// Copyright 2009 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include #include #include "src/v8.h" #include "src/base/platform/platform.h" #include "src/base/utils/random-number-generator.h" #include "src/double.h" #include "src/factory.h" #include "src/macro-assembler.h" #include "src/objects-inl.h" #include "src/ostreams.h" #include "test/cctest/cctest.h" namespace v8 { namespace internal { // Test the x64 assembler by compiling some simple functions into // a buffer and executing them. These tests do not initialize the // V8 library, create a context, or use any V8 objects. // The AMD64 calling convention is used, with the first six arguments // in RDI, RSI, RDX, RCX, R8, and R9, and floating point arguments in // the XMM registers. The return value is in RAX. // This calling convention is used on Linux, with GCC, and on Mac OS, // with GCC. A different convention is used on 64-bit windows, // where the first four integer arguments are passed in RCX, RDX, R8 and R9. typedef int (*F0)(); typedef int (*F1)(int64_t x); typedef int (*F2)(int64_t x, int64_t y); typedef unsigned (*F3)(double x); typedef uint64_t (*F4)(uint64_t* x, uint64_t* y); typedef uint64_t (*F5)(uint64_t x); #ifdef _WIN64 static const Register arg1 = rcx; static const Register arg2 = rdx; #else static const Register arg1 = rdi; static const Register arg2 = rsi; #endif #define __ assm. namespace { byte* AllocateExecutablePage(int* actual_size) { size_t allocated = 0; void* result = v8::base::OS::Allocate(Assembler::kMinimalBufferSize, &allocated, v8::base::OS::MemoryPermission::kReadWriteExecute); CHECK(result); *actual_size = static_cast(allocated); return static_cast(result); } } // namespace TEST(AssemblerX64ReturnOperation) { CcTest::InitializeVM(); int actual_size; byte* buffer = AllocateExecutablePage(&actual_size); Assembler assm(CcTest::i_isolate(), buffer, actual_size); // Assemble a simple function that copies argument 2 and returns it. __ movq(rax, arg2); __ nop(); __ ret(0); CodeDesc desc; assm.GetCode(CcTest::i_isolate(), &desc); // Call the function from C++. int result = FUNCTION_CAST(buffer)(3, 2); CHECK_EQ(2, result); } TEST(AssemblerX64StackOperations) { CcTest::InitializeVM(); int actual_size; byte* buffer = AllocateExecutablePage(&actual_size); Assembler assm(CcTest::i_isolate(), buffer, actual_size); // Assemble a simple function that copies argument 2 and returns it. // We compile without stack frame pointers, so the gdb debugger shows // incorrect stack frames when debugging this function (which has them). __ pushq(rbp); __ movq(rbp, rsp); __ pushq(arg2); // Value at (rbp - 8) __ pushq(arg2); // Value at (rbp - 16) __ pushq(arg1); // Value at (rbp - 24) __ popq(rax); __ popq(rax); __ popq(rax); __ popq(rbp); __ nop(); __ ret(0); CodeDesc desc; assm.GetCode(CcTest::i_isolate(), &desc); // Call the function from C++. int result = FUNCTION_CAST(buffer)(3, 2); CHECK_EQ(2, result); } TEST(AssemblerX64ArithmeticOperations) { CcTest::InitializeVM(); int actual_size; byte* buffer = AllocateExecutablePage(&actual_size); Assembler assm(CcTest::i_isolate(), buffer, actual_size); // Assemble a simple function that adds arguments returning the sum. __ movq(rax, arg2); __ addq(rax, arg1); __ ret(0); CodeDesc desc; assm.GetCode(CcTest::i_isolate(), &desc); // Call the function from C++. int result = FUNCTION_CAST(buffer)(3, 2); CHECK_EQ(5, result); } TEST(AssemblerX64CmpbOperation) { CcTest::InitializeVM(); int actual_size; byte* buffer = AllocateExecutablePage(&actual_size); Assembler assm(CcTest::i_isolate(), buffer, actual_size); // Assemble a function that compare argument byte returing 1 if equal else 0. // On Windows, it compares rcx with rdx which does not require REX prefix; // on Linux, it compares rdi with rsi which requires REX prefix. Label done; __ movq(rax, Immediate(1)); __ cmpb(arg1, arg2); __ j(equal, &done); __ movq(rax, Immediate(0)); __ bind(&done); __ ret(0); CodeDesc desc; assm.GetCode(CcTest::i_isolate(), &desc); // Call the function from C++. int result = FUNCTION_CAST(buffer)(0x1002, 0x2002); CHECK_EQ(1, result); result = FUNCTION_CAST(buffer)(0x1002, 0x2003); CHECK_EQ(0, result); } TEST(Regression684407) { CcTest::InitializeVM(); int actual_size; byte* buffer = AllocateExecutablePage(&actual_size); Assembler assm(CcTest::i_isolate(), buffer, actual_size); Address before = assm.pc(); __ cmpl(Operand(arg1, 0), Immediate(0, RelocInfo::WASM_FUNCTION_TABLE_SIZE_REFERENCE)); Address after = assm.pc(); size_t instruction_size = static_cast(after - before); // Check that the immediate is not encoded as uint8. CHECK_LT(sizeof(uint32_t), instruction_size); } TEST(AssemblerX64ImulOperation) { CcTest::InitializeVM(); int actual_size; byte* buffer = AllocateExecutablePage(&actual_size); Assembler assm(CcTest::i_isolate(), buffer, actual_size); // Assemble a simple function that multiplies arguments returning the high // word. __ movq(rax, arg2); __ imulq(arg1); __ movq(rax, rdx); __ ret(0); CodeDesc desc; assm.GetCode(CcTest::i_isolate(), &desc); // Call the function from C++. int result = FUNCTION_CAST(buffer)(3, 2); CHECK_EQ(0, result); result = FUNCTION_CAST(buffer)(0x100000000l, 0x100000000l); CHECK_EQ(1, result); result = FUNCTION_CAST(buffer)(-0x100000000l, 0x100000000l); CHECK_EQ(-1, result); } TEST(AssemblerX64testbwqOperation) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); int actual_size; byte* buffer = AllocateExecutablePage(&actual_size); Assembler assm(CcTest::i_isolate(), buffer, actual_size); __ pushq(rbx); __ pushq(rdi); __ pushq(rsi); __ pushq(r12); __ pushq(r13); __ pushq(r14); __ pushq(r15); // Assemble a simple function that tests testb and testw Label bad; Label done; // Test immediate testb and testw __ movq(rax, Immediate(2)); __ movq(rbx, Immediate(4)); __ movq(rcx, Immediate(8)); __ movq(rdx, Immediate(16)); __ movq(rsi, Immediate(32)); __ movq(rdi, Immediate(64)); __ movq(r10, Immediate(128)); __ movq(r11, Immediate(0)); __ movq(r12, Immediate(0)); __ movq(r13, Immediate(0)); __ testb(rax, Immediate(2)); __ j(zero, &bad); __ testb(rbx, Immediate(4)); __ j(zero, &bad); __ testb(rcx, Immediate(8)); __ j(zero, &bad); __ testb(rdx, Immediate(16)); __ j(zero, &bad); __ testb(rsi, Immediate(32)); __ j(zero, &bad); __ testb(rdi, Immediate(64)); __ j(zero, &bad); __ testb(r10, Immediate(128)); __ j(zero, &bad); __ testw(rax, Immediate(2)); __ j(zero, &bad); __ testw(rbx, Immediate(4)); __ j(zero, &bad); __ testw(rcx, Immediate(8)); __ j(zero, &bad); __ testw(rdx, Immediate(16)); __ j(zero, &bad); __ testw(rsi, Immediate(32)); __ j(zero, &bad); __ testw(rdi, Immediate(64)); __ j(zero, &bad); __ testw(r10, Immediate(128)); __ j(zero, &bad); // Test reg, reg testb and testw __ movq(rax, Immediate(2)); __ movq(rbx, Immediate(2)); __ testb(rax, rbx); __ j(zero, &bad); __ movq(rbx, Immediate(4)); __ movq(rax, Immediate(4)); __ testb(rbx, rax); __ j(zero, &bad); __ movq(rax, Immediate(8)); __ testb(rcx, rax); __ j(zero, &bad); __ movq(rax, Immediate(16)); __ testb(rdx, rax); __ j(zero, &bad); __ movq(rax, Immediate(32)); __ testb(rsi, rax); __ j(zero, &bad); __ movq(rax, Immediate(64)); __ testb(rdi, rax); __ j(zero, &bad); __ movq(rax, Immediate(128)); __ testb(r10, rax); __ j(zero, &bad); __ movq(rax, Immediate(2)); __ movq(rbx, Immediate(2)); __ testw(rax, rbx); __ j(zero, &bad); __ movq(rbx, Immediate(4)); __ movq(rax, Immediate(4)); __ testw(rbx, rax); __ j(zero, &bad); __ movq(rax, Immediate(8)); __ testw(rcx, rax); __ j(zero, &bad); __ movq(rax, Immediate(16)); __ testw(rdx, rax); __ j(zero, &bad); __ movq(rax, Immediate(32)); __ testw(rsi, rax); __ j(zero, &bad); __ movq(rax, Immediate(64)); __ testw(rdi, rax); __ j(zero, &bad); __ movq(rax, Immediate(128)); __ testw(r10, rax); __ j(zero, &bad); // Test diffrrent extended register coding combinations. __ movq(rax, Immediate(5)); __ movq(r11, Immediate(5)); __ testb(r11, rax); __ j(zero, &bad); __ testb(rax, r11); __ j(zero, &bad); __ testw(r11, rax); __ j(zero, &bad); __ testw(rax, r11); __ j(zero, &bad); __ movq(r11, Immediate(3)); __ movq(r12, Immediate(3)); __ movq(rdi, Immediate(3)); __ testb(r12, rdi); __ j(zero, &bad); __ testb(rdi, r12); __ j(zero, &bad); __ testb(r12, r11); __ j(zero, &bad); __ testb(r11, r12); __ j(zero, &bad); __ testw(r12, r11); __ j(zero, &bad); __ testw(r11, r12); __ j(zero, &bad); // Test sign-extended imediate tests __ movq(r11, Immediate(2)); __ shlq(r11, Immediate(32)); __ testq(r11, Immediate(-1)); __ j(zero, &bad); // All tests passed __ movq(rax, Immediate(1)); __ jmp(&done); __ bind(&bad); __ movq(rax, Immediate(0)); __ bind(&done); __ popq(r15); __ popq(r14); __ popq(r13); __ popq(r12); __ popq(rsi); __ popq(rdi); __ popq(rbx); __ ret(0); CodeDesc desc; assm.GetCode(CcTest::i_isolate(), &desc); // Call the function from C++. int result = FUNCTION_CAST(buffer)(0, 0); CHECK_EQ(1, result); } TEST(AssemblerX64XchglOperations) { CcTest::InitializeVM(); int actual_size; byte* buffer = AllocateExecutablePage(&actual_size); Assembler assm(CcTest::i_isolate(), buffer, actual_size); __ movq(rax, Operand(arg1, 0)); __ movq(r11, Operand(arg2, 0)); __ xchgl(rax, r11); __ movq(Operand(arg1, 0), rax); __ movq(Operand(arg2, 0), r11); __ ret(0); CodeDesc desc; assm.GetCode(CcTest::i_isolate(), &desc); // Call the function from C++. uint64_t left = V8_2PART_UINT64_C(0x10000000, 20000000); uint64_t right = V8_2PART_UINT64_C(0x30000000, 40000000); uint64_t result = FUNCTION_CAST(buffer)(&left, &right); CHECK_EQ(V8_2PART_UINT64_C(0x00000000, 40000000), left); CHECK_EQ(V8_2PART_UINT64_C(0x00000000, 20000000), right); USE(result); } TEST(AssemblerX64OrlOperations) { CcTest::InitializeVM(); int actual_size; byte* buffer = AllocateExecutablePage(&actual_size); Assembler assm(CcTest::i_isolate(), buffer, actual_size); __ movq(rax, Operand(arg2, 0)); __ orl(Operand(arg1, 0), rax); __ ret(0); CodeDesc desc; assm.GetCode(CcTest::i_isolate(), &desc); // Call the function from C++. uint64_t left = V8_2PART_UINT64_C(0x10000000, 20000000); uint64_t right = V8_2PART_UINT64_C(0x30000000, 40000000); uint64_t result = FUNCTION_CAST(buffer)(&left, &right); CHECK_EQ(V8_2PART_UINT64_C(0x10000000, 60000000), left); USE(result); } TEST(AssemblerX64RollOperations) { CcTest::InitializeVM(); int actual_size; byte* buffer = AllocateExecutablePage(&actual_size); Assembler assm(CcTest::i_isolate(), buffer, actual_size); __ movq(rax, arg1); __ roll(rax, Immediate(1)); __ ret(0); CodeDesc desc; assm.GetCode(CcTest::i_isolate(), &desc); // Call the function from C++. uint64_t src = V8_2PART_UINT64_C(0x10000000, C0000000); uint64_t result = FUNCTION_CAST(buffer)(src); CHECK_EQ(V8_2PART_UINT64_C(0x00000000, 80000001), result); } TEST(AssemblerX64SublOperations) { CcTest::InitializeVM(); int actual_size; byte* buffer = AllocateExecutablePage(&actual_size); Assembler assm(CcTest::i_isolate(), buffer, actual_size); __ movq(rax, Operand(arg2, 0)); __ subl(Operand(arg1, 0), rax); __ ret(0); CodeDesc desc; assm.GetCode(CcTest::i_isolate(), &desc); // Call the function from C++. uint64_t left = V8_2PART_UINT64_C(0x10000000, 20000000); uint64_t right = V8_2PART_UINT64_C(0x30000000, 40000000); uint64_t result = FUNCTION_CAST(buffer)(&left, &right); CHECK_EQ(V8_2PART_UINT64_C(0x10000000, e0000000), left); USE(result); } TEST(AssemblerX64TestlOperations) { CcTest::InitializeVM(); int actual_size; byte* buffer = AllocateExecutablePage(&actual_size); Assembler assm(CcTest::i_isolate(), buffer, actual_size); // Set rax with the ZF flag of the testl instruction. Label done; __ movq(rax, Immediate(1)); __ movq(r11, Operand(arg2, 0)); __ testl(Operand(arg1, 0), r11); __ j(zero, &done, Label::kNear); __ movq(rax, Immediate(0)); __ bind(&done); __ ret(0); CodeDesc desc; assm.GetCode(CcTest::i_isolate(), &desc); // Call the function from C++. uint64_t left = V8_2PART_UINT64_C(0x10000000, 20000000); uint64_t right = V8_2PART_UINT64_C(0x30000000, 00000000); uint64_t result = FUNCTION_CAST(buffer)(&left, &right); CHECK_EQ(1u, result); } TEST(AssemblerX64TestwOperations) { typedef uint16_t (*F)(uint16_t * x); CcTest::InitializeVM(); int actual_size; byte* buffer = AllocateExecutablePage(&actual_size); Assembler assm(CcTest::i_isolate(), buffer, actual_size); // Set rax with the ZF flag of the testl instruction. Label done; __ movq(rax, Immediate(1)); __ testw(Operand(arg1, 0), Immediate(0xf0f0)); __ j(not_zero, &done, Label::kNear); __ movq(rax, Immediate(0)); __ bind(&done); __ ret(0); CodeDesc desc; assm.GetCode(CcTest::i_isolate(), &desc); // Call the function from C++. uint16_t operand = 0x8000; uint16_t result = FUNCTION_CAST(buffer)(&operand); CHECK_EQ(1u, result); } TEST(AssemblerX64XorlOperations) { CcTest::InitializeVM(); int actual_size; byte* buffer = AllocateExecutablePage(&actual_size); Assembler assm(CcTest::i_isolate(), buffer, actual_size); __ movq(rax, Operand(arg2, 0)); __ xorl(Operand(arg1, 0), rax); __ ret(0); CodeDesc desc; assm.GetCode(CcTest::i_isolate(), &desc); // Call the function from C++. uint64_t left = V8_2PART_UINT64_C(0x10000000, 20000000); uint64_t right = V8_2PART_UINT64_C(0x30000000, 60000000); uint64_t result = FUNCTION_CAST(buffer)(&left, &right); CHECK_EQ(V8_2PART_UINT64_C(0x10000000, 40000000), left); USE(result); } TEST(AssemblerX64MemoryOperands) { CcTest::InitializeVM(); int actual_size; byte* buffer = AllocateExecutablePage(&actual_size); Assembler assm(CcTest::i_isolate(), buffer, actual_size); // Assemble a simple function that copies argument 2 and returns it. __ pushq(rbp); __ movq(rbp, rsp); __ pushq(arg2); // Value at (rbp - 8) __ pushq(arg2); // Value at (rbp - 16) __ pushq(arg1); // Value at (rbp - 24) const int kStackElementSize = 8; __ movq(rax, Operand(rbp, -3 * kStackElementSize)); __ popq(arg2); __ popq(arg2); __ popq(arg2); __ popq(rbp); __ nop(); __ ret(0); CodeDesc desc; assm.GetCode(CcTest::i_isolate(), &desc); // Call the function from C++. int result = FUNCTION_CAST(buffer)(3, 2); CHECK_EQ(3, result); } TEST(AssemblerX64ControlFlow) { CcTest::InitializeVM(); int actual_size; byte* buffer = AllocateExecutablePage(&actual_size); Assembler assm(CcTest::i_isolate(), buffer, actual_size); // Assemble a simple function that copies argument 1 and returns it. __ pushq(rbp); __ movq(rbp, rsp); __ movq(rax, arg1); Label target; __ jmp(&target); __ movq(rax, arg2); __ bind(&target); __ popq(rbp); __ ret(0); CodeDesc desc; assm.GetCode(CcTest::i_isolate(), &desc); // Call the function from C++. int result = FUNCTION_CAST(buffer)(3, 