// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file #include "test/unittests/compiler/backend/instruction-selector-unittest.h" #include "src/objects/objects-inl.h" namespace v8 { namespace internal { namespace compiler { namespace { template struct MachInst { T constructor; const char* constructor_name; ArchOpcode arch_opcode; MachineType machine_type; }; template std::ostream& operator<<(std::ostream& os, const MachInst& mi) { return os << mi.constructor_name; } using MachInst1 = MachInst; using MachInst2 = MachInst; // To avoid duplicated code IntCmp helper structure // is created. It contains MachInst2 with two nodes and expected_size // because different cmp instructions have different size. struct IntCmp { MachInst2 mi; uint32_t expected_size; }; struct FPCmp { MachInst2 mi; FlagsCondition cond; }; const FPCmp kFPCmpInstructions[] = { {{&RawMachineAssembler::Float64Equal, "Float64Equal", kMipsCmpD, MachineType::Float64()}, kEqual}, {{&RawMachineAssembler::Float64LessThan, "Float64LessThan", kMipsCmpD, MachineType::Float64()}, kUnsignedLessThan}, {{&RawMachineAssembler::Float64LessThanOrEqual, "Float64LessThanOrEqual", kMipsCmpD, MachineType::Float64()}, kUnsignedLessThanOrEqual}, {{&RawMachineAssembler::Float64GreaterThan, "Float64GreaterThan", kMipsCmpD, MachineType::Float64()}, kUnsignedLessThan}, {{&RawMachineAssembler::Float64GreaterThanOrEqual, "Float64GreaterThanOrEqual", kMipsCmpD, MachineType::Float64()}, kUnsignedLessThanOrEqual}}; struct Conversion { // The machine_type field in MachInst1 represents the destination type. MachInst1 mi; MachineType src_machine_type; }; // ---------------------------------------------------------------------------- // Logical instructions. // ---------------------------------------------------------------------------- const MachInst2 kLogicalInstructions[] = { {&RawMachineAssembler::WordAnd, "WordAnd", kMipsAnd, MachineType::Int16()}, {&RawMachineAssembler::WordOr, "WordOr", kMipsOr, MachineType::Int16()}, {&RawMachineAssembler::WordXor, "WordXor", kMipsXor, MachineType::Int16()}, {&RawMachineAssembler::Word32And, "Word32And", kMipsAnd, MachineType::Int32()}, {&RawMachineAssembler::Word32Or, "Word32Or", kMipsOr, MachineType::Int32()}, {&RawMachineAssembler::Word32Xor, "Word32Xor", kMipsXor, MachineType::Int32()}}; // ---------------------------------------------------------------------------- // Shift instructions. // ---------------------------------------------------------------------------- const MachInst2 kShiftInstructions[] = { {&RawMachineAssembler::WordShl, "WordShl", kMipsShl, MachineType::Int16()}, {&RawMachineAssembler::WordShr, "WordShr", kMipsShr, MachineType::Int16()}, {&RawMachineAssembler::WordSar, "WordSar", kMipsSar, MachineType::Int16()}, {&RawMachineAssembler::WordRor, "WordRor", kMipsRor, MachineType::Int16()}, {&RawMachineAssembler::Word32Shl, "Word32Shl", kMipsShl, MachineType::Int32()}, {&RawMachineAssembler::Word32Shr, "Word32Shr", kMipsShr, MachineType::Int32()}, {&RawMachineAssembler::Word32Sar, "Word32Sar", kMipsSar, MachineType::Int32()}, {&RawMachineAssembler::Word32Ror, "Word32Ror", kMipsRor, MachineType::Int32()}}; // ---------------------------------------------------------------------------- // MUL/DIV instructions. // ---------------------------------------------------------------------------- const MachInst2 kMulDivInstructions[] = { {&RawMachineAssembler::Int32Mul, "Int32Mul", kMipsMul, MachineType::Int32()}, {&RawMachineAssembler::Int32Div, "Int32Div", kMipsDiv, MachineType::Int32()}, {&RawMachineAssembler::Uint32Div, "Uint32Div", kMipsDivU, MachineType::Uint32()}, {&RawMachineAssembler::Float64Mul, "Float64Mul", kMipsMulD, MachineType::Float64()}, {&RawMachineAssembler::Float64Div, "Float64Div", kMipsDivD, MachineType::Float64()}}; // ---------------------------------------------------------------------------- // MOD instructions. // ---------------------------------------------------------------------------- const MachInst2 kModInstructions[] = { {&RawMachineAssembler::Int32Mod, "Int32Mod", kMipsMod, MachineType::Int32()}, {&RawMachineAssembler::Uint32Mod, "Int32UMod", kMipsModU, MachineType::Int32()}, {&RawMachineAssembler::Float64Mod, "Float64Mod", kMipsModD, MachineType::Float64()}}; // ---------------------------------------------------------------------------- // Arithmetic FPU instructions. // ---------------------------------------------------------------------------- const MachInst2 kFPArithInstructions[] = { {&RawMachineAssembler::Float64Add, "Float64Add", kMipsAddD, MachineType::Float64()}, {&RawMachineAssembler::Float64Sub, "Float64Sub", kMipsSubD, MachineType::Float64()}}; // ---------------------------------------------------------------------------- // IntArithTest instructions, two nodes. // ---------------------------------------------------------------------------- const MachInst2 kAddSubInstructions[] = { {&RawMachineAssembler::Int32Add, "Int32Add", kMipsAdd, MachineType::Int32()}, {&RawMachineAssembler::Int32Sub, "Int32Sub", kMipsSub, MachineType::Int32()}, {&RawMachineAssembler::Int32AddWithOverflow, "Int32AddWithOverflow", kMipsAddOvf, MachineType::Int32()}, {&RawMachineAssembler::Int32SubWithOverflow, "Int32SubWithOverflow", kMipsSubOvf, MachineType::Int32()}}; // ---------------------------------------------------------------------------- // IntArithTest instructions, one node. // ---------------------------------------------------------------------------- const MachInst1 kAddSubOneInstructions[] = { {&RawMachineAssembler::Int32Neg, "Int32Neg", kMipsSub, MachineType::Int32()}, // TODO(dusmil): check this ... // {&RawMachineAssembler::WordEqual , "WordEqual" , kMipsTst, // MachineType::Int32()} }; // ---------------------------------------------------------------------------- // Arithmetic compare instructions. // ---------------------------------------------------------------------------- const IntCmp kCmpInstructions[] = { {{&RawMachineAssembler::WordEqual, "WordEqual", kMipsCmp, MachineType::Int16()}, 