// Copyright 2009 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include #include "v8.h" #include "macro-assembler.h" #include "factory.h" #include "platform.h" #include "serialize.h" #include "cctest.h" using namespace v8::internal; // Test the x64 assembler by compiling some simple functions into // a buffer and executing them. These tests do not initialize the // V8 library, create a context, or use any V8 objects. // The AMD64 calling convention is used, with the first six arguments // in RDI, RSI, RDX, RCX, R8, and R9, and floating point arguments in // the XMM registers. The return value is in RAX. // This calling convention is used on Linux, with GCC, and on Mac OS, // with GCC. A different convention is used on 64-bit windows, // where the first four integer arguments are passed in RCX, RDX, R8 and R9. typedef int (*F0)(); typedef int (*F1)(int64_t x); typedef int (*F2)(int64_t x, int64_t y); typedef int (*F3)(double x); typedef int64_t (*F4)(int64_t* x, int64_t* y); typedef int64_t (*F5)(int64_t x); #ifdef _WIN64 static const Register arg1 = rcx; static const Register arg2 = rdx; #else static const Register arg1 = rdi; static const Register arg2 = rsi; #endif #define __ assm. TEST(AssemblerX64ReturnOperation) { // Allocate an executable page of memory. size_t actual_size; byte* buffer = static_cast(OS::Allocate(Assembler::kMinimalBufferSize, &actual_size, true)); CHECK(buffer); Assembler assm(CcTest::i_isolate(), buffer, static_cast(actual_size)); // Assemble a simple function that copies argument 2 and returns it. __ movq(rax, arg2); __ nop(); __ ret(0); CodeDesc desc; assm.GetCode(&desc); // Call the function from C++. int result = FUNCTION_CAST(buffer)(3, 2); CHECK_EQ(2, result); } TEST(AssemblerX64StackOperations) { // Allocate an executable page of memory. size_t actual_size; byte* buffer = static_cast(OS::Allocate(Assembler::kMinimalBufferSize, &actual_size, true)); CHECK(buffer); Assembler assm(CcTest::i_isolate(), buffer, static_cast(actual_size)); // Assemble a simple function that copies argument 2 and returns it. // We compile without stack frame pointers, so the gdb debugger shows // incorrect stack frames when debugging this function (which has them). __ push(rbp); __ movq(rbp, rsp); __ push(arg2); // Value at (rbp - 8) __ push(arg2); // Value at (rbp - 16) __ push(arg1); // Value at (rbp - 24) __ pop(rax); __ pop(rax); __ pop(rax); __ pop(rbp); __ nop(); __ ret(0); CodeDesc desc; assm.GetCode(&desc); // Call the function from C++. int result = FUNCTION_CAST(buffer)(3, 2); CHECK_EQ(2, result); } TEST(AssemblerX64ArithmeticOperations) { // Allocate an executable page of memory. size_t actual_size; byte* buffer = static_cast(OS::Allocate(Assembler::kMinimalBufferSize, &actual_size, true)); CHECK(buffer); Assembler assm(CcTest::i_isolate(), buffer, static_cast(actual_size)); // Assemble a simple function that adds arguments returning the sum. __ movq(rax, arg2); __ addq(rax, arg1); __ ret(0); CodeDesc desc; assm.GetCode(&desc); // Call the function from C++. int result = FUNCTION_CAST(buffer)(3, 2); CHECK_EQ(5, result); } TEST(AssemblerX64ImulOperation) { // Allocate an executable page of memory. size_t actual_size; byte* buffer = static_cast(OS::Allocate(Assembler::kMinimalBufferSize, &actual_size, true)); CHECK(buffer); Assembler assm(CcTest::i_isolate(), buffer, static_cast(actual_size)); // Assemble a simple function that multiplies arguments returning the high // word. __ movq(rax, arg2); __ imul(arg1); __ movq(rax, rdx); __ ret(0); CodeDesc desc; assm.GetCode(&desc); // Call the function from C++. int result = FUNCTION_CAST(buffer)(3, 