// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Declares a Simulator for PPC instructions if we are not generating a native // PPC binary. This Simulator allows us to run and debug PPC code generation on // regular desktop machines. // V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro, // which will start execution in the Simulator or forwards to the real entry // on a PPC HW platform. #ifndef V8_PPC_SIMULATOR_PPC_H_ #define V8_PPC_SIMULATOR_PPC_H_ #include "src/allocation.h" #if defined(USE_SIMULATOR) // Running with a simulator. #include "src/assembler.h" #include "src/base/hashmap.h" #include "src/ppc/constants-ppc.h" #include "src/simulator-base.h" namespace v8 { namespace internal { class CachePage { public: static const int LINE_VALID = 0; static const int LINE_INVALID = 1; static const int kPageShift = 12; static const int kPageSize = 1 << kPageShift; static const int kPageMask = kPageSize - 1; static const int kLineShift = 2; // The cache line is only 4 bytes right now. static const int kLineLength = 1 << kLineShift; static const int kLineMask = kLineLength - 1; CachePage() { memset(&validity_map_, LINE_INVALID, sizeof(validity_map_)); } char* ValidityByte(int offset) { return &validity_map_[offset >> kLineShift]; } char* CachedData(int offset) { return &data_[offset]; } private: char data_[kPageSize]; // The cached data. static const int kValidityMapSize = kPageSize >> kLineShift; char validity_map_[kValidityMapSize]; // One byte per line. }; class Simulator : public SimulatorBase { public: friend class PPCDebugger; enum Register { no_reg = -1, r0 = 0, sp, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, fp, kNumGPRs = 32, d0 = 0, d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11, d12, d13, d14, d15, d16, d17, d18, d19, d20, d21, d22, d23, d24, d25, d26, d27, d28, d29, d30, d31, kNumFPRs = 32 }; explicit Simulator(Isolate* isolate); ~Simulator(); // The currently executing Simulator instance. Potentially there can be one // for each native thread. static Simulator* current(v8::internal::Isolate* isolate); // Accessors for register state. void set_register(int reg, intptr_t value); intptr_t get_register(int reg) const; double get_double_from_register_pair(int reg); void set_d_register_from_double(int dreg, const double dbl) { DCHECK(dreg >= 0 && dreg < kNumFPRs); *bit_cast(&fp_registers_[dreg]) = dbl; } double get_double_from_d_register(int dreg) { DCHECK(dreg >= 0 && dreg < kNumFPRs); return *bit_cast(&fp_registers_[dreg]); } void set_d_register(int dreg, int64_t value) { DCHECK(dreg >= 0 && dreg < kNumFPRs); fp_registers_[dreg] = value; } int64_t get_d_register(int dreg) { DCHECK(dreg >= 0 && dreg < kNumFPRs); return fp_registers_[dreg]; } // Special case of set_register and get_register to access the raw PC value. void set_pc(intptr_t value); intptr_t get_pc() const; Address get_sp() const { return reinterpret_cast
(static_cast(get_register(sp))); } // Accessor to the internal simulator stack area. uintptr_t StackLimit(uintptr_t c_limit) const; // Executes PPC instructions until the PC reaches end_sim_pc. void Execute(); template Return Call(byte* entry, Args... args) { return VariadicCall(this, &Simulator::CallImpl, entry, args...); } // Alternative: call a 2-argument double function. void CallFP(byte* entry, double d0, double d1); int32_t CallFPReturnsInt(byte* entry, double d0, double d1); double CallFPReturnsDouble(byte* entry, double d0, double d1); // Push an address onto the JS stack. uintptr_t PushAddress(uintptr_t address); // Pop an address from the JS stack. uintptr_t PopAddress(); // Debugger input. void set_last_debugger_input(char* input); char* last_debugger_input() { return last_debugger_input_; } // Redirection support. static void SetRedirectInstruction(Instruction* instruction); // ICache checking. static void FlushICache(base::CustomMatcherHashMap* i_cache, void* start, size_t size); // Returns true if pc register contains one of the 'special_values' defined // below (bad_lr, end_sim_pc). bool has_bad_pc() const; private: enum