1U}, {{&RawMachineAssembler::WordNotEqual, "WordNotEqual", kMipsCmp, MachineType::Int16()}, 1U}, {{&RawMachineAssembler::Word32Equal, "Word32Equal", kMipsCmp, MachineType::Int32()}, 1U}, {{&RawMachineAssembler::Word32NotEqual, "Word32NotEqual", kMipsCmp, MachineType::Int32()}, 1U}, {{&RawMachineAssembler::Int32LessThan, "Int32LessThan", kMipsCmp, MachineType::Int32()}, 1U}, {{&RawMachineAssembler::Int32LessThanOrEqual, "Int32LessThanOrEqual", kMipsCmp, MachineType::Int32()}, 1U}, {{&RawMachineAssembler::Int32GreaterThan, "Int32GreaterThan", kMipsCmp, MachineType::Int32()}, 1U}, {{&RawMachineAssembler::Int32GreaterThanOrEqual, "Int32GreaterThanOrEqual", kMipsCmp, MachineType::Int32()}, 1U}, {{&RawMachineAssembler::Uint32LessThan, "Uint32LessThan", kMipsCmp, MachineType::Uint32()}, 1U}, {{&RawMachineAssembler::Uint32LessThanOrEqual, "Uint32LessThanOrEqual", kMipsCmp, MachineType::Uint32()}, 1U}}; // ---------------------------------------------------------------------------- // Conversion instructions. // ---------------------------------------------------------------------------- const Conversion kConversionInstructions[] = { // Conversion instructions are related to machine_operator.h: // FPU conversions: // Convert representation of integers between float64 and int32/uint32. // The precise rounding mode and handling of out of range inputs are *not* // defined for these operators, since they are intended only for use with // integers. // mips instruction: cvt_d_w {{&RawMachineAssembler::ChangeInt32ToFloat64, "ChangeInt32ToFloat64", kMipsCvtDW, MachineType::Float64()}, MachineType::Int32()}, // mips instruction: cvt_d_uw {{&RawMachineAssembler::ChangeUint32ToFloat64, "ChangeUint32ToFloat64", kMipsCvtDUw, MachineType::Float64()}, MachineType::Int32()}, // mips instruction: trunc_w_d {{&RawMachineAssembler::ChangeFloat64ToInt32, "ChangeFloat64ToInt32", kMipsTruncWD, MachineType::Float64()}, MachineType::Int32()}, // mips instruction: trunc_uw_d {{&RawMachineAssembler::ChangeFloat64ToUint32, "ChangeFloat64ToUint32", kMipsTruncUwD, MachineType::Float64()}, MachineType::Int32()}}; const Conversion kFloat64RoundInstructions[] = { {{&RawMachineAssembler::Float64RoundUp, "Float64RoundUp", kMipsCeilWD, MachineType::Int32()}, MachineType::Float64()}, {{&RawMachineAssembler::Float64RoundDown, "Float64RoundDown", kMipsFloorWD, MachineType::Int32()}, MachineType::Float64()}, {{&RawMachineAssembler::Float64RoundTiesEven, "Float64RoundTiesEven", kMipsRoundWD, MachineType::Int32()}, MachineType::Float64()}, {{&RawMachineAssembler::Float64RoundTruncate, "Float64RoundTruncate", kMipsTruncWD, MachineType::Int32()}, MachineType::Float64()}}; const Conversion kFloat32RoundInstructions[] = { {{&RawMachineAssembler::Float32RoundUp, "Float32RoundUp", kMipsCeilWS, MachineType::Int32()}, MachineType::Float32()}, {{&RawMachineAssembler::Float32RoundDown, "Float32RoundDown", kMipsFloorWS, MachineType::Int32()}, MachineType::Float32()}, {{&RawMachineAssembler::Float32RoundTiesEven, "Float32RoundTiesEven", kMipsRoundWS, MachineType::Int32()}, MachineType::Float32()}, {{&RawMachineAssembler::Float32RoundTruncate, "Float32RoundTruncate", kMipsTruncWS, MachineType::Int32()}, MachineType::Float32()}}; } // namespace using InstructionSelectorFPCmpTest = InstructionSelectorTestWithParam; TEST_P(InstructionSelectorFPCmpTest, Parameter) { const FPCmp cmp = GetParam(); StreamBuilder m(this, MachineType::Int32(), cmp.mi.machine_type, cmp.mi.machine_type); m.Return((m.*cmp.mi.constructor)(m.Parameter(0), m.Parameter(1))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(cmp.mi.arch_opcode, s[0]->arch_opcode()); EXPECT_EQ(2U, s[0]->InputCount()); EXPECT_EQ(1U, s[0]->OutputCount()); EXPECT_EQ(kFlags_set, s[0]->flags_mode()); EXPECT_EQ(cmp.cond, s[0]->flags_condition()); } INSTANTIATE_TEST_SUITE_P(InstructionSelectorTest, InstructionSelectorFPCmpTest, ::testing::ValuesIn(kFPCmpInstructions)); // ---------------------------------------------------------------------------- // Arithmetic compare instructions integers. // ---------------------------------------------------------------------------- using InstructionSelectorCmpTest = InstructionSelectorTestWithParam; TEST_P(InstructionSelectorCmpTest, Parameter) { const IntCmp cmp = GetParam(); const MachineType type = cmp.mi.machine_type; StreamBuilder m(this, type, type, type); m.Return((m.*cmp.mi.constructor)(m.Parameter(0), m.Parameter(1))); Stream s = m.Build(); ASSERT_EQ(cmp.expected_size, s.size()); EXPECT_EQ(cmp.mi.arch_opcode, s[0]->arch_opcode()); EXPECT_EQ(2U, s[0]->InputCount()); EXPECT_EQ(1U, s[0]->OutputCount()); } INSTANTIATE_TEST_SUITE_P(InstructionSelectorTest, InstructionSelectorCmpTest, ::testing::ValuesIn(kCmpInstructions)); // ---------------------------------------------------------------------------- // Shift instructions. // ---------------------------------------------------------------------------- using InstructionSelectorShiftTest = InstructionSelectorTestWithParam; TEST_P(InstructionSelectorShiftTest, Immediate) { const MachInst2 dpi = GetParam(); const MachineType type = dpi.machine_type; TRACED_FORRANGE(int32_t, imm, 0, ((1 << ElementSizeLog2Of(type.representation())) * 8) - 1) { StreamBuilder m(this, type, type); m.Return((m.