// Copyright 2015 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "test/unittests/test-utils.h" #include "src/v8.h" #include "test/cctest/wasm/test-signatures.h" #include "src/objects.h" #include "src/wasm/ast-decoder.h" #include "src/wasm/wasm-macro-gen.h" #include "src/wasm/wasm-module.h" namespace v8 { namespace internal { namespace wasm { static const byte kCodeGetLocal0[] = {kExprGetLocal, 0}; static const byte kCodeGetLocal1[] = {kExprGetLocal, 1}; static const byte kCodeSetLocal0[] = {kExprSetLocal, 0, kExprI8Const, 0}; static const LocalType kLocalTypes[] = {kAstI32, kAstI64, kAstF32, kAstF64}; static const MachineType machineTypes[] = { MachineType::Int8(), MachineType::Uint8(), MachineType::Int16(), MachineType::Uint16(), MachineType::Int32(), MachineType::Uint32(), MachineType::Int64(), MachineType::Uint64(), MachineType::Float32(), MachineType::Float64()}; static const WasmOpcode kInt32BinopOpcodes[] = { kExprI32Add, kExprI32Sub, kExprI32Mul, kExprI32DivS, kExprI32DivU, kExprI32RemS, kExprI32RemU, kExprI32And, kExprI32Ior, kExprI32Xor, kExprI32Shl, kExprI32ShrU, kExprI32ShrS, kExprI32Eq, kExprI32LtS, kExprI32LeS, kExprI32LtU, kExprI32LeU}; #define WASM_BRV_IF_ZERO(depth, val) \ kExprBrIf, static_cast(depth), val, WASM_ZERO #define EXPECT_VERIFIES(env, x) Verify(kSuccess, env, x, x + arraysize(x)) #define EXPECT_FAILURE(env, x) Verify(kError, env, x, x + arraysize(x)) #define EXPECT_VERIFIES_INLINE(env, ...) \ do { \ static byte code[] = {__VA_ARGS__}; \ Verify(kSuccess, env, code, code + arraysize(code)); \ } while (false) #define EXPECT_FAILURE_INLINE(env, ...) \ do { \ static byte code[] = {__VA_ARGS__}; \ Verify(kError, env, code, code + arraysize(code)); \ } while (false) #define VERIFY(...) \ do { \ static const byte code[] = {__VA_ARGS__}; \ Verify(kSuccess, sigs.v_i(), code, code + sizeof(code)); \ } while (false) class AstDecoderTest : public TestWithZone { public: typedef std::pair LocalsDecl; AstDecoderTest() : module(nullptr) {} TestSignatures sigs; ModuleEnv* module; LocalDeclEncoder local_decls; void AddLocals(LocalType type, uint32_t count) { local_decls.AddLocals(count, type); } // Preprends local variable declarations and renders nice error messages for // verification failures. void Verify(ErrorCode expected, FunctionSig* sig, const byte* start, const byte* end) { local_decls.Prepend(&start, &end); // Verify the code. TreeResult result = VerifyWasmCode(zone()->allocator(), module, sig, start, end); if (result.error_code != expected) { ptrdiff_t pc = result.error_pc - result.start; ptrdiff_t pt = result.error_pt - result.start; std::ostringstream str; if (expected == kSuccess) { str << "Verification failed: " << result.error_code << " pc = +" << pc; if (result.error_pt) str << ", pt = +" << pt; str << ", msg = " << result.error_msg.get(); } else { str << "Verification expected: " << expected << ", but got " << result.error_code; if (result.error_code != kSuccess) { str << " pc = +" << pc; if (result.error_pt) str << ", pt = +" << pt; } } FATAL(str.str().c_str()); } delete[] start; // local_decls.Prepend() allocated a new buffer. } void TestBinop(WasmOpcode opcode, FunctionSig* success) { // op(local[0], local[1]) byte code[] = {static_cast(opcode), kExprGetLocal, 0, kExprGetLocal, 1}; EXPECT_VERIFIES(success, code); // Try all combinations of return and parameter types. for (size_t i = 0; i < arraysize(kLocalTypes); i++) { for (size_t j = 0; j < arraysize(kLocalTypes); j++) { for (size_t k = 0; k < arraysize(kLocalTypes); k++) { LocalType types[] = {kLocalTypes[i], kLocalTypes[j], kLocalTypes[k]}; if (types[0] != success->GetReturn(0) || types[1] != success->GetParam(0) || types[2] != success->GetParam(1)) { // Test signature mismatch. FunctionSig sig(1, 2, types); EXPECT_FAILURE(&sig, code); } } } } } void TestUnop(WasmOpcode opcode, FunctionSig* success) { TestUnop(opcode, success->GetReturn(), success->GetParam(0)); } void TestUnop(WasmOpcode opcode, LocalType ret_type, LocalType param_type) { // Return(op(local[0])) byte code[] = {static_cast(opcode), kExprGetLocal, 0}; { LocalType types[] = {ret_type, param_type}; FunctionSig sig(1, 1, types); EXPECT_VERIFIES(&sig, code); } // Try all combinations of return and parameter types. for (size_t i = 0; i < arraysize(kLocalTypes); i++) { for (size_t j = 0; j < arraysize(kLocalTypes); j++) { LocalType types[] = {kLocalTypes[i], kLocalTypes[j]}; if (types[0] != ret_type || types[1] != param_type) { // Test signature mismatch. FunctionSig sig(1, 1, types); EXPECT_FAILURE(&sig, code); } } } } }; TEST_F(AstDecoderTest, Int8Const) { byte code[] = {kExprI8Const, 0}; for (int i = -128; i < 128; i++) { code[1] = static_cast(i); EXPECT_VERIFIES(sigs.i_i(), code); } } TEST_F(AstDecoderTest, EmptyFunction) { byte code[] = {0}; Verify(kSuccess, sigs.v_v(), code, code); Verify(kError, sigs.i_i(), code, code); } TEST_F(AstDecoderTest, IncompleteIf1) { byte code[] = {kExprIf}; EXPECT_FAILURE(sigs.v_v(), code); EXPECT_FAILURE(sigs.i_i(), code); } TEST_F(AstDecoderTest, IncompleteIf2) { byte code[] = {kExprIf, kExprI8Const, 0}; EXPECT_FAILURE(sigs.v_v(), code); EXPECT_FAILURE(sigs.i_i(), code); } TEST_F(AstDecoderTest, Int8Const_fallthru) { byte code[] = {kExprI8Const, 0, kExprI8Const, 1}; EXPECT_VERIFIES(sigs.i_i(), code); } TEST_F(AstDecoderTest, Int32Const) { const int kInc = 4498211; for (int32_t i = kMinInt; i < kMaxInt - kInc; i = i + kInc) { // TODO(binji): expand test for other sized int32s; 1 through 5 bytes. byte code[] = {WASM_I32V(i)}; EXPECT_VERIFIES(sigs.i_i(), code); } } TEST_F(AstDecoderTest, Int8Const_fallthru2) { byte code[] = {WASM_I8(0), WASM_I32V_4(0x1122334)}; EXPECT_VERIFIES(sigs.i_i(), code); } TEST_F(AstDecoderTest, Int64Const) { const int kInc = 4498211; for (int32_t i = kMinInt; i < kMaxInt - kInc; i = i + kInc) { byte code[] = {WASM_I64V((static_cast(i) << 32) | i)}; EXPECT_VERIFIES(sigs.l_l(), code); } } TEST_F(AstDecoderTest, Float32Const) { byte code[] = {kExprF32Const, 0, 0, 0, 0}; float* ptr = reinterpret_cast(code + 1); for (int i = 0; i < 30; i++) { *ptr = i * -7.75f; EXPECT_VERIFIES(sigs.f_ff(), code); } } TEST_F(AstDecoderTest, Float64Const) { byte code[] = {kExprF64Const, 0, 0, 0, 0, 0, 0, 0, 0}; double* ptr = reinterpret_cast(code + 1); for (int i = 0; i < 30; i++) { *ptr = i * 33.45; EXPECT_VERIFIES(sigs.d_dd(), code); } } TEST_F(AstDecoderTest, Int32Const_off_end) { byte code[] = {kExprI32Const, 0xaa, 0xbb, 0xcc, 0x44}; for (int size = 1; size <= 4; size++) { Verify(kError, sigs.i_i(), code, code + size); } } TEST_F(AstDecoderTest, GetLocal0_param) { EXPECT_VERIFIES(sigs.i_i(), kCodeGetLocal0); } TEST_F(AstDecoderTest, GetLocal0_local) { AddLocals(kAstI32, 1); EXPECT_VERIFIES(sigs.i_v(), kCodeGetLocal0); } TEST_F(AstDecoderTest, GetLocal0_param_n) { FunctionSig* array[] = {sigs.i_i(), sigs.i_ii(), sigs.i_iii()}; for (size_t i = 0; i < arraysize(array); i++) { EXPECT_VERIFIES(array[i], kCodeGetLocal0); } } TEST_F(AstDecoderTest, GetLocalN_local) { for (byte i = 1; i < 8; i++) { AddLocals(kAstI32, 1); for (byte j = 0; j < i; j++) { byte code[] = {kExprGetLocal, j}; EXPECT_VERIFIES(sigs.i_v(), code); } } } TEST_F(AstDecoderTest, GetLocal0_fail_no_params) { EXPECT_FAILURE(sigs.i_v(), kCodeGetLocal0); } TEST_F(AstDecoderTest, GetLocal1_fail_no_locals) { EXPECT_FAILURE(sigs.i_i(), kCodeGetLocal1); } TEST_F(AstDecoderTest, GetLocal_off_end) { static const byte code[] = {kExprGetLocal}; EXPECT_FAILURE(sigs.i_i(), code); } TEST_F(AstDecoderTest, GetLocal_varint) { const int kMaxLocals = 8000000; AddLocals(kAstI32, kMaxLocals); for (int index = 0; index < kMaxLocals; index = index * 11 + 5) { EXPECT_VERIFIES_INLINE(sigs.i_i(), kExprGetLocal, U32V_1(index)); EXPECT_VERIFIES_INLINE(sigs.i_i(), kExprGetLocal, U32V_2(index)); EXPECT_VERIFIES_INLINE(sigs.i_i(), kExprGetLocal, U32V_3(index)); EXPECT_VERIFIES_INLINE(sigs.i_i(), kExprGetLocal, U32V_4(index)); } EXPECT_VERIFIES_INLINE(sigs.i_i(), kExprGetLocal, U32V_5(kMaxLocals - 1)); EXPECT_VERIFIES_INLINE(sigs.i_i(), kExprGetLocal, U32V_4(kMaxLocals - 1)); EXPECT_VERIFIES_INLINE(sigs.i_i(), kExprGetLocal, U32V_4(kMaxLocals)); EXPECT_FAILURE_INLINE(sigs.i_i(), kExprGetLocal, U32V_4(kMaxLocals + 1)); EXPECT_FAILURE_INLINE(sigs.i_v(), kExprGetLocal, U32V_4(kMaxLocals)); EXPECT_FAILURE_INLINE(sigs.i_v(), kExprGetLocal, U32V_4(kMaxLocals + 1)); } TEST_F(AstDecoderTest, Binops_off_end) { byte