// Copyright 2011 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef V8_SCOPES_H_ #define V8_SCOPES_H_ #include "ast.h" #include "hashmap.h" namespace v8 { namespace internal { class CompilationInfo; // A hash map to support fast variable declaration and lookup. class VariableMap: public HashMap { public: VariableMap(); // Dummy constructor. This constructor doesn't set up the map // properly so don't use it unless you have a good reason. explicit VariableMap(bool gotta_love_static_overloading); virtual ~VariableMap(); Variable* Declare(Scope* scope, Handle name, Variable::Mode mode, bool is_valid_lhs, Variable::Kind kind); Variable* Lookup(Handle name); }; // The dynamic scope part holds hash maps for the variables that will // be looked up dynamically from within eval and with scopes. The objects // are allocated on-demand from Scope::NonLocal to avoid wasting memory // and setup time for scopes that don't need them. class DynamicScopePart : public ZoneObject { public: VariableMap* GetMap(Variable::Mode mode) { int index = mode - Variable::DYNAMIC; ASSERT(index >= 0 && index < 3); return &maps_[index]; } private: VariableMap maps_[3]; }; // Global invariants after AST construction: Each reference (i.e. identifier) // to a JavaScript variable (including global properties) is represented by a // VariableProxy node. Immediately after AST construction and before variable // allocation, most VariableProxy nodes are "unresolved", i.e. not bound to a // corresponding variable (though some are bound during parse time). Variable // allocation binds each unresolved VariableProxy to one Variable and assigns // a location. Note that many VariableProxy nodes may refer to the same Java- // Script variable. class Scope: public ZoneObject { public: // --------------------------------------------------------------------------- // Construction enum Type { EVAL_SCOPE, // The top-level scope for an eval source. FUNCTION_SCOPE, // The top-level scope for a function. GLOBAL_SCOPE, // The top-level scope for a program or a top-level eval. CATCH_SCOPE, // The scope introduced by catch. BLOCK_SCOPE // The scope introduced by a new block. }; Scope(Scope* outer_scope, Type type); // Compute top scope and allocate variables. For lazy compilation the top // scope only contains the single lazily compiled function, so this // doesn't re-allocate variables repeatedly. static bool Analyze(CompilationInfo* info); static Scope* DeserializeScopeChain(CompilationInfo* info, Scope* innermost_scope); // The scope name is only used for printing/debugging. void SetScopeName(Handle scope_name) { scope_name_ = scope_name; } void Initialize(bool inside_with); // --------------------------------------------------------------------------- // Declarations // Lookup a variable in this scope. Returns the variable or NULL if not found. Variable* LocalLookup(Handle name); // Lookup a variable in this scope or outer scopes. // Returns the variable or NULL if not found. Variable* Lookup(Handle name); // Declare the function variable for a function literal. This variable // is in an intermediate scope between this function scope and the the // outer scope. Only possible for function scopes; at most one variable. Variable* DeclareFunctionVar(Handle name); // Declare a parameter in this scope. When there are duplicated // parameters the rightmost one 'wins'. However, the implementation // expects all parameters to be declared and from left to right. void DeclareParameter(Handle name, Variable::Mode mode); // Declare a local variable in this scope. If the variable has been // declared before, the previously declared variable is returned. Variable* DeclareLocal(Handle name, Variable::Mode mode); // Declare an implicit global variable in this scope which must be a // global scope. The variable was introduced (possibly from an inner // scope) by a reference to an unresolved variable with no intervening // with statements or eval calls. Variable* DeclareGlobal(Handle name); // Create a new unresolved variable. VariableProxy* NewUnresolved(Handle name, bool inside_with, int position = RelocInfo::kNoPosition); // Remove a unresolved variable. During parsing, an unresolved variable // may have been added optimistically, but then only the variable name // was used (typically for labels). If the variable was not declared, the // addition introduced a new unresolved variable which may end up being // allocated globally as a "ghost" variable. RemoveUnresolved removes // such a variable again if it was added; otherwise this is a no-op. void RemoveUnresolved(VariableProxy* var); // Creates a new temporary variable in this scope. The name is only used // for printing and cannot be used to find the variable. In particular, // the only way to get hold of the temporary is by keeping the Variable* // around. Variable* NewTemporary(Handle name); // Adds the specific declaration