*dpi.constructor)(m.Parameter(0), m.Int32Constant(imm))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(dpi.arch_opcode, s[0]->arch_opcode()); EXPECT_EQ(2U, s[0]->InputCount()); EXPECT_TRUE(s[0]->InputAt(1)->IsImmediate()); EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(1))); EXPECT_EQ(1U, s[0]->OutputCount()); } } INSTANTIATE_TEST_SUITE_P(InstructionSelectorTest, InstructionSelectorShiftTest, ::testing::ValuesIn(kShiftInstructions)); TEST_F(InstructionSelectorTest, Word32ShrWithWord32AndWithImmediate) { // The available shift operand range is `0 <= imm < 32`, but we also test // that immediates outside this range are handled properly (modulo-32). TRACED_FORRANGE(int32_t, shift, -32, 63) { int32_t lsb = shift & 0x1F; TRACED_FORRANGE(int32_t, width, 1, 32 - lsb) { uint32_t jnk = rng()->NextInt(); jnk = (lsb > 0) ? (jnk >> (32 - lsb)) : 0; uint32_t msk = ((0xFFFFFFFFu >> (32 - width)) << lsb) | jnk; StreamBuilder m(this, MachineType::Int32(), MachineType::Int32()); m.Return(m.Word32Shr(m.Word32And(m.Parameter(0), m.Int32Constant(msk)), m.Int32Constant(shift))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kMipsExt, s[0]->arch_opcode()); ASSERT_EQ(3U, s[0]->InputCount()); EXPECT_EQ(lsb, s.ToInt32(s[0]->InputAt(1))); EXPECT_EQ(width, s.ToInt32(s[0]->InputAt(2))); } } TRACED_FORRANGE(int32_t, shift, -32, 63) { int32_t lsb = shift & 0x1F; TRACED_FORRANGE(int32_t, width, 1, 32 - lsb) { uint32_t jnk = rng()->NextInt(); jnk = (lsb > 0) ? (jnk >> (32 - lsb)) : 0; uint32_t msk = ((0xFFFFFFFFu >> (32 - width)) << lsb) | jnk; StreamBuilder m(this, MachineType::Int32(), MachineType::Int32()); m.Return(m.Word32Shr(m.Word32And(m.Int32Constant(msk), m.Parameter(0)), m.Int32Constant(shift))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kMipsExt, s[0]->arch_opcode()); ASSERT_EQ(3U, s[0]->InputCount()); EXPECT_EQ(lsb, s.ToInt32(s[0]->InputAt(1))); EXPECT_EQ(width, s.ToInt32(s[0]->InputAt(2))); } } } TEST_F(InstructionSelectorTest, Word32ShlWithWord32And) { TRACED_FORRANGE(int32_t, shift, 0, 30) { StreamBuilder m(this, MachineType::Int32(), MachineType::Int32()); Node* const p0 = m.Parameter(0); Node* const r = m.Word32Shl(m.Word32And(p0, m.Int32Constant((1 << (31 - shift)) - 1)), m.Int32Constant(shift + 1)); m.Return(r); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kMipsShl, s[0]->arch_opcode()); ASSERT_EQ(2U, s[0]->InputCount()); EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0))); ASSERT_EQ(1U, s[0]->OutputCount()); EXPECT_EQ(s.ToVreg(r), s.ToVreg(s[0]->Output())); } } TEST_F(InstructionSelectorTest, Word32SarWithWord32Shl) { if (IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) { { StreamBuilder m(this, MachineType::Int32(), MachineType::Int32()); Node* const p0 = m.Parameter(0); Node* const r = m.Word32Sar(m.Word32Shl(p0, m.Int32Constant(24)), m.Int32Constant(24)); m.Return(r); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kMipsSeb, s[0]->arch_opcode()); ASSERT_EQ(1U, s[0]->InputCount()); EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0))); ASSERT_EQ(1U, s[0]->OutputCount()); EXPECT_EQ(s.ToVreg(r), s.ToVreg(s[0]->Output())); } { StreamBuilder m(this, MachineType::Int32(), MachineType::Int32()); Node* const p0 = m.Parameter(0); Node* const r = m.Word32Sar(m.Word32Shl(p0, m.Int32Constant(16)), m.Int32Constant(16)); m.Return(r); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kMipsSeh, s[0]->arch_opcode()); ASSERT_EQ(1U, s[0]->InputCount()); EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0))); ASSERT_EQ(1U, s[0]->OutputCount()); EXPECT_EQ(s.ToVreg(r), s.ToVreg(s[0]->Output())); } } } // ---------------------------------------------------------------------------- // Logical instructions. // ---------------------------------------------------------------------------- using InstructionSelectorLogicalTest = InstructionSelectorTestWithParam; TEST_P(InstructionSelectorLogicalTest, Parameter) { const MachInst2 dpi = GetParam(); const MachineType type = dpi.machine_type; StreamBuilder m(this, type, type, type); m.Return((m.*dpi.constructor)(m.Parameter(0), m.Parameter(1))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(dpi.arch_opcode, s[0]->arch_opcode()); EXPECT_EQ(2U, s[0]->InputCount()); EXPECT_EQ(1U, s[0]->OutputCount()); } INSTANTIATE_TEST_SUITE_P(InstructionSelectorTest, InstructionSelectorLogicalTest, ::testing::ValuesIn(kLogicalInstructions)); TEST_F(InstructionSelectorTest, Word32XorMinusOneWithParameter) { { StreamBuilder m(this, MachineType::Int32(), MachineType::Int32()); m.Return(m.Word32Xor(m.Parameter(0), m.Int32Constant(-1))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kMipsNor, s[0]->arch_opcode()); EXPECT_EQ(2U, s[0]->InputCount()); EXPECT_EQ(1U, s[0]->OutputCount()); } { StreamBuilder m(this, MachineType::Int32(), MachineType::Int32()); m.Return(m.Word32Xor(m.Int32Constant(-1), m.Parameter(0))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kMipsNor, s[0]->arch_opcode()); EXPECT_EQ(2U, s[0]->InputCount()); EXPECT_EQ(1U, s[0]->OutputCount()); } } TEST_F(InstructionSelectorTest, Word32XorMinusOneWithWord32Or) { { StreamBuilder m(this, MachineType::Int32(), MachineType::Int32()); m.Return(m.Word32Xor(m.Word32Or(m.Parameter(0), m.Parameter(0)), m.Int32Constant(-1))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kMipsNor, s[0]->arch_opcode()); EXPECT_EQ(2U, s[0]->InputCount()); EXPECT_EQ(1U, s[0]->OutputCount()); } { StreamBuilder m(this, MachineType::Int32(), MachineType::Int32()); m.Return(m.Word32Xor(m.Int32Constant(-1), m.Word32Or(m.Parameter(0), m.Parameter(0)))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kMipsNor, s[0]->arch_opcode()); EXPECT_EQ(2U, s[0]->InputCount()); EXPECT_EQ(1U, s[0]->OutputCount()); } } TEST_F(InstructionSelectorTest, Word32AndWithImmediateWithWord32Shr) { // The available shift operand range is `0 <= imm < 32`, but we also test // that immediates outside this range are handled properly (modulo-32). TRACED_FORRANGE(int32_t, shift, -32, 63) { int32_t lsb = shift & 0x1F; TRACED_FORRANGE(int32_t, width, 1, 31) { uint32_t msk = (1 << width) - 1; StreamBuilder m(this, MachineType::Int32(), MachineType::Int32()); m.Return(m.Word32And(m.Word32Shr(m.Parameter(0), m.Int32Constant(shift)), m.Int32Constant(msk))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kMipsExt, s[0]->arch_opcode()); ASSERT_EQ(3U, s[0]->InputCount()); EXPECT_EQ(lsb, s.ToInt32(s[0]->InputAt(1))); int32_t actual_width = (lsb + width > 32) ? (32 - lsb) : width; EXPECT_EQ(actual_width, s.ToInt32(s[0]->InputAt(2))); } } TRACED_FORRANGE(int32_t, shift, -32, 63) { int32_t lsb = shift & 0x1F; TRACED_FORRANGE(int32_t, width, 1, 31) { uint32_t msk = (1 << width) - 1; StreamBuilder