// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Flags: --allow-natives-syntax --smi-only-arrays --expose-gc // Flags: --noalways-opt // Test element kind of objects. // Since --smi-only-arrays affects builtins, its default setting at compile // time sticks if built with snapshot. If --smi-only-arrays is deactivated // by default, only a no-snapshot build actually has smi-only arrays enabled // in this test case. Depending on whether smi-only arrays are actually // enabled, this test takes the appropriate code path to check smi-only arrays. // support_smi_only_arrays = %HasFastSmiElements(new Array(1,2,3,4,5,6,7,8)); support_smi_only_arrays = true; if (support_smi_only_arrays) { print("Tests include smi-only arrays."); } else { print("Tests do NOT include smi-only arrays."); } var elements_kind = { fast_smi_only : 'fast smi only elements', fast : 'fast elements', fast_double : 'fast double elements', dictionary : 'dictionary elements', external_byte : 'external byte elements', external_unsigned_byte : 'external unsigned byte elements', external_short : 'external short elements', external_unsigned_short : 'external unsigned short elements', external_int : 'external int elements', external_unsigned_int : 'external unsigned int elements', external_float : 'external float elements', external_double : 'external double elements', external_pixel : 'external pixel elements' } function getKind(obj) { if (%HasFastSmiElements(obj)) return elements_kind.fast_smi_only; if (%HasFastObjectElements(obj)) return elements_kind.fast; if (%HasFastDoubleElements(obj)) return elements_kind.fast_double; if (%HasDictionaryElements(obj)) return elements_kind.dictionary; } function isHoley(obj) { if (%HasFastHoleyElements(obj)) return true; return false; } function assertKind(expected, obj, name_opt) { if (!support_smi_only_arrays && expected == elements_kind.fast_smi_only) { expected = elements_kind.fast; } assertEquals(expected, getKind(obj), name_opt); } if (support_smi_only_arrays) { // Test: If a call site goes megamorphic, it loses the ability to // use allocation site feedback. (function() { function bar(t, len) { return new t(len); } a = bar(Array, 10); a[0] = 3.5; b = bar(Array, 1); assertKind(elements_kind.fast_double, b); c = bar(Object, 3); b = bar(Array, 10); assertKind(elements_kind.fast_smi_only, b); b[0] = 3.5; c = bar(Array, 10); assertKind(elements_kind.fast_smi_only, c); })(); // Test: ensure that crankshafted array constructor sites are deopted // if another function is used. (function() { function bar0(t) { return new t(); } a = bar0(Array); a[0] = 3.5; b = bar0(Array); assertKind(elements_kind.fast_double, b); %OptimizeFunctionOnNextCall(bar0); b = bar0(Array); assertKind(elements_kind.fast_double, b); assertOptimized(bar0); // bar0 should deopt b = bar0(Object); assertUnoptimized(bar0) // When it's re-optimized, we should call through the full stub bar0(Array); %OptimizeFunctionOnNextCall(bar0); b = bar0(Array); // We also lost our ability to record kind feedback, as the site // is megamorphic now. assertKind(elements_kind.fast_smi_only, b); assertOptimized(bar0); b[0] = 3.5; c = bar0(Array); assertKind(elements_kind.fast_smi_only, c); })(); // Test: Ensure that inlined array calls in crankshaft learn from deopts // based on the move to a dictionary for the array. (function() { function bar(len) { return new Array(len); } a = bar(10); a[0] = "a string"; a = bar(10); assertKind(elements_kind.fast, a); %OptimizeFunctionOnNextCall(bar); a = bar(10); assertKind(elements_kind.fast, a); assertOptimized(bar); // bar should deopt because the length is too large. a = bar(100000); assertUnoptimized(bar); assertKind(elements_kind.dictionary, a); // The allocation site now has feedback that means the array constructor // will not be inlined. %OptimizeFunctionOnNextCall(bar); a = bar(100000); assertKind(elements_kind.dictionary, a); assertOptimized(bar); // If the argument isn't a smi, it bails out as well a = bar("oops"); assertOptimized(bar); assertKind(elements_kind.fast, a); function barn(one, two, three) { return new Array(one, two, three); } barn(1, 2, 3); barn(1, 2, 3); %OptimizeFunctionOnNextCall(barn); barn(1, 2, 3); assertOptimized(barn); a = barn(1, "oops", 3); // The method should deopt, but learn from the failure to avoid inlining // the array. assertKind(elements_kind.fast, a); assertUnoptimized(barn); %OptimizeFunctionOnNextCall(barn); a = barn(1, "oops", 3); assertOptimized(barn); })(); // Test: When a method with array constructor is crankshafted, the type // feedback for elements kind is baked in. Verify that transitions don't // change it anymore (function() { function bar() { return new Array(); } a = bar(); bar(); %OptimizeFunctionOnNextCall(bar); b = bar(); // This only makes sense to test if we allow crankshafting if (4 != %GetOptimizationStatus(bar)) { assertOptimized(bar); %DebugPrint(3); b[0] = 3.5; c = bar(); assertKind(elements_kind.fast_smi_only, c); assertOptimized(bar); } })(); // Test: create arrays in two contexts, verifying that the correct // map for Array in that context will be used. (function() { function bar() { return new Array(); } bar(); bar(); %OptimizeFunctionOnNextCall(bar); a = bar(); assertTrue(a instanceof Array); var contextB = Realm.create(); Realm.eval(contextB, "function bar2() { return new Array(); };"); Realm.eval(contextB, "bar2(); bar2();"); Realm.eval(contextB, "%OptimizeFunctionOnNextCall(bar2);"); Realm.eval(contextB, "bar2();"); assertFalse(Realm.eval(contextB, "bar2();") instanceof Array); assertTrue(Realm.eval(contextB, "bar2() instanceof Array")); })(); // Test: create array with packed feedback, then optimize/inline // function. Verify that if we ask for a holey array then we deopt. // Reoptimization will proceed with the correct feedback and we // won't deopt anymore. (function() { function bar(len) { return new Array(len); } bar(0); bar(0); %OptimizeFunctionOnNextCall(bar); a = bar(0); assertOptimized(bar); assertFalse(isHoley(a)); a = bar(1); // ouch! assertUnoptimized(bar); assertTrue(isHoley(a)); // Try again %OptimizeFunctionOnNextCall(bar); a = bar(100); assertOptimized(bar); assertTrue(isHoley(a)); a = bar(0); assertOptimized(bar); assertTrue(isHoley(a)); })(); }