// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_IA32_MACRO_ASSEMBLER_IA32_H_ #define V8_IA32_MACRO_ASSEMBLER_IA32_H_ #include "src/assembler.h" #include "src/bailout-reason.h" #include "src/globals.h" #include "src/ia32/assembler-ia32.h" namespace v8 { namespace internal { // Give alias names to registers for calling conventions. constexpr Register kReturnRegister0 = eax; constexpr Register kReturnRegister1 = edx; constexpr Register kReturnRegister2 = edi; constexpr Register kJSFunctionRegister = edi; constexpr Register kContextRegister = esi; constexpr Register kAllocateSizeRegister = edx; constexpr Register kInterpreterAccumulatorRegister = eax; constexpr Register kInterpreterBytecodeOffsetRegister = ecx; constexpr Register kInterpreterBytecodeArrayRegister = edi; constexpr Register kInterpreterDispatchTableRegister = esi; constexpr Register kJavaScriptCallArgCountRegister = eax; constexpr Register kJavaScriptCallNewTargetRegister = edx; constexpr Register kRuntimeCallFunctionRegister = ebx; constexpr Register kRuntimeCallArgCountRegister = eax; // Convenience for platform-independent signatures. We do not normally // distinguish memory operands from other operands on ia32. typedef Operand MemOperand; enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET }; enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK }; enum RegisterValueType { REGISTER_VALUE_IS_SMI, REGISTER_VALUE_IS_INT32 }; enum class ReturnAddressState { kOnStack, kNotOnStack }; #ifdef DEBUG bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg, Register reg4 = no_reg, Register reg5 = no_reg, Register reg6 = no_reg, Register reg7 = no_reg, Register reg8 = no_reg); #endif class TurboAssembler : public Assembler { public: TurboAssembler(Isolate* isolate, void* buffer, int buffer_size, CodeObjectRequired create_code_object); void set_has_frame(bool value) { has_frame_ = value; } bool has_frame() const { return has_frame_; } Isolate* isolate() const { return isolate_; } Handle CodeObject() { DCHECK(!code_object_.is_null()); return code_object_; } void CheckPageFlag(Register object, Register scratch, int mask, Condition cc, Label* condition_met, Label::Distance condition_met_distance = Label::kFar); // Activation support. void EnterFrame(StackFrame::Type type); void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg) { // Out-of-line constant pool not implemented on ia32. UNREACHABLE(); } void LeaveFrame(StackFrame::Type type); // Print a message to stdout and abort execution. void Abort(BailoutReason reason); // Calls Abort(msg) if the condition cc is not satisfied. // Use --debug_code to enable. void Assert(Condition cc, BailoutReason reason); // Like Assert(), but without condition. // Use --debug_code to enable. void AssertUnreachable(BailoutReason reason); // Like Assert(), but always enabled. void Check(Condition cc, BailoutReason reason); // Check that the stack is aligned. void CheckStackAlignment(); // Nop, because ia32 does not have a root register. void InitializeRootRegister() {} // Move a constant into a destination using the most efficient encoding. void Move(Register dst, const Immediate& x); void Move(Register dst, Smi* source) { Move(dst, Immediate(source)); } // Move if the registers are not identical. void Move(Register target, Register source); void Move(const Operand& dst, const Immediate& x); // Move an immediate into an XMM register. void Move(XMMRegister dst, uint32_t src); void Move(XMMRegister dst, uint64_t src); void Move(XMMRegister dst, float src) { Move(dst, bit_cast(src)); } void Move(XMMRegister dst, double src) { Move(dst, bit_cast(src)); } void Move(Register dst, Handle handle); void Call(Handle target, RelocInfo::Mode rmode) { call(target, rmode); } void Call(Label* target) { call(target); } void CallForDeoptimization(Address target, RelocInfo::Mode rmode) { call(target, rmode); } inline bool AllowThisStubCall(CodeStub* stub); void CallStubDelayed(CodeStub* stub); void CallRuntimeDelayed(Zone* zone, Runtime::FunctionId fid, SaveFPRegsMode save_doubles = kDontSaveFPRegs); // Jump the register contains a smi. inline void JumpIfSmi(Register value, Label* smi_label, Label::Distance distance = Label::kFar) { test(value, Immediate(kSmiTagMask)); j(zero, smi_label, distance); } // Jump if the operand is a smi. inline void JumpIfSmi(Operand value, Label* smi_label, Label::Distance distance = Label::kFar) { test(value, Immediate(kSmiTagMask)); j(zero, smi_label, distance); } void SmiUntag(Register reg) { sar(reg, kSmiTagSize); } // Removes current frame and its arguments from the stack preserving // the arguments and a return address pushed to the stack for