2); CHECK_EQ(3, result); } TEST(AssemblerX64LoopImmediates) { CcTest::InitializeVM(); int actual_size; byte* buffer = AllocateExecutablePage(&actual_size); Assembler assm(CcTest::i_isolate(), buffer, actual_size); // Assemble two loops using rax as counter, and verify the ending counts. Label Fail; __ movq(rax, Immediate(-3)); Label Loop1_test; Label Loop1_body; __ jmp(&Loop1_test); __ bind(&Loop1_body); __ addq(rax, Immediate(7)); __ bind(&Loop1_test); __ cmpq(rax, Immediate(20)); __ j(less_equal, &Loop1_body); // Did the loop terminate with the expected value? __ cmpq(rax, Immediate(25)); __ j(not_equal, &Fail); Label Loop2_test; Label Loop2_body; __ movq(rax, Immediate(0x11FEED00)); __ jmp(&Loop2_test); __ bind(&Loop2_body); __ addq(rax, Immediate(-0x1100)); __ bind(&Loop2_test); __ cmpq(rax, Immediate(0x11FE8000)); __ j(greater, &Loop2_body); // Did the loop terminate with the expected value? __ cmpq(rax, Immediate(0x11FE7600)); __ j(not_equal, &Fail); __ movq(rax, Immediate(1)); __ ret(0); __ bind(&Fail); __ movq(rax, Immediate(0)); __ ret(0); CodeDesc desc; assm.GetCode(CcTest::i_isolate(), &desc); // Call the function from C++. int result = FUNCTION_CAST(buffer)(); CHECK_EQ(1, result); } TEST(OperandRegisterDependency) { int offsets[4] = {0, 1, 0xfed, 0xbeefcad}; for (int i = 0; i < 4; i++) { int offset = offsets[i]; CHECK(Operand(rax, offset).AddressUsesRegister(rax)); CHECK(!Operand(rax, offset).AddressUsesRegister(r8)); CHECK(!Operand(rax, offset).AddressUsesRegister(rcx)); CHECK(Operand(rax, rax, times_1, offset).AddressUsesRegister(rax)); CHECK(!Operand(rax, rax, times_1, offset).AddressUsesRegister(r8)); CHECK(!Operand(rax, rax, times_1, offset).AddressUsesRegister(rcx)); CHECK(Operand(rax, rcx, times_1, offset).AddressUsesRegister(rax)); CHECK(Operand(rax, rcx, times_1, offset).AddressUsesRegister(rcx)); CHECK(!Operand(rax, rcx, times_1, offset).AddressUsesRegister(r8)); CHECK(!Operand(rax, rcx, times_1, offset).AddressUsesRegister(r9)); CHECK(!Operand(rax, rcx, times_1, offset).AddressUsesRegister(rdx)); CHECK(!Operand(rax, rcx, times_1, offset).AddressUsesRegister(rsp)); CHECK(Operand(rsp, offset).AddressUsesRegister(rsp)); CHECK(!Operand(rsp, offset).AddressUsesRegister(rax)); CHECK(!Operand(rsp, offset).AddressUsesRegister(r15)); CHECK(Operand(rbp, offset).AddressUsesRegister(rbp)); CHECK(!Operand(rbp, offset).AddressUsesRegister(rax)); CHECK(!Operand(rbp, offset).AddressUsesRegister(r13)); CHECK(Operand(rbp, rax, times_1, offset).AddressUsesRegister(rbp)); CHECK(Operand(rbp, rax, times_1, offset).AddressUsesRegister(rax)); CHECK(!Operand(rbp, rax, times_1, offset).AddressUsesRegister(rcx)); CHECK(!Operand(rbp, rax, times_1, offset).AddressUsesRegister(r13)); CHECK(!Operand(rbp, rax, times_1, offset).AddressUsesRegister(r8)); CHECK(!Operand(rbp, rax, times_1, offset).AddressUsesRegister(rsp)); CHECK(Operand(rsp, rbp, times_1, offset).AddressUsesRegister(rsp)); CHECK(Operand(rsp, rbp, times_1, offset).AddressUsesRegister(rbp)); CHECK(!Operand(rsp, rbp, times_1, offset).AddressUsesRegister(rax)); CHECK(!Operand(rsp, rbp, times_1, offset).AddressUsesRegister(r15)); CHECK(!Operand(rsp, rbp, times_1, offset).AddressUsesRegister(r13)); } } TEST(AssemblerX64LabelChaining) { // Test chaining of label usages within instructions (issue 1644). CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Assembler assm(CcTest::i_isolate(), nullptr, 0); Label target; __ j(equal, &target); __ j(not_equal, &target); __ bind(&target); __ nop(); } TEST(AssemblerMultiByteNop) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); byte buffer[1024]; Isolate* isolate = CcTest::i_isolate(); Assembler assm(isolate, buffer, sizeof(buffer)); __ pushq(rbx); __ pushq(rcx); __ pushq(rdx); __ pushq(rdi); __ pushq(rsi); __ movq(rax, Immediate(1)); __ movq(rbx, Immediate(2)); __ movq(rcx, Immediate(3)); __ movq(rdx, Immediate(4)); __ movq(rdi, Immediate(5)); __ movq(rsi, Immediate(6)); for (int i = 0; i < 16; i++) { int before = assm.pc_offset(); __ Nop(i); CHECK_EQ(assm.pc_offset() - before, i); } Label fail; __ cmpq(rax, Immediate(1)); __ j(not_equal, &fail); __ cmpq(rbx, Immediate(2)); __ j(not_equal, &fail); __ cmpq(rcx, Immediate(3)); __ j(not_equal, &fail); __ cmpq(rdx, Immediate(4)); __ j(not_equal, &fail); __ cmpq(rdi, Immediate(5)); __ j(not_equal, &fail); __ cmpq(rsi, Immediate(6)); __ j(not_equal, &fail); __ movq(rax, Immediate(42)); __ popq(rsi); __ popq(rdi); __ popq(rdx); __ popq(rcx); __ popq(rbx); __ ret(0); __ bind(&fail); __ movq(rax, Immediate(13)); __ popq(rsi); __ popq(rdi); __ popq(rdx); __ popq(rcx); __ popq(rbx); __ ret(0); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); F0 f = FUNCTION_CAST(code->entry()); int res = f(); CHECK_EQ(42, res); } #ifdef __GNUC__ #define ELEMENT_COUNT 4u void DoSSE2(const v8::FunctionCallbackInfo& args) { v8::HandleScope scope(CcTest::isolate()); v8::Local context = CcTest::isolate()->GetCurrentContext(); byte buffer[1024]; CHECK(args[0]->IsArray()); v8::Local vec = v8::Local::Cast(args[0]); CHECK_EQ(ELEMENT_COUNT, vec->Length()); Isolate* isolate = CcTest::i_isolate(); Assembler assm(isolate, buffer, sizeof(buffer)); // Remove return address from the stack for fix stack frame alignment. __ popq(rcx); // Store input vector on the stack. for (unsigned i = 0; i < ELEMENT_COUNT; i++) { __ movl(rax, Immediate(vec->Get(context, i) .ToLocalChecked() ->Int32Value(context) .FromJust())); __ shlq(rax, Immediate(0x20)); __ orq(rax, Immediate(vec->Get(context, ++i) .ToLocalChecked() ->Int32Value(context) .FromJust())); __ pushq(rax); } // Read vector into a xmm register. __ xorps(xmm0, xmm0); __ movdqa(xmm0, Operand(rsp, 0)); // Create mask and store it in the return register. __ movmskps(rax, xmm0); // Remove unused data from the stack. __ addq(rsp, Immediate(ELEMENT_COUNT * sizeof(int32_t))); // Restore return address. __ pushq(rcx); __ ret(0); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); F0 f = FUNCTION_CAST(code->entry()); int res = f(); args.GetReturnValue().Set(v8::Integer::New(CcTest::isolate(), res)); } TEST(StackAlignmentForSSE2) { CcTest::InitializeVM(); CHECK_EQ(0, v8::base::OS::ActivationFrameAlignment() % 16); v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope handle_scope(isolate); v8::Local global_template = v8::ObjectTemplate::New(isolate); global_template->Set(v8_str("do_sse2"), v8::FunctionTemplate::New(isolate, DoSSE2)); LocalContext env(nullptr, global_template); CompileRun( "function foo(vec) {" " return do_sse2(vec);" "}"); v8::Local global_object = env->Global(); v8::Local foo = v8::Local::Cast( global_object->Get(env.local(), v8_str("foo")).ToLocalChecked()); int32_t vec[ELEMENT_COUNT] = { -1, 1, 1, 1 }; v8::Local v8_vec = v8::Array::New(isolate, ELEMENT_COUNT); for (unsigned i = 0; i < ELEMENT_COUNT; i++) { v8_vec->Set(env.local(), i, v8_num(vec[i])).FromJust(); } v8::Local args[] = { v8_vec }; v8::Local result = foo->Call(env.local(), global_object, 1, args).ToLocalChecked(); // The mask should be 0b1000. CHECK_EQ(8, result->Int32Value(env.local()).FromJust()); } #undef ELEMENT_COUNT #endif // __GNUC__ TEST(AssemblerX64Extractps) { CcTest::InitializeVM(); if (!CpuFeatures::IsSupported(SSE4_1)) return; v8::HandleScope scope(CcTest::isolate()); byte