// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include #include #include #include "src/v8.h" #include "src/ast-value-factory.h" #include "src/compiler.h" #include "src/execution.h" #include "src/isolate.h" #include "src/objects.h" #include "src/parser.h" #include "src/preparser.h" #include "src/rewriter.h" #include "src/scanner-character-streams.h" #include "src/token.h" #include "src/utils.h" #include "test/cctest/cctest.h" TEST(ScanKeywords) { struct KeywordToken { const char* keyword; i::Token::Value token; }; static const KeywordToken keywords[] = { #define KEYWORD(t, s, d) { s, i::Token::t }, TOKEN_LIST(IGNORE_TOKEN, KEYWORD) #undef KEYWORD { NULL, i::Token::IDENTIFIER } }; KeywordToken key_token; i::UnicodeCache unicode_cache; i::byte buffer[32]; for (int i = 0; (key_token = keywords[i]).keyword != NULL; i++) { const i::byte* keyword = reinterpret_cast(key_token.keyword); int length = i::StrLength(key_token.keyword); CHECK(static_cast(sizeof(buffer)) >= length); { i::Utf8ToUtf16CharacterStream stream(keyword, length); i::Scanner scanner(&unicode_cache); // The scanner should parse Harmony keywords for this test. scanner.SetHarmonyScoping(true); scanner.SetHarmonyModules(true); scanner.SetHarmonyClasses(true); scanner.Initialize(&stream); CHECK_EQ(key_token.token, scanner.Next()); CHECK_EQ(i::Token::EOS, scanner.Next()); } // Removing characters will make keyword matching fail. { i::Utf8ToUtf16CharacterStream stream(keyword, length - 1); i::Scanner scanner(&unicode_cache); scanner.Initialize(&stream); CHECK_EQ(i::Token::IDENTIFIER, scanner.Next()); CHECK_EQ(i::Token::EOS, scanner.Next()); } // Adding characters will make keyword matching fail. static const char chars_to_append[] = { 'z', '0', '_' }; for (int j = 0; j < static_cast(arraysize(chars_to_append)); ++j) { i::MemMove(buffer, keyword, length); buffer[length] = chars_to_append[j]; i::Utf8ToUtf16CharacterStream stream(buffer, length + 1); i::Scanner scanner(&unicode_cache); scanner.Initialize(&stream); CHECK_EQ(i::Token::IDENTIFIER, scanner.Next()); CHECK_EQ(i::Token::EOS, scanner.Next()); } // Replacing characters will make keyword matching fail. { i::MemMove(buffer, keyword, length); buffer[length - 1] = '_'; i::Utf8ToUtf16CharacterStream stream(buffer, length); i::Scanner scanner(&unicode_cache); scanner.Initialize(&stream); CHECK_EQ(i::Token::IDENTIFIER, scanner.Next()); CHECK_EQ(i::Token::EOS, scanner.Next()); } } } TEST(ScanHTMLEndComments) { v8::V8::Initialize(); v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope handles(isolate); // Regression test. See: // http://code.google.com/p/chromium/issues/detail?id=53548 // Tests that --> is correctly interpreted as comment-to-end-of-line if there // is only whitespace before it on the line (with comments considered as // whitespace, even a multiline-comment containing a newline). // This was not the case if it occurred before the first real token // in the input. const char* tests[] = { // Before first real token. "--> is eol-comment\nvar y = 37;\n", "\n --> is eol-comment\nvar y = 37;\n", "/* precomment */ --> is eol-comment\nvar y = 37;\n", "\n/* precomment */ --> is eol-comment\nvar y = 37;\n", // After first real token. "var x = 42;\n--> is eol-comment\nvar y = 37;\n", "var x = 42;\n/* precomment */ --> is eol-comment\nvar y = 37;\n", NULL }; const char* fail_tests[] = { "x --> is eol-comment\nvar y = 37;\n", "\"\\n\" --> is eol-comment\nvar y = 37;\n", "x/* precomment */ --> is eol-comment\nvar y = 37;\n", "x/* precomment\n */ --> is eol-comment\nvar y = 37;\n", "var