code1[] = {0}; // [opcode] for (size_t i = 0; i < arraysize(kInt32BinopOpcodes); i++) { code1[0] = kInt32BinopOpcodes[i]; EXPECT_FAILURE(sigs.i_i(), code1); } byte code3[] = {0, kExprGetLocal, 0}; // [opcode] [expr] for (size_t i = 0; i < arraysize(kInt32BinopOpcodes); i++) { code3[0] = kInt32BinopOpcodes[i]; EXPECT_FAILURE(sigs.i_i(), code3); } byte code4[] = {0, kExprGetLocal, 0, 0}; // [opcode] [expr] [opcode] for (size_t i = 0; i < arraysize(kInt32BinopOpcodes); i++) { code4[0] = kInt32BinopOpcodes[i]; code4[3] = kInt32BinopOpcodes[i]; EXPECT_FAILURE(sigs.i_i(), code4); } } //=================================================================== //== Statements //=================================================================== TEST_F(AstDecoderTest, Nop) { static const byte code[] = {kExprNop}; EXPECT_VERIFIES(sigs.v_v(), code); } TEST_F(AstDecoderTest, SetLocal0_param) { static const byte code[] = {kExprSetLocal, 0, kExprI8Const, 0}; EXPECT_VERIFIES(sigs.i_i(), code); } TEST_F(AstDecoderTest, SetLocal0_local) { byte code[] = {kExprSetLocal, 0, kExprI8Const, 0}; AddLocals(kAstI32, 1); EXPECT_VERIFIES(sigs.i_v(), code); } TEST_F(AstDecoderTest, SetLocalN_local) { for (byte i = 1; i < 8; i++) { AddLocals(kAstI32, 1); for (byte j = 0; j < i; j++) { byte code[] = {kExprSetLocal, j, kExprI8Const, i}; EXPECT_VERIFIES(sigs.v_v(), code); } } } TEST_F(AstDecoderTest, Block0) { static const byte code[] = {kExprBlock, 0}; EXPECT_VERIFIES(sigs.v_v(), code); } TEST_F(AstDecoderTest, Block0_fallthru1) { static const byte code[] = {kExprBlock, 0, kExprBlock, 0}; EXPECT_VERIFIES(sigs.v_v(), code); } TEST_F(AstDecoderTest, Block1) { static const byte code[] = {kExprBlock, 1, kExprSetLocal, 0, kExprI8Const, 0}; EXPECT_VERIFIES(sigs.i_i(), code); } TEST_F(AstDecoderTest, Block0_fallthru2) { static const byte code[] = {kExprBlock, 0, kExprSetLocal, 0, kExprI8Const, 0}; EXPECT_VERIFIES(sigs.i_i(), code); } TEST_F(AstDecoderTest, Block2) { static const byte code[] = {kExprBlock, 2, // -- kExprSetLocal, 0, kExprI8Const, 0, // -- kExprSetLocal, 0, kExprI8Const, 0}; // -- EXPECT_VERIFIES(sigs.i_i(), code); } TEST_F(AstDecoderTest, Block2_fallthru) { static const byte code[] = {kExprBlock, 2, // -- kExprSetLocal, 0, kExprI8Const, 0, // -- kExprSetLocal, 0, kExprI8Const, 0, // -- kExprI8Const, 11}; // -- EXPECT_VERIFIES(sigs.i_i(), code); } TEST_F(AstDecoderTest, BlockN) { byte block[] = {kExprBlock, 2}; for (size_t i = 0; i < 10; i++) { size_t total = sizeof(block) + sizeof(kCodeSetLocal0) * i; byte* code = reinterpret_cast(malloc(total)); memcpy(code, block, sizeof(block)); code[1] = static_cast(i); for (size_t j = 0; j < i; j++) { memcpy(code + sizeof(block) + j * sizeof(kCodeSetLocal0), kCodeSetLocal0, sizeof(kCodeSetLocal0)); } Verify(kSuccess, sigs.v_i(), code, code + total); free(code); } } TEST_F(AstDecoderTest, BlockN_off_end) { for (byte i = 2; i < 10; i++) { byte code[] = {kExprBlock, i, kExprNop}; EXPECT_FAILURE(sigs.v_v(), code); } } TEST_F(AstDecoderTest, Block1_break) { static const byte code[] = {kExprBlock, 1, kExprBr, 0, kExprNop}; EXPECT_VERIFIES(sigs.v_v(), code); } TEST_F(AstDecoderTest, Block2_break) { static const byte code[] = {kExprBlock, 2, kExprNop, kExprBr, 0, kExprNop}; EXPECT_VERIFIES(sigs.v_v(), code); } TEST_F(AstDecoderTest, Block1_continue) { static const byte code[] = {kExprBlock, 1, kExprBr, 1, kExprNop}; EXPECT_FAILURE(sigs.v_v(), code); } TEST_F(AstDecoderTest, Block2_continue) { static const byte code[] = {kExprBlock, 2, kExprNop, kExprBr, 1, kExprNop}; EXPECT_FAILURE(sigs.v_v(), code); } TEST_F(AstDecoderTest, ExprBlock0) { static const byte code[] = {kExprBlock, 0}; EXPECT_VERIFIES(sigs.v_v(), code); } TEST_F(AstDecoderTest, ExprBlock1a) { static const byte code[] = {kExprBlock, 1, kExprI8Const, 0}; EXPECT_VERIFIES(sigs.i_i(), code); } TEST_F(AstDecoderTest, ExprBlock1b) { static const byte code[] = {kExprBlock, 1, kExprI8Const, 0}; EXPECT_FAILURE(sigs.f_ff(), code); } TEST_F(AstDecoderTest, ExprBlock1c) { static const byte code[] = {kExprBlock, 1, kExprF32Const, 0, 0, 0, 0}; EXPECT_VERIFIES(sigs.f_ff(), code); } TEST_F(AstDecoderTest, IfEmpty) { static const byte code[] = {kExprIf, kExprGetLocal, 0, kExprNop}; EXPECT_VERIFIES(sigs.v_i(), code); } TEST_F(AstDecoderTest, IfSet) { static const byte code[] = {kExprIfElse, kExprGetLocal, 0, kExprSetLocal, 0, kExprI8Const, 0, kExprNop}; EXPECT_VERIFIES(sigs.v_i(), code); } TEST_F(AstDecoderTest, IfBlock1) { static const byte code[] = {kExprIfElse, kExprGetLocal, 0, kExprBlock, 1, kExprSetLocal, 0, kExprI8Const, 0, kExprNop}; EXPECT_VERIFIES(sigs.v_i(), code); } TEST_F(AstDecoderTest, IfBlock2) { static const byte code[] = {kExprIf, kExprGetLocal, 0, kExprBlock, 2, kExprSetLocal, 0, kExprI8Const, 0, kExprSetLocal, 0, kExprI8Const, 0}; EXPECT_VERIFIES(sigs.v_i(), code); } TEST_F(AstDecoderTest, IfElseEmpty) { static const byte code[] = {kExprIfElse, kExprGetLocal, 0, kExprNop, kExprNop}; EXPECT_VERIFIES(sigs.v_i(), code); } TEST_F(AstDecoderTest, IfElseSet) { static const byte code[] = {kExprIfElse, kExprGetLocal, 0, // -- kExprSetLocal, 0, kExprI8Const, 0, // -- kExprSetLocal, 0, kExprI8Const, 1}; // -- EXPECT_VERIFIES(sigs.v_i(), code); } TEST_F(AstDecoderTest, IfElseUnreachable) { static const byte code[] = {kExprIfElse, kExprI8Const, 0, kExprUnreachable, kExprGetLocal, 0}; for (size_t i = 0; i < arraysize(kLocalTypes); i++) { LocalType types[] = {kAstI32, kLocalTypes[i]}; FunctionSig sig(1, 1, types); if (kLocalTypes[i] == kAstI32) { EXPECT_VERIFIES(&sig, code); } else { EXPECT_FAILURE(&sig, code); } } } TEST_F(AstDecoderTest, Loop0) { static const byte code[] = {kExprLoop, 0}; EXPECT_VERIFIES(sigs.v_v(), code); } TEST_F(AstDecoderTest, Loop1) { static const byte code[] = {kExprLoop, 1, kExprSetLocal, 0, kExprI8Const, 0}; EXPECT_VERIFIES(sigs.v_i(), code); } TEST_F(AstDecoderTest, Loop2) { static const byte code[] = {kExprLoop, 2, // -- kExprSetLocal, 0, kExprI8Const, 0, // -- kExprSetLocal, 0, kExprI8Const, 0}; // -- EXPECT_VERIFIES(sigs.v_i(), code); } TEST_F(AstDecoderTest, Loop1_continue) { static const byte code[] = {kExprLoop, 1, kExprBr, 0, kExprNop}; EXPECT_VERIFIES(sigs.v_v(), code); } TEST_F(AstDecoderTest, Loop1_break) { static const byte code[] = {kExprLoop, 1, kExprBr, 1, kExprNop}; EXPECT_VERIFIES(sigs.v_v(), code); } TEST_F(AstDecoderTest, Loop2_continue) { static const byte code[] = {kExprLoop, 2, // -- kExprSetLocal, 0, kExprI8Const, 0, // -- kExprBr, 0, kExprNop}; // -- EXPECT_VERIFIES(sigs.v_i(), code); } TEST_F(AstDecoderTest, Loop2_break) { static const byte code[] = {kExprLoop, 2, // -- kExprSetLocal, 0, kExprI8Const, 0, // -- kExprBr, 1, kExprNop}; // -- EXPECT_VERIFIES(sigs.v_i(), code); } TEST_F(AstDecoderTest, ExprLoop0) { static const byte code[] = {kExprLoop, 0}; EXPECT_VERIFIES(sigs.v_v(), code); } TEST_F(AstDecoderTest, ExprLoop1a) { static const byte code[] = {kExprLoop, 1, kExprBr, 0, kExprI8Const, 0}; EXPECT_VERIFIES(sigs.i_i(), code); } TEST_F(AstDecoderTest, ExprLoop1b) { static const byte code[] = {kExprLoop, 1, kExprBr, 0, kExprI8Const, 0}; EXPECT_VERIFIES(sigs.i_i(), code); } TEST_F(AstDecoderTest, ExprLoop2_unreachable) { static const byte code[] = {kExprLoop, 2, kExprBr, 0, kExprI8Const, 0, kExprNop}; EXPECT_VERIFIES(sigs.i_i(), code); } TEST_F(AstDecoderTest, ReturnVoid1) { static const byte code[] = {kExprNop}; EXPECT_VERIFIES(sigs.v_v(), code); EXPECT_FAILURE(sigs.i_i(), code); EXPECT_FAILURE(sigs.i_f(), code); } TEST_F(AstDecoderTest, ReturnVoid2) { static const byte code[] = {kExprBlock, 1, kExprBr, 0, kExprNop}; EXPECT_VERIFIES(sigs.v_v(), code); EXPECT_FAILURE(sigs.i_i(), code); EXPECT_FAILURE(sigs.i_f(), code); } TEST_F(AstDecoderTest, ReturnVoid3) { EXPECT_VERIFIES_INLINE(sigs.v_v(), kExprI8Const, 0); EXPECT_VERIFIES_INLINE(sigs.v_v(), kExprI32Const, 0, 0, 0, 0); EXPECT_VERIFIES_INLINE(sigs.v_v(), kExprI64Const, 0, 0, 0, 0, 0, 0, 0, 0); EXPECT_VERIFIES_INLINE(sigs.v_v(), kExprF32Const, 0, 0, 0, 0); EXPECT_VERIFIES_INLINE(sigs.v_v(), kExprF64Const, 0, 0, 0, 0, 0, 0, 0, 0); EXPECT_VERIFIES_INLINE(sigs.v_i(), kExprGetLocal, 0); } TEST_F(AstDecoderTest, Unreachable1) { EXPECT_VERIFIES_INLINE(sigs.v_v(), kExprUnreachable); EXPECT_VERIFIES_INLINE(sigs.v_v(), kExprUnreachable, kExprUnreachable); EXPECT_VERIFIES_INLINE(sigs.v_v(), WASM_BLOCK(2, WASM_UNREACHABLE, WASM_ZERO)); EXPECT_VERIFIES_INLINE(sigs.v_v(), WASM_BLOCK(2, WASM_BR(0), WASM_ZERO)); EXPECT_VERIFIES_INLINE(sigs.v_v(), WASM_LOOP(2, WASM_UNREACHABLE, WASM_ZERO)); EXPECT_VERIFIES_INLINE(sigs.v_v(), WASM_LOOP(2, WASM_BR(0), WASM_ZERO)); } TEST_F(AstDecoderTest, Codeiness) { VERIFY(kExprLoop, 2, // -- kExprSetLocal, 0, kExprI8Const, 0, // -- kExprBr, 0, kExprNop); // -- } TEST_F(AstDecoderTest, ExprIf1) { VERIFY(kExprIf, kExprGetLocal, 0, kExprI8Const, 0, kExprI8Const, 1); VERIFY(kExprIf, kExprGetLocal, 0, kExprGetLocal, 0, kExprGetLocal, 0); VERIFY(kExprIf, kExprGetLocal, 0, kExprI32Add, kExprGetLocal, 0, kExprGetLocal, 0, kExprI8Const, 1); } TEST_F(AstDecoderTest, ExprIf_off_end) { static const byte kCode[] = {kExprIf, kExprGetLocal, 0, kExprGetLocal, 0, kExprGetLocal, 0}; for (size_t len = 1; len < arraysize(kCode); len++) { Verify(kError, sigs.i_i(), kCode, kCode + len); } } TEST_F(AstDecoderTest, ExprIf_type) { { // float|double ? 