buffer[256]; Isolate* isolate = CcTest::i_isolate(); Assembler assm(isolate, buffer, sizeof(buffer)); { CpuFeatureScope fscope2(&assm, SSE4_1); __ extractps(rax, xmm0, 0x1); __ ret(0); } CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT OFStream os(stdout); code->Print(os); #endif F3 f = FUNCTION_CAST(code->entry()); uint64_t value1 = V8_2PART_UINT64_C(0x12345678, 87654321); CHECK_EQ(0x12345678u, f(uint64_to_double(value1))); uint64_t value2 = V8_2PART_UINT64_C(0x87654321, 12345678); CHECK_EQ(0x87654321u, f(uint64_to_double(value2))); } typedef int (*F6)(float x, float y); TEST(AssemblerX64SSE) { CcTest::InitializeVM(); Isolate* isolate = reinterpret_cast(CcTest::isolate()); HandleScope scope(isolate); v8::internal::byte buffer[256]; MacroAssembler assm(isolate, buffer, sizeof(buffer), v8::internal::CodeObjectRequired::kYes); { __ shufps(xmm0, xmm0, 0x0); // brocast first argument __ shufps(xmm1, xmm1, 0x0); // brocast second argument __ movaps(xmm2, xmm1); __ addps(xmm2, xmm0); __ mulps(xmm2, xmm1); __ subps(xmm2, xmm0); __ divps(xmm2, xmm1); __ cvttss2si(rax, xmm2); __ ret(0); } CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT OFStream os(stdout); code->Print(os); #endif F6 f = FUNCTION_CAST(code->entry()); CHECK_EQ(2, f(1.0, 2.0)); } typedef int (*F7)(double x, double y, double z); TEST(AssemblerX64FMA_sd) { CcTest::InitializeVM(); if (!CpuFeatures::IsSupported(FMA3)) return; Isolate* isolate = reinterpret_cast(CcTest::isolate()); HandleScope scope(isolate); v8::internal::byte buffer[1024]; MacroAssembler assm(isolate, buffer, sizeof(buffer), v8::internal::CodeObjectRequired::kYes); { CpuFeatureScope fscope(&assm, FMA3); Label exit; // argument in xmm0, xmm1 and xmm2 // xmm0 * xmm1 + xmm2 __ movaps(xmm3, xmm0); __ mulsd(xmm3, xmm1); __ addsd(xmm3, xmm2); // Expected result in xmm3 __ subq(rsp, Immediate(kDoubleSize)); // For memory operand // vfmadd132sd __ movl(rax, Immediate(1)); // Test number __ movaps(xmm8, xmm0); __ vfmadd132sd(xmm8, xmm2, xmm1); __ ucomisd(xmm8, xmm3); __ j(not_equal, &exit); // vfmadd213sd __ incq(rax); __ movaps(xmm8, xmm1); __ vfmadd213sd(xmm8, xmm0, xmm2); __ ucomisd(xmm8, xmm3); __ j(not_equal, &exit); // vfmadd231sd __ incq(rax); __ movaps(xmm8, xmm2); __ vfmadd231sd(xmm8, xmm0, xmm1); __ ucomisd(xmm8, xmm3); __ j(not_equal, &exit); // vfmadd132sd __ incq(rax); __ movaps(xmm8, xmm0); __ movsd(Operand(rsp, 0), xmm1); __ vfmadd132sd(xmm8, xmm2, Operand(rsp, 0)); __ ucomisd(xmm8, xmm3); __ j(not_equal, &exit); // vfmadd213sd __ incq(rax); __ movaps(xmm8, xmm1); __ movsd(Operand(rsp, 0), xmm2); __ vfmadd213sd(xmm8, xmm0, Operand(rsp, 0)); __ ucomisd(xmm8, xmm3); __ j(not_equal, &exit); // vfmadd231sd __ incq(rax); __ movaps(xmm8, xmm2); __ movsd(Operand(rsp, 0), xmm1); __ vfmadd231sd(xmm8, xmm0, Operand(rsp, 0)); __ ucomisd(xmm8, xmm3); __ j(not_equal, &exit); // xmm0 * xmm1 - xmm2 __ movaps(xmm3, xmm0); __ mulsd(xmm3, xmm1); __ subsd(xmm3, xmm2); // Expected result in xmm3 // vfmsub132sd __ incq(rax); __ movaps(xmm8, xmm0); __ vfmsub132sd(xmm8, xmm2, xmm1); __ ucomisd(xmm8, xmm3); __ j(not_equal, &exit); // vfmadd213sd __ incq(rax); __ movaps(xmm8, xmm1); __ vfmsub213sd(xmm8, xmm0, xmm2); __ ucomisd(xmm8, xmm3); __ j(not_equal, &exit); // vfmsub231sd __ incq(rax); __ movaps(xmm8, xmm2); __ vfmsub231sd(xmm8, xmm0, xmm1); __ ucomisd(xmm8, xmm3); __ j(not_equal, &exit); // vfmsub132sd __ incq(rax); __ movaps(xmm8, xmm0); __ movsd(Operand(rsp, 0), xmm1); __ vfmsub132sd(xmm8, xmm2, Operand(rsp, 0)); __ ucomisd(xmm8, xmm3); __ j(not_equal, &exit); // vfmsub213sd __ incq(rax); __ movaps(xmm8, xmm1); __ movsd(Operand(rsp, 0), xmm2); __ vfmsub213sd(xmm8, xmm0, Operand(rsp, 0)); __ ucomisd(xmm8, xmm3); __ j(not_equal, &exit); // vfmsub231sd __ incq(rax); __ movaps(xmm8, xmm2); __ movsd(Operand(rsp, 0), xmm1); __ vfmsub231sd(xmm8, xmm0, Operand(rsp, 0)); __ ucomisd(xmm8, xmm3); __ j(not_equal, &exit); // - xmm0 * xmm1 + xmm2 __ movaps(xmm3, xmm0); __ mulsd(xmm3, xmm1); __ Move(xmm4, (uint64_t)1 << 63); __ xorpd(xmm3, xmm4); __ addsd(xmm3, xmm2); // Expected result in xmm3 // vfnmadd132sd __ incq(rax); __ movaps(xmm8, xmm0); __ vfnmadd132sd(xmm8, xmm2, xmm1); __ ucomisd(xmm8, xmm3); __ j(not_equal, &exit); // vfmadd213sd __ incq(rax); __ movaps(xmm8, xmm1); __ vfnmadd213sd(xmm8, xmm0, xmm2); __ ucomisd(xmm8, xmm3); __ j(not_equal, &exit); // vfnmadd231sd __ incq(rax); __ movaps(xmm8, xmm2); __ vfnmadd231sd(xmm8, xmm0, xmm1); __ ucomisd(xmm8, xmm3); __ j(not_equal, &exit); // vfnmadd132sd __ incq(rax); __ movaps(xmm8, xmm0); __ movsd(Operand(rsp, 0), xmm1); __ vfnmadd132sd(xmm8, xmm2, Operand(rsp, 0)); __ ucomisd(xmm8, xmm3); __ j(not_equal, &exit); // vfnmadd213sd __ incq(rax); __ movaps(xmm8, xmm1); __ movsd(Operand(rsp, 0), xmm2); __ vfnmadd213sd(xmm8, xmm0, Operand(rsp, 0)); __ ucomisd(xmm8, xmm3); __ j(not_equal, &exit); // vfnmadd231sd __ incq(rax); __ movaps(xmm8, xmm2); __ movsd(Operand(rsp, 0), xmm1); __ vfnmadd231sd(xmm8, xmm0, Operand(rsp, 0)); __ ucomisd(xmm8, xmm3); __ j(not_equal, &exit); // - xmm0 * xmm1 - xmm2 __ movaps(xmm3, xmm0); __ mulsd(xmm3, xmm1); __ Move(xmm4, (uint64_t)1 << 63); __ xorpd(xmm3, xmm4); __ subsd(xmm3, xmm2); // Expected result in xmm3 // vfnmsub132sd __ incq(rax); __ movaps(xmm8, xmm0); __ vfnmsub132sd(xmm8, xmm2, xmm1); __ ucomisd(xmm8, xmm3); __ j(not_equal, &exit); // vfmsub213sd __ incq(rax); __ movaps(xmm8, xmm1); __ vfnmsub213sd(xmm8, xmm0, xmm2); __ ucomisd(xmm8, xmm3); __ j(not_equal, &exit); // vfnmsub231sd __ incq(rax); __ movaps(xmm8, xmm2); __ vfnmsub231sd(xmm8, xmm0, xmm1); __ ucomisd(xmm8, xmm3); __ j(not_equal, &exit); // vfnmsub132sd __ incq(rax); __ movaps(xmm8, xmm0); __ movsd(Operand(rsp, 0), xmm1); __ vfnmsub132sd(xmm8, xmm2, Operand(rsp, 0)); __ ucomisd(xmm8, xmm3); __ j(not_equal, &exit); // vfnmsub213sd __ incq(rax); __ movaps(xmm8, xmm1); __ movsd(Operand(rsp, 0), xmm2); __ vfnmsub213sd(xmm8, xmm0, Operand(rsp, 0)); __ ucomisd(xmm8, xmm3); __ j(not_equal, &exit); // vfnmsub231sd __ incq(rax); __ movaps(xmm8, xmm2); __ movsd(Operand(rsp, 0), xmm1); __ vfnmsub231sd(xmm8, xmm0, Operand(rsp, 0)); __ ucomisd(xmm8, xmm3); __ j(not_equal, &exit); __ xorl(rax, rax); __ bind(&exit); __ addq(rsp, Immediate(kDoubleSize)); __ ret(0); } CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT OFStream os(stdout); code->Print(os); #endif F7 f = FUNCTION_CAST(code->entry()); CHECK_EQ(0, f(0.000092662107262076, -2.460774966188315, -1.0958787393627414)); } typedef int (*F8)(float x, float y, float z); TEST(AssemblerX64FMA_ss) { CcTest::InitializeVM(); if (!CpuFeatures::IsSupported(FMA3)) return; Isolate* isolate = reinterpret_cast(CcTest::isolate()); HandleScope scope(isolate); v8::internal::byte buffer[1024]; MacroAssembler assm(isolate, buffer, sizeof(buffer), v8::internal::CodeObjectRequired::kYes); { CpuFeatureScope fscope(&assm, FMA3); Label exit; // arguments in xmm0, xmm1 and xmm2 // xmm0 * xmm1 + xmm2 __ movaps(xmm3, xmm0); __ mulss(xmm3, xmm1); __ addss(xmm3, xmm2); // Expected result in xmm3 __ subq(rsp, Immediate(kDoubleSize)); // For memory operand // vfmadd132ss __ movl(rax, Immediate(1)); // Test number __ movaps(xmm8, xmm0); __ vfmadd132ss(xmm8, xmm2, xmm1); __ ucomiss(xmm8, xmm3); __ j(not_equal, &exit); // vfmadd213ss __ incq(rax); __ movaps(xmm8, xmm1); __ vfmadd213ss(xmm8, xmm0, xmm2); __ ucomiss(xmm8, xmm3); __ j(not_equal, &exit); // vfmadd231ss __ incq(rax); __ movaps(xmm8, xmm2); __ vfmadd231ss(xmm8, xmm0, xmm1); __ ucomiss(xmm8, xmm3); __ j(not_equal, &exit); // vfmadd132ss __ incq(rax); __ movaps(xmm8, xmm0); __ movss(Operand(rsp, 0), xmm1); __ vfmadd132ss(xmm8, xmm2, Operand(rsp, 0)); __ ucomiss(xmm8, xmm3); __ j(not_equal, &exit); // vfmadd213ss __ incq(rax); __ movaps(xmm8, xmm1); __ movss(Operand(rsp, 0), xmm2); __ vfmadd213ss(xmm8, xmm0, Operand(rsp, 0)); __ ucomiss(xmm8, xmm3); __ j(not_equal, &exit); // vfmadd231ss __ incq(rax); __ movaps(xmm8, xmm2); __ movss(Operand(rsp, 0), xmm1); __ vfmadd231ss(xmm8, xmm0, Operand(rsp, 0)); __ ucomiss(xmm8, xmm3); __ j(not_equal, &exit); // xmm0 * xmm1 - xmm2 __ movaps(xmm3, xmm0); __ mulss(xmm3, xmm1); __ subss(xmm3, xmm2); // Expected result in xmm3 // vfmsub132ss __ incq(rax); __ movaps(xmm8, xmm0); __ vfmsub132ss(xmm8, xmm2, xmm1); __ ucomiss(xmm8, xmm3); __ j(not_equal, &exit); // vfmadd213ss __ incq(rax); __ movaps(xmm8, xmm1); __ vfmsub213ss(xmm8, xmm0, xmm2); __ ucomiss(xmm8, xmm3); __ j(not_equal, &exit); // vfmsub231ss __ incq(rax); __ movaps(xmm8, xmm2); __ vfmsub231ss(xmm8, xmm0, xmm1); __ ucomiss(xmm8, xmm3); __ j(not_equal, &exit); // vfmsub132ss __ incq(rax); __ movaps(xmm8, xmm0); __ movss(Operand(rsp, 0), xmm1); __ vfmsub132ss(xmm8, xmm2, Operand(rsp, 0)); __ ucomiss(xmm8, xmm3); __ j(not_equal, &exit); // vfmsub213ss __ incq(rax); __ movaps(xmm8, xmm1); __ movss(Operand(rsp, 0), xmm2); __ vfmsub213ss(xmm8, xmm0, Operand(rsp, 0)); __ ucomiss(xmm8, xmm3); __ j(not_equal, &exit); // vfmsub231ss __ incq(rax); __ movaps(xmm8, xmm2); __ movss(Operand(rsp, 0), xmm1); __ vfmsub231ss(xmm8, xmm0, Operand(rsp, 0)); __ ucomiss(xmm8, xmm3); __ j(not_equal, &exit); // - xmm0 * xmm1 + xmm2 __ movaps(xmm3, xmm0); __ mulss(xmm3, xmm1); __ Move(xmm4, (uint32_t)1 << 31); __ xorps(xmm3, xmm4); __ addss(xmm3, xmm2); // Expected result in xmm3 // vfnmadd132ss __ incq(rax); __ movaps(xmm8, xmm0); __ vfnmadd132ss(xmm8, xmm2, xmm1); __ ucomiss(xmm8, xmm3); __ j(not_equal, &exit); // vfmadd213ss __ incq(rax); __ movaps(xmm8, xmm1); __ vfnmadd213ss(xmm8, xmm0, xmm2); __ ucomiss(xmm8, xmm3); __ j(not_equal, &exit); // vfnmadd231ss __ incq(rax); __ movaps(xmm8, xmm2); __ vfnmadd231ss(xmm8, xmm0, xmm1); __ ucomiss(xmm8, xmm3); __ j(not_equal, &exit); // vfnmadd132ss __ incq(rax); __ movaps(xmm8, xmm0); __ movss(Operand(rsp, 0), xmm1); __ vfnmadd132ss(xmm8, xmm2, Operand(rsp, 0)); __ ucomiss(xmm8, xmm3); __ j(not_equal, &exit); // vfnmadd213ss __ incq(rax); __ movaps(xmm8, xmm1); __ movss(Operand(rsp, 0), xmm2); __ vfnmadd213ss(xmm8, xmm0, Operand(rsp, 0)); __ ucomiss(xmm8, xmm3); __ j(not_equal, &exit); // vfnmadd231ss __ incq(rax); __ movaps(xmm8, xmm2); __ movss(Operand(rsp, 0), xmm1); __ vfnmadd231ss(xmm8, xmm0, Operand(rsp, 0)); __ ucomiss(xmm8, xmm3); __ j(not_equal, &exit); // - xmm0 * xmm1 - xmm2 __ movaps(xmm3, xmm0); __ mulss(xmm3, xmm1); __ Move(xmm4, (uint32_t)1 << 31); __ xorps(xmm3, xmm4); __ subss(xmm3, xmm2); // Expected result in xmm3 // vfnmsub132ss __ incq(rax); __ movaps(xmm8, xmm0); __ vfnmsub132ss(xmm8, xmm2, xmm1); __ ucomiss(xmm8, xmm3); __ j(not_equal, &exit); // vfmsub213ss __ incq(rax); __ movaps(xmm8, xmm1); __ vfnmsub213ss(xmm8, xmm0, xmm2); __ ucomiss(xmm8, xmm3); __ j(not_equal, &exit); // vfnmsub231ss __ incq(rax); __ movaps(xmm8, xmm2); __ vfnmsub231ss(xmm8, xmm0, xmm1); __ ucomiss(xmm8, xmm3); __ j(not_equal, &exit); // vfnmsub132ss __ incq(rax); __ movaps(xmm8, xmm0); __ movss(Operand(rsp, 0), xmm1); __ vfnmsub132ss(xmm8, xmm2, Operand(rsp, 0)); __ ucomiss(xmm8, xmm3); __ j(not_equal, &exit); // vfnmsub213ss __ incq(rax); __ movaps(xmm8, xmm1); __ movss(Operand(rsp, 0), xmm2); __ vfnmsub213ss(xmm8, xmm0, Operand(rsp, 0)); __ ucomiss(xmm8, xmm3); __ j(not_equal, &exit); // vfnmsub231ss __ incq(rax); __ movaps(xmm8, xmm2); __ movss(Operand(rsp, 0), xmm1); __ vfnmsub231ss(xmm8, xmm0, Operand(rsp, 0)); __ ucomiss(xmm8, xmm3); __ j(not_equal, &exit); __ xorl(rax, rax); __ bind(&exit); __ addq(rsp, Immediate(kDoubleSize)); __ ret(0); } CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT OFStream os(stdout); code->Print(os); #endif F8 f = FUNCTION_CAST(code->entry()); CHECK_EQ(0, f(9.26621069e-05f, -2.4607749f, -1.09587872f)); } TEST(AssemblerX64SSE_ss) { CcTest::InitializeVM(); Isolate* isolate = reinterpret_cast(CcTest::isolate()); HandleScope scope(isolate); v8::internal::byte buffer[1024]; Assembler assm(isolate, buffer, sizeof(buffer)); { Label exit; // arguments in xmm0, xmm1 and xmm2 __ movl(rax, Immediate(0)); __ movaps(xmm3, xmm0); __ maxss(xmm3, xmm1); __ ucomiss(xmm3, xmm1); __ j(parity_even, &exit); __ j(not_equal, &exit); __ movl(rax, Immediate(1)); __ movaps(xmm3, xmm1); __ minss(xmm3, xmm2); __ ucomiss(xmm3, xmm1); __ j(parity_even, &exit); __ j(not_equal, &exit); __ movl(rax, Immediate(2)); __ movaps(xmm3, xmm2); __ subss(xmm3, xmm1); __ ucomiss(xmm3, xmm0); __ j(parity_even, &exit); __ j(not_equal, &exit); __ movl(rax, Immediate(3)); __ movaps(xmm3, xmm0); __ addss(xmm3, xmm1); __ ucomiss(xmm3, xmm2); __ j(parity_even, &exit); __ j(not_equal, &exit); __ movl(rax, Immediate(4)); __ movaps(xmm3, xmm0); __ mulss(xmm3, xmm1); __ ucomiss(xmm3, xmm1); __ j(parity_even, &exit); __ j(not_equal, &exit); __ movl(rax, Immediate(5)); __ movaps(xmm3, xmm0); __ divss(xmm3, xmm1); __ mulss(xmm3, xmm2); __ mulss(xmm3, xmm1); __ ucomiss(xmm3, xmm2); __ j(parity_even, &exit); __ j(not_equal, &exit); __ movl(rax, Immediate(6)); // result in eax __ bind(&exit); __ ret(0); } CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT OFStream os(stdout); code->Print(os); #endif F8 f = FUNCTION_CAST(code->entry()); int res = f(1.0f, 2.0f, 3.0f); PrintF("f(1,2,3) = %d\n", res); CHECK_EQ(6, res); } TEST(AssemblerX64AVX_ss) { CcTest::InitializeVM(); if (!CpuFeatures::IsSupported(AVX)) return; Isolate* isolate = reinterpret_cast(CcTest::isolate()); HandleScope scope(isolate); v8::internal::byte buffer[1024]; Assembler assm(isolate, buffer, sizeof(buffer)); { CpuFeatureScope avx_scope(&assm, AVX); Label exit; // arguments in xmm0, xmm1 and xmm2 __ subq(rsp, Immediate(kDoubleSize * 2)); // For memory operand __ movl(rdx, Immediate(0xc2f64000)); // -123.125 __ vmovd(xmm4, rdx); __ vmovss(Operand(rsp, 0), xmm4); __ vmovss(xmm5, Operand(rsp, 0)); __ vmovaps(xmm6, xmm5); __ vmovd(rcx, xmm6); __ cmpl(rcx, rdx); __ movl(rax, Immediate(9)); __ j(not_equal, &exit); __ movl(rax, Immediate(0)); __ vmaxss(xmm3, xmm0, xmm1); __ vucomiss(xmm3, xmm1); __ j(parity_even, &exit); __ j(not_equal, &exit); __ movl(rax, Immediate(1)); __ vminss(xmm3, xmm1, xmm2); __ vucomiss(xmm3, xmm1); __ j(parity_even, &exit); __ j(not_equal, &exit); __ movl(rax, Immediate(2)); __ vsubss(xmm3, xmm2, xmm1); __ vucomiss(xmm3, xmm0); __ j(parity_even, &exit); __ j(not_equal, &exit); __ movl(rax, Immediate(3)); __ vaddss(xmm3, xmm0, xmm1); __ vucomiss(xmm3, xmm2); __ j(parity_even, &exit); __ j(not_equal, &exit); __ movl(rax, Immediate(4)); __ vmulss(xmm3, xmm0, xmm1); __ vucomiss(xmm3, xmm1); __ j(parity_even, &exit); __ j(not_equal, &exit); __ movl(rax, Immediate(5)); __ vdivss(xmm3, xmm0, xmm1); __ vmulss(xmm3, xmm3, xmm2); __ vmulss(xmm3, xmm3, xmm1); __ vucomiss(xmm3, xmm2); __ j(parity_even, &exit); __ j(not_equal, &exit); __ movl(rax, Immediate(6)); // result in eax __ bind(&exit); __ addq(rsp, Immediate(kDoubleSize * 2)); __ ret(0); } CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT OFStream os(stdout); code->Print(os); #endif F8 f = FUNCTION_CAST(code->entry()); int res = f(1.0f, 2.0f, 3.0f); PrintF("f(1,2,3) = %d\n", res); CHECK_EQ(6, res); } TEST(AssemblerX64AVX_sd) { CcTest::InitializeVM(); if (!CpuFeatures::IsSupported(AVX)) return; Isolate* isolate = reinterpret_cast(CcTest::isolate()); HandleScope scope(isolate); v8::internal::byte buffer[1024]; Assembler assm(isolate, buffer, sizeof(buffer)); { CpuFeatureScope avx_scope(&assm, AVX); Label exit; // arguments in xmm0, xmm1 and xmm2 __ subq(rsp, Immediate(kDoubleSize * 2)); // For memory operand __ movl(rax, Immediate(0)); __ vmaxsd(xmm4, xmm0, xmm1); __ vmovsd(Operand(rsp, kDoubleSize), xmm4); __ vmovsd(xmm5, Operand(rsp, kDoubleSize)); __ vmovsd(xmm6, xmm6, xmm5); __ vmovapd(xmm3, xmm6); // Test vcvtss2sd & vcvtsd2ss __ movl(rax, Immediate(9)); __ movq(rdx, V8_INT64_C(0x426D1A0000000000)); __ movq(Operand(rsp, 0), rdx); __ vcvtsd2ss(xmm6, xmm6, Operand(rsp, 0)); __ vcvtss2sd(xmm7, xmm6, xmm6); __ vcvtsd2ss(xmm8, xmm7, xmm7); __ vmovss(Operand(rsp, 0), xmm8); __ vcvtss2sd(xmm9, xmm8, Operand(rsp, 0)); __ vmovq(rcx, xmm9); __ cmpq(rcx, rdx); __ j(not_equal, &exit); // Test vcvttsd2si __ movl(rax, Immediate(10)); __ movl(rdx, Immediate(123)); __ vcvtlsi2sd(xmm6, xmm6, rdx); __ vcvttsd2si(rcx, xmm6); __ cmpl(rcx, rdx); __ j(not_equal, &exit); __ xorl(rcx, rcx); __ vmovsd(Operand(rsp, 0), xmm6); __ vcvttsd2si(rcx, Operand(rsp, 0)); __ cmpl(rcx, rdx); __ j(not_equal, &exit); // Test vcvttsd2siq __ movl(rax, Immediate(11)); __ movq(rdx, V8_INT64_C(0x426D1A94A2000000)); // 1.0e12 __ vmovq(xmm6, rdx); __ vcvttsd2siq(rcx, xmm6); __ movq(rdx, V8_INT64_C(1000000000000)); __ cmpq(rcx, rdx); __ j(not_equal, &exit); __ xorq(rcx, rcx); __ vmovsd(Operand(rsp, 0), xmm6); __ vcvttsd2siq(rcx, Operand(rsp, 0)); __ cmpq(rcx, rdx); __ j(not_equal, &exit); // Test vmovmskpd __ movl(rax, Immediate(12)); __ movq(rdx, V8_INT64_C(0x426D1A94A2000000)); // 1.0e12 __ vmovq(xmm6, rdx); __ movq(rdx, V8_INT64_C(0xC26D1A94A2000000)); // -1.0e12 __ vmovq(xmm7, rdx); __ shufps(xmm6, xmm7, 0x44); __ vmovmskpd(rdx, xmm6); __ cmpl(rdx, Immediate(2)); __ j(not_equal, &exit); // Test vpcmpeqd __ movq(rdx, V8_UINT64_C(0x0123456789abcdef)); __ movq(rcx, V8_UINT64_C(0x0123456788888888)); __ vmovq(xmm6, rdx); __ vmovq(xmm7, rcx); __ vpcmpeqd(xmm8, xmm6, xmm7); __ vmovq(rdx, xmm8); __ movq(rcx, V8_UINT64_C(0xffffffff00000000)); __ cmpq(rcx, rdx); __ movl(rax, Immediate(13)); __ j(not_equal, &exit); // Test vpsllq, vpsrlq __ movl(rax, Immediate(13)); __ movq(rdx, V8_UINT64_C(0x0123456789abcdef)); __ vmovq(xmm6, rdx); __ vpsrlq(xmm7, xmm6, 4); __ vmovq(rdx, xmm7); __ movq(rcx, V8_UINT64_C(0x00123456789abcde)); __ cmpq(rdx, rcx); __ j(not_equal, &exit); __ vpsllq(xmm7, xmm6, 12); __ vmovq(rdx, xmm7); __ movq(rcx, V8_UINT64_C(0x3456789abcdef000)); __ cmpq(rdx, rcx); __ j(not_equal, &exit); // Test vandpd, vorpd, vxorpd __ movl(rax, Immediate(14)); __ movl(rdx, Immediate(0x00ff00ff)); __ movl(rcx, Immediate(0x0f0f0f0f)); __ vmovd(xmm4, rdx); __ vmovd(xmm5, rcx); __ vandpd(xmm6, xmm4, xmm5); __ vmovd(rdx, xmm6); __ cmpl(rdx, Immediate(0x000f000f)); __ j(not_equal, &exit); __ vorpd(xmm6, xmm4, xmm5); __ vmovd(rdx, xmm6); __ cmpl(rdx, Immediate(0x0fff0fff)); __ j(not_equal, &exit); __ vxorpd(xmm6, xmm4, xmm5); __ vmovd(rdx, xmm6); __ cmpl(rdx, Immediate(0x0ff00ff0)); __ j(not_equal, &exit); // Test vsqrtsd __ movl(rax, Immediate(15)); __ movq(rdx, V8_UINT64_C(0x4004000000000000)); // 2.5 __ vmovq(xmm4, rdx); __ vmulsd(xmm5, xmm4, xmm4); __ vmovsd(Operand(rsp, 0), xmm5); __ vsqrtsd(xmm6, xmm5, xmm5); __ vmovq(rcx, xmm6); __ cmpq(rcx, rdx); __ j(not_equal, &exit); __ vsqrtsd(xmm7, xmm7, Operand(rsp, 0)); __ vmovq(rcx, xmm7); __ cmpq(rcx, rdx); __ j(not_equal, &exit); // Test vroundsd __ movl(rax, Immediate(16)); __ movq(rdx, V8_UINT64_C(0x4002000000000000)); // 2.25 __ vmovq(xmm4, rdx); __ vroundsd(xmm5, xmm4, xmm4, kRoundUp); __ movq(rcx, V8_UINT64_C(0x4008000000000000)); // 3.0 __ vmovq(xmm6, rcx); __ vucomisd(xmm5, xmm6); __ j(not_equal, &exit); // Test vcvtlsi2sd __ movl(rax, Immediate(17)); __ movl(rdx, Immediate(6)); __ movq(rcx, V8_UINT64_C(0x4018000000000000)); // 6.0 __ vmovq(xmm5, rcx); __ vcvtlsi2sd(xmm6, xmm6, rdx); __ vucomisd(xmm5, xmm6); __ j(not_equal, &exit); __ movl(Operand(rsp, 0), rdx); __ vcvtlsi2sd(xmm7, xmm7, Operand(rsp, 0)); __ vucomisd(xmm5, xmm6); __ j(not_equal, &exit); // Test vcvtqsi2sd __ movl(rax, Immediate(18)); __ movq(rdx, V8_UINT64_C(0x2000000000000000)); // 2 << 0x3c __ movq(rcx, V8_UINT64_C(0x43c0000000000000)); __ vmovq(xmm5, rcx); __ vcvtqsi2sd(xmm6, xmm6, rdx); __ vucomisd(xmm5, xmm6); __ j(not_equal, &exit); // Test vcvtsd2si __ movl(rax, Immediate(19)); __ movq(rdx, V8_UINT64_C(0x4018000000000000)); // 6.0 __ vmovq(xmm5, rdx); __ vcvtsd2si(rcx, xmm5); __ cmpl(rcx, Immediate(6)); __ j(not_equal, &exit); __ movq(rdx, V8_INT64_C(0x3ff0000000000000)); // 1.0 __ vmovq(xmm7, rdx); __ vmulsd(xmm1, xmm1, xmm7); __ movq(Operand(rsp, 0), rdx); __ vmovq(xmm6, Operand(rsp, 0)); __ vmulsd(xmm1, xmm1, xmm6); __ vucomisd(xmm3, xmm1); __ j(parity_even, &exit); __ j(not_equal, &exit); __ movl(rax, Immediate(1)); __ vminsd(xmm3, xmm1, xmm2); __ vucomisd(xmm3, xmm1); __ j(parity_even, &exit); __ j(not_equal, &exit); __ movl(rax, Immediate(2)); __ vsubsd(xmm3, xmm2, xmm1); __ vucomisd(xmm3, xmm0); __ j(parity_even, &exit); __ j(not_equal, &exit); __ movl(rax, Immediate(3)); __ vaddsd(xmm3, xmm0, xmm1); __ vucomisd(xmm3, xmm2); __ j(parity_even, &exit); __ j(not_equal, &exit); __ movl(rax, Immediate(4)); __ vmulsd(xmm3, xmm0, xmm1); __ vucomisd(xmm3, xmm1); __ j(parity_even, &exit); __ j(not_equal, &exit); __ movl(rax, Immediate(5)); __ vdivsd(xmm3, xmm0, xmm1); __ vmulsd(xmm3, xmm3, xmm2); __ vmulsd(xmm3, xmm3, xmm1); __ vucomisd(xmm3, xmm2); __ j(parity_even, &exit); __ j(not_equal, &exit); __ movl(rax, Immediate(6)); // result in eax __ bind(&exit); __ addq(rsp, Immediate(kDoubleSize * 2)); __ ret(0); } CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT OFStream os(stdout); code->Print(os); #endif F7 f = FUNCTION_CAST(code->entry()); int res = f(1.0, 2.0, 3.0); PrintF("f(1,2,3) = %d\n", res); CHECK_EQ(6, res); } TEST(AssemblerX64BMI1) { CcTest::InitializeVM(); if (!CpuFeatures::IsSupported(BMI1)) return; Isolate* isolate = reinterpret_cast(CcTest::isolate()); HandleScope scope(isolate); v8::internal::byte buffer[1024]; MacroAssembler assm(isolate, buffer, sizeof(buffer), v8::internal::CodeObjectRequired::kYes); { CpuFeatureScope fscope(&assm, BMI1); Label exit; __ movq(rcx, V8_UINT64_C(0x1122334455667788)); // source operand __ pushq(rcx); // For memory operand // andn __ movq(rdx, V8_UINT64_C(0x1000000020000000)); __ movl(rax, Immediate(1)); // Test number __ andnq(r8, rdx, rcx); __ movq(r9, V8_UINT64_C(0x0122334455667788)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ andnq(r8, rdx, Operand(rsp, 0)); __ movq(r9, V8_UINT64_C(0x0122334455667788)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ andnl(r8, rdx, rcx); __ movq(r9, V8_UINT64_C(0x0000000055667788)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ andnl(r8, rdx, Operand(rsp, 0)); __ movq(r9, V8_UINT64_C(0x0000000055667788)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); // bextr __ movq(rdx, V8_UINT64_C(0x0000000000002808)); __ incq(rax); __ bextrq(r8, rcx, rdx); __ movq(r9, V8_UINT64_C(0x0000003344556677)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ bextrq(r8, Operand(rsp, 0), rdx); __ movq(r9, V8_UINT64_C(0x0000003344556677)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ bextrl(r8, rcx, rdx); __ movq(r9, V8_UINT64_C(0x0000000000556677)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ bextrl(r8, Operand(rsp, 0), rdx); __ movq(r9, V8_UINT64_C(0x0000000000556677)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); // blsi __ incq(rax); __ blsiq(r8, rcx); __ movq(r9, V8_UINT64_C(0x0000000000000008)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ blsiq(r8, Operand(rsp, 0)); __ movq(r9, V8_UINT64_C(0x0000000000000008)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ blsil(r8, rcx); __ movq(r9, V8_UINT64_C(0x0000000000000008)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ blsil(r8, Operand(rsp, 0)); __ movq(r9, V8_UINT64_C(0x0000000000000008)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); // blsmsk __ incq(rax); __ blsmskq(r8, rcx); __ movq(r9, V8_UINT64_C(0x000000000000000f)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ blsmskq(r8, Operand(rsp, 0)); __ movq(r9, V8_UINT64_C(0x000000000000000f)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ blsmskl(r8, rcx); __ movq(r9, V8_UINT64_C(0x000000000000000f)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ blsmskl(r8, Operand(rsp, 0)); __ movq(r9, V8_UINT64_C(0x000000000000000f)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); // blsr __ incq(rax); __ blsrq(r8, rcx); __ movq(r9, V8_UINT64_C(0x1122334455667780)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ blsrq(r8, Operand(rsp, 0)); __ movq(r9, V8_UINT64_C(0x1122334455667780)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ blsrl(r8, rcx); __ movq(r9, V8_UINT64_C(0x0000000055667780)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ blsrl(r8, Operand(rsp, 0)); __ movq(r9, V8_UINT64_C(0x0000000055667780)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); // tzcnt __ incq(rax); __ tzcntq(r8, rcx); __ movq(r9, V8_UINT64_C(0x0000000000000003)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ tzcntq(r8, Operand(rsp, 0)); __ movq(r9, V8_UINT64_C(0x0000000000000003)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ tzcntl(r8, rcx); __ movq(r9, V8_UINT64_C(0x0000000000000003)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ tzcntl(r8, Operand(rsp, 0)); __ movq(r9, V8_UINT64_C(0x0000000000000003)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ xorl(rax, rax); __ bind(&exit); __ popq(rcx); __ ret(0); } CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT OFStream os(stdout); code->Print(os); #endif F0 f = FUNCTION_CAST(code->entry()); CHECK_EQ(0, f()); } TEST(AssemblerX64LZCNT) { CcTest::InitializeVM(); if (!CpuFeatures::IsSupported(LZCNT)) return; Isolate* isolate = reinterpret_cast(CcTest::isolate()); HandleScope scope(isolate); v8::internal::byte buffer[256]; MacroAssembler assm(isolate, buffer, sizeof(buffer), v8::internal::CodeObjectRequired::kYes); { CpuFeatureScope fscope(&assm, LZCNT); Label exit; __ movq(rcx, V8_UINT64_C(0x1122334455667788)); // source operand __ pushq(rcx); // For memory operand __ movl(rax, Immediate(1)); // Test number __ lzcntq(r8, rcx); __ movq(r9, V8_UINT64_C(0x0000000000000003)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ lzcntq(r8, Operand(rsp, 0)); __ movq(r9, V8_UINT64_C(0x0000000000000003)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ lzcntl(r8, rcx); __ movq(r9, V8_UINT64_C(0x0000000000000001)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ lzcntl(r8, Operand(rsp, 0)); __ movq(r9, V8_UINT64_C(0x0000000000000001)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ xorl(rax, rax); __ bind(&exit); __ popq(rcx); __ ret(0); } CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT OFStream os(stdout); code->Print(os); #endif F0 f = FUNCTION_CAST(code->entry()); CHECK_EQ(0, f()); } TEST(AssemblerX64POPCNT) { CcTest::InitializeVM(); if (!CpuFeatures::IsSupported(POPCNT)) return; Isolate* isolate = reinterpret_cast(CcTest::isolate()); HandleScope scope(isolate); v8::internal::byte buffer[256]; MacroAssembler assm(isolate, buffer, sizeof(buffer), v8::internal::CodeObjectRequired::kYes); { CpuFeatureScope fscope(&assm, POPCNT); Label exit; __ movq(rcx, V8_UINT64_C(0x1111111111111100)); // source operand __ pushq(rcx); // For memory operand __ movl(rax, Immediate(1)); // Test number __ popcntq(r8, rcx); __ movq(r9, V8_UINT64_C(0x000000000000000e)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ popcntq(r8, Operand(rsp, 0)); __ movq(r9, V8_UINT64_C(0x000000000000000e)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ popcntl(r8, rcx); __ movq(r9, V8_UINT64_C(0x0000000000000006)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ popcntl(r8, Operand(rsp, 0)); __ movq(r9, V8_UINT64_C(0x0000000000000006)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ xorl(rax, rax); __ bind(&exit); __ popq(rcx); __ ret(0); } CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT OFStream os(stdout); code->Print(os); #endif F0 f = FUNCTION_CAST(code->entry()); CHECK_EQ(0, f()); } TEST(AssemblerX64BMI2) { CcTest::InitializeVM(); if (!CpuFeatures::IsSupported(BMI2)) return; Isolate* isolate = reinterpret_cast(CcTest::isolate()); HandleScope scope(isolate); v8::internal::byte buffer[2048]; MacroAssembler assm(isolate, buffer, sizeof(buffer), v8::internal::CodeObjectRequired::kYes); { CpuFeatureScope fscope(&assm, BMI2); Label exit; __ pushq(rbx); // save rbx __ movq(rcx, V8_UINT64_C(0x1122334455667788)); // source operand __ pushq(rcx); // For memory operand // bzhi __ movq(rdx, V8_UINT64_C(0x0000000000000009)); __ movl(rax, Immediate(1)); // Test number __ bzhiq(r8, rcx, rdx); __ movq(r9, V8_UINT64_C(0x0000000000000188)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ bzhiq(r8, Operand(rsp, 0), rdx); __ movq(r9, V8_UINT64_C(0x0000000000000188)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ bzhil(r8, rcx, rdx); __ movq(r9, V8_UINT64_C(0x0000000000000188)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ bzhil(r8, Operand(rsp, 0), rdx); __ movq(r9, V8_UINT64_C(0x0000000000000188)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); // mulx __ movq(rdx, V8_UINT64_C(0x0000000000001000)); __ incq(rax); __ mulxq(r8, r9, rcx); __ movq(rbx, V8_UINT64_C(0x0000000000000112)); // expected result __ cmpq(r8, rbx); __ j(not_equal, &exit); __ movq(rbx, V8_UINT64_C(0x2334455667788000)); // expected result __ cmpq(r9, rbx); __ j(not_equal, &exit); __ incq(rax); __ mulxq(r8, r9, Operand(rsp, 0)); __ movq(rbx, V8_UINT64_C(0x0000000000000112)); // expected result __ cmpq(r8, rbx); __ j(not_equal, &exit); __ movq(rbx, V8_UINT64_C(0x2334455667788000)); // expected result __ cmpq(r9, rbx); __ j(not_equal, &exit); __ incq(rax); __ mulxl(r8, r9, rcx); __ movq(rbx, V8_UINT64_C(0x0000000000000556)); // expected