the next call. // |ra_state| defines whether return address is already pushed to stack or // not. Both |callee_args_count| and |caller_args_count_reg| do not include // receiver. |callee_args_count| is not modified, |caller_args_count_reg| // is trashed. |number_of_temp_values_after_return_address| specifies // the number of words pushed to the stack after the return address. This is // to allow "allocation" of scratch registers that this function requires // by saving their values on the stack. void PrepareForTailCall(const ParameterCount& callee_args_count, Register caller_args_count_reg, Register scratch0, Register scratch1, ReturnAddressState ra_state, int number_of_temp_values_after_return_address); // Before calling a C-function from generated code, align arguments on stack. // After aligning the frame, arguments must be stored in esp[0], esp[4], // etc., not pushed. The argument count assumes all arguments are word sized. // Some compilers/platforms require the stack to be aligned when calling // C++ code. // Needs a scratch register to do some arithmetic. This register will be // trashed. void PrepareCallCFunction(int num_arguments, Register scratch); // Calls a C function and cleans up the space for arguments allocated // by PrepareCallCFunction. The called function is not allowed to trigger a // garbage collection, since that might move the code and invalidate the // return address (unless this is somehow accounted for by the called // function). void CallCFunction(ExternalReference function, int num_arguments); void CallCFunction(Register function, int num_arguments); void ShlPair(Register high, Register low, uint8_t imm8); void ShlPair_cl(Register high, Register low); void ShrPair(Register high, Register low, uint8_t imm8); void ShrPair_cl(Register high, Register src); void SarPair(Register high, Register low, uint8_t imm8); void SarPair_cl(Register high, Register low); // Generates function and stub prologue code. void StubPrologue(StackFrame::Type type); void Prologue(); void Lzcnt(Register dst, Register src) { Lzcnt(dst, Operand(src)); } void Lzcnt(Register dst, const Operand& src); void Tzcnt(Register dst, Register src) { Tzcnt(dst, Operand(src)); } void Tzcnt(Register dst, const Operand& src); void Popcnt(Register dst, Register src) { Popcnt(dst, Operand(src)); } void Popcnt(Register dst, const Operand& src); void Ret(); // Return and drop arguments from stack, where the number of arguments // may be bigger than 2^16 - 1. Requires a scratch register. void Ret(int bytes_dropped, Register scratch); void Pshuflw(XMMRegister dst, XMMRegister src, uint8_t shuffle) { Pshuflw(dst, Operand(src), shuffle); } void Pshuflw(XMMRegister dst, const Operand& src, uint8_t shuffle); void Pshufd(XMMRegister dst, XMMRegister src, uint8_t shuffle) { Pshufd(dst, Operand(src), shuffle); } void Pshufd(XMMRegister dst, const Operand& src, uint8_t shuffle); // SSE/SSE2 instructions with AVX version. #define AVX_OP2_WITH_TYPE(macro_name, name, dst_type, src_type) \ void macro_name(dst_type dst, src_type src) { \ if (CpuFeatures::IsSupported(AVX)) { \ CpuFeatureScope scope(this, AVX); \ v##name(dst, src); \ } else { \ name(dst, src); \ } \ } AVX_OP2_WITH_TYPE(Movd, movd, XMMRegister, Register) AVX_OP2_WITH_TYPE(Movd, movd, XMMRegister, const Operand&) AVX_OP2_WITH_TYPE(Movd, movd, Register, XMMRegister) AVX_OP2_WITH_TYPE(Movd, movd, const Operand&, XMMRegister) #undef AVX_OP2_WITH_TYPE // Only use these macros when non-destructive source of AVX version is not // needed. #define AVX_OP3_WITH_TYPE(macro_name, name, dst_type, src_type) \ void macro_name(dst_type dst, src_type src) { \ if (CpuFeatures::IsSupported(AVX)) { \ CpuFeatureScope scope(this, AVX); \ v##name(dst, dst, src); \ } else { \ name(dst, src); \ } \ } #define AVX_OP3_XO(macro_name, name) \ AVX_OP3_WITH_TYPE(macro_name, name, XMMRegister, XMMRegister) \ AVX_OP3_WITH_TYPE(macro_name, name, XMMRegister, const Operand&) AVX_OP3_XO(Pcmpeqd, pcmpeqd) AVX_OP3_XO(Psubd, psubd) AVX_OP3_XO(Pxor, pxor) #undef AVX_OP3_XO #undef AVX_OP3_WITH_TYPE // Non-SSE2 instructions. void Pshufb(XMMRegister dst, XMMRegister src) { Pshufb(dst, Operand(src)); } void Pshufb(XMMRegister dst, const Operand& src); void Psignd(XMMRegister dst, XMMRegister src) { Psignd(dst, Operand(src)); } void Psignd(XMMRegister dst, const Operand& src); void Pextrb(Register dst, XMMRegister src, int8_t imm8); void Pextrw(Register dst, XMMRegister src, int8_t imm8); void Pextrd(Register dst, XMMRegister src, int8_t imm8); void Pinsrd(XMMRegister dst, Register src, int8_t imm8, bool is_64_bits = false) { Pinsrd(dst, Operand(src), imm8, is_64_bits); } void