node to the list of declarations in // this scope. The declarations are processed as part of entering // the scope; see codegen.cc:ProcessDeclarations. void AddDeclaration(Declaration* declaration); // --------------------------------------------------------------------------- // Illegal redeclaration support. // Set an expression node that will be executed when the scope is // entered. We only keep track of one illegal redeclaration node per // scope - the first one - so if you try to set it multiple times // the additional requests will be silently ignored. void SetIllegalRedeclaration(Expression* expression); // Visit the illegal redeclaration expression. Do not call if the // scope doesn't have an illegal redeclaration node. void VisitIllegalRedeclaration(AstVisitor* visitor); // Check if the scope has (at least) one illegal redeclaration. bool HasIllegalRedeclaration() const { return illegal_redecl_ != NULL; } // For harmony block scoping mode: Check if the scope has conflicting var // declarations, i.e. a var declaration that has been hoisted from a nested // scope over a let binding of the same name. Declaration* CheckConflictingVarDeclarations(); // --------------------------------------------------------------------------- // Scope-specific info. // Inform the scope that the corresponding code contains a with statement. void RecordWithStatement() { scope_contains_with_ = true; } // Inform the scope that the corresponding code contains an eval call. void RecordEvalCall() { scope_calls_eval_ = true; } // Enable strict mode for the scope (unless disabled by a global flag). void EnableStrictMode() { strict_mode_ = FLAG_strict_mode; } // --------------------------------------------------------------------------- // Predicates. // Specific scope types. bool is_eval_scope() const { return type_ == EVAL_SCOPE; } bool is_function_scope() const { return type_ == FUNCTION_SCOPE; } bool is_global_scope() const { return type_ == GLOBAL_SCOPE; } bool is_catch_scope() const { return type_ == CATCH_SCOPE; } bool is_block_scope() const { return type_ == BLOCK_SCOPE; } bool is_strict_mode() const { return strict_mode_; } bool is_strict_mode_eval_scope() const { return is_eval_scope() && is_strict_mode(); } // Information about which scopes calls eval. bool calls_eval() const { return scope_calls_eval_; } bool outer_scope_calls_eval() const { return outer_scope_calls_eval_; } bool outer_scope_calls_non_strict_eval() const { return outer_scope_calls_non_strict_eval_; } // Is this scope inside a with statement. bool inside_with() const { return scope_inside_with_; } // Does this scope contain a with statement. bool contains_with() const { return scope_contains_with_; } // The scope immediately surrounding this scope, or NULL. Scope* outer_scope() const { return outer_scope_; } // --------------------------------------------------------------------------- // Accessors. // The variable corresponding the 'this' value. Variable* receiver() { return receiver_; } // The variable holding the function literal for named function // literals, or NULL. // Only valid for function scopes. VariableProxy* function() const { ASSERT(is_function_scope()); return function_; } // Parameters. The left-most parameter has index 0. // Only valid for function scopes. Variable* parameter(int index) const { ASSERT(is_function_scope()); return params_[index]; } int num_parameters() const { return params_.length(); } // The local variable 'arguments' if we need to allocate it; NULL otherwise. Variable* arguments() const { return arguments_; } // Declarations list. ZoneList* declarations() { return &decls_; } // --------------------------------------------------------------------------- // Variable allocation. // Collect all used locals in this scope. template void CollectUsedVariables(List* locals); // Resolve and fill in the allocation information for all variables // in this scopes. Must be called *after* all scopes have been // processed (parsed) to ensure that unresolved variables can be // resolved properly. // // In the case of code compiled and run using 'eval', the context // parameter is the context in which eval was called. In all other // cases the context parameter is an empty handle. void AllocateVariables(Handle context); // Current number of var or const locals. int num_var_or_const() { return num_var_or_const_; } // Result of variable allocation. int num_stack_slots() const { return num_stack_slots_; } int num_heap_slots() const { return num_heap_slots_; } // Make sure this scope and all outer scopes are eagerly compiled. void ForceEagerCompilation() { force_eager_compilation_ = true; } // Determine if we can use lazy compilation for this scope. bool AllowsLazyCompilation() const; // True if the outer context of this scope is always the global context. bool HasTrivialOuterContext() const; // The number of contexts between this and