special_values { // Known bad pc value to ensure that the simulator does not execute // without being properly setup. bad_lr = -1, // A pc value used to signal the simulator to stop execution. Generally // the lr is set to this value on transition from native C code to // simulated execution, so that the simulator can "return" to the native // C code. end_sim_pc = -2 }; intptr_t CallImpl(byte* entry, int argument_count, const intptr_t* arguments); enum BCType { BC_OFFSET, BC_LINK_REG, BC_CTR_REG }; // Unsupported instructions use Format to print an error and stop execution. void Format(Instruction* instr, const char* format); // Helper functions to set the conditional flags in the architecture state. bool CarryFrom(int32_t left, int32_t right, int32_t carry = 0); bool BorrowFrom(int32_t left, int32_t right); bool OverflowFrom(int32_t alu_out, int32_t left, int32_t right, bool addition); // Helper functions to decode common "addressing" modes int32_t GetShiftRm(Instruction* instr, bool* carry_out); int32_t GetImm(Instruction* instr, bool* carry_out); void ProcessPUW(Instruction* instr, int num_regs, int operand_size, intptr_t* start_address, intptr_t* end_address); void HandleRList(Instruction* instr, bool load); void HandleVList(Instruction* inst); void SoftwareInterrupt(Instruction* instr); // Stop helper functions. inline bool isStopInstruction(Instruction* instr); inline bool isWatchedStop(uint32_t bkpt_code); inline bool isEnabledStop(uint32_t bkpt_code); inline void EnableStop(uint32_t bkpt_code); inline void DisableStop(uint32_t bkpt_code); inline void IncreaseStopCounter(uint32_t bkpt_code); void PrintStopInfo(uint32_t code); // Read and write memory. inline uint8_t ReadBU(intptr_t addr); inline uint8_t ReadExBU(intptr_t addr); inline int8_t ReadB(intptr_t addr); inline void WriteB(intptr_t addr, uint8_t value); inline int WriteExB(intptr_t addr, uint8_t value); inline void WriteB(intptr_t addr, int8_t value); inline uint16_t ReadHU(intptr_t addr, Instruction* instr); inline uint16_t ReadExHU(intptr_t addr, Instruction* instr); inline int16_t ReadH(intptr_t addr, Instruction* instr); // Note: Overloaded on the sign of the value. inline void WriteH(intptr_t addr, uint16_t value, Instruction* instr); inline int WriteExH(intptr_t addr, uint16_t value, Instruction* instr); inline void WriteH(intptr_t addr, int16_t value, Instruction* instr); inline uint32_t ReadWU(intptr_t addr, Instruction* instr); inline uint32_t ReadExWU(intptr_t addr, Instruction* instr); inline int32_t ReadW(intptr_t addr, Instruction* instr); inline void WriteW(intptr_t addr, uint32_t value, Instruction* instr); inline int WriteExW(intptr_t addr, uint32_t value, Instruction* instr); inline void WriteW(intptr_t addr, int32_t value, Instruction* instr); intptr_t* ReadDW(intptr_t addr); void WriteDW(intptr_t addr, int64_t value); void Trace(Instruction* instr); void SetCR0(intptr_t result, bool setSO = false); void ExecuteBranchConditional(Instruction* instr, BCType type); void ExecuteExt1(Instruction* instr); bool ExecuteExt2_10bit_part1(Instruction* instr); bool ExecuteExt2_10bit_part2(Instruction* instr); bool ExecuteExt2_9bit_part1(Instruction* instr); bool ExecuteExt2_9bit_part2(Instruction* instr); void ExecuteExt2_5bit(Instruction* instr); void ExecuteExt2(Instruction* instr); void ExecuteExt3(Instruction* instr); void ExecuteExt4(Instruction* instr); #if V8_TARGET_ARCH_PPC64 void ExecuteExt5(Instruction* instr); #endif void ExecuteExt6(Instruction* instr); void ExecuteGeneric(Instruction* instr); void SetFPSCR(int bit) { fp_condition_reg_ |= (1 << (31 - bit)); } void ClearFPSCR(int bit) { fp_condition_reg_ &= ~(1 << (31 - bit)); } // Executes one instruction. void ExecuteInstruction(Instruction* instr); // ICache. static void CheckICache(base::CustomMatcherHashMap* i_cache, Instruction* instr); static void FlushOnePage(base::CustomMatcherHashMap* i_cache, intptr_t start, int size); static CachePage* GetCachePage(base::CustomMatcherHashMap* i_cache, void* page); // Handle arguments and return value for runtime FP