x = 42; --> is eol-comment\nvar y = 37;\n", "var x = 42; /* precomment\n */ --> is eol-comment\nvar y = 37;\n", NULL }; // Parser/Scanner needs a stack limit. CcTest::i_isolate()->stack_guard()->SetStackLimit( i::GetCurrentStackPosition() - 128 * 1024); uintptr_t stack_limit = CcTest::i_isolate()->stack_guard()->real_climit(); for (int i = 0; tests[i]; i++) { const i::byte* source = reinterpret_cast(tests[i]); i::Utf8ToUtf16CharacterStream stream(source, i::StrLength(tests[i])); i::CompleteParserRecorder log; i::Scanner scanner(CcTest::i_isolate()->unicode_cache()); scanner.Initialize(&stream); i::PreParser preparser(&scanner, &log, stack_limit); preparser.set_allow_lazy(true); i::PreParser::PreParseResult result = preparser.PreParseProgram(); CHECK_EQ(i::PreParser::kPreParseSuccess, result); CHECK(!log.HasError()); } for (int i = 0; fail_tests[i]; i++) { const i::byte* source = reinterpret_cast(fail_tests[i]); i::Utf8ToUtf16CharacterStream stream(source, i::StrLength(fail_tests[i])); i::CompleteParserRecorder log; i::Scanner scanner(CcTest::i_isolate()->unicode_cache()); scanner.Initialize(&stream); i::PreParser preparser(&scanner, &log, stack_limit); preparser.set_allow_lazy(true); i::PreParser::PreParseResult result = preparser.PreParseProgram(); // Even in the case of a syntax error, kPreParseSuccess is returned. CHECK_EQ(i::PreParser::kPreParseSuccess, result); CHECK(log.HasError()); } } class ScriptResource : public v8::String::ExternalAsciiStringResource { public: ScriptResource(const char* data, size_t length) : data_(data), length_(length) { } const char* data() const { return data_; } size_t length() const { return length_; } private: const char* data_; size_t length_; }; TEST(UsingCachedData) { v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope handles(isolate); v8::Local context = v8::Context::New(isolate); v8::Context::Scope context_scope(context); CcTest::i_isolate()->stack_guard()->SetStackLimit( i::GetCurrentStackPosition() - 128 * 1024); // Source containing functions that might be lazily compiled and all types // of symbols (string, propertyName, regexp). const char* source = "var x = 42;" "function foo(a) { return function nolazy(b) { return a + b; } }" "function bar(a) { if (a) return function lazy(b) { return b; } }" "var z = {'string': 'string literal', bareword: 'propertyName', " " 42: 'number literal', for: 'keyword as propertyName', " " f\\u006fr: 'keyword propertyname with escape'};" "var v = /RegExp Literal/;" "var w = /RegExp Literal\\u0020With Escape/gin;" "var y = { get getter() { return 42; }, " " set setter(v) { this.value = v; }};" "var f = a => function (b) { return a + b; };" "var g = a => b => a + b;"; int source_length = i::StrLength(source); // ScriptResource will be deleted when the corresponding String is GCd. v8::ScriptCompiler::Source script_source(v8::String::NewExternal( isolate, new ScriptResource(source, source_length))); i::FLAG_harmony_arrow_functions = true; i::FLAG_min_preparse_length = 0; v8::ScriptCompiler::Compile(isolate, &script_source, v8::ScriptCompiler::kProduceParserCache); CHECK(script_source.GetCachedData()); // Compile the script again, using the cached data. bool lazy_flag = i::FLAG_lazy; i::FLAG_lazy = true; v8::ScriptCompiler::Compile(isolate, &script_source, v8::ScriptCompiler::kConsumeParserCache); i::FLAG_lazy = false; v8::ScriptCompiler::CompileUnbound(isolate, &script_source, v8::ScriptCompiler::kConsumeParserCache); i::FLAG_lazy = lazy_flag; } TEST(PreparseFunctionDataIsUsed) { // This tests that we actually do use the