2); CHECK_EQ(0, result); result = FUNCTION_CAST(buffer)(0x100000000l, 0x100000000l); CHECK_EQ(1, result); result = FUNCTION_CAST(buffer)(-0x100000000l, 0x100000000l); CHECK_EQ(-1, result); } TEST(AssemblerX64XchglOperations) { // Allocate an executable page of memory. size_t actual_size; byte* buffer = static_cast(OS::Allocate(Assembler::kMinimalBufferSize, &actual_size, true)); CHECK(buffer); Assembler assm(CcTest::i_isolate(), buffer, static_cast(actual_size)); __ movq(rax, Operand(arg1, 0)); __ movq(rbx, Operand(arg2, 0)); __ xchgl(rax, rbx); __ movq(Operand(arg1, 0), rax); __ movq(Operand(arg2, 0), rbx); __ ret(0); CodeDesc desc; assm.GetCode(&desc); // Call the function from C++. int64_t left = V8_2PART_UINT64_C(0x10000000, 20000000); int64_t right = V8_2PART_UINT64_C(0x30000000, 40000000); int64_t result = FUNCTION_CAST(buffer)(&left, &right); CHECK_EQ(V8_2PART_UINT64_C(0x00000000, 40000000), left); CHECK_EQ(V8_2PART_UINT64_C(0x00000000, 20000000), right); USE(result); } TEST(AssemblerX64OrlOperations) { // Allocate an executable page of memory. size_t actual_size; byte* buffer = static_cast(OS::Allocate(Assembler::kMinimalBufferSize, &actual_size, true)); CHECK(buffer); Assembler assm(CcTest::i_isolate(), buffer, static_cast(actual_size)); __ movq(rax, Operand(arg2, 0)); __ orl(Operand(arg1, 0), rax); __ ret(0); CodeDesc desc; assm.GetCode(&desc); // Call the function from C++. int64_t left = V8_2PART_UINT64_C(0x10000000, 20000000); int64_t right = V8_2PART_UINT64_C(0x30000000, 40000000); int64_t result = FUNCTION_CAST(buffer)(&left, &right); CHECK_EQ(V8_2PART_UINT64_C(0x10000000, 60000000), left); USE(result); } TEST(AssemblerX64RollOperations) { // Allocate an executable page of memory. size_t actual_size; byte* buffer = static_cast(OS::Allocate(Assembler::kMinimalBufferSize, &actual_size, true)); CHECK(buffer); Assembler assm(CcTest::i_isolate(), buffer, static_cast(actual_size)); __ movq(rax, arg1); __ roll(rax, Immediate(1)); __ ret(0); CodeDesc desc; assm.GetCode(&desc); // Call the function from C++. int64_t src = V8_2PART_UINT64_C(0x10000000, C0000000); int64_t result = FUNCTION_CAST(buffer)(src); CHECK_EQ(V8_2PART_UINT64_C(0x00000000, 80000001), result); } TEST(AssemblerX64SublOperations) { // Allocate an executable page of memory. size_t actual_size; byte* buffer = static_cast(OS::Allocate(Assembler::kMinimalBufferSize, &actual_size, true)); CHECK(buffer); Assembler assm(CcTest::i_isolate(), buffer, static_cast(actual_size)); __ movq(rax, Operand(arg2, 0)); __ subl(Operand(arg1, 0), rax); __ ret(0); CodeDesc desc; assm.GetCode(&desc); // Call the function from C++. int64_t left = V8_2PART_UINT64_C(0x10000000, 20000000); int64_t right = V8_2PART_UINT64_C(0x30000000, 40000000); int64_t result = FUNCTION_CAST(buffer)(&left, &right); CHECK_EQ(V8_2PART_UINT64_C(0x10000000, e0000000), left); USE(result); } TEST(AssemblerX64TestlOperations) { // Allocate an executable page of memory. size_t actual_size; byte* buffer = static_cast(OS::Allocate(Assembler::kMinimalBufferSize, &actual_size, true)); CHECK(buffer); Assembler assm(CcTest::i_isolate(), buffer, static_cast(actual_size)); // Set rax with the ZF flag of the testl instruction. Label done; __ movq(rax, Immediate(1)); __ movq(rbx, Operand(arg2, 0)); __ testl(Operand(arg1, 0), rbx); __ j(zero, &done, Label::kNear); __ movq(rax, Immediate(0)); __ bind(&done); __ ret(0); CodeDesc desc; assm.GetCode(&desc); // Call the function from C++. int64_t left = V8_2PART_UINT64_C(0x10000000, 20000000); int64_t right = V8_2PART_UINT64_C(0x30000000, 00000000); int64_t result = FUNCTION_CAST(buffer)(&left, &right); CHECK_EQ(static_cast(1), result); } TEST(AssemblerX64XorlOperations) { // Allocate an executable page of memory. size_t actual_size; byte* buffer = static_cast(OS::Allocate(Assembler::kMinimalBufferSize, &actual_size, true)); CHECK(buffer); Assembler assm(CcTest::i_isolate(), buffer, static_cast(actual_size)); __ movq(rax, Operand(arg2, 0)); __ xorl(Operand(arg1, 0), rax); __ ret(0); CodeDesc desc; assm.GetCode(&desc); // Call the function from C++. int64_t left = V8_2PART_UINT64_C(0x10000000, 20000000); int64_t right = V8_2PART_UINT64_C(0x30000000, 60000000); int64_t result = FUNCTION_CAST(buffer)(&left, &right); CHECK_EQ(V8_2PART_UINT64_C(0x10000000, 40000000), left); USE(result); } TEST(AssemblerX64MemoryOperands) { // Allocate an executable page of memory. size_t actual_size; byte* buffer = static_cast(OS::Allocate(Assembler::kMinimalBufferSize, &actual_size, true)); CHECK(buffer); Assembler assm(CcTest::i_isolate(), buffer, static_cast(actual_size)); // Assemble a simple function that copies argument 2 and returns it. __ push(rbp); __ movq(rbp, rsp); __ push(arg2); // Value at (rbp - 8) __ push(arg2); // Value at (rbp - 16) __ push(arg1); // Value at (rbp - 24) const int kStackElementSize = 8; __ movq(rax, Operand(rbp, -3 * kStackElementSize)); __ pop(arg2); __ pop(arg2); __ pop(arg2); __ pop(rbp); __ nop(); __ ret(0); CodeDesc desc; assm.GetCode(&desc); // Call the function from C++. int result = FUNCTION_CAST(buffer)(3, 2); CHECK_EQ(3, result); } TEST(AssemblerX64ControlFlow) { // Allocate an executable page of memory. size_t actual_size; byte* buffer = static_cast(OS::Allocate(Assembler::kMinimalBufferSize, &actual_size, true)); CHECK(buffer); Assembler assm(CcTest::i_isolate(), buffer, static_cast(actual_size)); // Assemble a simple function that copies argument 1 and returns it. __ push(rbp); __ movq(rbp, rsp); __ movq(rax, arg1); Label target; __ jmp(&target); __ movq(rax, arg2); __ bind(&target); __ pop(rbp); __ ret(0); CodeDesc desc; assm.GetCode(&desc); // Call the function from C++. int result = FUNCTION_CAST(buffer)(3, 2); CHECK_EQ(3, result); } TEST(AssemblerX64LoopImmediates) { // Allocate an executable page of memory. size_t actual_size; byte* buffer = static_cast(OS::Allocate(Assembler::kMinimalBufferSize, &actual_size, true)); CHECK(buffer); Assembler assm(CcTest::i_isolate(), buffer, static_cast(actual_size)); // Assemble two loops using rax as counter, and verify the ending counts. Label Fail; __ movq(rax, Immediate(-3)); Label Loop1_test; Label Loop1_body; __ jmp(&Loop1_test); __ bind(&Loop1_body); __ addq(rax, Immediate(7)); __ bind(&Loop1_test); __ cmpq(rax, Immediate(20)); __ j(less_equal, &Loop1_body); // Did the loop terminate with the expected value? __ cmpq(rax, Immediate(25)); __ j(not_equal, &Fail); Label Loop2_test; Label Loop2_body; __ movq(rax, Immediate(0x11FEED00)); __ jmp(&Loop2_test); __ bind(&Loop2_body); __ addq(rax, Immediate(-0x1100)); __ bind(&Loop2_test); __ cmpq(rax, Immediate(0x11FE8000)); __ j(greater, &Loop2_body); // Did the loop terminate with the expected value? __ cmpq(rax, Immediate(0x11FE7600)); __ j(not_equal, &Fail); __ movq(rax, Immediate(1)); __ ret(0); __ bind(&Fail); __ movq(rax, Immediate(0)); __ ret(0); CodeDesc desc; assm.GetCode(&desc); // Call the function from C++. int result = FUNCTION_CAST(buffer)(); CHECK_EQ(1, result); } TEST(OperandRegisterDependency) { int offsets[4] = {0, 1, 0xfed, 0xbeefcad}; for (int i = 0; i < 4; i++) { int offset = offsets[i]; CHECK(Operand(rax, offset).AddressUsesRegister(rax)); CHECK(!Operand(rax, offset).AddressUsesRegister(r8)); CHECK(!Operand(rax, offset).AddressUsesRegister(rcx)); CHECK(Operand(rax, rax, times_1, offset).AddressUsesRegister(rax)); CHECK(!Operand(rax, rax, times_1, offset).AddressUsesRegister(r8)); CHECK(!Operand(rax, rax, times_1, offset).AddressUsesRegister(rcx)); CHECK(Operand(rax, rcx, times_1, offset).AddressUsesRegister(rax)); CHECK(Operand(rax, rcx, times_1, offset).AddressUsesRegister(rcx)); CHECK(!Operand(rax, rcx, times_1, offset).AddressUsesRegister(r8)); CHECK(!Operand(rax, rcx, times_1, offset).AddressUsesRegister(r9)); CHECK(!Operand(rax, rcx, times_1, offset).AddressUsesRegister(rdx)); CHECK(!Operand(rax, rcx, times_1, offset).AddressUsesRegister(rsp)); CHECK(Operand(rsp, offset).AddressUsesRegister(rsp)); CHECK(!Operand(rsp, offset).AddressUsesRegister(rax)); CHECK(!Operand(rsp, offset).AddressUsesRegister(r15)); CHECK(Operand(rbp, offset).AddressUsesRegister(rbp)); CHECK(!Operand(rbp, offset).AddressUsesRegister(rax)); CHECK(!Operand(rbp, offset).AddressUsesRegister(r13)); CHECK(Operand(rbp, rax, times_1, offset).AddressUsesRegister(rbp)); CHECK(Operand(rbp, rax, times_1, offset).AddressUsesRegister(rax)); CHECK(!Operand(rbp, rax, times_1, offset).AddressUsesRegister(rcx)); CHECK(!Operand(rbp, rax, times_1, offset).AddressUsesRegister(r13)); CHECK(!Operand(rbp, rax, times_1, offset).AddressUsesRegister(r8)); CHECK(!Operand(rbp, rax, times_1, offset).AddressUsesRegister(rsp)); CHECK(Operand(rsp, rbp, times_1, offset).AddressUsesRegister(rsp)); CHECK(Operand(rsp, rbp, times_1, offset).AddressUsesRegister(rbp)); CHECK(!Operand(rsp, rbp, times_1, offset).AddressUsesRegister(rax)); CHECK(!Operand(rsp, rbp, times_1, offset).AddressUsesRegister(r15)); CHECK(!Operand(rsp, rbp, times_1, offset).AddressUsesRegister(r13)); } } TEST(AssemblerX64LabelChaining) { // Test chaining of label usages within instructions (issue 1644). CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Assembler assm(CcTest::i_isolate(), NULL, 0); Label target; __ j(equal, &target); __ j(not_equal, &target); __ bind(&target); __ nop(); } TEST(AssemblerMultiByteNop) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); byte buffer[1024]; Isolate* isolate = CcTest::i_isolate(); Assembler assm(isolate, buffer, sizeof(buffer)); __ push(rbx); __ push(rcx); __ push(rdx); __ push(rdi); __ push(rsi); __ movq(rax, Immediate(1)); __ movq(rbx, Immediate(2)); __ movq(rcx, Immediate(3)); __ movq(rdx, Immediate(4)); __ movq(rdi, Immediate(5)); __ movq(rsi, Immediate(6)); for (int i = 0; i < 16; i++) { int before = assm.pc_offset(); __ Nop(i); CHECK_EQ(assm.pc_offset() - before, i); } Label fail; __ cmpq(rax, Immediate(1)); __ j(not_equal, &fail); __ cmpq(rbx, Immediate(2)); __ j(not_equal, &fail); __ cmpq(rcx, Immediate(3)); __ j(not_equal, &fail); __ cmpq(rdx, Immediate(4)); __ j(not_equal, &fail); __ cmpq(rdi, Immediate(5)); __ j(not_equal, &fail); __ cmpq(rsi, Immediate(6)); __ j(not_equal, &fail); __ movq(rax, Immediate(42)); __ pop(rsi); __ pop(rdi); __ pop(rdx); __ pop(rcx); __ pop(rbx); __ ret(0); __ bind(&fail); __ movq(rax, Immediate(13)); __ pop(rsi); __ pop(rdi); __ pop(rdx); __ pop(rcx); __ pop(rbx); __ ret(0); CodeDesc desc; assm.GetCode(&desc); Code* code = Code::cast(isolate->heap()->CreateCode( desc, Code::ComputeFlags(Code::STUB), Handle())->ToObjectChecked()); CHECK(code->IsCode()); F0 f = FUNCTION_CAST(code->entry()); int res = f(); CHECK_EQ(42, res); } #ifdef __GNUC__ #define ELEMENT_COUNT 4 void DoSSE2(const v8::FunctionCallbackInfo& args) { v8::HandleScope scope(CcTest::isolate()); byte buffer[1024]; CHECK(args[0]->IsArray()); v8::Local vec = v8::Local::Cast(args[0]); CHECK_EQ(ELEMENT_COUNT, vec->Length()); Isolate* isolate = CcTest::i_isolate(); Assembler assm(isolate, buffer, sizeof(buffer)); // Remove return address from the stack for fix stack frame alignment. __ pop(rcx); // Store input vector on the stack. for (int i = 0; i < ELEMENT_COUNT; i++) { __ movl(rax, Immediate(vec->Get(i)->Int32Value())); __ shl(rax, Immediate(0x20)); __ or_(rax, Immediate(vec->Get(++i)->Int32Value())); __ push(rax); } // Read vector into a xmm register. __ xorps(xmm0, xmm0); __ movdqa(xmm0, Operand(rsp, 0)); // Create mask and store it in the return register. __ movmskps(rax, xmm0); // Remove unused data from the stack. __ addq(rsp, Immediate(ELEMENT_COUNT * sizeof(int32_t))); // Restore return address. __ push(rcx); __ ret(0); CodeDesc desc; assm.GetCode(&desc); Code* code = Code::cast(isolate->heap()->CreateCode( desc, Code::ComputeFlags(Code::STUB), Handle())->ToObjectChecked()); CHECK(code->IsCode()); F0 f = FUNCTION_CAST(code->entry()); int res = f(); args.GetReturnValue().Set(v8::Integer::New(CcTest::isolate(), res)); } TEST(StackAlignmentForSSE2) { CcTest::InitializeVM(); CHECK_EQ(0, OS::ActivationFrameAlignment() % 16); v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope handle_scope(isolate); v8::Handle global_template = v8::ObjectTemplate::New(isolate); global_template->Set(v8_str("do_sse2"), v8::FunctionTemplate::New(isolate, DoSSE2)); LocalContext env(NULL, global_template); CompileRun( "function foo(vec) {" " return do_sse2(vec);" "}"); v8::Local global_object = env->Global(); v8::Local foo = v8::Local::Cast(global_object->Get(v8_str("foo"))); int32_t vec[ELEMENT_COUNT] = { -1, 1, 1, 1 }; v8::Local v8_vec = v8::Array::New(isolate, ELEMENT_COUNT); for (int i = 0; i < ELEMENT_COUNT; i++) { v8_vec->Set(i, v8_num(vec[i])); } v8::Local args[] = { v8_vec }; v8::Local result = foo->Call(global_object, 1, args); // The mask should be 0b1000. CHECK_EQ(8, result->Int32Value()); } #undef ELEMENT_COUNT #endif // __GNUC__ TEST(AssemblerX64Extractps) { CcTest::InitializeVM(); if (!CpuFeatures::IsSupported(SSE4_1)) return; v8::HandleScope scope(CcTest::isolate()); byte buffer[256]; Isolate* isolate = CcTest::i_isolate(); Assembler assm(isolate, buffer, sizeof(buffer)); { CpuFeatureScope fscope2(&assm, SSE4_1); __ extractps(rax, xmm0, 0x1); __ ret(0); } CodeDesc desc; assm.GetCode(&desc); Code* code = Code::cast(isolate->heap()->CreateCode( desc, Code::ComputeFlags(Code::STUB), Handle())->ToObjectChecked()); CHECK(code->IsCode()); #ifdef OBJECT_PRINT Code::cast(code)->Print(); #endif F3 f = FUNCTION_CAST(Code::cast(code)->entry()); uint64_t value1 = V8_2PART_UINT64_C(0x12345678, 87654321); CHECK_EQ(0x12345678, f(uint64_to_double(value1))); uint64_t value2 = V8_2PART_UINT64_C(0x87654321, 12345678); CHECK_EQ(0x87654321, f(uint64_to_double(value2))); } typedef int (*F6)(float x, float y); TEST(AssemblerX64SSE) { CcTest::InitializeVM(); Isolate* isolate = reinterpret_cast(CcTest::isolate()); HandleScope scope(isolate); v8::internal::byte buffer[256]; MacroAssembler assm(isolate, buffer, sizeof buffer); { __ shufps(xmm0, xmm0, 0x0); // brocast first argument __ shufps(xmm1, xmm1, 0x0); // brocast second argument __ movaps(xmm2, xmm1); __ addps(xmm2, xmm0); __ mulps(xmm2, xmm1); __ subps(xmm2, xmm0); __ divps(xmm2, xmm1); __ cvttss2si(rax, xmm2); __ ret(0); } CodeDesc desc; assm.GetCode(&desc); Code* code = Code::cast(isolate->heap()->CreateCode( desc, Code::ComputeFlags(Code::STUB), Handle())->ToObjectChecked()); CHECK(code->IsCode()); #ifdef OBJECT_PRINT Code::cast(code)->Print(); #endif F6 f = FUNCTION_CAST(Code::cast(code)->entry()); CHECK_EQ(2, f(1.0, 2.0)); } #undef __