1 : 2 static const byte kCode[] = {kExprIfElse, kExprGetLocal, 0, kExprI8Const, 1, kExprI8Const, 2}; EXPECT_FAILURE(sigs.i_f(), kCode); EXPECT_FAILURE(sigs.i_d(), kCode); } { // 1 ? float|double : 2 static const byte kCode[] = {kExprIfElse, kExprI8Const, 1, kExprGetLocal, 0, kExprI8Const, 2}; EXPECT_FAILURE(sigs.i_f(), kCode); EXPECT_FAILURE(sigs.i_d(), kCode); } { // stmt ? 0 : 1 static const byte kCode[] = {kExprIfElse, kExprNop, kExprI8Const, 0, kExprI8Const, 1}; EXPECT_FAILURE(sigs.i_i(), kCode); } { // 0 ? stmt : 1 static const byte kCode[] = {kExprIfElse, kExprI8Const, 0, kExprNop, kExprI8Const, 1}; EXPECT_FAILURE(sigs.i_i(), kCode); } { // 0 ? 1 : stmt static const byte kCode[] = {kExprIfElse, kExprI8Const, 0, kExprI8Const, 1, 0, kExprBlock}; EXPECT_FAILURE(sigs.i_i(), kCode); } } TEST_F(AstDecoderTest, Int64Local_param) { EXPECT_VERIFIES(sigs.l_l(), kCodeGetLocal0); } TEST_F(AstDecoderTest, Int64Locals) { for (byte i = 1; i < 8; i++) { AddLocals(kAstI64, 1); for (byte j = 0; j < i; j++) { byte code[] = {kExprGetLocal, j}; EXPECT_VERIFIES(sigs.l_v(), code); } } } TEST_F(AstDecoderTest, Int32Binops) { TestBinop(kExprI32Add, sigs.i_ii()); TestBinop(kExprI32Sub, sigs.i_ii()); TestBinop(kExprI32Mul, sigs.i_ii()); TestBinop(kExprI32DivS, sigs.i_ii()); TestBinop(kExprI32DivU, sigs.i_ii()); TestBinop(kExprI32RemS, sigs.i_ii()); TestBinop(kExprI32RemU, sigs.i_ii()); TestBinop(kExprI32And, sigs.i_ii()); TestBinop(kExprI32Ior, sigs.i_ii()); TestBinop(kExprI32Xor, sigs.i_ii()); TestBinop(kExprI32Shl, sigs.i_ii()); TestBinop(kExprI32ShrU, sigs.i_ii()); TestBinop(kExprI32ShrS, sigs.i_ii()); TestBinop(kExprI32Eq, sigs.i_ii()); TestBinop(kExprI32LtS, sigs.i_ii()); TestBinop(kExprI32LeS, sigs.i_ii()); TestBinop(kExprI32LtU, sigs.i_ii()); TestBinop(kExprI32LeU, sigs.i_ii()); } TEST_F(AstDecoderTest, DoubleBinops) { TestBinop(kExprF64Add, sigs.d_dd()); TestBinop(kExprF64Sub, sigs.d_dd()); TestBinop(kExprF64Mul, sigs.d_dd()); TestBinop(kExprF64Div, sigs.d_dd()); TestBinop(kExprF64Eq, sigs.i_dd()); TestBinop(kExprF64Lt, sigs.i_dd()); TestBinop(kExprF64Le, sigs.i_dd()); } TEST_F(AstDecoderTest, FloatBinops) { TestBinop(kExprF32Add, sigs.f_ff()); TestBinop(kExprF32Sub, sigs.f_ff()); TestBinop(kExprF32Mul, sigs.f_ff()); TestBinop(kExprF32Div, sigs.f_ff()); TestBinop(kExprF32Eq, sigs.i_ff()); TestBinop(kExprF32Lt, sigs.i_ff()); TestBinop(kExprF32Le, sigs.i_ff()); } TEST_F(AstDecoderTest, TypeConversions) { TestUnop(kExprI32SConvertF32, kAstI32, kAstF32); TestUnop(kExprI32SConvertF64, kAstI32, kAstF64); TestUnop(kExprI32UConvertF32, kAstI32, kAstF32); TestUnop(kExprI32UConvertF64, kAstI32, kAstF64); TestUnop(kExprF64SConvertI32, kAstF64, kAstI32); TestUnop(kExprF64UConvertI32, kAstF64, kAstI32); TestUnop(kExprF64ConvertF32, kAstF64, kAstF32); TestUnop(kExprF32SConvertI32, kAstF32, kAstI32); TestUnop(kExprF32UConvertI32, kAstF32, kAstI32); TestUnop(kExprF32ConvertF64, kAstF32, kAstF64); } TEST_F(AstDecoderTest, MacrosStmt) { VERIFY(WASM_SET_LOCAL(0, WASM_I32V_3(87348))); VERIFY(WASM_STORE_MEM(MachineType::Int32(), WASM_I8(24), WASM_I8(40))); VERIFY(WASM_IF(WASM_GET_LOCAL(0), WASM_NOP)); VERIFY(WASM_IF_ELSE(WASM_GET_LOCAL(0), WASM_NOP, WASM_NOP)); VERIFY(WASM_NOP); VERIFY(WASM_BLOCK(1, WASM_NOP)); VERIFY(WASM_LOOP(1, WASM_NOP)); VERIFY(WASM_LOOP(1, WASM_BREAK(0))); VERIFY(WASM_LOOP(1, WASM_CONTINUE(0))); } TEST_F(AstDecoderTest, MacrosBreak) { EXPECT_VERIFIES_INLINE(sigs.v_v(), WASM_LOOP(1, WASM_BREAK(0))); EXPECT_VERIFIES_INLINE(sigs.i_i(), WASM_LOOP(1, WASM_BREAKV(0, WASM_ZERO))); EXPECT_VERIFIES_INLINE(sigs.l_l(), WASM_LOOP(1, WASM_BREAKV(0, WASM_I64V_1(0)))); EXPECT_VERIFIES_INLINE(sigs.f_ff(), WASM_LOOP(1, WASM_BREAKV(0, WASM_F32(0.0)))); EXPECT_VERIFIES_INLINE(sigs.d_dd(), WASM_LOOP(1, WASM_BREAKV(0, WASM_F64(0.0)))); } TEST_F(AstDecoderTest, MacrosContinue) { EXPECT_VERIFIES_INLINE(sigs.v_v(), WASM_LOOP(1, WASM_CONTINUE(0))); } TEST_F(AstDecoderTest, MacrosVariadic) { VERIFY(WASM_BLOCK(2, WASM_NOP, WASM_NOP)); VERIFY(WASM_BLOCK(3, WASM_NOP, WASM_NOP, WASM_NOP)); VERIFY(WASM_LOOP(2, WASM_NOP, WASM_NOP)); VERIFY(WASM_LOOP(3, WASM_NOP, WASM_NOP, WASM_NOP)); } TEST_F(AstDecoderTest, MacrosNestedBlocks) { VERIFY(WASM_BLOCK(2, WASM_NOP, WASM_BLOCK(2, WASM_NOP, WASM_NOP))); VERIFY(WASM_BLOCK(3, WASM_NOP, // -- WASM_BLOCK(2, WASM_NOP, WASM_NOP), // -- WASM_BLOCK(2, WASM_NOP, WASM_NOP))); // -- VERIFY(WASM_BLOCK(1, WASM_BLOCK(1, WASM_BLOCK(2, WASM_NOP, WASM_NOP)))); } TEST_F(AstDecoderTest, MultipleReturn) { static LocalType kIntTypes5[] = {kAstI32, kAstI32, kAstI32, kAstI32, kAstI32}; FunctionSig sig_ii_v(2, 0, kIntTypes5); EXPECT_VERIFIES_INLINE(&sig_ii_v, WASM_RETURN(WASM_ZERO, WASM_ONE)); EXPECT_FAILURE_INLINE(&sig_ii_v, WASM_RETURN(WASM_ZERO)); FunctionSig sig_iii_v(3, 0, kIntTypes5); EXPECT_VERIFIES_INLINE(&sig_iii_v, WASM_RETURN(WASM_ZERO, WASM_ONE, WASM_I8(44))); EXPECT_FAILURE_INLINE(&sig_iii_v, WASM_RETURN(WASM_ZERO, WASM_ONE)); } TEST_F(AstDecoderTest, MultipleReturn_fallthru) { static LocalType kIntTypes5[] = {kAstI32, kAstI32, kAstI32, kAstI32, kAstI32}; FunctionSig sig_ii_v(2, 0, kIntTypes5); EXPECT_VERIFIES_INLINE(&sig_ii_v, WASM_ZERO, WASM_ONE); EXPECT_FAILURE_INLINE(&sig_ii_v, WASM_ZERO); FunctionSig sig_iii_v(3, 0, kIntTypes5); EXPECT_VERIFIES_INLINE(&sig_iii_v, WASM_ZERO, WASM_ONE, WASM_I8(44)); EXPECT_FAILURE_INLINE(&sig_iii_v, WASM_ZERO, WASM_ONE); } TEST_F(AstDecoderTest, MacrosInt32) { VERIFY(WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_I8(12))); VERIFY(WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I8(13))); VERIFY(WASM_I32_MUL(WASM_GET_LOCAL(0), WASM_I8(14))); VERIFY(WASM_I32_DIVS(WASM_GET_LOCAL(0), WASM_I8(15))); VERIFY(WASM_I32_DIVU(WASM_GET_LOCAL(0), WASM_I8(16))); VERIFY(WASM_I32_REMS(WASM_GET_LOCAL(0), WASM_I8(17))); VERIFY(WASM_I32_REMU(WASM_GET_LOCAL(0), WASM_I8(18))); VERIFY(WASM_I32_AND(WASM_GET_LOCAL(0), WASM_I8(19))); VERIFY(WASM_I32_IOR(WASM_GET_LOCAL(0), WASM_I8(20))); VERIFY(WASM_I32_XOR(WASM_GET_LOCAL(0), WASM_I8(21))); VERIFY(WASM_I32_SHL(WASM_GET_LOCAL(0), WASM_I8(22))); VERIFY(WASM_I32_SHR(WASM_GET_LOCAL(0), WASM_I8(23))); VERIFY(WASM_I32_SAR(WASM_GET_LOCAL(0), WASM_I8(24))); VERIFY(WASM_I32_ROR(WASM_GET_LOCAL(0), WASM_I8(24))); VERIFY(WASM_I32_ROL(WASM_GET_LOCAL(0), WASM_I8(24))); VERIFY(WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(25))); VERIFY(WASM_I32_NE(WASM_GET_LOCAL(0), WASM_I8(25))); VERIFY(WASM_I32_LTS(WASM_GET_LOCAL(0), WASM_I8(26))); VERIFY(WASM_I32_LES(WASM_GET_LOCAL(0), WASM_I8(27))); VERIFY(WASM_I32_LTU(WASM_GET_LOCAL(0), WASM_I8(28))); VERIFY(WASM_I32_LEU(WASM_GET_LOCAL(0), WASM_I8(29))); VERIFY(WASM_I32_GTS(WASM_GET_LOCAL(0), WASM_I8(26))); VERIFY(WASM_I32_GES(WASM_GET_LOCAL(0), WASM_I8(27))); VERIFY(WASM_I32_GTU(WASM_GET_LOCAL(0), WASM_I8(28))); VERIFY(WASM_I32_GEU(WASM_GET_LOCAL(0), WASM_I8(29))); } TEST_F(AstDecoderTest, MacrosInt64) { #define VERIFY_L_LL(...) EXPECT_VERIFIES_INLINE(sigs.l_ll(), __VA_ARGS__) #define