function data generated by the // preparser. // Make preparsing work for short scripts. i::FLAG_min_preparse_length = 0; i::FLAG_harmony_arrow_functions = true; v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope handles(isolate); v8::Local context = v8::Context::New(isolate); v8::Context::Scope context_scope(context); CcTest::i_isolate()->stack_guard()->SetStackLimit( i::GetCurrentStackPosition() - 128 * 1024); const char* good_code[] = { "function this_is_lazy() { var a; } function foo() { return 25; } foo();", "var this_is_lazy = () => { var a; }; var foo = () => 25; foo();", }; // Insert a syntax error inside the lazy function. const char* bad_code[] = { "function this_is_lazy() { if ( } function foo() { return 25; } foo();", "var this_is_lazy = () => { if ( }; var foo = () => 25; foo();", }; for (unsigned i = 0; i < arraysize(good_code); i++) { v8::ScriptCompiler::Source good_source(v8_str(good_code[i])); v8::ScriptCompiler::Compile(isolate, &good_source, v8::ScriptCompiler::kProduceDataToCache); const v8::ScriptCompiler::CachedData* cached_data = good_source.GetCachedData(); CHECK(cached_data->data != NULL); CHECK_GT(cached_data->length, 0); // Now compile the erroneous code with the good preparse data. If the // preparse data is used, the lazy function is skipped and it should // compile fine. v8::ScriptCompiler::Source bad_source( v8_str(bad_code[i]), new v8::ScriptCompiler::CachedData( cached_data->data, cached_data->length)); v8::Local result = v8::ScriptCompiler::Compile(isolate, &bad_source)->Run(); CHECK(result->IsInt32()); CHECK_EQ(25, result->Int32Value()); } } TEST(StandAlonePreParser) { v8::V8::Initialize(); CcTest::i_isolate()->stack_guard()->SetStackLimit( i::GetCurrentStackPosition() - 128 * 1024); const char* programs[] = { "{label: 42}", "var x = 42;", "function foo(x, y) { return x + y; }", "%ArgleBargle(glop);", "var x = new new Function('this.x = 42');", "var f = (x, y) => x + y;", NULL }; uintptr_t stack_limit = CcTest::i_isolate()->stack_guard()->real_climit(); for (int i = 0; programs[i]; i++) { const char* program = programs[i]; i::Utf8ToUtf16CharacterStream stream( reinterpret_cast(program), static_cast(strlen(program))); i::CompleteParserRecorder log; i::Scanner scanner(CcTest::i_isolate()->unicode_cache()); scanner.Initialize(&stream); i::PreParser preparser(&scanner, &log, stack_limit); preparser.set_allow_lazy(true); preparser.set_allow_natives_syntax(true); preparser.set_allow_arrow_functions(true); i::PreParser::PreParseResult result = preparser.PreParseProgram(); CHECK_EQ(i::PreParser::kPreParseSuccess, result); CHECK(!log.HasError()); } } TEST(StandAlonePreParserNoNatives) { v8::V8::Initialize(); CcTest::i_isolate()->stack_guard()->SetStackLimit( i::GetCurrentStackPosition() - 128 * 1024); const char* programs[] = { "%ArgleBargle(glop);", "var x = %_IsSmi(42);", NULL }; uintptr_t stack_limit = CcTest::i_isolate()->stack_guard()->real_climit(); for (int i = 0; programs[i]; i++) { const char* program = programs[i]; i::Utf8ToUtf16CharacterStream stream( reinterpret_cast(program), static_cast(strlen(program))); i::CompleteParserRecorder log; i::Scanner scanner(CcTest::i_isolate()->unicode_cache()); scanner.Initialize(&stream); // Preparser defaults to disallowing natives syntax. i::PreParser preparser(&scanner, &log, stack_limit); preparser.set_allow_lazy(true); i::PreParser::PreParseResult result = preparser.PreParseProgram(); CHECK_EQ(i::PreParser::kPreParseSuccess, result); CHECK(log.HasError()); } } TEST(PreparsingObjectLiterals) { // Regression test for