// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/heap/heap.h" #include #include #include #include "src/handles/handles-inl.h" #include "src/heap/memory-chunk.h" #include "src/heap/safepoint.h" #include "src/heap/spaces-inl.h" #include "src/objects/objects-inl.h" #include "test/unittests/test-utils.h" #include "testing/gtest/include/gtest/gtest.h" namespace v8 { namespace internal { using HeapTest = TestWithContext; TEST(Heap, YoungGenerationSizeFromOldGenerationSize) { const size_t pm = i::Heap::kPointerMultiplier; const size_t hlm = i::Heap::kHeapLimitMultiplier; ASSERT_EQ(3 * 512u * pm * KB, i::Heap::YoungGenerationSizeFromOldGenerationSize(128u * hlm * MB)); ASSERT_EQ(3 * 2048u * pm * KB, i::Heap::YoungGenerationSizeFromOldGenerationSize(256u * hlm * MB)); ASSERT_EQ(3 * 4096u * pm * KB, i::Heap::YoungGenerationSizeFromOldGenerationSize(512u * hlm * MB)); ASSERT_EQ( 3 * 8192u * pm * KB, i::Heap::YoungGenerationSizeFromOldGenerationSize(1024u * hlm * MB)); } TEST(Heap, GenerationSizesFromHeapSize) { const size_t pm = i::Heap::kPointerMultiplier; const size_t hlm = i::Heap::kHeapLimitMultiplier; size_t old, young; i::Heap::GenerationSizesFromHeapSize(1 * KB, &young, &old); ASSERT_EQ(0u, old); ASSERT_EQ(0u, young); i::Heap::GenerationSizesFromHeapSize(1 * KB + 3 * 512u * pm * KB, &young, &old); ASSERT_EQ(1u * KB, old); ASSERT_EQ(3 * 512u * pm * KB, young); i::Heap::GenerationSizesFromHeapSize(128 * hlm * MB + 3 * 512 * pm * KB, &young, &old); ASSERT_EQ(128u * hlm * MB, old); ASSERT_EQ(3 * 512u * pm * KB, young); i::Heap::GenerationSizesFromHeapSize(256u * hlm * MB + 3 * 2048 * pm * KB, &young, &old); ASSERT_EQ(256u * hlm * MB, old); ASSERT_EQ(3 * 2048u * pm * KB, young); i::Heap::GenerationSizesFromHeapSize(512u * hlm * MB + 3 * 4096 * pm * KB, &young, &old); ASSERT_EQ(512u * hlm * MB, old); ASSERT_EQ(3 * 4096u * pm * KB, young); i::Heap::GenerationSizesFromHeapSize(1024u * hlm * MB + 3 * 8192 * pm * KB, &young, &old); ASSERT_EQ(1024u * hlm * MB, old); ASSERT_EQ(3 * 8192u * pm * KB, young); } TEST(Heap, HeapSizeFromPhysicalMemory) { const size_t pm = i::Heap::kPointerMultiplier; const size_t hlm = i::Heap::kHeapLimitMultiplier; // The expected value is old_generation_size + 3 * semi_space_size. ASSERT_EQ(128 * hlm * MB + 3 * 512 * pm * KB, i::Heap::HeapSizeFromPhysicalMemory(0u)); ASSERT_EQ(128 * hlm * MB + 3 * 512 * pm * KB, i::Heap::HeapSizeFromPhysicalMemory(512u * MB)); ASSERT_EQ(256 * hlm * MB + 3 * 2048 * pm * KB, i::Heap::HeapSizeFromPhysicalMemory(1024u * MB)); ASSERT_EQ(512 * hlm * MB + 3 * 4096 * pm * KB, i::Heap::HeapSizeFromPhysicalMemory(2048u * MB)); ASSERT_EQ( 1024 * hlm * MB + 3 * 8192 * pm * KB, i::Heap::HeapSizeFromPhysicalMemory(static_cast(4096u) * MB)); ASSERT_EQ( 1024 * hlm * MB + 3 * 8192 * pm * KB, i::Heap::HeapSizeFromPhysicalMemory(static_cast(8192u) * MB)); } TEST_F(HeapTest, ASLR) { #if V8_TARGET_ARCH_X64 #if V8_OS_MACOSX Heap* heap = i_isolate()->heap(); std::set hints; for (int i = 0; i < 1000; i++) { hints.insert(heap->GetRandomMmapAddr()); } if (hints.size() == 1) { EXPECT_TRUE((*hints.begin()) == nullptr); EXPECT_TRUE(i::GetRandomMmapAddr() == nullptr); } else { // It is unlikely that 1000 random samples will collide to less then 500 // values. EXPECT_GT(hints.size(), 500u); const uintptr_t kRegionMask = 0xFFFFFFFFu; void* first = *hints.begin(); for (void* hint : hints) { uintptr_t diff = reinterpret_cast(first) ^ reinterpret_cast(hint); EXPECT_LE(diff, kRegionMask); } } #endif // V8_OS_MACOSX #endif // V8_TARGET_ARCH_X64 } TEST_F(HeapTest, ExternalLimitDefault) { Heap* heap = i_isolate()->heap(); EXPECT_EQ(kExternalAllocationSoftLimit, heap->external_memory_limit()); } TEST_F(HeapTest, ExternalLimitStaysAboveDefaultForExplicitHandling) { v8_isolate()->AdjustAmountOfExternalAllocatedMemory(+10 * MB); v8_isolate()->AdjustAmountOfExternalAllocatedMemory(-10 * MB); Heap* heap = i_isolate()->heap(); EXPECT_GE(heap->external_memory_limit(), kExternalAllocationSoftLimit); } #ifdef V8_COMPRESS_POINTERS TEST_F(HeapTest, HeapLayout) { // Produce some garbage. RunJS( "let ar = [];" "for (let i = 0; i < 100; i++) {" " ar.push(Array(i));" "}" "ar.push(Array(32 * 1024 * 1024));"); Address cage_base = i_isolate()->cage_base(); EXPECT_TRUE(IsAligned(cage_base, size_t{4} * GB)); #ifdef V8_COMPRESS_POINTERS_IN_ISOLATE_CAGE Address isolate_root = i_isolate()->isolate_root(); EXPECT_EQ(cage_base, isolate_root); #endif // Check that all memory chunks belong this region. base::AddressRegion heap_reservation(cage_base, size_t{4} * GB); SafepointScope scope(i_isolate()->heap()); OldGenerationMemoryChunkIterator iter(i_isolate()->heap()); for (;;) { MemoryChunk* chunk = iter.next(); if (chunk == nullptr) break; Address address = chunk->address(); size_t size = chunk->area_end() - address; EXPECT_TRUE(heap_reservation.contains(address, size)); } } #endif // V8_COMPRESS_POINTERS } // namespace internal } // namespace v8