VERIFY_I_LL(...) EXPECT_VERIFIES_INLINE(sigs.i_ll(), __VA_ARGS__) VERIFY_L_LL(WASM_I64_ADD(WASM_GET_LOCAL(0), WASM_I64V_1(12))); VERIFY_L_LL(WASM_I64_SUB(WASM_GET_LOCAL(0), WASM_I64V_1(13))); VERIFY_L_LL(WASM_I64_MUL(WASM_GET_LOCAL(0), WASM_I64V_1(14))); VERIFY_L_LL(WASM_I64_DIVS(WASM_GET_LOCAL(0), WASM_I64V_1(15))); VERIFY_L_LL(WASM_I64_DIVU(WASM_GET_LOCAL(0), WASM_I64V_1(16))); VERIFY_L_LL(WASM_I64_REMS(WASM_GET_LOCAL(0), WASM_I64V_1(17))); VERIFY_L_LL(WASM_I64_REMU(WASM_GET_LOCAL(0), WASM_I64V_1(18))); VERIFY_L_LL(WASM_I64_AND(WASM_GET_LOCAL(0), WASM_I64V_1(19))); VERIFY_L_LL(WASM_I64_IOR(WASM_GET_LOCAL(0), WASM_I64V_1(20))); VERIFY_L_LL(WASM_I64_XOR(WASM_GET_LOCAL(0), WASM_I64V_1(21))); VERIFY_L_LL(WASM_I64_SHL(WASM_GET_LOCAL(0), WASM_I64V_1(22))); VERIFY_L_LL(WASM_I64_SHR(WASM_GET_LOCAL(0), WASM_I64V_1(23))); VERIFY_L_LL(WASM_I64_SAR(WASM_GET_LOCAL(0), WASM_I64V_1(24))); VERIFY_L_LL(WASM_I64_ROR(WASM_GET_LOCAL(0), WASM_I64V_1(24))); VERIFY_L_LL(WASM_I64_ROL(WASM_GET_LOCAL(0), WASM_I64V_1(24))); VERIFY_I_LL(WASM_I64_LTS(WASM_GET_LOCAL(0), WASM_I64V_1(26))); VERIFY_I_LL(WASM_I64_LES(WASM_GET_LOCAL(0), WASM_I64V_1(27))); VERIFY_I_LL(WASM_I64_LTU(WASM_GET_LOCAL(0), WASM_I64V_1(28))); VERIFY_I_LL(WASM_I64_LEU(WASM_GET_LOCAL(0), WASM_I64V_1(29))); VERIFY_I_LL(WASM_I64_GTS(WASM_GET_LOCAL(0), WASM_I64V_1(26))); VERIFY_I_LL(WASM_I64_GES(WASM_GET_LOCAL(0), WASM_I64V_1(27))); VERIFY_I_LL(WASM_I64_GTU(WASM_GET_LOCAL(0), WASM_I64V_1(28))); VERIFY_I_LL(WASM_I64_GEU(WASM_GET_LOCAL(0), WASM_I64V_1(29))); VERIFY_I_LL(WASM_I64_EQ(WASM_GET_LOCAL(0), WASM_I64V_1(25))); VERIFY_I_LL(WASM_I64_NE(WASM_GET_LOCAL(0), WASM_I64V_1(25))); } TEST_F(AstDecoderTest, AllSimpleExpressions) { // Test all simple expressions which are described by a signature. #define DECODE_TEST(name, opcode, sig) \ { \ FunctionSig* sig = WasmOpcodes::Signature(kExpr##name); \ if (sig->parameter_count() == 1) { \ TestUnop(kExpr##name, sig); \ } else { \ TestBinop(kExpr##name, sig); \ } \ } FOREACH_SIMPLE_OPCODE(DECODE_TEST); #undef DECODE_TEST } TEST_F(AstDecoderTest, MemorySize) { byte code[] = {kExprMemorySize}; EXPECT_VERIFIES(sigs.i_i(), code); EXPECT_FAILURE(sigs.f_ff(), code); } TEST_F(AstDecoderTest, GrowMemory) { byte code[] = {kExprGrowMemory, kExprGetLocal, 0}; EXPECT_VERIFIES(sigs.i_i(), code); EXPECT_FAILURE(sigs.i_d(), code); } TEST_F(AstDecoderTest, LoadMemOffset) { for (int offset = 0; offset < 128; offset += 7) { byte code[] = {kExprI32LoadMem, ZERO_ALIGNMENT, static_cast(offset), kExprI8Const, 0}; EXPECT_VERIFIES(sigs.i_i(), code); } } TEST_F(AstDecoderTest, StoreMemOffset) { for (int offset = 0; offset < 128; offset += 7) { byte code[] = { kExprI32StoreMem, 0, static_cast(offset), kExprI8Const, 0, kExprI8Const, 0}; EXPECT_VERIFIES(sigs.i_i(), code); } } TEST_F(AstDecoderTest, LoadMemOffset_varint) { byte code1[] = {kExprI32LoadMem, ZERO_ALIGNMENT, ZERO_OFFSET, kExprI8Const, 0}; byte code2[] = {kExprI32LoadMem, ZERO_ALIGNMENT, 0x80, 1, kExprI8Const, 0}; byte code3[] = { kExprI32LoadMem, ZERO_ALIGNMENT, 0x81, 0x82, 5, kExprI8Const, 0}; byte code4[] = { kExprI32LoadMem, ZERO_ALIGNMENT, 0x83, 0x84, 0x85, 7, kExprI8Const, 0}; EXPECT_VERIFIES(sigs.i_i(), code1); EXPECT_VERIFIES(sigs.i_i(), code2); EXPECT_VERIFIES(sigs.i_i(), code3); EXPECT_VERIFIES(sigs.i_i(), code4); } TEST_F(AstDecoderTest, StoreMemOffset_varint) { byte code1[] = { kExprI32StoreMem, ZERO_ALIGNMENT, 0, kExprI8Const, 0, kExprI8Const, 0}; byte code2[] = {kExprI32StoreMem, ZERO_ALIGNMENT, 0x80, 1, kExprI8Const, 0, kExprI8Const, 0}; byte code3[] = {kExprI32StoreMem, ZERO_ALIGNMENT, 0x81, 0x82, 5, kExprI8Const, 0, kExprI8Const, 0}; byte code4[] = {kExprI32StoreMem, ZERO_ALIGNMENT, 0x83, 0x84, 0x85, 7, kExprI8Const, 0, kExprI8Const, 0}; EXPECT_VERIFIES(sigs.i_i(), code1); EXPECT_VERIFIES(sigs.i_i(), code2); EXPECT_VERIFIES(sigs.i_i(), code3); EXPECT_VERIFIES(sigs.i_i(), code4); } TEST_F(AstDecoderTest, AllLoadMemCombinations) { for (size_t i = 0; i < arraysize(kLocalTypes); i++) { LocalType local_type = kLocalTypes[i]; for (size_t j = 0; j < arraysize(machineTypes); j++) { MachineType mem_type = machineTypes[j]; byte code[] = { static_cast(WasmOpcodes::LoadStoreOpcodeOf(mem_type, false)), ZERO_ALIGNMENT, ZERO_OFFSET, kExprI8Const, 0}; FunctionSig sig(1, 0, &local_type); if (local_type == WasmOpcodes::LocalTypeFor(mem_type)) { EXPECT_VERIFIES(&sig, code); } else { EXPECT_FAILURE(&sig, code); } } } } TEST_F(AstDecoderTest, AllStoreMemCombinations) { for (size_t i = 0; i < arraysize(kLocalTypes); i++) { LocalType local_type = kLocalTypes[i]; for (size_t j = 0; j < arraysize(machineTypes); j++) { MachineType mem_type = machineTypes[j]; byte code[] = { static_cast(WasmOpcodes::LoadStoreOpcodeOf(mem_type, true)), ZERO_ALIGNMENT, ZERO_OFFSET, kExprI8Const, 0, kExprGetLocal, 0}; FunctionSig sig(0, 1, &local_type); if (local_type == WasmOpcodes::LocalTypeFor(mem_type)) { EXPECT_VERIFIES(&sig, code); } else { EXPECT_FAILURE(&sig, code); } } } } namespace { // A helper for tests that require a module environment for functions and // globals. class TestModuleEnv : public ModuleEnv { public: TestModuleEnv() { instance = nullptr; module = &mod; linker = nullptr; } byte AddGlobal(MachineType mem_type) { mod.globals.push_back({0, 0, mem_type, 0, false}); CHECK(mod.globals.size() <= 127); return static_cast(mod.globals.size() - 1); } byte AddSignature(FunctionSig* sig) { mod.signatures.push_back(sig); CHECK(mod.signatures.size() <= 127); return static_cast(mod.signatures.size() - 1); } byte AddFunction(FunctionSig* sig) { mod.functions.push_back({sig, 0, 0, 0, 0, 0, 0, 0, false, false}); CHECK(mod.functions.size() <= 127); return static_cast(mod.functions.size() - 1); } byte AddImport(FunctionSig* sig) { mod.import_table.push_back({sig, 0, 0}); CHECK(mod.import_table.size() <= 127); return static_cast(mod.import_table.size() - 1); } private: WasmModule mod; }; } // namespace TEST_F(AstDecoderTest, SimpleCalls) { FunctionSig* sig = sigs.i_i(); TestModuleEnv module_env; module = &module_env; module_env.AddFunction(sigs.i_v()); module_env.AddFunction(sigs.i_i()); module_env.AddFunction(sigs.i_ii()); EXPECT_VERIFIES_INLINE(sig, WASM_CALL_FUNCTION(0)); EXPECT_VERIFIES_INLINE(sig, WASM_CALL_FUNCTION(1, WASM_I8(27))); EXPECT_VERIFIES_INLINE(sig, WASM_CALL_FUNCTION(2, WASM_I8(37), WASM_I8(77))); } TEST_F(AstDecoderTest, CallsWithTooFewArguments) { FunctionSig* sig = sigs.i_i(); TestModuleEnv module_env; module = &module_env; module_env.AddFunction(sigs.i_i()); module_env.AddFunction(sigs.i_ii()); module_env.AddFunction(sigs.f_ff()); EXPECT_FAILURE_INLINE(sig, WASM_CALL_FUNCTION0(0)); EXPECT_FAILURE_INLINE(sig, WASM_CALL_FUNCTION(1, WASM_ZERO)); EXPECT_FAILURE_INLINE(sig, WASM_CALL_FUNCTION(2, WASM_GET_LOCAL(0))); } TEST_F(AstDecoderTest, CallsWithSpilloverArgs) { static LocalType a_i_ff[] = {kAstI32, kAstF32, kAstF32}; FunctionSig sig_i_ff(1, 2, a_i_ff); TestModuleEnv module_env; module = &module_env; module_env.AddFunction(&sig_i_ff); EXPECT_VERIFIES_INLINE(sigs.i_i(), WASM_CALL_FUNCTION(0, WASM_F32(0.1), WASM_F32(0.1))); EXPECT_VERIFIES_INLINE(sigs.i_ff(), WASM_CALL_FUNCTION(0, WASM_F32(0.1), WASM_F32(0.1))); EXPECT_FAILURE_INLINE(sigs.f_ff(), WASM_CALL_FUNCTION(0, WASM_F32(0.1), WASM_F32(0.1))); EXPECT_FAILURE_INLINE( sigs.i_i(), WASM_CALL_FUNCTION(0, WASM_F32(0.1), WASM_F32(0.1), WASM_F32(0.2))); EXPECT_VERIFIES_INLINE( sigs.f_ff(), WASM_CALL_FUNCTION(0, WASM_F32(0.1), WASM_F32(0.1), WASM_F32(11))); } TEST_F(AstDecoderTest, CallsWithMismatchedSigs2) { FunctionSig* sig = sigs.i_i(); TestModuleEnv module_env; module = &module_env; module_env.AddFunction(sigs.i_i()); EXPECT_FAILURE_INLINE(sig, WASM_CALL_FUNCTION(0, WASM_I64V_1(17))); EXPECT_FAILURE_INLINE(sig, WASM_CALL_FUNCTION(0, WASM_F32(17.1))); EXPECT_FAILURE_INLINE(sig, WASM_CALL_FUNCTION(0, WASM_F64(17.1))); } TEST_F(AstDecoderTest, CallsWithMismatchedSigs3) { FunctionSig* sig = sigs.i_i(); TestModuleEnv module_env; module = &module_env; module_env.AddFunction(sigs.i_f()); EXPECT_FAILURE_INLINE(sig, WASM_CALL_FUNCTION(0, WASM_I8(17))); EXPECT_FAILURE_INLINE(sig, WASM_CALL_FUNCTION(0, WASM_I64V_1(27))); EXPECT_FAILURE_INLINE(sig, WASM_CALL_FUNCTION(0, WASM_F64(37.2))); module_env.AddFunction(sigs.i_d()); EXPECT_FAILURE_INLINE(sig, WASM_CALL_FUNCTION(1, WASM_I8(16))); EXPECT_FAILURE_INLINE(sig, WASM_CALL_FUNCTION(1, WASM_I64V_1(16))); EXPECT_FAILURE_INLINE(sig, WASM_CALL_FUNCTION(1, WASM_F32(17.6))); } TEST_F(AstDecoderTest, SimpleIndirectCalls) { FunctionSig* sig = sigs.i_i(); TestModuleEnv module_env; module = &module_env; byte f0 = module_env.AddSignature(sigs.i_v()); byte f1 = module_env.AddSignature(sigs.i_i()); byte f2 = module_env.AddSignature(sigs.i_ii()); EXPECT_VERIFIES_INLINE(sig, WASM_CALL_INDIRECT0(f0, WASM_ZERO)); EXPECT_VERIFIES_INLINE(sig, WASM_CALL_INDIRECT(f1, WASM_ZERO, WASM_I8(22))); EXPECT_VERIFIES_INLINE( sig, WASM_CALL_INDIRECT(f2, WASM_ZERO, WASM_I8(32), WASM_I8(72))); } TEST_F(AstDecoderTest, IndirectCallsOutOfBounds) { FunctionSig* sig = sigs.i_i(); TestModuleEnv module_env; module = &module_env; EXPECT_FAILURE_INLINE(sig, WASM_CALL_INDIRECT0(0, WASM_ZERO)); module_env.AddSignature(sigs.i_v()); EXPECT_VERIFIES_INLINE(sig, WASM_CALL_INDIRECT0(0, WASM_ZERO)); EXPECT_FAILURE_INLINE(sig, WASM_CALL_INDIRECT(1, WASM_ZERO, WASM_I8(22))); module_env.AddSignature(sigs.i_i()); EXPECT_VERIFIES_INLINE(sig, WASM_CALL_INDIRECT(1, WASM_ZERO, WASM_I8(27))); EXPECT_FAILURE_INLINE(sig, WASM_CALL_INDIRECT(2, WASM_ZERO, WASM_I8(27))); } TEST_F(AstDecoderTest, IndirectCallsWithMismatchedSigs3) { FunctionSig* sig = sigs.i_i(); TestModuleEnv module_env; module = &module_env; byte f0 = module_env.AddFunction(sigs.i_f()); EXPECT_FAILURE_INLINE(sig, WASM_CALL_INDIRECT(f0, WASM_ZERO, WASM_I8(17))); EXPECT_FAILURE_INLINE(sig, WASM_CALL_INDIRECT(f0, WASM_ZERO, WASM_I64V_1(27))); EXPECT_FAILURE_INLINE(sig, WASM_CALL_INDIRECT(f0, WASM_ZERO, WASM_F64(37.2))); EXPECT_FAILURE_INLINE(sig, WASM_CALL_INDIRECT0(f0, WASM_I8(17))); EXPECT_FAILURE_INLINE(sig, WASM_CALL_INDIRECT0(f0, WASM_I64V_1(27))); EXPECT_FAILURE_INLINE(sig, WASM_CALL_INDIRECT0(f0, WASM_F64(37.2))); byte f1 = module_env.AddFunction(sigs.i_d()); EXPECT_FAILURE_INLINE(sig, WASM_CALL_INDIRECT(f1, WASM_ZERO, WASM_I8(16))); EXPECT_FAILURE_INLINE(sig, WASM_CALL_INDIRECT(f1, WASM_ZERO, WASM_I64V_1(16))); EXPECT_FAILURE_INLINE(sig, WASM_CALL_INDIRECT(f1, WASM_ZERO, WASM_F32(17.6))); } TEST_F(AstDecoderTest, SimpleImportCalls) { FunctionSig* sig = sigs.i_i(); TestModuleEnv module_env; module = &module_env; byte f0 = module_env.AddImport(sigs.i_v()); byte f1 = module_env.AddImport(sigs.i_i()); byte f2 = module_env.AddImport(sigs.i_ii()); EXPECT_VERIFIES_INLINE(sig, WASM_CALL_IMPORT0(f0)); EXPECT_VERIFIES_INLINE(sig, WASM_CALL_IMPORT(f1, WASM_I8(22))); EXPECT_VERIFIES_INLINE(sig, WASM_CALL_IMPORT(f2, WASM_I8(32), WASM_I8(72))); } TEST_F(AstDecoderTest, ImportCallsWithMismatchedSigs3) { FunctionSig* sig = sigs.i_i(); TestModuleEnv module_env; module = &module_env; byte f0 = module_env.AddImport(sigs.i_f()); EXPECT_FAILURE_INLINE(sig, WASM_CALL_IMPORT0(f0)); EXPECT_FAILURE_INLINE(sig, WASM_CALL_IMPORT(f0, WASM_I8(17))); EXPECT_FAILURE_INLINE(sig, WASM_CALL_IMPORT(f0, WASM_I64V_1(27))); EXPECT_FAILURE_INLINE(sig, WASM_CALL_IMPORT(f0, WASM_F64(37.2))); byte f1 = module_env.AddImport(sigs.i_d()); EXPECT_FAILURE_INLINE(sig, WASM_CALL_IMPORT0(f1)); EXPECT_FAILURE_INLINE(sig, WASM_CALL_IMPORT(f1, WASM_I8(16))); EXPECT_FAILURE_INLINE(sig, WASM_CALL_IMPORT(f1, WASM_I64V_1(16))); EXPECT_FAILURE_INLINE(sig, WASM_CALL_IMPORT(f1, WASM_F32(17.6))); } TEST_F(AstDecoderTest, Int32Globals) { FunctionSig* sig = sigs.i_i(); TestModuleEnv module_env; module = &module_env; module_env.AddGlobal(MachineType::Int8()); module_env.AddGlobal(MachineType::Uint8()); module_env.AddGlobal(MachineType::Int16()); module_env.AddGlobal(MachineType::Uint16()); module_env.AddGlobal(MachineType::Int32()); module_env.AddGlobal(MachineType::Uint32()); EXPECT_VERIFIES_INLINE(sig, WASM_LOAD_GLOBAL(0)); EXPECT_VERIFIES_INLINE(sig, WASM_LOAD_GLOBAL(1)); EXPECT_VERIFIES_INLINE(sig, WASM_LOAD_GLOBAL(2)); EXPECT_VERIFIES_INLINE(sig, WASM_LOAD_GLOBAL(3)); EXPECT_VERIFIES_INLINE(sig, WASM_LOAD_GLOBAL(4)); EXPECT_VERIFIES_INLINE(sig, WASM_LOAD_GLOBAL(5)); EXPECT_VERIFIES_INLINE(sig, WASM_STORE_GLOBAL(0, WASM_GET_LOCAL(0))); EXPECT_VERIFIES_INLINE(sig, WASM_STORE_GLOBAL(1, WASM_GET_LOCAL(0))); EXPECT_VERIFIES_INLINE(sig, WASM_STORE_GLOBAL(2, WASM_GET_LOCAL(0))); EXPECT_VERIFIES_INLINE(sig, WASM_STORE_GLOBAL(3, WASM_GET_LOCAL(0))); EXPECT_VERIFIES_INLINE(sig, WASM_STORE_GLOBAL(4, WASM_GET_LOCAL(0))); EXPECT_VERIFIES_INLINE(sig, WASM_STORE_GLOBAL(5, WASM_GET_LOCAL(0))); } TEST_F(AstDecoderTest, Int32Globals_fail) { FunctionSig* sig = sigs.i_i(); TestModuleEnv module_env; module = &module_env; module_env.AddGlobal(MachineType::Int64()); module_env.AddGlobal(MachineType::Uint64()); module_env.AddGlobal(MachineType::Float32()); module_env.AddGlobal(MachineType::Float64()); EXPECT_FAILURE_INLINE(sig, WASM_LOAD_GLOBAL(0)); EXPECT_FAILURE_INLINE(sig, WASM_LOAD_GLOBAL(1)); EXPECT_FAILURE_INLINE(sig, WASM_LOAD_GLOBAL(2)); EXPECT_FAILURE_INLINE(sig, WASM_LOAD_GLOBAL(3)); EXPECT_FAILURE_INLINE(sig, WASM_STORE_GLOBAL(0, WASM_GET_LOCAL(0))); EXPECT_FAILURE_INLINE(sig, WASM_STORE_GLOBAL(1, WASM_GET_LOCAL(0))); EXPECT_FAILURE_INLINE(sig, WASM_STORE_GLOBAL(2, WASM_GET_LOCAL(0))); EXPECT_FAILURE_INLINE(sig, WASM_STORE_GLOBAL(3, WASM_GET_LOCAL(0))); } TEST_F(AstDecoderTest, Int64Globals) { FunctionSig* sig = sigs.l_l(); TestModuleEnv module_env; module = &module_env; module_env.AddGlobal(MachineType::Int64()); module_env.AddGlobal(MachineType::Uint64()); EXPECT_VERIFIES_INLINE(sig, WASM_LOAD_GLOBAL(0)); EXPECT_VERIFIES_INLINE(sig, WASM_LOAD_GLOBAL(1)); EXPECT_VERIFIES_INLINE(sig, WASM_STORE_GLOBAL(0, WASM_GET_LOCAL(0))); EXPECT_VERIFIES_INLINE(sig, WASM_STORE_GLOBAL(1, WASM_GET_LOCAL(0))); } TEST_F(AstDecoderTest, Float32Globals) { FunctionSig* sig = sigs.f_ff(); TestModuleEnv module_env; module = &module_env; module_env.AddGlobal(MachineType::Float32()); EXPECT_VERIFIES_INLINE(sig, WASM_LOAD_GLOBAL(0)); EXPECT_VERIFIES_INLINE(sig, WASM_STORE_GLOBAL(0, WASM_GET_LOCAL(0))); } TEST_F(AstDecoderTest, Float64Globals) { FunctionSig* sig = sigs.d_dd(); TestModuleEnv module_env; module = &module_env; module_env.AddGlobal(MachineType::Float64()); EXPECT_VERIFIES_INLINE(sig, WASM_LOAD_GLOBAL(0)); EXPECT_VERIFIES_INLINE(sig, WASM_STORE_GLOBAL(0, WASM_GET_LOCAL(0))); } TEST_F(AstDecoderTest, AllLoadGlobalCombinations) { for (size_t i = 0; i < arraysize(kLocalTypes); i++) { LocalType local_type = kLocalTypes[i]; for (size_t j = 0; j < arraysize(machineTypes); j++) { MachineType mem_type = machineTypes[j]; FunctionSig sig(1, 0, &local_type); TestModuleEnv module_env; module = &module_env; module_env.AddGlobal(mem_type); if (local_type == WasmOpcodes::LocalTypeFor(mem_type)) { EXPECT_VERIFIES_INLINE(&sig, WASM_LOAD_GLOBAL(0)); } else { EXPECT_FAILURE_INLINE(&sig, WASM_LOAD_GLOBAL(0)); } } } } TEST_F(AstDecoderTest, AllStoreGlobalCombinations) { for (size_t i = 0; i < arraysize(kLocalTypes); i++) { LocalType local_type = kLocalTypes[i]; for (size_t j = 0; j < arraysize(machineTypes); j++) { MachineType mem_type = machineTypes[j]; FunctionSig sig(0, 1, &local_type); TestModuleEnv module_env; module = &module_env; module_env.AddGlobal(mem_type); if (local_type == WasmOpcodes::LocalTypeFor(mem_type)) { EXPECT_VERIFIES_INLINE(&sig, WASM_STORE_GLOBAL(0, WASM_GET_LOCAL(0))); } else { EXPECT_FAILURE_INLINE(&sig, WASM_STORE_GLOBAL(0, WASM_GET_LOCAL(0))); } } } } TEST_F(AstDecoderTest, BreakNesting1) { for (int i = 0; i < 5; i++) { // (block[2] (loop[2] (if (get p) break[N]) (set p 1)) p) byte code[] = {WASM_BLOCK( 2, WASM_LOOP(2, WASM_IF(WASM_GET_LOCAL(0), WASM_BRV(i, WASM_ZERO)), WASM_SET_LOCAL(0, WASM_I8(1))), WASM_GET_LOCAL(0))}; if (i < 3) { EXPECT_VERIFIES(sigs.i_i(), code); } else { EXPECT_FAILURE(sigs.i_i(), code); } } } TEST_F(AstDecoderTest, BreakNesting2) { AddLocals(kAstI32, 1); for (int i = 0; i < 5; i++) { // (block[2] (loop[2] (if 0 break[N]) (set p 1)) (return p)) (11) byte code[] = {WASM_BLOCK(1, WASM_LOOP(2, WASM_IF(WASM_ZERO, WASM_BREAK(i)), WASM_SET_LOCAL(0, WASM_I8(1)))), WASM_I8(11)}; if (i < 2) { EXPECT_VERIFIES(sigs.v_v(), code); } else { EXPECT_FAILURE(sigs.v_v(), code); } } } TEST_F(AstDecoderTest, BreakNesting3) { for (int i = 0; i < 5; i++) { // (block[1] (loop[1] (block[1] (if 0 break[N]) byte code[] = {WASM_BLOCK( 1, WASM_LOOP(1, WASM_BLOCK(1, WASM_IF(WASM_ZERO, WASM_BREAK(i)))))}; if (i < 3) { EXPECT_VERIFIES(sigs.v_v(), code); } else { EXPECT_FAILURE(sigs.v_v(), code); } } } TEST_F(AstDecoderTest, BreaksWithMultipleTypes) { EXPECT_FAILURE_INLINE( sigs.i_i(), WASM_BLOCK(2, WASM_BRV_IF_ZERO(0, WASM_I8(7)), WASM_F32(7.7))); EXPECT_FAILURE_INLINE(sigs.i_i(), WASM_BLOCK(2, WASM_BRV_IF_ZERO(0, WASM_I8(7)), WASM_BRV_IF_ZERO(0, WASM_F32(7.7)))); EXPECT_FAILURE_INLINE(sigs.i_i(), WASM_BLOCK(3, WASM_BRV_IF_ZERO(0, WASM_I8(8)), WASM_BRV_IF_ZERO(0, WASM_I8(0)), WASM_BRV_IF_ZERO(0, WASM_F32(7.7)))); EXPECT_FAILURE_INLINE(sigs.i_i(), WASM_BLOCK(3, WASM_BRV_IF_ZERO(0, WASM_I8(9)), WASM_BRV_IF_ZERO(0, WASM_F32(7.7)), WASM_BRV_IF_ZERO(0, WASM_I8(11)))); } TEST_F(AstDecoderTest, BreakNesting_6_levels) { for (int mask = 0; mask < 64; mask++) { for (int i = 0; i < 14; i++) { byte