scope; zero if this == scope. int ContextChainLength(Scope* scope); // Find the first function, global, or eval scope. This is the scope // where var declarations will be hoisted to in the implementation. Scope* DeclarationScope(); Handle GetSerializedScopeInfo(); // --------------------------------------------------------------------------- // Strict mode support. bool IsDeclared(Handle name) { // During formal parameter list parsing the scope only contains // two variables inserted at initialization: "this" and "arguments". // "this" is an invalid parameter name and "arguments" is invalid parameter // name in strict mode. Therefore looking up with the map which includes // "this" and "arguments" in addition to all formal parameters is safe. return variables_.Lookup(name) != NULL; } // --------------------------------------------------------------------------- // Debugging. #ifdef DEBUG void Print(int n = 0); // n = indentation; n < 0 => don't print recursively #endif // --------------------------------------------------------------------------- // Implementation. protected: friend class ParserFactory; explicit Scope(Type type); Isolate* const isolate_; // Scope tree. Scope* outer_scope_; // the immediately enclosing outer scope, or NULL ZoneList inner_scopes_; // the immediately enclosed inner scopes // The scope type. Type type_; // Debugging support. Handle scope_name_; // The variables declared in this scope: // // All user-declared variables (incl. parameters). For global scopes // variables may be implicitly 'declared' by being used (possibly in // an inner scope) with no intervening with statements or eval calls. VariableMap variables_; // Compiler-allocated (user-invisible) temporaries. ZoneList temps_; // Parameter list in source order. ZoneList params_; // Variables that must be looked up dynamically. DynamicScopePart* dynamics_; // Unresolved variables referred to from this scope. ZoneList unresolved_; // Declarations. ZoneList decls_; // Convenience variable. Variable* receiver_; // Function variable, if any; function scopes only. VariableProxy* function_; // Convenience variable; function scopes only. Variable* arguments_; // Illegal redeclaration. Expression* illegal_redecl_; // Scope-specific information computed during parsing. // // This scope is inside a 'with' of some outer scope. bool scope_inside_with_; // This scope contains a 'with' statement. bool scope_contains_with_; // This scope or a nested catch scope or with scope contain an 'eval' call. At // the 'eval' call site this scope is the declaration scope. bool scope_calls_eval_; // This scope is a strict mode scope. bool strict_mode_; // Computed via PropagateScopeInfo. bool outer_scope_calls_eval_; bool outer_scope_calls_non_strict_eval_; bool inner_scope_calls_eval_; bool outer_scope_is_eval_scope_; bool force_eager_compilation_; // True if it doesn't need scope resolution (e.g., if the scope was // constructed based on a serialized scope info or a catch context). bool already_resolved_; // Computed as variables are declared. int num_var_or_const_; // Computed via AllocateVariables; function scopes only. int num_stack_slots_; int num_heap_slots_; // Serialized scopes support. Handle scope_info_; bool already_resolved() { return already_resolved_; } // Create a non-local variable with a given name. // These variables are looked up dynamically at runtime. Variable* NonLocal(Handle name, Variable::Mode mode); // Variable resolution. Variable* LookupRecursive(Handle name, bool from_inner_function, Variable** invalidated_local); void ResolveVariable(Scope* global_scope, Handle context, VariableProxy* proxy); void ResolveVariablesRecursively(Scope* global_scope, Handle context); // Scope analysis. bool PropagateScopeInfo(bool outer_scope_calls_eval, bool outer_scope_calls_non_strict_eval, bool outer_scope_is_eval_scope); bool HasTrivialContext() const; // Predicates. bool MustAllocate(Variable* var); bool MustAllocateInContext(Variable* var); bool HasArgumentsParameter(); // Variable allocation. void AllocateStackSlot(Variable* var); void AllocateHeapSlot(Variable* var); void AllocateParameterLocals(); void AllocateNonParameterLocal(Variable* var); void AllocateNonParameterLocals(); void AllocateVariablesRecursively(); private: // Construct a function or block scope based on the scope info. Scope(Scope* inner_scope, Type type, Handle scope_info); // Construct a catch scope with a binding for the name. Scope(Scope* inner_scope, Handle catch_variable_name); inline Slot* NewSlot(Variable* var, Slot::Type type, int index) { return new(isolate_->zone()) Slot(isolate_, var, type, index); } void AddInnerScope(Scope* inner_scope) { if (inner_scope != NULL) { inner_scopes_.Add(inner_scope); inner_scope->outer_scope_ = this; } } void SetDefaults(Type type, Scope* outer_scope, Handle scope_info); }; } } // namespace v8::internal #endif // V8_SCOPES_H_