Pinsrd(XMMRegister dst, const Operand& src, int8_t imm8, bool is_64_bits = false); void LoadUint32(XMMRegister dst, Register src) { LoadUint32(dst, Operand(src)); } void LoadUint32(XMMRegister dst, const Operand& src); // Expression support // cvtsi2sd instruction only writes to the low 64-bit of dst register, which // hinders register renaming and makes dependence chains longer. So we use // xorps to clear the dst register before cvtsi2sd to solve this issue. void Cvtsi2sd(XMMRegister dst, Register src) { Cvtsi2sd(dst, Operand(src)); } void Cvtsi2sd(XMMRegister dst, const Operand& src); void Cvtui2ss(XMMRegister dst, Register src, Register tmp); void SlowTruncateToIDelayed(Zone* zone, Register result_reg, Register input_reg, int offset = HeapNumber::kValueOffset - kHeapObjectTag); void Push(Register src) { push(src); } void Push(const Operand& src) { push(src); } void Push(Immediate value) { push(value); } void Push(Handle handle) { push(Immediate(handle)); } void Push(Smi* smi) { Push(Immediate(smi)); } void SaveRegisters(RegList registers); void RestoreRegisters(RegList registers); void CallRecordWriteStub(Register object, Register address, RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode); // Calculate how much stack space (in bytes) are required to store caller // registers excluding those specified in the arguments. int RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg, Register exclusion2 = no_reg, Register exclusion3 = no_reg) const; // PushCallerSaved and PopCallerSaved do not arrange the registers in any // particular order so they are not useful for calls that can cause a GC. // The caller can exclude up to 3 registers that do not need to be saved and // restored. // Push caller saved registers on the stack, and return the number of bytes // stack pointer is adjusted. int PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg, Register exclusion2 = no_reg, Register exclusion3 = no_reg); // Restore caller saved registers from the stack, and return the number of // bytes stack pointer is adjusted. int PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg, Register exclusion2 = no_reg, Register exclusion3 = no_reg); private: bool has_frame_ = false; Isolate* const isolate_; // This handle will be patched with the code object on installation. Handle code_object_; }; // MacroAssembler implements a collection of frequently used macros. class MacroAssembler : public TurboAssembler { public: MacroAssembler(Isolate* isolate, void* buffer, int size, CodeObjectRequired create_code_object); // Load a register with a long value as efficiently as possible. void Set(Register dst, int32_t x) { if (x == 0) { xor_(dst, dst); } else { mov(dst, Immediate(x)); } } void Set(const Operand& dst, int32_t x) { mov(dst, Immediate(x)); } // Operations on roots in the root-array. void LoadRoot(Register destination, Heap::RootListIndex index); void CompareRoot(Register with, Register scratch, Heap::RootListIndex index); // These methods can only be used with constant roots (i.e. non-writable // and not in new space). void CompareRoot(Register with, Heap::RootListIndex index); void CompareRoot(const Operand& with, Heap::RootListIndex index); void PushRoot(Heap::RootListIndex index); // Compare the object in a register to a value and jump if they are equal. void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal, Label::Distance if_equal_distance = Label::kFar) { CompareRoot(with, index); j(equal, if_equal, if_equal_distance); } void JumpIfRoot(const Operand& with, Heap::RootListIndex index, Label* if_equal, Label::Distance if_equal_distance = Label::kFar) { CompareRoot(with, index); j(equal, if_equal, if_equal_distance); } // Compare the object in a register to a value and jump if they are not equal. void JumpIfNotRoot(Register with, Heap::RootListIndex index, Label* if_not_equal, Label::Distance if_not_equal_distance = Label::kFar) { CompareRoot(with, index); j(not_equal, if_not_equal, if_not_equal_distance); } void JumpIfNotRoot(const Operand& with, Heap::RootListIndex index, Label* if_not_equal, Label::Distance if_not_equal_distance = Label::kFar) { CompareRoot(with, index); j(not_equal, if_not_equal, if_not_equal_distance); } // --------------------------------------------------------------------------- // GC Support // Record in the remembered set the fact that we have a pointer to new space // at the address pointed to by the addr register. Only works if addr is not // in new space. void RememberedSetHelper(Register object, // Used for debug code. Register addr, Register scratch, SaveFPRegsMode save_fp); // Check if object is in new space. Jumps if the object