code[] = { kExprBlock, 1, // -- kExprBlock, 1, // -- kExprBlock, 1, // -- kExprBlock, 1, // -- kExprBlock, 1, // -- kExprBlock, 1, // -- kExprBr, static_cast(i), kExprNop // -- }; int depth = 6; for (int l = 0; l < 6; l++) { if (mask & (1 << l)) { code[l * 2] = kExprLoop; depth++; } } if (i < depth) { EXPECT_VERIFIES(sigs.v_v(), code); } else { EXPECT_FAILURE(sigs.v_v(), code); } } } } TEST_F(AstDecoderTest, ExprBreak_TypeCheck) { FunctionSig* sigarray[] = {sigs.i_i(), sigs.l_l(), sigs.f_ff(), sigs.d_dd()}; for (size_t i = 0; i < arraysize(sigarray); i++) { FunctionSig* sig = sigarray[i]; // unify X and X => OK EXPECT_VERIFIES_INLINE( sig, WASM_BLOCK(2, WASM_IF(WASM_ZERO, WASM_BRV(0, WASM_GET_LOCAL(0))), WASM_GET_LOCAL(0))); } // unify i32 and f32 => fail EXPECT_FAILURE_INLINE( sigs.i_i(), WASM_BLOCK(2, WASM_IF(WASM_ZERO, WASM_BRV(0, WASM_ZERO)), WASM_F32(1.2))); // unify f64 and f64 => OK EXPECT_VERIFIES_INLINE( sigs.d_dd(), WASM_BLOCK(2, WASM_IF(WASM_ZERO, WASM_BRV(0, WASM_GET_LOCAL(0))), WASM_F64(1.2))); } TEST_F(AstDecoderTest, ExprBreak_TypeCheckAll) { byte code1[] = {WASM_BLOCK(2, WASM_IF(WASM_ZERO, WASM_BRV(0, WASM_GET_LOCAL(0))), WASM_GET_LOCAL(1))}; byte code2[] = { WASM_BLOCK(2, WASM_IF(WASM_ZERO, WASM_BRV_IF_ZERO(0, WASM_GET_LOCAL(0))), WASM_GET_LOCAL(1))}; for (size_t i = 0; i < arraysize(kLocalTypes); i++) { for (size_t j = 0; j < arraysize(kLocalTypes); j++) { LocalType storage[] = {kLocalTypes[i], kLocalTypes[i], kLocalTypes[j]}; FunctionSig sig(1, 2, storage); if (i == j) { EXPECT_VERIFIES(&sig, code1); EXPECT_VERIFIES(&sig, code2); } else { EXPECT_FAILURE(&sig, code1); EXPECT_FAILURE(&sig, code2); } } } } TEST_F(AstDecoderTest, ExprBr_Unify) { for (int which = 0; which < 2; which++) { for (size_t i = 0; i < arraysize(kLocalTypes); i++) { LocalType type = kLocalTypes[i]; LocalType storage[] = {kAstI32, kAstI32, type}; FunctionSig sig(1, 2, storage); byte code1[] = { WASM_BLOCK(2, WASM_IF(WASM_ZERO, WASM_BRV(0, WASM_GET_LOCAL(which))), WASM_GET_LOCAL(which ^ 1))}; byte code2[] = { WASM_LOOP(2, WASM_IF(WASM_ZERO, WASM_BRV(1, WASM_GET_LOCAL(which))), WASM_GET_LOCAL(which ^ 1))}; if (type == kAstI32) { EXPECT_VERIFIES(&sig, code1); EXPECT_VERIFIES(&sig, code2); } else { EXPECT_FAILURE(&sig, code1); EXPECT_FAILURE(&sig, code2); } } } } TEST_F(AstDecoderTest, ExprBrIf_cond_type) { byte code[] = { WASM_BLOCK(1, WASM_BRV_IF(0, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)))}; for (size_t i = 0; i < arraysize(kLocalTypes); i++) { for (size_t j = 0; j < arraysize(kLocalTypes); j++) { LocalType types[] = {kLocalTypes[i], kLocalTypes[j]}; FunctionSig sig(0, 2, types); if (types[1] == kAstI32) { EXPECT_VERIFIES(&sig, code); } else { EXPECT_FAILURE(&sig, code); } } } } TEST_F(AstDecoderTest, ExprBrIf_val_type) { byte code[] = { WASM_BLOCK(2, WASM_BRV_IF(0, WASM_GET_LOCAL(1), WASM_GET_LOCAL(2)), WASM_GET_LOCAL(0))}; for (size_t i = 0; i < arraysize(kLocalTypes); i++) { for (size_t j = 0; j < arraysize(kLocalTypes); j++) { LocalType types[] = {kLocalTypes[i], kLocalTypes[i], kLocalTypes[j], kAstI32}; FunctionSig sig(1, 3, types); if (i == j) { EXPECT_VERIFIES(&sig, code); } else { EXPECT_FAILURE(&sig, code); } } } } TEST_F(AstDecoderTest, ExprBrIf_Unify) { for (int which = 0; which < 2; which++) { for (size_t i = 0; i < arraysize(kLocalTypes); i++) { LocalType type = kLocalTypes[i]; LocalType storage[] = {kAstI32, kAstI32, type}; FunctionSig sig(1, 2, storage); byte code1[] = {WASM_BLOCK(2, WASM_BRV_IF_ZERO(0, WASM_GET_LOCAL(which)), WASM_GET_LOCAL(which ^ 1))}; byte code2[] = {WASM_LOOP(2, WASM_BRV_IF_ZERO(1, WASM_GET_LOCAL(which)), WASM_GET_LOCAL(which ^ 1))}; if (type == kAstI32) { EXPECT_VERIFIES(&sig, code1); EXPECT_VERIFIES(&sig, code2); } else { EXPECT_FAILURE(&sig, code1); EXPECT_FAILURE(&sig, code2); } } } } TEST_F(AstDecoderTest, BrTable0) { static byte code[] = {kExprBrTable, 0, 0}; EXPECT_FAILURE(sigs.v_v(), code); } TEST_F(AstDecoderTest, BrTable0b) { static byte code[] = {kExprBrTable, 0, 0, kExprI32Const, 11}; EXPECT_FAILURE(sigs.v_v(), code); EXPECT_FAILURE(sigs.i_i(), code); } TEST_F(AstDecoderTest, BrTable0c) { static byte code[] = {kExprBrTable, 0, 1, 0, 0, kExprI32Const, 11}; EXPECT_FAILURE(sigs.v_v(), code); EXPECT_FAILURE(sigs.i_i(), code); } TEST_F(AstDecoderTest, BrTable1a) { static byte code[] = { WASM_BLOCK(1, WASM_BR_TABLE(WASM_I8(67), 0, BR_TARGET(0)))}; EXPECT_VERIFIES(sigs.v_v(), code); } TEST_F(AstDecoderTest, BrTable1b) { static byte code[] = { WASM_BLOCK(1, WASM_BR_TABLE(WASM_ZERO, 0, BR_TARGET(0)))}; EXPECT_VERIFIES(sigs.v_v(), code); EXPECT_FAILURE(sigs.i_i(), code); EXPECT_FAILURE(sigs.f_ff(), code); EXPECT_FAILURE(sigs.d_dd(), code); } TEST_F(AstDecoderTest, BrTable2a) { static byte code[] = { WASM_BLOCK(1, WASM_BR_TABLE(WASM_I8(67), 1, BR_TARGET(0), BR_TARGET(0)))}; EXPECT_VERIFIES(sigs.v_v(), code); } TEST_F(AstDecoderTest, BrTable2b) { static byte code[] = {WASM_BLOCK( 1, WASM_BLOCK( 1, WASM_BR_TABLE(WASM_I8(67), 1, BR_TARGET(0), BR_TARGET(1))))}; EXPECT_VERIFIES(sigs.v_v(), code); } TEST_F(AstDecoderTest, BrTable_off_end) { static byte code[] = { WASM_BLOCK(1, WASM_BR_TABLE(WASM_GET_LOCAL(0), 0, BR_TARGET(0)))}; for (size_t len = 1; len < sizeof(code); len++) { Verify(kError, sigs.i_i(), code, code + len); } } TEST_F(AstDecoderTest, BrTable_invalid_br1) { for (int depth = 0; depth < 4; depth++) { byte code[] = { WASM_BLOCK(1, WASM_BR_TABLE(WASM_GET_LOCAL(0), 0, BR_TARGET(depth)))}; if (depth == 0) { EXPECT_VERIFIES(sigs.v_i(), code); } else { EXPECT_FAILURE(sigs.v_i(), code); } } } TEST_F(AstDecoderTest, BrTable_invalid_br2) { for (int depth = 0; depth < 4; depth++) { byte code[] = { WASM_LOOP(1, WASM_BR_TABLE(WASM_GET_LOCAL(0), 0, BR_TARGET(depth)))}; if (depth <= 1) { EXPECT_VERIFIES(sigs.v_i(), code); } else { EXPECT_FAILURE(sigs.v_i(), code); } } } TEST_F(AstDecoderTest, ExprBreakNesting1) { EXPECT_VERIFIES_INLINE(sigs.v_v(), WASM_BLOCK(1, WASM_BRV(0, WASM_ZERO))); EXPECT_VERIFIES_INLINE(sigs.v_v(), WASM_BLOCK(1, WASM_BR(0))); EXPECT_VERIFIES_INLINE(sigs.v_v(), WASM_BLOCK(1, WASM_BRV_IF(0, WASM_ZERO, WASM_ZERO))); EXPECT_VERIFIES_INLINE(sigs.v_v(), WASM_BLOCK(1, WASM_BR_IF(0, WASM_ZERO))); EXPECT_VERIFIES_INLINE(sigs.v_v(), WASM_LOOP(1, WASM_BRV(0, WASM_ZERO))); EXPECT_VERIFIES_INLINE(sigs.v_v(), WASM_LOOP(1, WASM_BR(0))); EXPECT_VERIFIES_INLINE(sigs.v_v(), WASM_LOOP(1, WASM_BRV_IF(0, WASM_ZERO, WASM_ZERO))); EXPECT_VERIFIES_INLINE(sigs.v_v(), WASM_LOOP(1, WASM_BR_IF(0, WASM_ZERO))); EXPECT_VERIFIES_INLINE(sigs.v_v(), WASM_LOOP(1, WASM_BRV(1, WASM_ZERO))); EXPECT_VERIFIES_INLINE(sigs.v_v(), WASM_LOOP(1, WASM_BR(1))); } TEST_F(AstDecoderTest, Select) { EXPECT_VERIFIES_INLINE( sigs.i_i(), WASM_SELECT(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0), WASM_ZERO)); EXPECT_VERIFIES_INLINE(sigs.f_ff(), WASM_SELECT(WASM_F32(0.0), WASM_F32(0.0), WASM_ZERO)); EXPECT_VERIFIES_INLINE(sigs.d_dd(), WASM_SELECT(WASM_F64(0.0), WASM_F64(0.0), WASM_ZERO)); EXPECT_VERIFIES_INLINE( sigs.l_l(), WASM_SELECT(WASM_I64V_1(0), WASM_I64V_1(0), WASM_ZERO)); } TEST_F(AstDecoderTest, Select_fail1) { EXPECT_FAILURE_INLINE( sigs.i_i(), WASM_SELECT(WASM_F32(0.0), WASM_GET_LOCAL(0), WASM_GET_LOCAL(0))); EXPECT_FAILURE_INLINE( sigs.i_i(), WASM_SELECT(WASM_GET_LOCAL(0), WASM_F32(0.0), WASM_GET_LOCAL(0))); EXPECT_FAILURE_INLINE( sigs.i_i(), WASM_SELECT(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0), WASM_F32(0.0))); } TEST_F(AstDecoderTest, Select_fail2) { for (size_t i = 0; i < arraysize(kLocalTypes); i++) { LocalType type = kLocalTypes[i]; if (type == kAstI32) continue; LocalType types[] = {type, kAstI32, type}; FunctionSig sig(1, 2, types); EXPECT_VERIFIES_INLINE( &sig, WASM_SELECT(WASM_GET_LOCAL(1), WASM_GET_LOCAL(1), WASM_GET_LOCAL(0))); EXPECT_FAILURE_INLINE( &sig, WASM_SELECT(WASM_GET_LOCAL(1), WASM_GET_LOCAL(0), WASM_GET_LOCAL(0))); EXPECT_FAILURE_INLINE( &sig, WASM_SELECT(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1), WASM_GET_LOCAL(0))); EXPECT_FAILURE_INLINE( &sig, WASM_SELECT(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))); } } TEST_F(AstDecoderTest, Select_TypeCheck) { EXPECT_FAILURE_INLINE( sigs.i_i(), WASM_SELECT(WASM_F32(9.9), WASM_GET_LOCAL(0), WASM_GET_LOCAL(0))); EXPECT_FAILURE_INLINE( sigs.i_i(), WASM_SELECT(WASM_GET_LOCAL(0), WASM_F64(0.25), WASM_GET_LOCAL(0))); EXPECT_FAILURE_INLINE( sigs.i_i(), WASM_SELECT(WASM_F32(9.9), WASM_GET_LOCAL(0), WASM_I64V_1(0))); } class