m(this, MachineType::Int32(), MachineType::Int32()); m.Return( m.Word32And(m.Int32Constant(msk), m.Word32Shr(m.Parameter(0), m.Int32Constant(shift)))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kMipsExt, s[0]->arch_opcode()); ASSERT_EQ(3U, s[0]->InputCount()); EXPECT_EQ(lsb, s.ToInt32(s[0]->InputAt(1))); int32_t actual_width = (lsb + width > 32) ? (32 - lsb) : width; EXPECT_EQ(actual_width, s.ToInt32(s[0]->InputAt(2))); } } } TEST_F(InstructionSelectorTest, Word32AndToClearBits) { TRACED_FORRANGE(int32_t, shift, 1, 31) { int32_t mask = ~((1 << shift) - 1); StreamBuilder m(this, MachineType::Int32(), MachineType::Int32()); m.Return(m.Word32And(m.Parameter(0), m.Int32Constant(mask))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kMipsIns, s[0]->arch_opcode()); ASSERT_EQ(3U, s[0]->InputCount()); EXPECT_EQ(0, s.ToInt32(s[0]->InputAt(1))); EXPECT_EQ(shift, s.ToInt32(s[0]->InputAt(2))); } TRACED_FORRANGE(int32_t, shift, 1, 31) { int32_t mask = ~((1 << shift) - 1); StreamBuilder m(this, MachineType::Int32(), MachineType::Int32()); m.Return(m.Word32And(m.Int32Constant(mask), m.Parameter(0))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kMipsIns, s[0]->arch_opcode()); ASSERT_EQ(3U, s[0]->InputCount()); EXPECT_EQ(0, s.ToInt32(s[0]->InputAt(1))); EXPECT_EQ(shift, s.ToInt32(s[0]->InputAt(2))); } } // ---------------------------------------------------------------------------- // MUL/DIV instructions. // ---------------------------------------------------------------------------- using InstructionSelectorMulDivTest = InstructionSelectorTestWithParam; TEST_P(InstructionSelectorMulDivTest, Parameter) { const MachInst2 dpi = GetParam(); const MachineType type = dpi.machine_type; StreamBuilder m(this, type, type, type); m.Return((m.*dpi.constructor)(m.Parameter(0), m.Parameter(1))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(dpi.arch_opcode, s[0]->arch_opcode()); EXPECT_EQ(2U, s[0]->InputCount()); EXPECT_EQ(1U, s[0]->OutputCount()); } INSTANTIATE_TEST_SUITE_P(InstructionSelectorTest, InstructionSelectorMulDivTest, ::testing::ValuesIn(kMulDivInstructions)); // ---------------------------------------------------------------------------- // MOD instructions. // ---------------------------------------------------------------------------- using InstructionSelectorModTest = InstructionSelectorTestWithParam; TEST_P(InstructionSelectorModTest, Parameter) { const MachInst2 dpi = GetParam(); const MachineType type = dpi.machine_type; StreamBuilder m(this, type, type, type); m.Return((m.*dpi.constructor)(m.Parameter(0), m.Parameter(1))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(dpi.arch_opcode, s[0]->arch_opcode()); EXPECT_EQ(2U, s[0]->InputCount()); EXPECT_EQ(1U, s[0]->OutputCount()); } INSTANTIATE_TEST_SUITE_P(InstructionSelectorTest, InstructionSelectorModTest, ::testing::ValuesIn(kModInstructions)); // ---------------------------------------------------------------------------- // Floating point instructions. // ---------------------------------------------------------------------------- using InstructionSelectorFPArithTest = InstructionSelectorTestWithParam; TEST_P(InstructionSelectorFPArithTest, Parameter) { const MachInst2 fpa = GetParam(); StreamBuilder m(this, fpa.machine_type, fpa.machine_type, fpa.machine_type); m.Return((m.*fpa.constructor)(m.Parameter(0), m.Parameter(1))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(fpa.arch_opcode, s[0]->arch_opcode()); EXPECT_EQ(2U, s[0]->InputCount()); EXPECT_EQ(1U, s[0]->OutputCount()); } INSTANTIATE_TEST_SUITE_P(InstructionSelectorTest, InstructionSelectorFPArithTest, ::testing::ValuesIn(kFPArithInstructions)); // ---------------------------------------------------------------------------- // Integer arithmetic. // ---------------------------------------------------------------------------- using InstructionSelectorIntArithTwoTest = InstructionSelectorTestWithParam; TEST_P(InstructionSelectorIntArithTwoTest, Parameter) { const MachInst2 intpa = GetParam(); StreamBuilder m(this, intpa.machine_type, intpa.machine_type, intpa.machine_type); m.Return((m.*intpa.constructor)(m.Parameter(0), m.Parameter(1))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(intpa.arch_opcode, s[0]->arch_opcode()); EXPECT_EQ(2U, s[0]->InputCount()); EXPECT_EQ(1U, s[0]->OutputCount()); } INSTANTIATE_TEST_SUITE_P(InstructionSelectorTest, InstructionSelectorIntArithTwoTest, ::testing::ValuesIn(kAddSubInstructions)); // ---------------------------------------------------------------------------- // One node. // ---------------------------------------------------------------------------- using InstructionSelectorIntArithOneTest = InstructionSelectorTestWithParam; TEST_P(InstructionSelectorIntArithOneTest, Parameter) { const MachInst1 intpa = GetParam(); StreamBuilder m(this, intpa.machine_type, intpa.machine_type, intpa.machine_type); m.Return((m.*intpa.constructor)(m.Parameter(0))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(intpa.arch_opcode, s[0]->arch_opcode()); EXPECT_EQ(2U, s[0]->InputCount()); EXPECT_EQ(1U, s[0]->OutputCount()); } INSTANTIATE_TEST_SUITE_P(InstructionSelectorTest, InstructionSelectorIntArithOneTest, ::testing::ValuesIn(kAddSubOneInstructions)); // ---------------------------------------------------------------------------- // Conversions. // ---------------------------------------------------------------------------- using InstructionSelectorConversionTest = InstructionSelectorTestWithParam; TEST_P(InstructionSelectorConversionTest, Parameter) { const Conversion conv = GetParam(); StreamBuilder m(this, conv.mi.machine_type, conv.src_machine_type); m.Return((m.*conv.mi.constructor)(m.Parameter(0))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(conv.mi.arch_opcode, s[0]->arch_opcode()); EXPECT_EQ(1U, s[0]->InputCount()); EXPECT_EQ(1U, s[0]->OutputCount()); } INSTANTIATE_TEST_SUITE_P(InstructionSelectorTest, InstructionSelectorConversionTest, ::testing::ValuesIn(kConversionInstructions)); using CombineChangeFloat64ToInt32WithRoundFloat64 = InstructionSelectorTestWithParam; TEST_P(CombineChangeFloat64ToInt32WithRoundFloat64, Parameter) { { const Conversion conv = GetParam(); StreamBuilder m(this, conv.mi.machine_type, conv.src_machine_type); m.Return(m.ChangeFloat64ToInt32((m.