is not in new space. // The register scratch can be object itself, but scratch will be clobbered. void JumpIfNotInNewSpace(Register object, Register scratch, Label* branch, Label::Distance distance = Label::kFar) { InNewSpace(object, scratch, zero, branch, distance); } // Check if object is in new space. Jumps if the object is in new space. // The register scratch can be object itself, but it will be clobbered. void JumpIfInNewSpace(Register object, Register scratch, Label* branch, Label::Distance distance = Label::kFar) { InNewSpace(object, scratch, not_zero, branch, distance); } // Check if an object has a given incremental marking color. Also uses ecx! void HasColor(Register object, Register scratch0, Register scratch1, Label* has_color, Label::Distance has_color_distance, int first_bit, int second_bit); void JumpIfBlack(Register object, Register scratch0, Register scratch1, Label* on_black, Label::Distance on_black_distance = Label::kFar); // Checks the color of an object. If the object is white we jump to the // incremental marker. void JumpIfWhite(Register value, Register scratch1, Register scratch2, Label* value_is_white, Label::Distance distance); // Notify the garbage collector that we wrote a pointer into an object. // |object| is the object being stored into, |value| is the object being // stored. value and scratch registers are clobbered by the operation. // The offset is the offset from the start of the object, not the offset from // the tagged HeapObject pointer. For use with FieldOperand(reg, off). void RecordWriteField( Register object, int offset, Register value, Register scratch, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, SmiCheck smi_check = INLINE_SMI_CHECK); // Notify the garbage collector that we wrote a pointer into a fixed array. // |array| is the array being stored into, |value| is the // object being stored. |index| is the array index represented as a // Smi. All registers are clobbered by the operation RecordWriteArray // filters out smis so it does not update the write barrier if the // value is a smi. void RecordWriteArray( Register array, Register value, Register index, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, SmiCheck smi_check = INLINE_SMI_CHECK); // For page containing |object| mark region covering |address| // dirty. |object| is the object being stored into, |value| is the // object being stored. The address and value registers are clobbered by the // operation. RecordWrite filters out smis so it does not update the // write barrier if the value is a smi. void RecordWrite( Register object, Register address, Register value, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, SmiCheck smi_check = INLINE_SMI_CHECK); // Frame restart support void MaybeDropFrames(); // Enter specific kind of exit frame. Expects the number of // arguments in register eax and sets up the number of arguments in // register edi and the pointer to the first argument in register // esi. void EnterExitFrame(int argc, bool save_doubles, StackFrame::Type frame_type); void EnterApiExitFrame(int argc); // Leave the current exit frame. Expects the return value in // register eax:edx (untouched) and the pointer to the first // argument in register esi (if pop_arguments == true). void LeaveExitFrame(bool save_doubles, bool pop_arguments = true); // Leave the current exit frame. Expects the return value in // register eax (untouched). void LeaveApiExitFrame(bool restore_context); // Load the global proxy from the current context. void LoadGlobalProxy(Register dst); // Load the global function with the given index. void LoadGlobalFunction(int index, Register function); // Push and pop the registers that can hold pointers. void PushSafepointRegisters() { pushad(); } void PopSafepointRegisters() { popad(); } void GetWeakValue(Register value, Handle cell); // Load the value of the weak cell in the value register. Branch to the given // miss label if the weak cell was cleared. void LoadWeakValue(Register value, Handle cell, Label* miss); // --------------------------------------------------------------------------- // JavaScript invokes // Invoke the JavaScript function code by either calling or jumping. void InvokeFunctionCode(Register function, Register new_target, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag); // On function call, call into the debugger if necessary. void CheckDebugHook(Register fun, Register new_target, const ParameterCount& expected, const ParameterCount& actual); // Invoke the JavaScript function in the given register. Changes the // current context to the context in the function before invoking. void