result __ cmpq(r8, rbx); __ j(not_equal, &exit); __ movq(rbx, V8_UINT64_C(0x0000000067788000)); // expected result __ cmpq(r9, rbx); __ j(not_equal, &exit); __ incq(rax); __ mulxl(r8, r9, Operand(rsp, 0)); __ movq(rbx, V8_UINT64_C(0x0000000000000556)); // expected result __ cmpq(r8, rbx); __ j(not_equal, &exit); __ movq(rbx, V8_UINT64_C(0x0000000067788000)); // expected result __ cmpq(r9, rbx); __ j(not_equal, &exit); // pdep __ movq(rdx, V8_UINT64_C(0xfffffffffffffff0)); __ incq(rax); __ pdepq(r8, rdx, rcx); __ movq(r9, V8_UINT64_C(0x1122334455667400)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ pdepq(r8, rdx, Operand(rsp, 0)); __ movq(r9, V8_UINT64_C(0x1122334455667400)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ pdepl(r8, rdx, rcx); __ movq(r9, V8_UINT64_C(0x0000000055667400)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ pdepl(r8, rdx, Operand(rsp, 0)); __ movq(r9, V8_UINT64_C(0x0000000055667400)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); // pext __ movq(rdx, V8_UINT64_C(0xfffffffffffffff0)); __ incq(rax); __ pextq(r8, rdx, rcx); __ movq(r9, V8_UINT64_C(0x0000000003fffffe)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ pextq(r8, rdx, Operand(rsp, 0)); __ movq(r9, V8_UINT64_C(0x0000000003fffffe)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ pextl(r8, rdx, rcx); __ movq(r9, V8_UINT64_C(0x000000000000fffe)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ pextl(r8, rdx, Operand(rsp, 0)); __ movq(r9, V8_UINT64_C(0x000000000000fffe)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); // sarx __ movq(rdx, V8_UINT64_C(0x0000000000000004)); __ incq(rax); __ sarxq(r8, rcx, rdx); __ movq(r9, V8_UINT64_C(0x0112233445566778)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ sarxq(r8, Operand(rsp, 0), rdx); __ movq(r9, V8_UINT64_C(0x0112233445566778)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ sarxl(r8, rcx, rdx); __ movq(r9, V8_UINT64_C(0x0000000005566778)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ sarxl(r8, Operand(rsp, 0), rdx); __ movq(r9, V8_UINT64_C(0x0000000005566778)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); // shlx __ movq(rdx, V8_UINT64_C(0x0000000000000004)); __ incq(rax); __ shlxq(r8, rcx, rdx); __ movq(r9, V8_UINT64_C(0x1223344556677880)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ shlxq(r8, Operand(rsp, 0), rdx); __ movq(r9, V8_UINT64_C(0x1223344556677880)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ shlxl(r8, rcx, rdx); __ movq(r9, V8_UINT64_C(0x0000000056677880)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ shlxl(r8, Operand(rsp, 0), rdx); __ movq(r9, V8_UINT64_C(0x0000000056677880)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); // shrx __ movq(rdx, V8_UINT64_C(0x0000000000000004)); __ incq(rax); __ shrxq(r8, rcx, rdx); __ movq(r9, V8_UINT64_C(0x0112233445566778)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ shrxq(r8, Operand(rsp, 0), rdx); __ movq(r9, V8_UINT64_C(0x0112233445566778)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ shrxl(r8, rcx, rdx); __ movq(r9, V8_UINT64_C(0x0000000005566778)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ shrxl(r8, Operand(rsp, 0), rdx); __ movq(r9, V8_UINT64_C(0x0000000005566778)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); // rorx __ incq(rax); __ rorxq(r8, rcx, 0x4); __ movq(r9, V8_UINT64_C(0x8112233445566778)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ rorxq(r8, Operand(rsp, 0), 0x4); __ movq(r9, V8_UINT64_C(0x8112233445566778)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ rorxl(r8, rcx, 0x4); __ movq(r9, V8_UINT64_C(0x0000000085566778)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ incq(rax); __ rorxl(r8, Operand(rsp, 0), 0x4); __ movq(r9, V8_UINT64_C(0x0000000085566778)); // expected result __ cmpq(r8, r9); __ j(not_equal, &exit); __ xorl(rax, rax); __ bind(&exit); __ popq(rcx); __ popq(rbx); __ ret(0); } CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT OFStream os(stdout); code->Print(os); #endif F0 f = FUNCTION_CAST(code->entry()); CHECK_EQ(0, f()); } TEST(AssemblerX64JumpTables1) { // Test jump tables with forward jumps. CcTest::InitializeVM(); Isolate* isolate = reinterpret_cast(CcTest::isolate()); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); const int kNumCases = 512; int values[kNumCases]; isolate->random_number_generator()->NextBytes(values, sizeof(values)); Label labels[kNumCases]; Label done, table; __ leaq(arg2, Operand(&table)); __ jmp(Operand(arg2, arg1, times_8, 0)); __ ud2(); __ bind(&table); for (int i = 0; i < kNumCases; ++i) { __ dq(&labels[i]); } for (int i = 0; i < kNumCases; ++i) { __ bind(&labels[i]); __ movq(rax, Immediate(values[i])); __ jmp(&done); } __ bind(&done); __ ret(0); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif F1 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kNumCases; ++i) { int res = f(i); PrintF("f(%d) = %d\n", i, res); CHECK_EQ(values[i], res); } } TEST(AssemblerX64JumpTables2) { // Test jump tables with backwards jumps. CcTest::InitializeVM(); Isolate* isolate = reinterpret_cast(CcTest::isolate()); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); const int kNumCases = 512; int values[kNumCases]; isolate->random_number_generator()->NextBytes(values, sizeof(values)); Label labels[kNumCases]; Label done, table; __ leaq(arg2, Operand(&table)); __ jmp(Operand(arg2, arg1, times_8, 0)); __ ud2(); for (int i = 0; i < kNumCases; ++i) { __ bind(&labels[i]); __ movq(rax, Immediate(values[i])); __ jmp(&done); } __ bind(&done); __ ret(0); __ bind(&table); for (int i = 0; i < kNumCases; ++i) { __ dq(&labels[i]); } CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif F1 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kNumCases; ++i) { int res = f(i); PrintF("f(%d) = %d\n", i, res); CHECK_EQ(values[i], res); } } TEST(AssemblerX64PslldWithXmm15) { CcTest::InitializeVM(); int actual_size; byte* buffer = AllocateExecutablePage(&actual_size); Assembler assm(CcTest::i_isolate(), buffer, actual_size); __ movq(xmm15, arg1); __ pslld(xmm15, 1); __ movq(rax, xmm15); __ ret(0); CodeDesc desc; assm.GetCode(CcTest::i_isolate(), &desc); uint64_t result = FUNCTION_CAST(buffer)(V8_UINT64_C(0x1122334455667788)); CHECK_EQ(V8_UINT64_C(0x22446688aaccef10), result); } typedef float (*F9)(float x, float y); TEST(AssemblerX64vmovups) { CcTest::InitializeVM(); if (!CpuFeatures::IsSupported(AVX)) return; Isolate* isolate = reinterpret_cast(CcTest::isolate()); HandleScope scope(isolate); v8::internal::byte buffer[256]; MacroAssembler assm(isolate, buffer, sizeof(buffer), v8::internal::CodeObjectRequired::kYes); { CpuFeatureScope avx_scope(&assm, AVX); __ shufps(xmm0, xmm0, 0x0); // brocast first argument __ shufps(xmm1, xmm1, 0x0); // brocast second argument // copy xmm1 to xmm0 through the stack to test the "vmovups reg, mem". __ subq(rsp, Immediate(kSimd128Size)); __ vmovups(Operand(rsp, 0), xmm1); __ vmovups(xmm0, Operand(rsp, 0)); __ addq(rsp, Immediate(kSimd128Size)); __ ret(0); } CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode(desc, Code::STUB, Handle()); #ifdef OBJECT_PRINT OFStream os(stdout); code->Print(os); #endif F9 f = FUNCTION_CAST(code->entry()); CHECK_EQ(-1.5, f(1.5, -1.5)); } #undef __ } // namespace internal } // namespace v8