*conv.mi.constructor)(m.Parameter(0)))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(conv.mi.arch_opcode, s[0]->arch_opcode()); EXPECT_EQ(kMode_None, s[0]->addressing_mode()); ASSERT_EQ(1U, s[0]->InputCount()); EXPECT_EQ(1U, s[0]->OutputCount()); } } INSTANTIATE_TEST_SUITE_P(InstructionSelectorTest, CombineChangeFloat64ToInt32WithRoundFloat64, ::testing::ValuesIn(kFloat64RoundInstructions)); using CombineChangeFloat32ToInt32WithRoundFloat32 = InstructionSelectorTestWithParam; TEST_P(CombineChangeFloat32ToInt32WithRoundFloat32, Parameter) { { const Conversion conv = GetParam(); StreamBuilder m(this, conv.mi.machine_type, conv.src_machine_type); m.Return(m.ChangeFloat64ToInt32( m.ChangeFloat32ToFloat64((m.*conv.mi.constructor)(m.Parameter(0))))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(conv.mi.arch_opcode, s[0]->arch_opcode()); EXPECT_EQ(kMode_None, s[0]->addressing_mode()); ASSERT_EQ(1U, s[0]->InputCount()); EXPECT_EQ(1U, s[0]->OutputCount()); } } INSTANTIATE_TEST_SUITE_P(InstructionSelectorTest, CombineChangeFloat32ToInt32WithRoundFloat32, ::testing::ValuesIn(kFloat32RoundInstructions)); TEST_F(InstructionSelectorTest, ChangeFloat64ToInt32OfChangeFloat32ToFloat64) { { StreamBuilder m(this, MachineType::Int32(), MachineType::Float32()); m.Return(m.ChangeFloat64ToInt32(m.ChangeFloat32ToFloat64(m.Parameter(0)))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kMipsTruncWS, s[0]->arch_opcode()); EXPECT_EQ(kMode_None, s[0]->addressing_mode()); ASSERT_EQ(1U, s[0]->InputCount()); EXPECT_EQ(1U, s[0]->OutputCount()); } } TEST_F(InstructionSelectorTest, TruncateFloat64ToFloat32OfChangeInt32ToFloat64) { { StreamBuilder m(this, MachineType::Float32(), MachineType::Int32()); m.Return( m.TruncateFloat64ToFloat32(m.ChangeInt32ToFloat64(m.Parameter(0)))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kMipsCvtSW, s[0]->arch_opcode()); EXPECT_EQ(kMode_None, s[0]->addressing_mode()); ASSERT_EQ(1U, s[0]->InputCount()); EXPECT_EQ(1U, s[0]->OutputCount()); } } // ---------------------------------------------------------------------------- // Loads and stores. // ---------------------------------------------------------------------------- namespace { struct MemoryAccess { MachineType type; ArchOpcode load_opcode; ArchOpcode store_opcode; }; static const MemoryAccess kMemoryAccesses[] = { {MachineType::Int8(), kMipsLb, kMipsSb}, {MachineType::Uint8(), kMipsLbu, kMipsSb}, {MachineType::Int16(), kMipsLh, kMipsSh}, {MachineType::Uint16(), kMipsLhu, kMipsSh}, {MachineType::Int32(), kMipsLw, kMipsSw}, {MachineType::Float32(), kMipsLwc1, kMipsSwc1}, {MachineType::Float64(), kMipsLdc1, kMipsSdc1}}; struct MemoryAccessImm { MachineType type; ArchOpcode load_opcode; ArchOpcode store_opcode; bool (InstructionSelectorTest::Stream::*val_predicate)( const InstructionOperand*) const; const int32_t immediates[40]; }; std::ostream& operator<<(std::ostream& os, const MemoryAccessImm& acc) { return os << acc.type; } struct MemoryAccessImm1 { MachineType type; ArchOpcode load_opcode; ArchOpcode store_opcode; bool (InstructionSelectorTest::Stream::*val_predicate)( const InstructionOperand*) const; const int32_t immediates[5]; }; std::ostream& operator<<(std::ostream& os, const MemoryAccessImm1& acc) { return os << acc.type; } struct MemoryAccessImm2 { MachineType type; ArchOpcode store_opcode; ArchOpcode store_opcode_unaligned; bool (InstructionSelectorTest::Stream::*val_predicate)( const InstructionOperand*) const; const int32_t immediates[40]; }; std::ostream& operator<<(std::ostream& os, const MemoryAccessImm2& acc) { return os << acc.type; } // ---------------------------------------------------------------------------- // Loads and stores immediate values. // ---------------------------------------------------------------------------- const MemoryAccessImm kMemoryAccessesImm[] = { {MachineType::Int8(), kMipsLb, kMipsSb, &InstructionSelectorTest::Stream::IsInteger, {-4095, -3340, -3231, -3224, -3088, -1758, -1203, -123, -117, -91, -89, -87, -86, -82, -44, -23, -3, 0, 7, 10, 39, 52, 69, 71, 91, 92, 107, 109, 115, 124, 286, 655, 1362, 1569, 2587, 3067, 3096, 3462, 3510, 4095}}, {MachineType::Uint8(), kMipsLbu, kMipsSb, &InstructionSelectorTest::Stream::IsInteger, {-4095, -3340, -3231, -3224, -3088, -1758, -1203, -123, -117, -91, -89, -87, -86, -82, -44, -23, -3, 0, 7, 10, 39, 52, 69, 71, 91, 92, 107, 109, 115, 124, 286, 655, 1362, 1569, 2587, 3067, 3096, 3462, 3510, 4095}}, {MachineType::Int16(), kMipsLh, kMipsSh, &InstructionSelectorTest::Stream::IsInteger, {-4095, -3340, -3231, -3224, -3088, -1758, -1203, -123, -117, -91, -89, -87, -86, -82, -44, -23, -3, 0, 7, 10, 39, 52, 69, 71, 91, 92, 107, 109, 115, 124, 286, 655, 1362, 1569, 2587, 3067, 3096, 3462, 3510, 4095}}, {MachineType::Uint16(), kMipsLhu, kMipsSh, &InstructionSelectorTest::Stream::IsInteger, {-4095, -3340, -3231, -3224, -3088, -1758, -1203, -123, -117, -91, -89, -87, -86, -82, -44, -23, -3, 0, 7, 10, 39, 52, 69, 71, 91, 92, 107, 109, 115, 124, 286, 655, 1362, 1569, 2587, 3067, 3096, 3462, 3510, 4095}}, {MachineType::Int32(), kMipsLw, kMipsSw, &InstructionSelectorTest::Stream::IsInteger, {-4095, -3340, -3231, -3224, -3088, -1758, -1203, -123, -117, -91, -89, -87, -86, -82, -44, -23, -3, 0, 7, 10, 39, 52, 69, 71, 91, 92, 107, 109, 115, 124, 286, 655, 1362, 1569, 2587, 3067, 3096, 3462, 3510, 4095}}, {MachineType::Float32(), kMipsLwc1, kMipsSwc1, &InstructionSelectorTest::Stream::IsDouble, {-4095, -3340, -3231, -3224, -3088, -1758, -1203, -123, -117, -91, -89, -87, -86, -82, -44, -23, -3, 0, 7, 10, 39, 52, 69, 71, 91, 92, 107, 109, 115, 124, 286, 655, 1362, 1569, 2587, 3067, 3096, 3462, 3510, 4095}}, {MachineType::Float64(), kMipsLdc1, kMipsSdc1, &InstructionSelectorTest::Stream::IsDouble, {-4095, -3340, -3231, -3224, -3088, -1758, -1203, -123, -117, -91, -89, -87, -86, -82, -44, -23, -3, 0, 7, 10, 39, 52, 69, 71, 91, 92, 107, 109, 115, 124, 286, 655, 1362, 1569, 2587, 3067, 3096, 3462, 3510, 4095}}}; const