a bug where the symbol stream produced by PreParser // didn't match what Parser wanted to consume. v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope handles(isolate); v8::Local context = v8::Context::New(isolate); v8::Context::Scope context_scope(context); CcTest::i_isolate()->stack_guard()->SetStackLimit( i::GetCurrentStackPosition() - 128 * 1024); { const char* source = "var myo = {if: \"foo\"}; myo.if;"; v8::Local result = ParserCacheCompileRun(source); CHECK(result->IsString()); v8::String::Utf8Value utf8(result); CHECK_EQ("foo", *utf8); } { const char* source = "var myo = {\"bar\": \"foo\"}; myo[\"bar\"];"; v8::Local result = ParserCacheCompileRun(source); CHECK(result->IsString()); v8::String::Utf8Value utf8(result); CHECK_EQ("foo", *utf8); } { const char* source = "var myo = {1: \"foo\"}; myo[1];"; v8::Local result = ParserCacheCompileRun(source); CHECK(result->IsString()); v8::String::Utf8Value utf8(result); CHECK_EQ("foo", *utf8); } } TEST(RegressChromium62639) { v8::V8::Initialize(); i::Isolate* isolate = CcTest::i_isolate(); isolate->stack_guard()->SetStackLimit(i::GetCurrentStackPosition() - 128 * 1024); const char* program = "var x = 'something';\n" "escape: function() {}"; // Fails parsing expecting an identifier after "function". // Before fix, didn't check *ok after Expect(Token::Identifier, ok), // and then used the invalid currently scanned literal. This always // failed in debug mode, and sometimes crashed in release mode. i::Utf8ToUtf16CharacterStream stream( reinterpret_cast(program), static_cast(strlen(program))); i::CompleteParserRecorder log; i::Scanner scanner(CcTest::i_isolate()->unicode_cache()); scanner.Initialize(&stream); i::PreParser preparser(&scanner, &log, CcTest::i_isolate()->stack_guard()->real_climit()); preparser.set_allow_lazy(true); i::PreParser::PreParseResult result = preparser.PreParseProgram(); // Even in the case of a syntax error, kPreParseSuccess is returned. CHECK_EQ(i::PreParser::kPreParseSuccess, result); CHECK(log.HasError()); } TEST(Regress928) { v8::V8::Initialize(); i::Isolate* isolate = CcTest::i_isolate(); i::Factory* factory = isolate->factory(); // Preparsing didn't consider the catch clause of a try statement // as with-content, which made it assume that a function inside // the block could be lazily compiled, and an extra, unexpected, // entry was added to the data. isolate->stack_guard()->SetStackLimit(i::GetCurrentStackPosition() - 128 * 1024); const char* program = "try { } catch (e) { var foo = function () { /* first */ } }" "var bar = function () { /* second */ }"; v8::HandleScope handles(CcTest::isolate()); i::Handle source = factory->NewStringFromAsciiChecked(program); i::GenericStringUtf16CharacterStream stream(source, 0, source->length()); i::CompleteParserRecorder log; i::Scanner scanner(CcTest::i_isolate()->unicode_cache()); scanner.Initialize(&stream); i::PreParser preparser(&scanner, &log, CcTest::i_isolate()->stack_guard()->real_climit()); preparser.set_allow_lazy(true); i::PreParser::PreParseResult result = preparser.PreParseProgram(); CHECK_EQ(i::PreParser::kPreParseSuccess, result); i::ScriptData* sd = log.GetScriptData(); i::ParseData pd(sd); pd.Initialize(); int first_function = static_cast(strstr(program, "function") - program); int first_lbrace = first_function + i::StrLength("function () "); CHECK_EQ('{', program[first_lbrace]); i::FunctionEntry entry1 = pd.GetFunctionEntry(first_lbrace); CHECK(!entry1.is_valid()); int second_function = static_cast(strstr(program + first_lbrace, "function") - program); int