// Copyright 2011 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Features shared by parsing and pre-parsing scanners. #include "src/parsing/scanner.h" #include #include #include "src/ast/ast-value-factory.h" #include "src/char-predicates-inl.h" #include "src/conversions-inl.h" #include "src/list-inl.h" #include "src/parsing/parser.h" namespace v8 { namespace internal { Handle LiteralBuffer::Internalize(Isolate* isolate) const { if (is_one_byte()) { return isolate->factory()->InternalizeOneByteString(one_byte_literal()); } return isolate->factory()->InternalizeTwoByteString(two_byte_literal()); } // Default implementation for streams that do not support bookmarks. bool Utf16CharacterStream::SetBookmark() { return false; } void Utf16CharacterStream::ResetToBookmark() { UNREACHABLE(); } // ---------------------------------------------------------------------------- // Scanner Scanner::Scanner(UnicodeCache* unicode_cache) : unicode_cache_(unicode_cache), bookmark_c0_(kNoBookmark), octal_pos_(Location::invalid()), decimal_with_leading_zero_pos_(Location::invalid()), found_html_comment_(false), allow_harmony_exponentiation_operator_(false) { bookmark_current_.literal_chars = &bookmark_current_literal_; bookmark_current_.raw_literal_chars = &bookmark_current_raw_literal_; bookmark_next_.literal_chars = &bookmark_next_literal_; bookmark_next_.raw_literal_chars = &bookmark_next_raw_literal_; } void Scanner::Initialize(Utf16CharacterStream* source) { source_ = source; // Need to capture identifiers in order to recognize "get" and "set" // in object literals. Init(); // Skip initial whitespace allowing HTML comment ends just like // after a newline and scan first token. has_line_terminator_before_next_ = true; SkipWhiteSpace(); Scan(); } template uc32 Scanner::ScanHexNumber(int expected_length) { DCHECK(expected_length <= 4); // prevent overflow int begin = source_pos() - 2; uc32 x = 0; for (int i = 0; i < expected_length; i++) { int d = HexValue(c0_); if (d < 0) { ReportScannerError(Location(begin, begin + expected_length + 2), unicode ? MessageTemplate::kInvalidUnicodeEscapeSequence : MessageTemplate::kInvalidHexEscapeSequence); return -1; } x = x * 16 + d; Advance(); } return x; } template uc32 Scanner::ScanUnlimitedLengthHexNumber(int max_value, int beg_pos) { uc32 x = 0; int d = HexValue(c0_); if (d < 0) return -1; while (d >= 0) { x = x * 16 + d; if (x > max_value) { ReportScannerError(Location(beg_pos, source_pos() + 1), MessageTemplate::kUndefinedUnicodeCodePoint); return -1; } Advance(); d = HexValue(c0_); } return x; } // Ensure that tokens can be stored in a byte. STATIC_ASSERT(Token::NUM_TOKENS <= 0x100); // Table of one-character tokens, by character (0x00..0x7f only). static const byte one_char_tokens[] = { Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::LPAREN, // 0x28 Token::RPAREN, // 0x29 Token::ILLEGAL, Token::ILLEGAL, Token::COMMA, // 0x2c Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::COLON, // 0x3a Token::SEMICOLON, // 0x3b Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::CONDITIONAL, // 0x3f Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::LBRACK, // 0x5b Token::ILLEGAL, Token::RBRACK, // 0x5d Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::LBRACE, // 0x7b Token::ILLEGAL, Token::RBRACE, // 0x7d Token::BIT_NOT, // 0x7e Token::ILLEGAL }; Token::Value Scanner::Next() { if (next_.token == Token::EOS) { next_.location.beg_pos = current_.location.beg_pos; next_.location.end_pos = current_.location.end_pos; } current_ = next_; if (V8_UNLIKELY(next_next_.token != Token::UNINITIALIZED)) { next_ = next_next_; next_next_.token = Token::UNINITIALIZED; has_line_terminator_before_next_ = has_line_terminator_after_next_; return current_.token; } has_line_terminator_before_next_ = false; has_multiline_comment_before_next_ = false; if (static_cast(c0_) <= 0x7f) { Token::Value token = static_cast(one_char_tokens[c0_]); if (token != Token::ILLEGAL) { int pos = source_pos(); next_.token = token; next_.location.beg_pos = pos; next_.location.end_pos = pos + 1; Advance(); return current_.token; } } Scan(); return current_.token; } Token::Value Scanner::PeekAhead() { if (next_next_.token != Token::UNINITIALIZED) { return next_next_.token; } TokenDesc prev = current_; bool has_line_terminator_before_next = has_line_terminator_before_next_ || has_multiline_comment_before_next_; Next(); has_line_terminator_after_next_ = has_line_terminator_before_next_ || has_multiline_comment_before_next_; has_line_terminator_before_next_ = has_line_terminator_before_next; Token::Value ret = next_.token; next_next_ = next_; next_ = current_; current_ = prev; return ret; } // TODO(yangguo): check whether this is actually necessary. static inline bool IsLittleEndianByteOrderMark(uc32 c) { // The Unicode value U+FFFE is guaranteed never to be assigned as a // Unicode character; this implies that in a Unicode context the // 0xFF, 0xFE byte pattern can only be interpreted as the U+FEFF // character expressed in little-endian byte order (since it could // not be a U+FFFE character expressed in big-endian byte // order). Nevertheless, we check for it to be compatible with // Spidermonkey. return c == 0xFFFE; } bool Scanner::SkipWhiteSpace() { int start_position = source_pos(); while (true) { while (true) { // The unicode cache accepts unsigned inputs. if (c0_ < 0) break; // Advance as long as character is a WhiteSpace or LineTerminator. // Remember if the latter is the case. if (unicode_cache_->IsLineTerminator(c0_)) { has_line_terminator_before_next_ = true; } else if (!unicode_cache_->IsWhiteSpace(c0_) && !IsLittleEndianByteOrderMark(c0_)) { break; } Advance(); } // If there is an HTML comment end '-->' at the beginning of a // line (with only whitespace in front of it), we treat the rest // of the line as a comment. This is in line with the way // SpiderMonkey handles it. if (c0_ == '-' && has_line_terminator_before_next_) { Advance(); if (c0_ == '-') { Advance(); if (c0_ == '>') { // Treat the rest of the line as a comment. SkipSingleLineComment(); // Continue skipping white space after the comment. continue; } PushBack('-'); // undo Advance() } PushBack('-'); // undo Advance() } // Return whether or not we skipped any characters. return source_pos() != start_position; } } Token::Value Scanner::SkipSingleLineComment() { Advance(); // The line terminator at the end of the line is not considered // to be part of the single-line comment; it is recognized // separately by the lexical grammar and becomes part of the // stream of input elements for the syntactic grammar (see // ECMA-262, section 7.4). while (c0_ >= 0 && !unicode_cache_->IsLineTerminator(c0_)) { Advance(); } return Token::WHITESPACE; } Token::Value Scanner::SkipSourceURLComment() { TryToParseSourceURLComment(); while (c0_ >= 0 && !unicode_cache_->IsLineTerminator(c0_)) { Advance(); } return Token::WHITESPACE; } void Scanner::TryToParseSourceURLComment() { // Magic comments are of the form: //[#@]\s=\s*\s*.* and this // function will just return if it cannot parse a magic comment. if (c0_ < 0 || !unicode_cache_->IsWhiteSpace(c0_)) return; Advance(); LiteralBuffer name; while (c0_ >= 0 && !unicode_cache_->IsWhiteSpaceOrLineTerminator(c0_) && c0_ != '=') { name.AddChar(c0_); Advance(); } if (!name.is_one_byte()) return; Vector name_literal = name.one_byte_literal(); LiteralBuffer* value; if (name_literal == STATIC_CHAR_VECTOR("sourceURL")) { value = &source_url_; } else if (name_literal == STATIC_CHAR_VECTOR("sourceMappingURL")) { value = &source_mapping_url_; } else { return; } if (c0_ != '=') return; Advance(); value->Reset(); while (c0_ >= 0 && unicode_cache_->IsWhiteSpace(c0_)) { Advance(); } while (c0_ >= 0 && !unicode_cache_->IsLineTerminator(c0_)) { // Disallowed characters. if (c0_ == '"' || c0_ == '\'') { value->Reset(); return; } if (unicode_cache_->IsWhiteSpace(c0_)) { break; } value->AddChar(c0_); Advance(); } // Allow whitespace at the end. while (c0_ >= 0 && !unicode_cache_->IsLineTerminator(c0_)) { if (!unicode_cache_->IsWhiteSpace(c0_)) { value->Reset(); break; } Advance(); } } Token::Value Scanner::SkipMultiLineComment() { DCHECK(c0_ == '*'); Advance(); while (c0_ >= 0) { uc32 ch = c0_; Advance(); if (c0_ >= 0 && unicode_cache_->IsLineTerminator(ch)) { // Following ECMA-262, section 7.4, a comment containing // a newline will make the comment count as a line-terminator. has_multiline_comment_before_next_ = true; } // If we have reached the end of the multi-line comment, we // consume the '/' and insert a whitespace. This way all // multi-line comments are treated as whitespace. if (ch == '*' && c0_ == '/') { c0_ = ' '; return Token::WHITESPACE; } } // Unterminated multi-line comment. return Token::ILLEGAL; } Token::Value Scanner::ScanHtmlComment() { // Check for -= Advance(); if (c0_ == '-') { Advance(); if (c0_ == '>' && HasAnyLineTerminatorBeforeNext()) { // For compatibility with SpiderMonkey, we skip lines that // start with an HTML comment end '-->'. token = SkipSingleLineComment(); } else { token = Token::DEC; } } else if (c0_ == '=') { token = Select(Token::ASSIGN_SUB); } else { token = Token::SUB; } break; case '*': // * *= Advance(); if (c0_ == '*' && allow_harmony_exponentiation_operator()) { token = Select('=', Token::ASSIGN_EXP, Token::EXP); } else if (c0_ == '=') { token = Select(Token::ASSIGN_MUL); } else { token = Token::MUL; } break; case '%': // % %= token = Select('=', Token::ASSIGN_MOD, Token::MOD); break; case '/': // / // /* /= Advance(); if (c0_ == '/') { Advance(); if (c0_ == '#' || c0_ == '@') { Advance(); token = SkipSourceURLComment(); } else { PushBack(c0_); token = SkipSingleLineComment(); } } else if (c0_ == '*') { token = SkipMultiLineComment(); } else if (c0_ == '=') { token = Select(Token::ASSIGN_DIV); } else { token = Token::DIV; } break; case '&': // & && &= Advance(); if (c0_ == '&') { token = Select(Token::AND); } else if (c0_ == '=') { token = Select(Token::ASSIGN_BIT_AND); } else { token = Token::BIT_AND; } break; case '|': // | || |= Advance(); if (c0_ == '|') { token = Select(Token::OR); } else if (c0_ == '=') { token = Select(Token::ASSIGN_BIT_OR); } else { token = Token::BIT_OR; } break; case '^': // ^ ^= token = Select('=', Token::ASSIGN_BIT_XOR, Token::BIT_XOR); break; case '.': // . Number Advance(); if (IsDecimalDigit(c0_)) { token = ScanNumber(true); } else { token = Token::PERIOD; if (c0_ == '.') { Advance(); if (c0_ == '.') { Advance(); token = Token::ELLIPSIS; } else { PushBack('.'); } } } break; case ':': token = Select(Token::COLON); break; case ';': token = Select(Token::SEMICOLON); break; case ',': token = Select(Token::COMMA); break; case '(': token = Select(Token::LPAREN); break; case ')': token = Select(Token::RPAREN); break; case '[': token = Select(Token::LBRACK); break; case ']': token = Select(Token::RBRACK); break; case '{': token = Select(Token::LBRACE); break; case '}': token = Select(Token::RBRACE); break; case '?': token = Select(Token::CONDITIONAL); break; case '~': token = Select(Token::BIT_NOT); break; case '`': token = ScanTemplateStart(); break; default: if (c0_ < 0) { token = Token::EOS; } else if (unicode_cache_->IsIdentifierStart(c0_)) { token = ScanIdentifierOrKeyword(); } else if (IsDecimalDigit(c0_)) { token = ScanNumber(false); } else if (SkipWhiteSpace()) { token = Token::WHITESPACE; } else { token = Select(Token::ILLEGAL); } break; } // Continue scanning for tokens as long as we're just skipping // whitespace. } while (token == Token::WHITESPACE); next_.location.end_pos = source_pos(); next_.token = token; } void Scanner::SeekForward(int pos) { // After this call, we will have the token at the given position as // the "next" token. The "current" token will be invalid. if (pos == next_.location.beg_pos) return; int current_pos = source_pos(); DCHECK_EQ(next_.location.end_pos, current_pos); // Positions inside the lookahead token aren't supported. DCHECK(pos >= current_pos); if (pos != current_pos) { source_->SeekForward(pos - source_->pos()); Advance(); // This function is only called to seek to the location // of the end of a function (at the "}" token). It doesn't matter // whether there was a line terminator in the part we skip. has_line_terminator_before_next_ = false; has_multiline_comment_before_next_ = false; } Scan(); } template bool Scanner::ScanEscape() { uc32 c = c0_; Advance(); // Skip escaped newlines. if (!in_template_literal && c0_ >= 0 && unicode_cache_->IsLineTerminator(c)) { // Allow CR+LF newlines in multiline string literals. if (IsCarriageReturn(c) && IsLineFeed(c0_)) Advance(); // Allow LF+CR newlines in multiline string literals. if (IsLineFeed(c) && IsCarriageReturn(c0_)) Advance(); return true; } switch (c) { case '\'': // fall through case '"' : // fall through case '\\': break; case 'b' : c = '\b'; break; case 'f' : c = '\f'; break; case 'n' : c = '\n'; break; case 'r' : c = '\r'; break; case 't' : c = '\t'; break; case 'u' : { c = ScanUnicodeEscape(); if (c < 0) return false; break; } case 'v': c = '\v'; break; case 'x': { c = ScanHexNumber(2); if (c < 0) return false; break; } case '0': // Fall through. case '1': // fall through case '2': // fall through case '3': // fall through case '4': // fall through case '5': // fall through case '6': // fall through case '7': c = ScanOctalEscape(c, 2); break; } // According to ECMA-262, section 7.8.4, characters not covered by the // above cases should be illegal, but they are commonly handled as // non-escaped characters by JS VMs. AddLiteralChar(c); return true; } // Octal escapes of the forms '\0xx' and '\xxx' are not a part of // ECMA-262. Other JS VMs support them. template uc32 Scanner::ScanOctalEscape(uc32 c, int length) { uc32 x = c - '0'; int i = 0; for (; i < length; i++) { int d = c0_ - '0'; if (d < 0 || d > 7) break; int nx = x * 8 + d; if (nx >= 256) break; x = nx; Advance(); } // Anything except '\0' is an octal escape sequence, illegal in strict mode. // Remember the position of octal escape sequences so that an error // can be reported later (in strict mode). // We don't report the error immediately, because the octal escape can // occur before the "use strict" directive. if (c != '0' || i > 0) { octal_pos_ = Location(source_pos() - i - 1, source_pos() - 1); } return x; } Token::Value Scanner::ScanString() { uc32 quote = c0_; Advance(); // consume quote LiteralScope literal(this); while (true) { if (c0_ > kMaxAscii) { HandleLeadSurrogate(); break; } if (c0_ < 0 || c0_ == '\n' || c0_ == '\r') return Token::ILLEGAL; if (c0_ == quote) { literal.Complete(); Advance(); return Token::STRING; } char c = static_cast(c0_); if (c == '\\') break; Advance(); AddLiteralChar(c); } while (c0_ != quote && c0_ >= 0 && !unicode_cache_->IsLineTerminator(c0_)) { uc32 c = c0_; Advance(); if (c == '\\') { if (c0_ < 0 || !ScanEscape()) { return Token::ILLEGAL; } } else { AddLiteralChar(c); } } if (c0_ != quote) return Token::ILLEGAL; literal.Complete(); Advance(); // consume quote return Token::STRING; } Token::Value Scanner::ScanTemplateSpan() { // When scanning a TemplateSpan, we are looking for the following construct: // TEMPLATE_SPAN :: // ` LiteralChars* ${ // | } LiteralChars* ${ // // TEMPLATE_TAIL :: // ` LiteralChars* ` // | } LiteralChar* ` // // A TEMPLATE_SPAN should always be followed by an Expression, while a // TEMPLATE_TAIL terminates a TemplateLiteral and does not need to be // followed by an Expression. Token::Value result = Token::TEMPLATE_SPAN; LiteralScope literal(this); StartRawLiteral(); const bool capture_raw = true; const bool in_template_literal = true; while (true) { uc32 c = c0_; Advance(); if (c == '`') { result = Token::TEMPLATE_TAIL; ReduceRawLiteralLength(1); break; } else if (c == '$' && c0_ == '{') { Advance(); // Consume '{' ReduceRawLiteralLength(2); break; } else if (c == '\\') { if (c0_ > 0 && unicode_cache_->IsLineTerminator(c0_)) { // The TV of LineContinuation :: \ LineTerminatorSequence is the empty // code unit sequence. uc32 lastChar = c0_; Advance(); if (lastChar == '\r') { ReduceRawLiteralLength(1); // Remove \r if (c0_ == '\n') { Advance(); // Adds \n } else { AddRawLiteralChar('\n'); } } } else if (!ScanEscape()) { return Token::ILLEGAL; } } else if (c < 0) { // Unterminated template literal PushBack(c); break; } else { // The TRV of LineTerminatorSequence :: is the CV 0x000A. // The TRV of LineTerminatorSequence :: is the sequence // consisting of the CV 0x000A. if (c == '\r') { ReduceRawLiteralLength(1); // Remove \r if (c0_ == '\n') { Advance(); // Adds \n } else { AddRawLiteralChar('\n'); } c = '\n'; } AddLiteralChar(c); } } literal.Complete(); next_.location.end_pos = source_pos(); next_.token = result; return result; } Token::Value Scanner::ScanTemplateStart() { DCHECK(c0_ == '`'); next_.location.beg_pos = source_pos(); Advance(); // Consume ` return ScanTemplateSpan(); } Token::Value Scanner::ScanTemplateContinuation() { DCHECK_EQ(next_.token, Token::RBRACE); next_.location.beg_pos = source_pos() - 1; // We already consumed } return ScanTemplateSpan(); } void Scanner::ScanDecimalDigits() { while (IsDecimalDigit(c0_)) AddLiteralCharAdvance(); } Token::Value Scanner::ScanNumber(bool seen_period) { DCHECK(IsDecimalDigit(c0_)); // the first digit of the number or the fraction enum { DECIMAL, DECIMAL_WITH_LEADING_ZERO, HEX, OCTAL, IMPLICIT_OCTAL, BINARY } kind = DECIMAL; LiteralScope literal(this); bool at_start = !seen_period; int start_pos = source_pos(); // For reporting octal positions. if (seen_period) { // we have already seen a decimal point of the float AddLiteralChar('.'); ScanDecimalDigits(); // we know we have at least one digit } else { // if the first character is '0' we must check for octals and hex if (c0_ == '0') { AddLiteralCharAdvance(); // either 0, 0exxx, 0Exxx, 0.xxx, a hex number, a binary number or // an octal number. if (c0_ == 'x' || c0_ == 'X') { // hex number kind = HEX; AddLiteralCharAdvance(); if (!IsHexDigit(c0_)) { // we must have at least one hex digit after 'x'/'X' return Token::ILLEGAL; } while (IsHexDigit(c0_)) { AddLiteralCharAdvance(); } } else if (c0_ == 'o' || c0_ == 'O') { kind = OCTAL; AddLiteralCharAdvance(); if (!IsOctalDigit(c0_)) { // we must have at least one octal digit after 'o'/'O' return Token::ILLEGAL; } while (IsOctalDigit(c0_)) { AddLiteralCharAdvance(); } } else if (c0_ == 'b' || c0_ == 'B') { kind = BINARY; AddLiteralCharAdvance(); if (!IsBinaryDigit(c0_)) { // we must have at least one binary digit after 'b'/'B' return