MemoryAccessImm1 kMemoryAccessImmMoreThan16bit[] = { {MachineType::Int8(), kMipsLb, kMipsSb, &InstructionSelectorTest::Stream::IsInteger, {-65000, -55000, 32777, 55000, 65000}}, {MachineType::Uint8(), kMipsLbu, kMipsSb, &InstructionSelectorTest::Stream::IsInteger, {-65000, -55000, 32777, 55000, 65000}}, {MachineType::Int16(), kMipsLh, kMipsSh, &InstructionSelectorTest::Stream::IsInteger, {-65000, -55000, 32777, 55000, 65000}}, {MachineType::Uint16(), kMipsLhu, kMipsSh, &InstructionSelectorTest::Stream::IsInteger, {-65000, -55000, 32777, 55000, 65000}}, {MachineType::Int32(), kMipsLw, kMipsSw, &InstructionSelectorTest::Stream::IsInteger, {-65000, -55000, 32777, 55000, 65000}}, {MachineType::Float32(), kMipsLwc1, kMipsSwc1, &InstructionSelectorTest::Stream::IsDouble, {-65000, -55000, 32777, 55000, 65000}}, {MachineType::Float64(), kMipsLdc1, kMipsSdc1, &InstructionSelectorTest::Stream::IsDouble, {-65000, -55000, 32777, 55000, 65000}}}; const MemoryAccessImm2 kMemoryAccessesImmUnaligned[] = { {MachineType::Int16(), kMipsUsh, kMipsSh, &InstructionSelectorTest::Stream::IsInteger, {-4095, -3340, -3231, -3224, -3088, -1758, -1203, -123, -117, -91, -89, -87, -86, -82, -44, -23, -3, 0, 7, 10, 39, 52, 69, 71, 91, 92, 107, 109, 115, 124, 286, 655, 1362, 1569, 2587, 3067, 3096, 3462, 3510, 4095}}, {MachineType::Int32(), kMipsUsw, kMipsSw, &InstructionSelectorTest::Stream::IsInteger, {-4095, -3340, -3231, -3224, -3088, -1758, -1203, -123, -117, -91, -89, -87, -86, -82, -44, -23, -3, 0, 7, 10, 39, 52, 69, 71, 91, 92, 107, 109, 115, 124, 286, 655, 1362, 1569, 2587, 3067, 3096, 3462, 3510, 4095}}, {MachineType::Float32(), kMipsUswc1, kMipsSwc1, &InstructionSelectorTest::Stream::IsDouble, {-4095, -3340, -3231, -3224, -3088, -1758, -1203, -123, -117, -91, -89, -87, -86, -82, -44, -23, -3, 0, 7, 10, 39, 52, 69, 71, 91, 92, 107, 109, 115, 124, 286, 655, 1362, 1569, 2587, 3067, 3096, 3462, 3510, 4095}}, {MachineType::Float64(), kMipsUsdc1, kMipsSdc1, &InstructionSelectorTest::Stream::IsDouble, {-4095, -3340, -3231, -3224, -3088, -1758, -1203, -123, -117, -91, -89, -87, -86, -82, -44, -23, -3, 0, 7, 10, 39, 52, 69, 71, 91, 92, 107, 109, 115, 124, 286, 655, 1362, 1569, 2587, 3067, 3096, 3462, 3510, 4095}}}; } // namespace using InstructionSelectorMemoryAccessTest = InstructionSelectorTestWithParam; TEST_P(InstructionSelectorMemoryAccessTest, LoadWithParameters) { const MemoryAccess memacc = GetParam(); StreamBuilder m(this, memacc.type, MachineType::Pointer(), MachineType::Int32()); m.Return(m.Load(memacc.type, m.Parameter(0))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(memacc.load_opcode, s[0]->arch_opcode()); EXPECT_EQ(kMode_MRI, s[0]->addressing_mode()); } TEST_P(InstructionSelectorMemoryAccessTest, StoreWithParameters) { const MemoryAccess memacc = GetParam(); StreamBuilder m(this, MachineType::Int32(), MachineType::Pointer(), MachineType::Int32(), memacc.type); m.Store(memacc.type.representation(), m.Parameter(0), m.Parameter(1), kNoWriteBarrier); m.Return(m.Int32Constant(0)); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(memacc.store_opcode, s[0]->arch_opcode()); EXPECT_EQ(kMode_MRI, s[0]->addressing_mode()); } INSTANTIATE_TEST_SUITE_P(InstructionSelectorTest, InstructionSelectorMemoryAccessTest, ::testing::ValuesIn(kMemoryAccesses)); // ---------------------------------------------------------------------------- // Load immediate. // ---------------------------------------------------------------------------- using InstructionSelectorMemoryAccessImmTest = InstructionSelectorTestWithParam; TEST_P(InstructionSelectorMemoryAccessImmTest, LoadWithImmediateIndex) { const MemoryAccessImm memacc = GetParam(); TRACED_FOREACH(int32_t, index, memacc.immediates) { StreamBuilder m(this, memacc.type, MachineType::Pointer()); m.Return(m.Load(memacc.type, m.Parameter(0), m.Int32Constant(index))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(memacc.load_opcode, s[0]->arch_opcode()); EXPECT_EQ(kMode_MRI, s[0]->addressing_mode()); ASSERT_EQ(2U, s[0]->InputCount()); ASSERT_EQ(InstructionOperand::IMMEDIATE, s[0]->InputAt(1)->kind()); EXPECT_EQ(index, s.ToInt32(s[0]->InputAt(1))); ASSERT_EQ(1U, s[0]->OutputCount()); EXPECT_TRUE((s.*memacc.val_predicate)(s[0]->Output())); } } // ---------------------------------------------------------------------------- // Store immediate. // ---------------------------------------------------------------------------- TEST_P(InstructionSelectorMemoryAccessImmTest, StoreWithImmediateIndex) { const MemoryAccessImm memacc = GetParam(); TRACED_FOREACH(int32_t, index, memacc.immediates) { StreamBuilder m(this, MachineType::Int32(), MachineType::Pointer(), memacc.type); m.Store(memacc.type.representation(), m.Parameter(0), m.Int32Constant(index), m.Parameter(1), kNoWriteBarrier); m.Return(m.Int32Constant(0)); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(memacc.store_opcode, s[0]->arch_opcode()); EXPECT_EQ(kMode_MRI, s[0]->addressing_mode()); ASSERT_EQ(3U, s[0]->InputCount()); ASSERT_EQ(InstructionOperand::IMMEDIATE, s[0]->InputAt(1)->kind()); EXPECT_EQ(index, s.ToInt32(s[0]->InputAt(1))); EXPECT_EQ(0U, s[0]->OutputCount()); } } TEST_P(InstructionSelectorMemoryAccessImmTest, StoreZero) { const MemoryAccessImm memacc = GetParam(); TRACED_FOREACH(int32_t, index, memacc.immediates) { StreamBuilder m(this, MachineType::Int32(), MachineType::Pointer()); m.Store(memacc.type.representation(), m.Parameter(0), m.Int32Constant(index), m.Int32Constant(0), kNoWriteBarrier); m.Return(m.Int32Constant(0)); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(memacc.store_opcode, s[0]->arch_opcode()); EXPECT_EQ(kMode_MRI, s[0]->addressing_mode()); ASSERT_EQ(3U, s[0]->InputCount()); ASSERT_EQ(InstructionOperand::IMMEDIATE, s[0]->InputAt(1)->kind()); EXPECT_EQ(index, s.ToInt32(s[0]->InputAt(1))); ASSERT_EQ(InstructionOperand::IMMEDIATE, s[0]->InputAt(2)->kind()); EXPECT_EQ(0, s.ToInt64(s[0]->InputAt(2))); EXPECT_EQ(0U, s[0]->OutputCount()); } } INSTANTIATE_TEST_SUITE_P(InstructionSelectorTest, InstructionSelectorMemoryAccessImmTest, ::testing::ValuesIn(kMemoryAccessesImm)); using