functions. void GetFpArgs(double* x, double* y, intptr_t* z); void SetFpResult(const double& result); void TrashCallerSaveRegisters(); void CallInternal(byte* entry); // Architecture state. // Saturating instructions require a Q flag to indicate saturation. // There is currently no way to read the CPSR directly, and thus read the Q // flag, so this is left unimplemented. intptr_t registers_[kNumGPRs]; int32_t condition_reg_; int32_t fp_condition_reg_; intptr_t special_reg_lr_; intptr_t special_reg_pc_; intptr_t special_reg_ctr_; int32_t special_reg_xer_; int64_t fp_registers_[kNumFPRs]; // Simulator support. char* stack_; static const size_t stack_protection_size_ = 256 * kPointerSize; bool pc_modified_; int icount_; // Debugger input. char* last_debugger_input_; // Icache simulation base::CustomMatcherHashMap* i_cache_; // Registered breakpoints. Instruction* break_pc_; Instr break_instr_; v8::internal::Isolate* isolate_; // A stop is watched if its code is less than kNumOfWatchedStops. // Only watched stops support enabling/disabling and the counter feature. static const uint32_t kNumOfWatchedStops = 256; // Breakpoint is disabled if bit 31 is set. static const uint32_t kStopDisabledBit = 1 << 31; // A stop is enabled, meaning the simulator will stop when meeting the // instruction, if bit 31 of watched_stops_[code].count is unset. // The value watched_stops_[code].count & ~(1 << 31) indicates how many times // the breakpoint was hit or gone through. struct StopCountAndDesc { uint32_t count; char* desc; }; StopCountAndDesc watched_stops_[kNumOfWatchedStops]; // Synchronization primitives. See ARM DDI 0406C.b, A2.9. enum class MonitorAccess { Open, Exclusive, }; enum class TransactionSize { None = 0, Byte = 1, HalfWord = 2, Word = 4, }; class LocalMonitor { public: LocalMonitor(); // These functions manage the state machine for the local monitor, but do // not actually perform loads and stores. NotifyStoreExcl only returns // true if the exclusive store is allowed; the global monitor will still // have to be checked to see whether the memory should be updated. void NotifyLoad(int32_t addr); void NotifyLoadExcl(int32_t addr, TransactionSize size); void NotifyStore(int32_t addr); bool NotifyStoreExcl(int32_t addr, TransactionSize size); private: void Clear(); MonitorAccess access_state_; int32_t tagged_addr_; TransactionSize size_; }; class GlobalMonitor { public: GlobalMonitor(); class Processor { public: Processor(); private: friend class GlobalMonitor; // These functions manage the state machine for the global monitor, but do // not actually perform loads and stores. void Clear_Locked(); void NotifyLoadExcl_Locked(int32_t addr); void NotifyStore_Locked(int32_t addr, bool is_requesting_processor); bool NotifyStoreExcl_Locked(int32_t addr, bool is_requesting_processor); MonitorAccess access_state_; int32_t tagged_addr_; Processor* next_; Processor* prev_; }; // Exposed so it can be accessed by Simulator::{Read,Write}Ex*. base::Mutex mutex; void NotifyLoadExcl_Locked(int32_t addr, Processor* processor); void NotifyStore_Locked(int32_t addr, Processor* processor); bool NotifyStoreExcl_Locked(int32_t addr, Processor* processor); // Called when the simulator is destroyed. void RemoveProcessor(Processor* processor); private: bool IsProcessorInLinkedList_Locked(Processor* processor) const; void PrependProcessor_Locked(Processor* processor); Processor* head_; }; LocalMonitor local_monitor_; GlobalMonitor::Processor global_monitor_processor_; static base::LazyInstance::type global_monitor_; }; // When running with the simulator transition into simulated execution at this // point. #define CALL_GENERATED_CODE(isolate, entry, p0, p1, p2, p3, p4) \ Simulator::current(isolate)->Call(FUNCTION_ADDR(entry), p0, p1, p2, \ p3, p4) #define CALL_GENERATED_REGEXP_CODE(isolate, entry, p0, p1, p2, p3, p4, p5, p6, \ p7, p8) \ Simulator::current(isolate)->Call(entry, p0, p1, p2, p3, p4, p5, p6, \ p7, p8) } // namespace internal } // namespace v8 #endif // defined(USE_SIMULATOR) #endif // V8_PPC_SIMULATOR_PPC_H_