InvokeFunction(Register function, Register new_target, const ParameterCount& actual, InvokeFlag flag); void InvokeFunction(Register function, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag); void InvokeFunction(Handle function, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag); // Compare object type for heap object. // Incoming register is heap_object and outgoing register is map. void CmpObjectType(Register heap_object, InstanceType type, Register map); // Compare instance type for map. void CmpInstanceType(Register map, InstanceType type); void DoubleToI(Register result_reg, XMMRegister input_reg, XMMRegister scratch, MinusZeroMode minus_zero_mode, Label* lost_precision, Label* is_nan, Label* minus_zero, Label::Distance dst = Label::kFar); // Smi tagging support. void SmiTag(Register reg) { STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagSize == 1); add(reg, reg); } // Modifies the register even if it does not contain a Smi! void UntagSmi(Register reg, Label* is_smi) { STATIC_ASSERT(kSmiTagSize == 1); sar(reg, kSmiTagSize); STATIC_ASSERT(kSmiTag == 0); j(not_carry, is_smi); } // Jump if register contain a non-smi. inline void JumpIfNotSmi(Register value, Label* not_smi_label, Label::Distance distance = Label::kFar) { test(value, Immediate(kSmiTagMask)); j(not_zero, not_smi_label, distance); } // Jump if the operand is not a smi. inline void JumpIfNotSmi(Operand value, Label* smi_label, Label::Distance distance = Label::kFar) { test(value, Immediate(kSmiTagMask)); j(not_zero, smi_label, distance); } void LoadInstanceDescriptors(Register map, Register descriptors); void LoadAccessor(Register dst, Register holder, int accessor_index, AccessorComponent accessor); template void DecodeField(Register reg) { static const int shift = Field::kShift; static const int mask = Field::kMask >> Field::kShift; if (shift != 0) { sar(reg, shift); } and_(reg, Immediate(mask)); } // Abort execution if argument is not a smi, enabled via --debug-code. void AssertSmi(Register object); // Abort execution if argument is a smi, enabled via --debug-code. void AssertNotSmi(Register object); // Abort execution if argument is not a FixedArray, enabled via --debug-code. void AssertFixedArray(Register object); // Abort execution if argument is not a JSFunction, enabled via --debug-code. void AssertFunction(Register object); // Abort execution if argument is not a JSBoundFunction, // enabled via --debug-code. void AssertBoundFunction(Register object); // Abort execution if argument is not a JSGeneratorObject (or subclass), // enabled via --debug-code. void AssertGeneratorObject(Register object); // Abort execution if argument is not undefined or an AllocationSite, enabled // via --debug-code. void AssertUndefinedOrAllocationSite(Register object); // --------------------------------------------------------------------------- // Exception handling // Push a new stack handler and link it into stack handler chain. void PushStackHandler(); // Unlink the stack handler on top of the stack from the stack handler chain. void PopStackHandler(); // --------------------------------------------------------------------------- // Support functions. // Machine code version of Map::GetConstructor(). // |temp| holds |result|'s map when done. void GetMapConstructor(Register result, Register map, Register temp); // --------------------------------------------------------------------------- // Runtime calls // Call a code stub. Generate the code if necessary. void CallStub(CodeStub* stub); // Tail call a code stub (jump). Generate the code if necessary. void TailCallStub(CodeStub* stub); // Call a runtime routine. void CallRuntime(const Runtime::Function* f, int num_arguments, SaveFPRegsMode save_doubles = kDontSaveFPRegs); // Convenience function: Same as above, but takes the fid instead. void CallRuntime(Runtime::FunctionId fid, SaveFPRegsMode save_doubles = kDontSaveFPRegs) { const Runtime::Function* function = Runtime::FunctionForId(fid); CallRuntime(function, function->nargs, save_doubles); } // Convenience function: Same as above, but takes the fid instead. void CallRuntime(Runtime::FunctionId fid, int num_arguments, SaveFPRegsMode save_doubles = kDontSaveFPRegs) { CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles); } // Convenience function: tail call a runtime routine (jump). void TailCallRuntime(Runtime::FunctionId fid); // Jump to a runtime routine. void JumpToExternalReference(const ExternalReference& ext, bool builtin_exit_frame = false); // --------------------------------------------------------------------------- // Utilities // Emit code that loads |parameter_index|'th parameter