InstructionSelectorMemoryAccessUnalignedImmTest = InstructionSelectorTestWithParam; TEST_P(InstructionSelectorMemoryAccessUnalignedImmTest, StoreZero) { const MemoryAccessImm2 memacc = GetParam(); TRACED_FOREACH(int32_t, index, memacc.immediates) { StreamBuilder m(this, MachineType::Int32(), MachineType::Pointer()); bool unaligned_store_supported = m.machine()->UnalignedStoreSupported(memacc.type.representation()); m.UnalignedStore(memacc.type.representation(), m.Parameter(0), m.Int32Constant(index), m.Int32Constant(0)); m.Return(m.Int32Constant(0)); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(unaligned_store_supported ? memacc.store_opcode_unaligned : memacc.store_opcode, s[0]->arch_opcode()); EXPECT_EQ(kMode_MRI, s[0]->addressing_mode()); ASSERT_EQ(3U, s[0]->InputCount()); ASSERT_EQ(InstructionOperand::IMMEDIATE, s[0]->InputAt(1)->kind()); EXPECT_EQ(index, s.ToInt32(s[0]->InputAt(1))); ASSERT_EQ(InstructionOperand::IMMEDIATE, s[0]->InputAt(2)->kind()); EXPECT_EQ(0, s.ToInt64(s[0]->InputAt(2))); EXPECT_EQ(0U, s[0]->OutputCount()); } } INSTANTIATE_TEST_SUITE_P(InstructionSelectorTest, InstructionSelectorMemoryAccessUnalignedImmTest, ::testing::ValuesIn(kMemoryAccessesImmUnaligned)); // ---------------------------------------------------------------------------- // Load/store offsets more than 16 bits. // ---------------------------------------------------------------------------- using InstructionSelectorMemoryAccessImmMoreThan16bitTest = InstructionSelectorTestWithParam; TEST_P(InstructionSelectorMemoryAccessImmMoreThan16bitTest, LoadWithImmediateIndex) { const MemoryAccessImm1 memacc = GetParam(); TRACED_FOREACH(int32_t, index, memacc.immediates) { StreamBuilder m(this, memacc.type, MachineType::Pointer()); m.Return(m.Load(memacc.type, m.Parameter(0), m.Int32Constant(index))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(memacc.load_opcode, s[0]->arch_opcode()); EXPECT_EQ(kMode_MRI, s[0]->addressing_mode()); EXPECT_EQ(2U, s[0]->InputCount()); EXPECT_EQ(1U, s[0]->OutputCount()); } } TEST_P(InstructionSelectorMemoryAccessImmMoreThan16bitTest, StoreWithImmediateIndex) { const MemoryAccessImm1 memacc = GetParam(); TRACED_FOREACH(int32_t, index, memacc.immediates) { StreamBuilder m(this, MachineType::Int32(), MachineType::Pointer(), memacc.type); m.Store(memacc.type.representation(), m.Parameter(0), m.Int32Constant(index), m.Parameter(1), kNoWriteBarrier); m.Return(m.Int32Constant(0)); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(memacc.store_opcode, s[0]->arch_opcode()); EXPECT_EQ(kMode_MRI, s[0]->addressing_mode()); EXPECT_EQ(3U, s[0]->InputCount()); EXPECT_EQ(0U, s[0]->OutputCount()); } } INSTANTIATE_TEST_SUITE_P(InstructionSelectorTest, InstructionSelectorMemoryAccessImmMoreThan16bitTest, ::testing::ValuesIn(kMemoryAccessImmMoreThan16bit)); // ---------------------------------------------------------------------------- // kMipsTst testing. // ---------------------------------------------------------------------------- TEST_F(InstructionSelectorTest, Word32EqualWithZero) { { StreamBuilder m(this, MachineType::Int32(), MachineType::Int32()); m.Return(m.Word32Equal(m.Parameter(0), m.Int32Constant(0))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kMipsCmp, s[0]->arch_opcode()); EXPECT_EQ(kMode_None, s[0]->addressing_mode()); ASSERT_EQ(2U, s[0]->InputCount()); EXPECT_EQ(1U, s[0]->OutputCount()); EXPECT_EQ(kFlags_set, s[0]->flags_mode()); EXPECT_EQ(kEqual, s[0]->flags_condition()); } { StreamBuilder m(this, MachineType::Int32(), MachineType::Int32()); m.Return(m.Word32Equal(m.Int32Constant(0), m.Parameter(0))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kMipsCmp, s[0]->arch_opcode()); EXPECT_EQ(kMode_None, s[0]->addressing_mode()); ASSERT_EQ(2U, s[0]->InputCount()); EXPECT_EQ(1U, s[0]->OutputCount()); EXPECT_EQ(kFlags_set, s[0]->flags_mode()); EXPECT_EQ(kEqual, s[0]->flags_condition()); } } TEST_F(InstructionSelectorTest, Word32Clz) { StreamBuilder m(this, MachineType::Uint32(), MachineType::Uint32()); Node* const p0 = m.Parameter(0); Node* const n = m.Word32Clz(p0); m.Return(n); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kMipsClz, s[0]->arch_opcode()); ASSERT_EQ(1U, s[0]->InputCount()); EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0))); ASSERT_EQ(1U, s[0]->OutputCount()); EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output())); } TEST_F(InstructionSelectorTest, Float32Abs) { StreamBuilder m(this, MachineType::Float32(), MachineType::Float32()); Node* const p0 = m.Parameter(0); Node* const n = m.Float32Abs(p0); m.Return(n); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kMipsAbsS, s[0]->arch_opcode()); ASSERT_EQ(1U, s[0]->InputCount()); EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0))); ASSERT_EQ(1U, s[0]->OutputCount()); EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output())); } TEST_F(InstructionSelectorTest, Float64Abs) { StreamBuilder m(this, MachineType::Float64(), MachineType::Float64()); Node* const p0 = m.Parameter(0); Node* const n = m.Float64Abs(p0); m.Return(n); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kMipsAbsD, s[0]->arch_opcode()); ASSERT_EQ(1U, s[0]->InputCount()); EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0))); ASSERT_EQ(1U, s[0]->OutputCount()); EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output())); } TEST_F(InstructionSelectorTest, Float32AddWithFloat32Mul) { if (!IsMipsArchVariant(kMips32r2)) { return; } { StreamBuilder m(this, MachineType::Float32(), MachineType::Float32(), MachineType::Float32(), MachineType::Float32()); Node* const p0 = m.Parameter(0); Node* const p1 = m.Parameter(1); Node* const p2 = m.Parameter(2); Node* const n = m.Float32Add(m.Float32Mul(p0, p1), p2); m.Return(n); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kMipsMaddS, s[0]->arch_opcode()); ASSERT_EQ(3U, s[0]->InputCount()); EXPECT_EQ(s.ToVreg(p2), s.ToVreg(s[0]->InputAt(0))); EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(1))); EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(2))); ASSERT_EQ(1U, s[0]->OutputCount()); EXPECT_FALSE( UnallocatedOperand::cast(s[0]->Output())->HasSameAsInputPolicy()); EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output())); EXPECT_EQ(kFlags_none, s[0]->flags_mode()); } { StreamBuilder