Token::ILLEGAL; } while (IsBinaryDigit(c0_)) { AddLiteralCharAdvance(); } } else if ('0' <= c0_ && c0_ <= '7') { // (possible) octal number kind = IMPLICIT_OCTAL; while (true) { if (c0_ == '8' || c0_ == '9') { at_start = false; kind = DECIMAL_WITH_LEADING_ZERO; break; } if (c0_ < '0' || '7' < c0_) { // Octal literal finished. octal_pos_ = Location(start_pos, source_pos()); break; } AddLiteralCharAdvance(); } } else if (c0_ == '8' || c0_ == '9') { kind = DECIMAL_WITH_LEADING_ZERO; } } // Parse decimal digits and allow trailing fractional part. if (kind == DECIMAL || kind == DECIMAL_WITH_LEADING_ZERO) { if (at_start) { uint64_t value = 0; while (IsDecimalDigit(c0_)) { value = 10 * value + (c0_ - '0'); uc32 first_char = c0_; Advance(); AddLiteralChar(first_char); } if (next_.literal_chars->one_byte_literal().length() <= 10 && value <= Smi::kMaxValue && c0_ != '.' && c0_ != 'e' && c0_ != 'E') { next_.smi_value_ = static_cast(value); literal.Complete(); HandleLeadSurrogate(); if (kind == DECIMAL_WITH_LEADING_ZERO) decimal_with_leading_zero_pos_ = Location(start_pos, source_pos()); return Token::SMI; } HandleLeadSurrogate(); } ScanDecimalDigits(); // optional if (c0_ == '.') { AddLiteralCharAdvance(); ScanDecimalDigits(); // optional } } } // scan exponent, if any if (c0_ == 'e' || c0_ == 'E') { DCHECK(kind != HEX); // 'e'/'E' must be scanned as part of the hex number if (!(kind == DECIMAL || kind == DECIMAL_WITH_LEADING_ZERO)) return Token::ILLEGAL; // scan exponent AddLiteralCharAdvance(); if (c0_ == '+' || c0_ == '-') AddLiteralCharAdvance(); if (!IsDecimalDigit(c0_)) { // we must have at least one decimal digit after 'e'/'E' return Token::ILLEGAL; } ScanDecimalDigits(); } // The source character immediately following a numeric literal must // not be an identifier start or a decimal digit; see ECMA-262 // section 7.8.3, page 17 (note that we read only one decimal digit // if the value is 0). if (IsDecimalDigit(c0_) || (c0_ >= 0 && unicode_cache_->IsIdentifierStart(c0_))) return Token::ILLEGAL; literal.Complete(); if (kind == DECIMAL_WITH_LEADING_ZERO) decimal_with_leading_zero_pos_ = Location(start_pos, source_pos()); return Token::NUMBER; } uc32 Scanner::ScanIdentifierUnicodeEscape() { Advance(); if (c0_ != 'u') return -1; Advance(); return ScanUnicodeEscape(); } template uc32 Scanner::ScanUnicodeEscape() { // Accept both \uxxxx and \u{xxxxxx}. In the latter case, the number of // hex digits between { } is arbitrary. \ and u have already been read. if (c0_ == '{') { int begin = source_pos() - 2; Advance(); uc32 cp = ScanUnlimitedLengthHexNumber(0x10ffff, begin); if (cp < 0 || c0_ != '}') { ReportScannerError(source_pos(), MessageTemplate::kInvalidUnicodeEscapeSequence); return -1; } Advance(); return cp; } const bool unicode = true; return ScanHexNumber(4); } // ---------------------------------------------------------------------------- // Keyword Matcher #define KEYWORDS(KEYWORD_GROUP, KEYWORD) \ KEYWORD_GROUP('a') \ KEYWORD("async", Token::ASYNC) \ KEYWORD("await", Token::AWAIT) \ KEYWORD_GROUP('b') \ KEYWORD("break", Token::BREAK) \ KEYWORD_GROUP('c') \ KEYWORD("case", Token::CASE) \ KEYWORD("catch", Token::CATCH) \ KEYWORD("class", Token::CLASS) \ KEYWORD("const", Token::CONST) \ KEYWORD("continue", Token::CONTINUE) \ KEYWORD_GROUP('d') \ KEYWORD("debugger", Token::DEBUGGER) \ KEYWORD("default", Token::DEFAULT) \ KEYWORD("delete", Token::DELETE) \ KEYWORD("do", Token::DO) \ KEYWORD_GROUP('e') \ KEYWORD("else", Token::ELSE) \ KEYWORD("enum", Token::ENUM) \ KEYWORD("export", Token::EXPORT) \ KEYWORD("extends", Token::EXTENDS) \ KEYWORD_GROUP('f') \ KEYWORD("false", Token::FALSE_LITERAL) \ KEYWORD("finally", Token::FINALLY) \ KEYWORD("for", Token::FOR) \ KEYWORD("function", Token::FUNCTION) \ KEYWORD_GROUP('i') \ KEYWORD("if", Token::IF) \ KEYWORD("implements", Token::FUTURE_STRICT_RESERVED_WORD) \ KEYWORD("import", Token::IMPORT) \ KEYWORD("in", Token::IN) \ KEYWORD("instanceof", Token::INSTANCEOF) \ KEYWORD("interface", Token::FUTURE_STRICT_RESERVED_WORD) \ KEYWORD_GROUP('l') \ KEYWORD("let", Token::LET) \ KEYWORD_GROUP('n') \ KEYWORD("new", Token::NEW) \ KEYWORD("null", Token::NULL_LITERAL) \ KEYWORD_GROUP('p') \ KEYWORD("package", Token::FUTURE_STRICT_RESERVED_WORD) \ KEYWORD("private", Token::FUTURE_STRICT_RESERVED_WORD) \ KEYWORD("protected", Token::FUTURE_STRICT_RESERVED_WORD) \ KEYWORD("public", Token::FUTURE_STRICT_RESERVED_WORD) \ KEYWORD_GROUP('r') \ KEYWORD("return", Token::RETURN) \ KEYWORD_GROUP('s') \ KEYWORD("static", Token::STATIC) \ KEYWORD("super", Token::SUPER) \ KEYWORD("switch", Token::SWITCH) \ KEYWORD_GROUP('t') \ KEYWORD("this", Token::THIS) \ KEYWORD("throw", Token::THROW) \ KEYWORD("true", Token::TRUE_LITERAL) \ KEYWORD("try", Token::TRY) \ KEYWORD("typeof", Token::TYPEOF) \ KEYWORD_GROUP('v') \ KEYWORD("var", Token::VAR) \ KEYWORD("void", Token::VOID) \ KEYWORD_GROUP('w') \ KEYWORD("while", Token::WHILE) \ KEYWORD("with", Token::WITH) \ KEYWORD_GROUP('y') \ KEYWORD("yield", Token::YIELD) static Token::Value KeywordOrIdentifierToken(const uint8_t* input, int input_length, bool escaped) { DCHECK(input_length >= 1); const int kMinLength = 2; const int kMaxLength = 10; if (input_length < kMinLength || input_length > kMaxLength) { return Token::IDENTIFIER; } switch (input[0]) { default: #define KEYWORD_GROUP_CASE(ch) \ break; \ case ch: #define KEYWORD(keyword, token) \ { \ /* 'keyword' is a char array, so sizeof(keyword) is */ \ /* strlen(keyword) plus 1 for the NUL char. */ \ const int keyword_length = sizeof(keyword) - 1; \ STATIC_ASSERT(keyword_length >= kMinLength); \ STATIC_ASSERT(keyword_length <= kMaxLength); \ if (input_length == keyword_length && input[1] == keyword[1] && \ (keyword_length <= 2 || input[2] == keyword[2]) && \ (keyword_length <= 3 || input[3] == keyword[3]) && \ (keyword_length <= 4 || input[4] == keyword[4]) && \ (keyword_length <= 5 || input[5] == keyword[5]) && \ (keyword_length <= 6 || input[6] == keyword[6]) && \ (keyword_length <= 7 || input[7] == keyword[7]) && \ (keyword_length <= 8 || input[8] == keyword[8]) && \ (keyword_length <= 9 || input[9] == keyword[9])) { \ if (escaped) { \ /* TODO(adamk): YIELD should be handled specially. */ \ return (token == Token::FUTURE_STRICT_RESERVED_WORD || \ token == Token::LET || token == Token::STATIC) \ ? Token::ESCAPED_STRICT_RESERVED_WORD \ : Token::ESCAPED_KEYWORD; \ } \ return token; \ } \ } KEYWORDS(KEYWORD_GROUP_CASE, KEYWORD) } return Token::IDENTIFIER; } bool Scanner::IdentifierIsFutureStrictReserved( const AstRawString* string) const { // Keywords are always 1-byte strings. if (!string->is_one_byte()) return false; if (string->IsOneByteEqualTo("let") || string->IsOneByteEqualTo("static") || string->IsOneByteEqualTo("yield")) { return true; } return Token::FUTURE_STRICT_RESERVED_WORD == KeywordOrIdentifierToken(string->raw_data(), string->length(), false); } Token::Value Scanner::ScanIdentifierOrKeyword() { DCHECK(unicode_cache_->IsIdentifierStart(c0_)); LiteralScope literal(this); if (IsInRange(c0_, 'a', 'z')) { do { char first_char = static_cast(c0_); Advance(); AddLiteralChar(first_char); } while (IsInRange(c0_, 'a', 'z')); if (IsDecimalDigit(c0_) || IsInRange(c0_, 'A', 'Z') || c0_ == '_' || c0_ == '$') { // Identifier starting with lowercase. char first_char = static_cast(c0_); Advance(); AddLiteralChar(first_char); while (IsAsciiIdentifier(c0_)) { char first_char = static_cast(c0_); Advance(); AddLiteralChar(first_char); } if (c0_ <= kMaxAscii && c0_ != '\\') { literal.Complete(); return Token::IDENTIFIER; } } else if (c0_ <= kMaxAscii && c0_ != '\\') { // Only a-z+: could be a keyword or identifier. literal.Complete(); Vector chars = next_.literal_chars->one_byte_literal(); return KeywordOrIdentifierToken(chars.start(), chars.length(), false); } HandleLeadSurrogate(); } else if (IsInRange(c0_, 'A', 'Z') || c0_ == '_' || c0_ == '$') { do { char first_char = static_cast(c0_); Advance(); AddLiteralChar(first_char); } while (IsAsciiIdentifier(c0_)); if (c0_ <= kMaxAscii && c0_ != '\\') { literal.Complete(); return Token::IDENTIFIER; } HandleLeadSurrogate(); } else if (c0_ == '\\') { // Scan identifier start character. uc32 c = ScanIdentifierUnicodeEscape(); // Only allow legal identifier start characters. if (c < 0 || c == '\\' || // No recursive escapes. !unicode_cache_->IsIdentifierStart(c)) { return Token::ILLEGAL; } AddLiteralChar(c); return ScanIdentifierSuffix(&literal, true); } else { uc32 first_char = c0_; Advance(); AddLiteralChar(first_char); } // Scan the rest of the identifier characters. while (c0_ >= 0 && unicode_cache_->IsIdentifierPart(c0_)) { if (c0_ != '\\') { uc32 next_char = c0_; Advance(); AddLiteralChar(next_char); continue; } // Fallthrough if no longer able to complete keyword. return ScanIdentifierSuffix(&literal, false); } literal.Complete(); if (next_.literal_chars->is_one_byte()) { Vector chars = next_.literal_chars->one_byte_literal(); return KeywordOrIdentifierToken(chars.start(), chars.length(), false); } return Token::IDENTIFIER; } Token::Value Scanner::ScanIdentifierSuffix(LiteralScope* literal, bool escaped) { // Scan the rest of the identifier characters. while (c0_ >= 0 && unicode_cache_->IsIdentifierPart(c0_)) { if (c0_ == '\\') { uc32 