature(sig); module.AddSignature(sig); module.AddIndirectFunctionTable(nullptr, 0); WasmFunctionCompiler t(sig, &module); std::vector code; ADD_CODE(code, kExprI8Const, 0); for (byte p = 0; p < num_params; p++) { ADD_CODE(code, kExprGetLocal, p); } ADD_CODE(code, kExprCallIndirect, static_cast(num_params), 1); t.Build(&code[0], &code[0] + code.size()); t.Compile(); } } TEST(Compile_Wasm_CallIndirect_Many_i32) { CompileCallIndirectMany(kAstI32); } #if WASM_64 TEST(Compile_Wasm_CallIndirect_Many_i64) { CompileCallIndirectMany(kAstI64); } #endif TEST(Compile_Wasm_CallIndirect_Many_f32) { CompileCallIndirectMany(kAstF32); } TEST(Compile_Wasm_CallIndirect_Many_f64) { CompileCallIndirectMany(kAstF64); } TEST(Run_WASM_Int32RemS_dead) { WasmRunner r(MachineType::Int32(), MachineType::Int32()); BUILD(r, WASM_I32_REMS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)), WASM_ZERO); const int32_t kMin = std::numeric_limits::min(); CHECK_EQ(0, r.Call(133, 100)); CHECK_EQ(0, r.Call(kMin, -1)); CHECK_EQ(0, r.Call(0, 1)); CHECK_TRAP(r.Call(100, 0)); CHECK_TRAP(r.Call(-1001, 0)); CHECK_TRAP(r.Call(kMin, 0)); }