m(this, MachineType::Float32(), MachineType::Float32(), MachineType::Float32(), MachineType::Float32()); Node* const p0 = m.Parameter(0); Node* const p1 = m.Parameter(1); Node* const p2 = m.Parameter(2); Node* const n = m.Float32Add(p0, m.Float32Mul(p1, p2)); m.Return(n); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kMipsMaddS, s[0]->arch_opcode()); ASSERT_EQ(3U, s[0]->InputCount()); EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0))); EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1))); EXPECT_EQ(s.ToVreg(p2), s.ToVreg(s[0]->InputAt(2))); ASSERT_EQ(1U, s[0]->OutputCount()); EXPECT_FALSE( UnallocatedOperand::cast(s[0]->Output())->HasSameAsInputPolicy()); EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output())); EXPECT_EQ(kFlags_none, s[0]->flags_mode()); } } TEST_F(InstructionSelectorTest, Float64AddWithFloat64Mul) { if (!IsMipsArchVariant(kMips32r2)) { return; } { StreamBuilder m(this, MachineType::Float64(), MachineType::Float64(), MachineType::Float64(), MachineType::Float64()); Node* const p0 = m.Parameter(0); Node* const p1 = m.Parameter(1); Node* const p2 = m.Parameter(2); Node* const n = m.Float64Add(m.Float64Mul(p0, p1), p2); m.Return(n); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kMipsMaddD, s[0]->arch_opcode()); ASSERT_EQ(3U, s[0]->InputCount()); EXPECT_EQ(s.ToVreg(p2), s.ToVreg(s[0]->InputAt(0))); EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(1))); EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(2))); ASSERT_EQ(1U, s[0]->OutputCount()); EXPECT_FALSE( UnallocatedOperand::cast(s[0]->Output())->HasSameAsInputPolicy()); EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output())); EXPECT_EQ(kFlags_none, s[0]->flags_mode()); } { StreamBuilder m(this, MachineType::Float64(), MachineType::Float64(), MachineType::Float64(), MachineType::Float64()); Node* const p0 = m.Parameter(0); Node* const p1 = m.Parameter(1); Node* const p2 = m.Parameter(2); Node* const n = m.Float64Add(p0, m.Float64Mul(p1, p2)); m.Return(n); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kMipsMaddD, s[0]->arch_opcode()); ASSERT_EQ(3U, s[0]->InputCount()); EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0))); EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1))); EXPECT_EQ(s.ToVreg(p2), s.ToVreg(s[0]->InputAt(2))); ASSERT_EQ(1U, s[0]->OutputCount()); EXPECT_FALSE( UnallocatedOperand::cast(s[0]->Output())->HasSameAsInputPolicy()); EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output())); EXPECT_EQ(kFlags_none, s[0]->flags_mode()); } } TEST_F(InstructionSelectorTest, Float32SubWithFloat32Mul) { StreamBuilder m(this, MachineType::Float32(), MachineType::Float32(), MachineType::Float32(), MachineType::Float32()); if (!IsMipsArchVariant(kMips32r2)) { return; } { Node* const p0 = m.Parameter(0); Node* const p1 = m.Parameter(1); Node* const p2 = m.Parameter(2); Node* n = nullptr; n = m.Float32Sub(m.Float32Mul(p1, p2), p0); m.Return(n); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kMipsMsubS, s[0]->arch_opcode()); ASSERT_EQ(3U, s[0]->InputCount()); EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0))); EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1))); EXPECT_EQ(s.ToVreg(p2), s.ToVreg(s[0]->InputAt(2))); ASSERT_EQ(1U, s[0]->OutputCount()); EXPECT_FALSE( UnallocatedOperand::cast(s[0]->Output())->HasSameAsInputPolicy()); EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output())); EXPECT_EQ(kFlags_none, s[0]->flags_mode()); } } TEST_F(InstructionSelectorTest, Float64SubWithFloat64Mul) { StreamBuilder m(this, MachineType::Float64(), MachineType::Float64(), MachineType::Float64(), MachineType::Float64()); if (!IsMipsArchVariant(kMips32r2)) { return; } { Node* const p0 = m.Parameter(0); Node* const p1 = m.Parameter(1); Node* const p2 = m.Parameter(2); Node* n = nullptr; n = m.Float64Sub(m.Float64Mul(p1, p2), p0); m.Return(n); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kMipsMsubD, s[0]->arch_opcode()); ASSERT_EQ(3U, s[0]->InputCount()); EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0))); EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1))); EXPECT_EQ(s.ToVreg(p2), s.ToVreg(s[0]->InputAt(2))); ASSERT_EQ(1U, s[0]->OutputCount()); EXPECT_FALSE( UnallocatedOperand::cast(s[0]->Output())->HasSameAsInputPolicy()); EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output())); EXPECT_EQ(kFlags_none, s[0]->flags_mode()); } } TEST_F(InstructionSelectorTest, Float64Max) { StreamBuilder m(this, MachineType::Float64(), MachineType::Float64(), MachineType::Float64()); Node* const p0 = m.Parameter(0); Node* const p1 = m.Parameter(1); Node* const n = m.Float64Max(p0, p1); m.Return(n); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kMipsFloat64Max, s[0]->arch_opcode()); ASSERT_EQ(2U, s[0]->InputCount()); ASSERT_EQ(1U, s[0]->OutputCount()); EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output())); } TEST_F(InstructionSelectorTest, Float64Min) { StreamBuilder m(this, MachineType::Float64(), MachineType::Float64(), MachineType::Float64()); Node* const p0 = m.Parameter(0); Node* const p1 = m.Parameter(1); Node* const n = m.Float64Min(p0, p1); m.Return(n); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kMipsFloat64Min, s[0]->arch_opcode()); ASSERT_EQ(2U, s[0]->InputCount()); ASSERT_EQ(1U, s[0]->OutputCount()); EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output())); } TEST_F(InstructionSelectorTest, Word32ReverseBytes) { { StreamBuilder m(this, MachineType::Int32(), MachineType::Int32()); m.Return(m.Word32ReverseBytes(m.Parameter(0))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kMipsByteSwap32, s[0]->arch_opcode()); EXPECT_EQ(1U, s[0]->InputCount()); EXPECT_EQ(1U, s[0]->OutputCount()); } } } // namespace compiler } // namespace internal } // namespace v8