from the stack to // the register according to the CallInterfaceDescriptor definition. // |sp_to_caller_sp_offset_in_words| specifies the number of words pushed // below the caller's sp (on ia32 it's at least return address). template void LoadParameterFromStack( Register reg, typename Descriptor::ParameterIndices parameter_index, int sp_to_ra_offset_in_words = 1) { DCHECK(Descriptor::kPassLastArgsOnStack); DCHECK_LT(parameter_index, Descriptor::kParameterCount); DCHECK_LE(Descriptor::kParameterCount - Descriptor::kStackArgumentsCount, parameter_index); int offset = (Descriptor::kParameterCount - parameter_index - 1 + sp_to_ra_offset_in_words) * kPointerSize; mov(reg, Operand(esp, offset)); } // Emit code to discard a non-negative number of pointer-sized elements // from the stack, clobbering only the esp register. void Drop(int element_count); void Jump(Handle target, RelocInfo::Mode rmode) { jmp(target, rmode); } void Pop(Register dst) { pop(dst); } void Pop(const Operand& dst) { pop(dst); } void PushReturnAddressFrom(Register src) { push(src); } void PopReturnAddressTo(Register dst) { pop(dst); } // --------------------------------------------------------------------------- // StatsCounter support void IncrementCounter(StatsCounter* counter, int value); void DecrementCounter(StatsCounter* counter, int value); static int SafepointRegisterStackIndex(Register reg) { return SafepointRegisterStackIndex(reg.code()); } void EnterBuiltinFrame(Register context, Register target, Register argc); void LeaveBuiltinFrame(Register context, Register target, Register argc); private: // Helper functions for generating invokes. void InvokePrologue(const ParameterCount& expected, const ParameterCount& actual, Label* done, bool* definitely_mismatches, InvokeFlag flag, Label::Distance done_distance); void EnterExitFramePrologue(StackFrame::Type frame_type); void EnterExitFrameEpilogue(int argc, bool save_doubles); void LeaveExitFrameEpilogue(bool restore_context); // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace. void InNewSpace(Register object, Register scratch, Condition cc, Label* condition_met, Label::Distance condition_met_distance = Label::kFar); // Helper for finding the mark bits for an address. Afterwards, the // bitmap register points at the word with the mark bits and the mask // the position of the first bit. Uses ecx as scratch and leaves addr_reg // unchanged. inline void GetMarkBits(Register addr_reg, Register bitmap_reg, Register mask_reg); // Compute memory operands for safepoint stack slots. static int SafepointRegisterStackIndex(int reg_code); // Needs access to SafepointRegisterStackIndex for compiled frame // traversal. friend class StandardFrame; }; // The code patcher is used to patch (typically) small parts of code e.g. for // debugging and other types of instrumentation. When using the code patcher // the exact number of bytes specified must be emitted. Is not legal to emit // relocation information. If any of these constraints are violated it causes // an assertion. class CodePatcher { public: CodePatcher(Isolate* isolate, byte* address, int size); ~CodePatcher(); // Macro assembler to emit code. MacroAssembler* masm() { return &masm_; } private: byte* address_; // The address of the code being patched. int size_; // Number of bytes of the expected patch size. MacroAssembler masm_; // Macro assembler used to generate the code. }; // ----------------------------------------------------------------------------- // Static helper functions. // Generate an Operand for loading a field from an object. inline Operand FieldOperand(Register object, int offset) { return Operand(object, offset - kHeapObjectTag); } // Generate an Operand for loading an indexed field from an object. inline Operand FieldOperand(Register object, Register index, ScaleFactor scale, int offset) { return Operand(object, index, scale, offset - kHeapObjectTag); } inline Operand FixedArrayElementOperand(Register array, Register index_as_smi, int additional_offset = 0) { int offset = FixedArray::kHeaderSize + additional_offset * kPointerSize; return FieldOperand(array, index_as_smi, times_half_pointer_size, offset); } inline Operand ContextOperand(Register context, int index) { return Operand(context, Context::SlotOffset(index)); } inline Operand ContextOperand(Register context, Register index) { return Operand(context, index, times_pointer_size, Context::SlotOffset(0)); } inline Operand NativeContextOperand() { return ContextOperand(esi, Context::NATIVE_CONTEXT_INDEX); } #define ACCESS_MASM(masm) masm-> } // namespace internal } // namespace v8 #endif // V8_IA32_MACRO_ASSEMBLER_IA32_H_