WasmOpcodeLengthTest : public TestWithZone { public: WasmOpcodeLengthTest() : TestWithZone() {} }; #define EXPECT_LENGTH(expected, opcode) \ { \ static const byte code[] = {opcode, 0, 0, 0, 0, 0, 0, 0, 0}; \ EXPECT_EQ(expected, OpcodeLength(code, code + sizeof(code))); \ } #define EXPECT_LENGTH_N(expected, ...) \ { \ static const byte code[] = {__VA_ARGS__}; \ EXPECT_EQ(expected, OpcodeLength(code, code + sizeof(code))); \ } TEST_F(WasmOpcodeLengthTest, Statements) { EXPECT_LENGTH(1, kExprNop); EXPECT_LENGTH(2, kExprBlock); EXPECT_LENGTH(2, kExprLoop); EXPECT_LENGTH(1, kExprIf); EXPECT_LENGTH(1, kExprIfElse); EXPECT_LENGTH(1, kExprSelect); EXPECT_LENGTH(2, kExprBr); EXPECT_LENGTH(2, kExprBrIf); } TEST_F(WasmOpcodeLengthTest, MiscExpressions) { EXPECT_LENGTH(2, kExprI8Const); EXPECT_LENGTH(5, kExprF32Const); EXPECT_LENGTH(9, kExprF64Const); EXPECT_LENGTH(2, kExprGetLocal); EXPECT_LENGTH(2, kExprSetLocal); EXPECT_LENGTH(2, kExprLoadGlobal); EXPECT_LENGTH(2, kExprStoreGlobal); EXPECT_LENGTH(2, kExprCallFunction); EXPECT_LENGTH(2, kExprCallImport); EXPECT_LENGTH(2, kExprCallIndirect); EXPECT_LENGTH(1, kExprIf); EXPECT_LENGTH(1, kExprIfElse); EXPECT_LENGTH(2, kExprBlock); EXPECT_LENGTH(2, kExprLoop); EXPECT_LENGTH(2, kExprBr); EXPECT_LENGTH(2, kExprBrIf); } TEST_F(WasmOpcodeLengthTest, I32Const) { EXPECT_LENGTH_N(2, kExprI32Const, U32V_1(1)); EXPECT_LENGTH_N(3, kExprI32Const, U32V_2(999)); EXPECT_LENGTH_N(4, kExprI32Const, U32V_3(9999)); EXPECT_LENGTH_N(5, kExprI32Const, U32V_4(999999)); EXPECT_LENGTH_N(6, kExprI32Const, U32V_5(99999999)); } TEST_F(WasmOpcodeLengthTest, I64Const) { EXPECT_LENGTH_N(2, kExprI64Const, U32V_1(1)); EXPECT_LENGTH_N(3, kExprI64Const, U32V_2(99)); EXPECT_LENGTH_N(4, kExprI64Const, U32V_3(9999)); EXPECT_LENGTH_N(5, kExprI64Const, U32V_4(99999)); EXPECT_LENGTH_N(6, kExprI64Const, U32V_5(9999999)); EXPECT_LENGTH_N(7, WASM_I64V_6(777777)); EXPECT_LENGTH_N(8, WASM_I64V_7(7777777)); EXPECT_LENGTH_N(9, WASM_I64V_8(77777777)); EXPECT_LENGTH_N(10, WASM_I64V_9(777777777)); } TEST_F(WasmOpcodeLengthTest, VariableLength) { EXPECT_LENGTH_N(2, kExprLoadGlobal, U32V_1(1)); EXPECT_LENGTH_N(3, kExprLoadGlobal, U32V_2(33)); EXPECT_LENGTH_N(4, kExprLoadGlobal, U32V_3(44)); EXPECT_LENGTH_N(5, kExprLoadGlobal, U32V_4(66)); EXPECT_LENGTH_N(6, kExprLoadGlobal, U32V_5(77)); } TEST_F(WasmOpcodeLengthTest, LoadsAndStores) { EXPECT_LENGTH(3, kExprI32LoadMem8S); EXPECT_LENGTH(3, kExprI32LoadMem8U); EXPECT_LENGTH(3, kExprI32LoadMem16S); EXPECT_LENGTH(3, kExprI32LoadMem16U); EXPECT_LENGTH(3, kExprI32LoadMem); EXPECT_LENGTH(3, kExprI64LoadMem8S); EXPECT_LENGTH(3, kExprI64LoadMem8U); EXPECT_LENGTH(3, kExprI64LoadMem16S); EXPECT_LENGTH(3, kExprI64LoadMem16U); EXPECT_LENGTH(3, kExprI64LoadMem32S); EXPECT_LENGTH(3, kExprI64LoadMem32U); EXPECT_LENGTH(3, kExprI64LoadMem); EXPECT_LENGTH(3, kExprF32LoadMem); EXPECT_LENGTH(3, kExprF64LoadMem); EXPECT_LENGTH(3, kExprI32StoreMem8); EXPECT_LENGTH(3, kExprI32StoreMem16); EXPECT_LENGTH(3, kExprI32StoreMem); EXPECT_LENGTH(3, kExprI64StoreMem8); EXPECT_LENGTH(3, kExprI64StoreMem16); EXPECT_LENGTH(3, kExprI64StoreMem32); EXPECT_LENGTH(3, kExprI64StoreMem); EXPECT_LENGTH(3, kExprF32StoreMem); EXPECT_LENGTH(3, kExprF64StoreMem); } TEST_F(WasmOpcodeLengthTest, MiscMemExpressions) { EXPECT_LENGTH(1, kExprMemorySize); EXPECT_LENGTH(1, kExprGrowMemory); } TEST_F(WasmOpcodeLengthTest, SimpleExpressions) { EXPECT_LENGTH(1, kExprI32Add); EXPECT_LENGTH(1, kExprI32Sub); EXPECT_LENGTH(1, kExprI32Mul); EXPECT_LENGTH(1, kExprI32DivS); EXPECT_LENGTH(1, kExprI32DivU); EXPECT_LENGTH(1, kExprI32RemS); EXPECT_LENGTH(1, kExprI32RemU); EXPECT_LENGTH(1, kExprI32And); EXPECT_LENGTH(1, kExprI32Ior); EXPECT_LENGTH(1, kExprI32Xor); EXPECT_LENGTH(1, kExprI32Shl); EXPECT_LENGTH(1, kExprI32ShrU); EXPECT_LENGTH(1, kExprI32ShrS); EXPECT_LENGTH(1, kExprI32Eq); EXPECT_LENGTH(1, kExprI32Ne); EXPECT_LENGTH(1, kExprI32LtS); EXPECT_LENGTH(1, kExprI32LeS); EXPECT_LENGTH(1, kExprI32LtU); EXPECT_LENGTH(1, kExprI32LeU); EXPECT_LENGTH(1, kExprI32GtS); EXPECT_LENGTH(1, kExprI32GeS); EXPECT_LENGTH(1, kExprI32GtU); EXPECT_LENGTH(1, kExprI32GeU); EXPECT_LENGTH(1, kExprI32Clz); EXPECT_LENGTH(1, kExprI32Ctz); EXPECT_LENGTH(1, kExprI32Popcnt); EXPECT_LENGTH(1, kExprI32Eqz); EXPECT_LENGTH(1, kExprI64Add); EXPECT_LENGTH(1, kExprI64Sub); EXPECT_LENGTH(1, kExprI64Mul); EXPECT_LENGTH(1, kExprI64DivS); EXPECT_LENGTH(1, kExprI64DivU); EXPECT_LENGTH(1, kExprI64RemS); EXPECT_LENGTH(1, kExprI64RemU); EXPECT_LENGTH(1, kExprI64And); EXPECT_LENGTH(1, kExprI64Ior); EXPECT_LENGTH(1, kExprI64Xor); EXPECT_LENGTH(1, kExprI64Shl); EXPECT_LENGTH(1, kExprI64ShrU); EXPECT_LENGTH(1, kExprI64ShrS); EXPECT_LENGTH(1, kExprI64Eq); EXPECT_LENGTH(1, kExprI64Ne); EXPECT_LENGTH(1, kExprI64LtS); EXPECT_LENGTH(1, kExprI64LeS); EXPECT_LENGTH(1, kExprI64LtU); EXPECT_LENGTH(1, kExprI64LeU); EXPECT_LENGTH(1, kExprI64GtS); EXPECT_LENGTH(1, kExprI64GeS); EXPECT_LENGTH(1, kExprI64GtU); EXPECT_LENGTH(1, kExprI64GeU); EXPECT_LENGTH(1, kExprI64Clz); EXPECT_LENGTH(1, kExprI64Ctz); EXPECT_LENGTH(1, kExprI64Popcnt); EXPECT_LENGTH(1, kExprF32Add); EXPECT_LENGTH(1, kExprF32Sub); EXPECT_LENGTH(1, kExprF32Mul); EXPECT_LENGTH(1, kExprF32Div); EXPECT_LENGTH(1, kExprF32Min); EXPECT_LENGTH(1, kExprF32Max); EXPECT_LENGTH(1, kExprF32Abs); EXPECT_LENGTH(1, kExprF32Neg); EXPECT_LENGTH(1, kExprF32CopySign); EXPECT_LENGTH(1, kExprF32Ceil); EXPECT_LENGTH(1, kExprF32Floor); EXPECT_LENGTH(1, kExprF32Trunc); EXPECT_LENGTH(1, kExprF32NearestInt); EXPECT_LENGTH(1, kExprF32Sqrt); EXPECT_LENGTH(1, kExprF32Eq); EXPECT_LENGTH(1, kExprF32Ne); EXPECT_LENGTH(1, kExprF32Lt); EXPECT_LENGTH(1, kExprF32Le); EXPECT_LENGTH(1, kExprF32Gt); EXPECT_LENGTH(1, kExprF32Ge); EXPECT_LENGTH(1, kExprF64Add); EXPECT_LENGTH(1, kExprF64Sub); EXPECT_LENGTH(1, kExprF64Mul); EXPECT_LENGTH(1, kExprF64Div); EXPECT_LENGTH(1, kExprF64Min); EXPECT_LENGTH(1, kExprF64Max); EXPECT_LENGTH(1, kExprF64Abs); EXPECT_LENGTH(1, kExprF64Neg); EXPECT_LENGTH(1, kExprF64CopySign); EXPECT_LENGTH(1, kExprF64Ceil); EXPECT_LENGTH(1, kExprF64Floor); EXPECT_LENGTH(1, kExprF64Trunc); EXPECT_LENGTH(1, kExprF64NearestInt); EXPECT_LENGTH(1, kExprF64Sqrt); EXPECT_LENGTH(1, kExprF64Eq); EXPECT_LENGTH(1, kExprF64Ne); EXPECT_LENGTH(1, kExprF64Lt); EXPECT_LENGTH(1, kExprF64Le); EXPECT_LENGTH(1, kExprF64Gt); EXPECT_LENGTH(1, kExprF64Ge); EXPECT_LENGTH(1, kExprI32SConvertF32); EXPECT_LENGTH(1, kExprI32SConvertF64); EXPECT_LENGTH(1, kExprI32UConvertF32); EXPECT_LENGTH(1, kExprI32UConvertF64); EXPECT_LENGTH(1, kExprI32ConvertI64); EXPECT_LENGTH(1, kExprI64SConvertF32); EXPECT_LENGTH(1, kExprI64SConvertF64); EXPECT_LENGTH(1, kExprI64UConvertF32); EXPECT_LENGTH(1, kExprI64UConvertF64); EXPECT_LENGTH(1, kExprI64SConvertI32); EXPECT_LENGTH(1, kExprI64UConvertI32); EXPECT_LENGTH(1, kExprF32SConvertI32); EXPECT_LENGTH(1, kExprF32UConvertI32); EXPECT_LENGTH(1, kExprF32SConvertI64); EXPECT_LENGTH(1, kExprF32UConvertI64); EXPECT_LENGTH(1, kExprF32ConvertF64); EXPECT_LENGTH(1, kExprF32ReinterpretI32); EXPECT_LENGTH(1, kExprF64SConvertI32); EXPECT_LENGTH(1, kExprF64UConvertI32); EXPECT_LENGTH(1, kExprF64SConvertI64); EXPECT_LENGTH(1, kExprF64UConvertI64); EXPECT_LENGTH(1, kExprF64ConvertF32); EXPECT_LENGTH(1, kExprF64ReinterpretI64); EXPECT_LENGTH(1, kExprI32ReinterpretF32); EXPECT_LENGTH(1, kExprI64ReinterpretF64); } class WasmOpcodeArityTest : public TestWithZone { public: WasmOpcodeArityTest() : TestWithZone() {} TestModuleEnv module; TestSignatures sigs; }; #define EXPECT_ARITY(expected, ...) \ { \ static const byte code[] = {__VA_ARGS__}; \ EXPECT_EQ(expected, OpcodeArity(&module, sig, code, code + sizeof(code))); \ } TEST_F(WasmOpcodeArityTest, Control) { FunctionSig* sig = sigs.v_v(); EXPECT_ARITY(0, kExprNop); EXPECT_ARITY(0, kExprBlock, 0); EXPECT_ARITY(1, kExprBlock, 1); EXPECT_ARITY(2, kExprBlock, 2); EXPECT_ARITY(5, kExprBlock, 5); EXPECT_ARITY(10, kExprBlock, 10); EXPECT_ARITY(0, kExprLoop, 0); EXPECT_ARITY(1, kExprLoop, 1); EXPECT_ARITY(2, kExprLoop, 2); EXPECT_ARITY(7, kExprLoop, 7); EXPECT_ARITY(11, kExprLoop, 11); EXPECT_ARITY(2, kExprIf); EXPECT_ARITY(3, kExprIfElse); EXPECT_ARITY(3, kExprSelect); EXPECT_ARITY(1, kExprBr); EXPECT_ARITY(2, kExprBrIf); { sig = sigs.v_v(); EXPECT_ARITY(0, kExprReturn); sig = sigs.i_i(); EXPECT_ARITY(1, kExprReturn); } } TEST_F(WasmOpcodeArityTest, Misc) { FunctionSig* sig = sigs.v_v(); EXPECT_ARITY(0, kExprI8Const); EXPECT_ARITY(0, kExprI32Const); EXPECT_ARITY(0, kExprF32Const); EXPECT_ARITY(0, kExprI64Const); EXPECT_ARITY(0, kExprF64Const); EXPECT_ARITY(0, kExprGetLocal); EXPECT_ARITY(1, kExprSetLocal); EXPECT_ARITY(0, kExprLoadGlobal); EXPECT_ARITY(1, kExprStoreGlobal); } TEST_F(WasmOpcodeArityTest, Calls) { module.AddFunction(sigs.i_ii()); module.AddFunction(sigs.i_i()); module.AddSignature(sigs.f_ff()); module.AddSignature(sigs.i_d()); module.AddImport(sigs.f_ff()); module.AddImport(sigs.i_d()); { FunctionSig* sig = sigs.i_ii(); EXPECT_ARITY(2, kExprCallFunction, 0); EXPECT_ARITY(2, kExprCallImport, 0); EXPECT_ARITY(3, kExprCallIndirect, 0); EXPECT_ARITY(1, kExprBr); EXPECT_ARITY(2, kExprBrIf); } { FunctionSig* sig = sigs.v_v(); EXPECT_ARITY(1, kExprCallFunction, 1); EXPECT_ARITY(1, kExprCallImport, 1); EXPECT_ARITY(2, kExprCallIndirect, 1); EXPECT_ARITY(1, kExprBr); EXPECT_ARITY(2, kExprBrIf); } } TEST_F(WasmOpcodeArityTest, LoadsAndStores) { FunctionSig* sig = sigs.v_v(); EXPECT_ARITY(1, kExprI32LoadMem8S); EXPECT_ARITY(1, kExprI32LoadMem8U); EXPECT_ARITY(1, kExprI32LoadMem16S); EXPECT_ARITY(1, kExprI32LoadMem16U); EXPECT_ARITY(1, kExprI32LoadMem); EXPECT_ARITY(1, kExprI64LoadMem8S); EXPECT_ARITY(1, kExprI64LoadMem8U); EXPECT_ARITY(1, kExprI64LoadMem16S); EXPECT_ARITY(1, kExprI64LoadMem16U); EXPECT_ARITY(1, kExprI64LoadMem32S); EXPECT_ARITY(1, kExprI64LoadMem32U); EXPECT_ARITY(1, kExprI64LoadMem); EXPECT_ARITY(1, kExprF32LoadMem); EXPECT_ARITY(1, kExprF64LoadMem); EXPECT_ARITY(2, kExprI32StoreMem8); EXPECT_ARITY(2, kExprI32StoreMem16); EXPECT_ARITY(2, kExprI32StoreMem); EXPECT_ARITY(2, kExprI64StoreMem8); EXPECT_ARITY(2, kExprI64StoreMem16); EXPECT_ARITY(2, kExprI64StoreMem32); EXPECT_ARITY(2, kExprI64StoreMem); EXPECT_ARITY(2, kExprF32StoreMem); EXPECT_ARITY(2, kExprF64StoreMem); } TEST_F(WasmOpcodeArityTest, MiscMemExpressions) { FunctionSig* sig = sigs.v_v(); EXPECT_ARITY(0, kExprMemorySize); EXPECT_ARITY(1, kExprGrowMemory); } TEST_F(WasmOpcodeArityTest, SimpleExpressions) { FunctionSig* sig = sigs.v_v(); EXPECT_ARITY(2, kExprI32Add); EXPECT_ARITY(2, kExprI32Sub); EXPECT_ARITY(2, kExprI32Mul); EXPECT_ARITY(2, kExprI32DivS); EXPECT_ARITY(2, kExprI32DivU); EXPECT_ARITY(2, kExprI32RemS); EXPECT_ARITY(2, kExprI32RemU); EXPECT_ARITY(2, kExprI32And); EXPECT_ARITY(2, kExprI32Ior); EXPECT_ARITY(2, kExprI32Xor); EXPECT_ARITY(2, kExprI32Shl); EXPECT_ARITY(2, kExprI32ShrU); EXPECT_ARITY(2, kExprI32ShrS); EXPECT_ARITY(2, kExprI32Eq); EXPECT_ARITY(2, kExprI32Ne); EXPECT_ARITY(2, kExprI32LtS); EXPECT_ARITY(2, kExprI32LeS); EXPECT_ARITY(2, kExprI32LtU); EXPECT_ARITY(2, kExprI32LeU); EXPECT_ARITY(2, kExprI32GtS); EXPECT_ARITY(2, kExprI32GeS); EXPECT_ARITY(2, kExprI32GtU); EXPECT_ARITY(2, kExprI32GeU); EXPECT_ARITY(1, kExprI32Clz); EXPECT_ARITY(1, kExprI32Ctz); EXPECT_ARITY(1, kExprI32Popcnt); EXPECT_ARITY(1, kExprI32Eqz); EXPECT_ARITY(2, kExprI64Add); EXPECT_ARITY(2, kExprI64Sub); EXPECT_ARITY(2, kExprI64Mul); EXPECT_ARITY(2, kExprI64DivS); EXPECT_ARITY(2, kExprI64DivU); EXPECT_ARITY(2, kExprI64RemS); EXPECT_ARITY(2, kExprI64RemU); EXPECT_ARITY(2, kExprI64And); EXPECT_ARITY(2, kExprI64Ior); EXPECT_ARITY(2, kExprI64Xor); EXPECT_ARITY(2, kExprI64Shl); EXPECT_ARITY(2, kExprI64ShrU); EXPECT_ARITY(2, kExprI64ShrS); EXPECT_ARITY(2, kExprI64Eq); EXPECT_ARITY(2, kExprI64Ne); EXPECT_ARITY(2, kExprI64LtS); EXPECT_ARITY(2, kExprI64LeS); EXPECT_ARITY(2, kExprI64LtU); EXPECT_ARITY(2, kExprI64LeU); EXPECT_ARITY(2, kExprI64GtS); EXPECT_ARITY(2, kExprI64GeS); EXPECT_ARITY(2, kExprI64GtU); EXPECT_ARITY(2, kExprI64GeU); EXPECT_ARITY(1, kExprI64Clz); EXPECT_ARITY(1, kExprI64Ctz); EXPECT_ARITY(1, kExprI64Popcnt); EXPECT_ARITY(2, kExprF32Add); EXPECT_ARITY(2, kExprF32Sub); EXPECT_ARITY(2, kExprF32Mul); EXPECT_ARITY(2, kExprF32Div); EXPECT_ARITY(2, kExprF32Min); EXPECT_ARITY(2, kExprF32Max); EXPECT_ARITY(1, kExprF32Abs); EXPECT_ARITY(1, kExprF32Neg); EXPECT_ARITY(2, kExprF32CopySign); EXPECT_ARITY(1, kExprF32Ceil); EXPECT_ARITY(1, kExprF32Floor); EXPECT_ARITY(1, kExprF32Trunc); EXPECT_ARITY(1, kExprF32NearestInt); EXPECT_ARITY(1, kExprF32Sqrt); EXPECT_ARITY(2, kExprF32Eq); EXPECT_ARITY(2, kExprF32Ne); EXPECT_ARITY(2, kExprF32Lt); EXPECT_ARITY(2, kExprF32Le); EXPECT_ARITY(2, kExprF32Gt); EXPECT_ARITY(2, kExprF32Ge); EXPECT_ARITY(2, kExprF64Add); EXPECT_ARITY(2, kExprF64Sub); EXPECT_ARITY(2, kExprF64Mul); EXPECT_ARITY(2, kExprF64Div); EXPECT_ARITY(2, kExprF64Min); EXPECT_ARITY(2, kExprF64Max); EXPECT_ARITY(1, kExprF64Abs); EXPECT_ARITY(1, kExprF64Neg); EXPECT_ARITY(2, kExprF64CopySign); EXPECT_ARITY(1, kExprF64Ceil); EXPECT_ARITY(1, kExprF64Floor); EXPECT_ARITY(1, kExprF64Trunc); EXPECT_ARITY(1, kExprF64NearestInt); EXPECT_ARITY(1, kExprF64Sqrt); EXPECT_ARITY(2, kExprF64Eq); EXPECT_ARITY(2, kExprF64Ne); EXPECT_ARITY(2, kExprF64Lt); EXPECT_ARITY(2, kExprF64Le); EXPECT_ARITY(2, kExprF64Gt); EXPECT_ARITY(2, kExprF64Ge); EXPECT_ARITY(1, kExprI32SConvertF32); EXPECT_ARITY(1, kExprI32SConvertF64); EXPECT_ARITY(1, kExprI32UConvertF32); EXPECT_ARITY(1, kExprI32UConvertF64); EXPECT_ARITY(1, kExprI32ConvertI64); EXPECT_ARITY(1, kExprI64SConvertF32); EXPECT_ARITY(1, kExprI64SConvertF64); EXPECT_ARITY(1, kExprI64UConvertF32); EXPECT_ARITY(1, kExprI64UConvertF64); EXPECT_ARITY(1, kExprI64SConvertI32); EXPECT_ARITY(1, kExprI64UConvertI32); EXPECT_ARITY(1, kExprF32SConvertI32); EXPECT_ARITY(1, kExprF32UConvertI32); EXPECT_ARITY(1, kExprF32SConvertI64); EXPECT_ARITY(1, kExprF32UConvertI64); EXPECT_ARITY(1, kExprF32ConvertF64); EXPECT_ARITY(1, kExprF32ReinterpretI32); EXPECT_ARITY(1, kExprF64SConvertI32); EXPECT_ARITY(1, kExprF64UConvertI32); EXPECT_ARITY(1, kExprF64SConvertI64); EXPECT_ARITY(1, kExprF64UConvertI64); EXPECT_ARITY(1, kExprF64ConvertF32); EXPECT_ARITY(1, kExprF64ReinterpretI64); EXPECT_ARITY(1, kExprI32ReinterpretF32); EXPECT_ARITY(1, kExprI64ReinterpretF64); } typedef std::vector* LocalTypeMap; class LocalDeclDecoderTest : public TestWithZone { public: size_t ExpectRun(LocalTypeMap map, size_t pos, LocalType expected, size_t count) { for (size_t i = 0; i < count; i++) { EXPECT_EQ(expected, map->at(pos++)); } return pos; } }; TEST_F(LocalDeclDecoderTest, NoLocals) { static const byte data[] = {0}; base::AccountingAllocator allocator; LocalTypeMap map = DecodeLocalDeclsForTesting(&allocator, data, data + sizeof(data)); EXPECT_EQ(0, map->size()); if (map) delete map; } TEST_F(LocalDeclDecoderTest, OneLocal) { for (size_t i = 0; i < arraysize(kLocalTypes); i++) { LocalType type = kLocalTypes[i]; const byte data[] = { 1, 1, static_cast(WasmOpcodes::LocalTypeCodeFor(type))}; base::AccountingAllocator allocator; LocalTypeMap map = DecodeLocalDeclsForTesting(&allocator, data, data + sizeof(data)); EXPECT_EQ(1, map->size()); EXPECT_EQ(type, map->at(0)); if (map) delete map; } } TEST_F(LocalDeclDecoderTest, FiveLocals) { for (size_t i = 0; i < arraysize(kLocalTypes); i++) { LocalType type = kLocalTypes[i]; const byte data[] = { 1, 5, static_cast(WasmOpcodes::LocalTypeCodeFor(type))}; base::AccountingAllocator allocator; LocalTypeMap map = DecodeLocalDeclsForTesting(&allocator, data, data + sizeof(data)); EXPECT_EQ(5, map->size()); ExpectRun(map, 0, type, 5); if (map) delete map; } } TEST_F(LocalDeclDecoderTest, MixedLocals) { for (byte a = 0; a < 3; a++) { for (byte b = 0; b < 3; b++) { for (byte c = 0; c < 3; c++) { for (byte d = 0; d < 3; d++) { const byte data[] = {4, a, kLocalI32, b, kLocalI64, c, kLocalF32, d, kLocalF64}; base::AccountingAllocator allocator; LocalTypeMap map = DecodeLocalDeclsForTesting(&allocator, data, data + sizeof(data)); EXPECT_EQ(a + b + c + d, map->size()); size_t pos = 0; pos = ExpectRun(map, pos, kAstI32, a); pos = ExpectRun(map, pos, kAstI64, b); pos = ExpectRun(map, pos, kAstF32, c); pos = ExpectRun(map, pos, kAstF64, d); if (map) delete map; } } } } } TEST_F(LocalDeclDecoderTest, UseEncoder) { const byte* data = nullptr; const byte* end = nullptr; LocalDeclEncoder local_decls; local_decls.AddLocals(5, kAstF32); local_decls.AddLocals(1337, kAstI32); local_decls.AddLocals(212, kAstI64); local_decls.Prepend(&data, &end); base::AccountingAllocator allocator; LocalTypeMap map = DecodeLocalDeclsForTesting(&allocator, data, end); size_t pos = 0; pos = ExpectRun(map, pos, kAstF32, 5); pos = ExpectRun(map, pos, kAstI32, 1337); pos = ExpectRun(map, pos, kAstI64, 212); if (map) delete map; delete[] data; } } // namespace wasm } // namespace internal } // namespace v8