c = ScanIdentifierUnicodeEscape(); escaped = true; // Only allow legal identifier part characters. if (c < 0 || c == '\\' || !unicode_cache_->IsIdentifierPart(c)) { return Token::ILLEGAL; } AddLiteralChar(c); } else { AddLiteralChar(c0_); Advance(); } } literal->Complete(); if (escaped && next_.literal_chars->is_one_byte()) { Vector chars = next_.literal_chars->one_byte_literal(); return KeywordOrIdentifierToken(chars.start(), chars.length(), true); } return Token::IDENTIFIER; } bool Scanner::ScanRegExpPattern(bool seen_equal) { // Scan: ('/' | '/=') RegularExpressionBody '/' RegularExpressionFlags bool in_character_class = false; // Previous token is either '/' or '/=', in the second case, the // pattern starts at =. next_.location.beg_pos = source_pos() - (seen_equal ? 2 : 1); next_.location.end_pos = source_pos() - (seen_equal ? 1 : 0); // Scan regular expression body: According to ECMA-262, 3rd, 7.8.5, // the scanner should pass uninterpreted bodies to the RegExp // constructor. LiteralScope literal(this); if (seen_equal) { AddLiteralChar('='); } while (c0_ != '/' || in_character_class) { if (c0_ < 0 || unicode_cache_->IsLineTerminator(c0_)) return false; if (c0_ == '\\') { // Escape sequence. AddLiteralCharAdvance(); if (c0_ < 0 || unicode_cache_->IsLineTerminator(c0_)) return false; AddLiteralCharAdvance(); // If the escape allows more characters, i.e., \x??, \u????, or \c?, // only "safe" characters are allowed (letters, digits, underscore), // otherwise the escape isn't valid and the invalid character has // its normal meaning. I.e., we can just continue scanning without // worrying whether the following characters are part of the escape // or not, since any '/', '\\' or '[' is guaranteed to not be part // of the escape sequence. // TODO(896): At some point, parse RegExps more throughly to capture // octal esacpes in strict mode. } else { // Unescaped character. if (c0_ == '[') in_character_class = true; if (c0_ == ']') in_character_class = false; AddLiteralCharAdvance(); } } Advance(); // consume '/' literal.Complete(); return true; } Maybe Scanner::ScanRegExpFlags() { // Scan regular expression flags. LiteralScope literal(this); int flags = 0; while (c0_ >= 0 && unicode_cache_->IsIdentifierPart(c0_)) { RegExp::Flags flag = RegExp::kNone; switch (c0_) { case 'g': flag = RegExp::kGlobal; break; case 'i': flag = RegExp::kIgnoreCase; break; case 'm': flag = RegExp::kMultiline; break; case 'u': flag = RegExp::kUnicode; break; case 'y': flag = RegExp::kSticky; break; default: return Nothing(); } if (flags & flag) return Nothing(); AddLiteralCharAdvance(); flags |= flag; } literal.Complete(); next_.location.end_pos = source_pos(); return Just(RegExp::Flags(flags)); } const AstRawString* Scanner::CurrentSymbol(AstValueFactory* ast_value_factory) { if (is_literal_one_byte()) { return ast_value_factory->GetOneByteString(literal_one_byte_string()); } return ast_value_factory->GetTwoByteString(literal_two_byte_string()); } const AstRawString* Scanner::NextSymbol(AstValueFactory* ast_value_factory) { if (is_next_literal_one_byte()) { return ast_value_factory->GetOneByteString(next_literal_one_byte_string()); } return ast_value_factory->GetTwoByteString(next_literal_two_byte_string()); } const AstRawString* Scanner::CurrentRawSymbol( AstValueFactory* ast_value_factory) { if (is_raw_literal_one_byte()) { return ast_value_factory->GetOneByteString(raw_literal_one_byte_string()); } return ast_value_factory->GetTwoByteString(raw_literal_two_byte_string()); } double Scanner::DoubleValue() { DCHECK(is_literal_one_byte()); return StringToDouble( unicode_cache_, literal_one_byte_string(), ALLOW_HEX | ALLOW_OCTAL | ALLOW_IMPLICIT_OCTAL | ALLOW_BINARY); } bool Scanner::ContainsDot() { DCHECK(is_literal_one_byte()); Vector str = literal_one_byte_string(); return std::find(str.begin(), str.end(), '.') != str.end(); } int Scanner::FindSymbol(DuplicateFinder* finder, int value) { if (is_literal_one_byte()) { return finder->AddOneByteSymbol(literal_one_byte_string(), value); } return finder->AddTwoByteSymbol(literal_two_byte_string(), value); } bool Scanner::SetBookmark() { if (c0_ != kNoBookmark && bookmark_c0_ == kNoBookmark && next_next_.token == Token::UNINITIALIZED && source_->SetBookmark()) { bookmark_c0_ = c0_; CopyTokenDesc(&bookmark_current_, ¤t_); CopyTokenDesc(&bookmark_next_, &next_); return true; } return false; } void Scanner::ResetToBookmark() { DCHECK(BookmarkHasBeenSet()); // Caller hasn't called SetBookmark. source_->ResetToBookmark(); c0_ = bookmark_c0_; StartLiteral(); StartRawLiteral(); CopyTokenDesc(&next_, &bookmark_current_); current_ = next_; StartLiteral(); StartRawLiteral(); CopyTokenDesc(&next_, &bookmark_next_); bookmark_c0_ = kBookmarkWasApplied; } bool Scanner::BookmarkHasBeenSet() { return bookmark_c0_ >= 0; } bool Scanner::BookmarkHasBeenReset() { return bookmark_c0_ == kBookmarkWasApplied; } void Scanner::DropBookmark() { bookmark_c0_ = kNoBookmark; } void Scanner::CopyTokenDesc(TokenDesc* to, TokenDesc* from) { DCHECK_NOT_NULL(to); DCHECK_NOT_NULL(from); to->token = from->token; to->location = from->location; to->literal_chars->CopyFrom(from->literal_chars); to->raw_literal_chars->CopyFrom(from->raw_literal_chars); } int DuplicateFinder::AddOneByteSymbol(Vector key, int value) { return AddSymbol(key, true, value); } int DuplicateFinder::AddTwoByteSymbol(Vector key, int value) { return AddSymbol(Vector::cast(key), false, value); } int DuplicateFinder::AddSymbol(Vector key, bool is_one_byte, int value) { uint32_t hash = Hash(key, is_one_byte); byte* encoding = BackupKey(key, is_one_byte); base::HashMap::Entry* entry = map_.LookupOrInsert(encoding, hash); int old_value = static_cast(reinterpret_cast(entry->value)); entry->value = reinterpret_cast(static_cast(value | old_value)); return old_value; } int DuplicateFinder::AddNumber(Vector key, int value) { DCHECK(key.length() > 0); // Quick check for already being in canonical form. if (IsNumberCanonical(key)) { return AddOneByteSymbol(key, value); } int flags = ALLOW_HEX | ALLOW_OCTAL | ALLOW_IMPLICIT_OCTAL | ALLOW_BINARY; double double_value = StringToDouble( unicode_constants_, key, flags, 0.0); int length; const char* string; if (!std::isfinite(double_value)) { string = "Infinity"; length = 8; // strlen("Infinity"); } else { string = DoubleToCString(double_value, Vector(number_buffer_, kBufferSize)); length = StrLength(string); } return AddSymbol(Vector(reinterpret_cast(string), length), true, value); } bool DuplicateFinder::IsNumberCanonical(Vector number) { // Test for a safe approximation of number literals that are already // in canonical form: max 15 digits, no leading zeroes, except an // integer part that is a single zero, and no trailing zeros below // the decimal point. int pos = 0; int length = number.length(); if (number.length() > 15) return false; if (number[pos] == '0') { pos++; } else { while (pos < length && static_cast(number[pos] - '0') <= ('9' - '0')) pos++; } if (length == pos) return true; if (number[pos] != '.') return false; pos++; bool invalid_last_digit = true; while (pos < length) { uint8_t digit = number[pos] - '0'; if (digit > '9' - '0') return false; invalid_last_digit = (digit == 0); pos++; } return !invalid_last_digit; } uint32_t DuplicateFinder::Hash(Vector key, bool is_one_byte) { // Primitive hash function, almost identical to the one used // for strings (except that it's seeded by the length and representation). int length = key.length(); uint32_t hash = (length << 1) | (is_one_byte ? 1 : 0); for (int i = 0; i < length; i++) { uint32_t c = key[i]; hash = (hash + c) * 1025; hash ^= (hash >> 6); } return hash; } bool DuplicateFinder::Match(void* first, void* second) { // Decode lengths. // Length + representation is encoded as base 128, most significant heptet // first, with a 8th bit being non-zero while there are more heptets. // The value encodes the number of bytes following, and whether the original // was Latin1. byte* s1 = reinterpret_cast(first); byte* s2 = reinterpret_cast(second); uint32_t length_one_byte_field = 0; byte c1; do { c1 = *s1; if (c1 != *s2) return false; length_one_byte_field = (length_one_byte_field << 7) | (c1 & 0x7f); s1++; s2++; } while ((c1 & 0x80) != 0); int length = static_cast(length_one_byte_field >> 1); return memcmp(s1, s2, length) == 0; } byte* DuplicateFinder::BackupKey(Vector bytes, bool is_one_byte) { uint32_t one_byte_length = (bytes.length() << 1) | (is_one_byte ? 1 : 0); backing_store_.StartSequence(); // Emit one_byte_length as base-128 encoded number, with the 7th bit set // on the byte of every heptet except the last, least significant, one. if (one_byte_length >= (1 << 7)) { if (one_byte_length >= (1 << 14)) { if (one_byte_length >= (1 << 21)) { if (one_byte_length >= (1 << 28)) { backing_store_.Add( static_cast((one_byte_length >> 28) | 0x80)); } backing_store_.Add( static_cast((one_byte_length >> 21) | 0x80u)); } backing_store_.Add( static_cast((one_byte_length >> 14) | 0x80u)); } backing_store_.Add(static_cast((one_byte_length >> 7) | 0x80u)); } backing_store_.Add(static_cast(one_byte_length & 0x7f)); backing_store_.AddBlock(bytes); return backing_store_.EndSequence().start(); } } // namespace internal } // namespace v8