second_lbrace = second_function + i::StrLength("function () "); CHECK_EQ('{', program[second_lbrace]); i::FunctionEntry entry2 = pd.GetFunctionEntry(second_lbrace); CHECK(entry2.is_valid()); CHECK_EQ('}', program[entry2.end_pos() - 1]); delete sd; } TEST(PreParseOverflow) { v8::V8::Initialize(); CcTest::i_isolate()->stack_guard()->SetStackLimit( i::GetCurrentStackPosition() - 128 * 1024); size_t kProgramSize = 1024 * 1024; i::SmartArrayPointer program(i::NewArray(kProgramSize + 1)); memset(program.get(), '(', kProgramSize); program[kProgramSize] = '\0'; uintptr_t stack_limit = CcTest::i_isolate()->stack_guard()->real_climit(); i::Utf8ToUtf16CharacterStream stream( reinterpret_cast(program.get()), static_cast(kProgramSize)); i::CompleteParserRecorder log; i::Scanner scanner(CcTest::i_isolate()->unicode_cache()); scanner.Initialize(&stream); i::PreParser preparser(&scanner, &log, stack_limit); preparser.set_allow_lazy(true); preparser.set_allow_arrow_functions(true); i::PreParser::PreParseResult result = preparser.PreParseProgram(); CHECK_EQ(i::PreParser::kPreParseStackOverflow, result); } class TestExternalResource: public v8::String::ExternalStringResource { public: explicit TestExternalResource(uint16_t* data, int length) : data_(data), length_(static_cast(length)) { } ~TestExternalResource() { } const uint16_t* data() const { return data_; } size_t length() const { return length_; } private: uint16_t* data_; size_t length_; }; #define CHECK_EQU(v1, v2) CHECK_EQ(static_cast(v1), static_cast(v2)) void TestCharacterStream(const char* ascii_source, unsigned length, unsigned start = 0, unsigned end = 0) { if (end == 0) end = length; unsigned sub_length = end - start; i::Isolate* isolate = CcTest::i_isolate(); i::Factory* factory = isolate->factory(); i::HandleScope test_scope(isolate); i::SmartArrayPointer uc16_buffer(new i::uc16[length]); for (unsigned i = 0; i < length; i++) { uc16_buffer[i] = static_cast(ascii_source[i]); } i::Vector ascii_vector(ascii_source, static_cast(length)); i::Handle ascii_string = factory->NewStringFromAscii(ascii_vector).ToHandleChecked(); TestExternalResource resource(uc16_buffer.get(), length); i::Handle uc16_string( factory->NewExternalStringFromTwoByte(&resource).ToHandleChecked()); i::ExternalTwoByteStringUtf16CharacterStream uc16_stream( i::Handle::cast(uc16_string), start, end); i::GenericStringUtf16CharacterStream string_stream(ascii_string, start, end); i::Utf8ToUtf16CharacterStream utf8_stream( reinterpret_cast(ascii_source), end); utf8_stream.SeekForward(start); unsigned i = start; while (i < end) { // Read streams one char at a time CHECK_EQU(i, uc16_stream.pos()); CHECK_EQU(i, string_stream.pos()); CHECK_EQU(i, utf8_stream.pos()); int32_t c0 = ascii_source[i]; int32_t c1 = uc16_stream.Advance(); int32_t c2 = string_stream.Advance(); int32_t c3 = utf8_stream.Advance(); i++; CHECK_EQ(c0, c1); CHECK_EQ(c0, c2); CHECK_EQ(c0, c3); CHECK_EQU(i, uc16_stream.pos()); CHECK_EQU(i, string_stream.pos()); CHECK_EQU(i, utf8_stream.pos()); } while (i > start + sub_length / 4) { // Pushback, re-read, pushback again. int32_t c0 = ascii_source[i - 1]; CHECK_EQU(i, uc16_stream.pos()); CHECK_EQU(i, string_stream.pos()); CHECK_EQU(i, utf8_stream.pos()); uc16_stream.PushBack(c0); string_stream.PushBack(c0); utf8_stream.PushBack(c0); i--; CHECK_EQU(i, uc16_stream.pos()); CHECK_EQU(i, string_stream.pos()); CHECK_EQU(i, utf8_stream.pos()); int32_t c1 = uc16_stream.Advance(); int32_t c2 = string_stream.Advance(); int32_t c3 = utf8_stream.Advance(); i++; CHECK_EQU(i, uc16_stream.pos()); CHECK_EQU(i, string_stream.pos()); CHECK_EQU(i, utf8_stream.pos()); CHECK_EQ(c0, c1); CHECK_EQ(c0, c2); CHECK_EQ(c0, c3); uc16_stream.PushBack(c0); string_stream.PushBack(c0); utf8_stream.PushBack(c0); i--; CHECK_EQU(i, uc16_stream.pos()); CHECK_EQU(i, string_stream.pos()); CHECK_EQU(i, utf8_stream.pos()); } unsigned halfway = start + sub_length / 2; uc16_stream.SeekForward(halfway - i); string_stream.SeekForward(halfway - i); utf8_stream.SeekForward(halfway - i); i = halfway; CHECK_EQU(i, uc16_stream.pos()); CHECK_EQU(i, string_stream.pos()); CHECK_EQU(i, utf8_stream.pos()); while (i < end) { // Read streams one char at a time CHECK_EQU(i, uc16_stream.pos()); CHECK_EQU(i, string_stream.pos()); CHECK_EQU(i, utf8_stream.pos()); int32_t c0 = ascii_source[i]; int32_t c1 = uc16_stream.Advance(); int32_t c2 = string_stream.Advance(); int32_t c3 = utf8_stream.Advance(); i++; CHECK_EQ(c0, c1); CHECK_EQ(c0, c2); CHECK_EQ(c0, c3); CHECK_EQU(i, uc16_stream.pos()); CHECK_EQU(i, string_stream.pos()); CHECK_EQU(i, utf8_stream.pos()); } int32_t c1 = uc16_stream.Advance(); int32_t c2 = string_stream.Advance(); int32_t c3 = utf8_stream.Advance(); CHECK_LT(c1, 0); CHECK_LT(c2, 0); CHECK_LT(c3, 0); } TEST(CharacterStreams) { v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope handles(isolate); v8::Local context = v8::Context::New(isolate); v8::Context::Scope context_scope(context); TestCharacterStream("abc\0\n\r\x7f", 7); static const unsigned kBigStringSize = 4096; char buffer[kBigStringSize + 1]; for (unsigned i = 0; i < kBigStringSize; i++) { buffer[i] = static_cast(i & 0x7f); } TestCharacterStream(buffer, kBigStringSize); TestCharacterStream(buffer, kBigStringSize, 576, 3298); TestCharacterStream("\0", 1); TestCharacterStream("", 0); } TEST(Utf8CharacterStream) { static const unsigned kMaxUC16CharU = unibrow::Utf8::kMaxThreeByteChar; static const int kMaxUC16Char = static_cast(kMaxUC16CharU); static const int kAllUtf8CharsSize = (unibrow::Utf8::kMaxOneByteChar + 1) + (unibrow::Utf8::kMaxTwoByteChar - unibrow::Utf8::kMaxOneByteChar) * 2 + (unibrow::Utf8::kMaxThreeByteChar - unibrow::Utf8::kMaxTwoByteChar) * 3; static const unsigned kAllUtf8CharsSizeU = static_cast(kAllUtf8CharsSize); char buffer[kAllUtf8CharsSizeU]; unsigned cursor = 0; for (int i = 0; i <= kMaxUC16Char; i++) { cursor += unibrow::Utf8::Encode(buffer + cursor, i, unibrow::Utf16::kNoPreviousCharacter); } DCHECK(cursor == kAllUtf8CharsSizeU); i::Utf8ToUtf16CharacterStream stream(reinterpret_cast(buffer), kAllUtf8CharsSizeU); for (int i = 0; i <= kMaxUC16Char; i++) { CHECK_EQU(i, stream.pos()); int32_t c = stream.Advance(); CHECK_EQ(i, c); CHECK_EQU(i + 1, stream.pos()); } for (int i = kMaxUC16Char; i >= 0; i--) { CHECK_EQU(i + 1, stream.pos()); stream.PushBack(i); CHECK_EQU(i, stream.pos()); } int i = 0; while (stream.pos() < kMaxUC16CharU) { CHECK_EQU(i, stream.pos()); unsigned progress = stream.SeekForward(12); i += progress; int32_t c = stream.Advance(); if (i <= kMaxUC16Char) { CHECK_EQ(i, c); } else { CHECK_EQ(-1, c); } i += 1; CHECK_EQU(i, stream.pos()); } } #undef CHECK_EQU void TestStreamScanner(i::Utf16CharacterStream* stream, i::Token::Value* expected_tokens, int skip_pos = 0, // Zero means not skipping. int skip_to = 0) { i::Scanner scanner(CcTest::i_isolate()->unicode_cache()); scanner.Initialize(stream); int i = 0; do { i::Token::Value expected = expected_tokens[i]; i::Token::Value actual = scanner.Next(); CHECK_EQ(i::Token::String(expected), i::Token::String(actual)); if (scanner.location().end_pos == skip_pos) { scanner.SeekForward(skip_to); } i++; } while (expected_tokens[i] != i::Token::ILLEGAL); } TEST(StreamScanner) { v8::V8::Initialize(); const char* str1 = "{ foo get for : */ <- \n\n /*foo*/ bib"; i::Utf8ToUtf16CharacterStream stream1(reinterpret_cast(str1), static_cast(strlen(str1))); i::Token::Value expectations1[] = { i::Token::LBRACE, i::Token::IDENTIFIER, i::Token::IDENTIFIER, i::Token::FOR, i::Token::COLON, i::Token::MUL, i::Token::DIV, i::Token::LT, i::Token::SUB, i::Token::IDENTIFIER, i::Token::EOS, i::Token::ILLEGAL }; TestStreamScanner(&stream1, expectations1, 0, 0); const char* str2 = "case default const {THIS\nPART\nSKIPPED} do"; i::Utf8ToUtf16CharacterStream stream2(reinterpret_cast(str2), static_cast(strlen(str2))); i::Token::Value expectations2[] = { i::Token::CASE, i::Token::DEFAULT, i::Token::CONST, i::Token::LBRACE, // Skipped part here i::Token::RBRACE, i::Token::DO, i::Token::EOS, i::Token::ILLEGAL }; DCHECK_EQ('{', str2[19]); DCHECK_EQ('}', str2[37]); TestStreamScanner(&stream2, expectations2, 20, 37); const char* str3 = "{}}}}"; i::Token::Value expectations3[] = { i::Token::LBRACE, i::Token::RBRACE, i::Token::RBRACE, i::Token::RBRACE, i::Token::RBRACE, i::Token::EOS, i::Token::ILLEGAL }; // Skip zero-four RBRACEs. for (int i = 0; i <= 4; i++) { expectations3[6 - i] = i::Token::ILLEGAL; expectations3[5 - i] = i::Token::EOS; i::Utf8ToUtf16CharacterStream stream3( reinterpret_cast(str3), static_cast(strlen(str3))); TestStreamScanner(&stream3, expectations3, 1, 1 + i); } } void TestScanRegExp(const char* re_source, const char* expected) { i::Utf8ToUtf16CharacterStream stream( reinterpret_cast(re_source), static_cast(strlen(re_source))); i::HandleScope scope(CcTest::i_isolate()); i::Scanner scanner(CcTest::i_isolate()->unicode_cache()); scanner.Initialize(&stream); i::Token::Value start = scanner.peek(); CHECK(start == i::Token::DIV || start == i::Token::ASSIGN_DIV); CHECK(scanner.ScanRegExpPattern(start == i::Token::ASSIGN_DIV)); scanner.Next(); // Current token is now the regexp literal. i::Zone zone(CcTest::i_isolate()); i::AstValueFactory ast_value_factory(&zone, CcTest::i_isolate()->heap()->HashSeed()); ast_value_factory.Internalize(CcTest::i_isolate()); i::Handle val = scanner.CurrentSymbol(&ast_value_factory)->string(); i::DisallowHeapAllocation no_alloc; i::String::FlatContent content = val->GetFlatContent(); CHECK(content.IsAscii()); i::Vector actual = content.ToOneByteVector(); for (int i = 0; i < actual.length(); i++) { CHECK_NE('\0', expected[i]); CHECK_EQ(expected[i], actual[i]); } } TEST(RegExpScanning) { v8::V8::Initialize(); // RegExp token with added garbage at the end. The scanner should only // scan the RegExp until the terminating slash just before "flipperwald". TestScanRegExp("/b/flipperwald", "b"); // Incomplete escape sequences doesn't hide the terminating slash. TestScanRegExp("/\\x/flipperwald", "\\x"); TestScanRegExp("/\\u/flipperwald", "\\u"); TestScanRegExp("/\\u1/flipperwald", "\\u1"); TestScanRegExp("/\\u12/flipperwald", "\\u12"); TestScanRegExp("/\\u123/flipperwald", "\\u123"); TestScanRegExp("/\\c/flipperwald", "\\c"); TestScanRegExp("/\\c//flipperwald", "\\c"); // Slashes inside character classes are not terminating. TestScanRegExp("/[/]/flipperwald", "[/]"); TestScanRegExp("/[\\s-/]/flipperwald", "[\\s-/]"); // Incomplete escape sequences inside a character class doesn't hide // the end of the character class. TestScanRegExp("/[\\c/]/flipperwald", "[\\c/]"); TestScanRegExp("/[\\c]/flipperwald", "[\\c]"); TestScanRegExp("/[\\x]/flipperwald", "[\\x]"); TestScanRegExp("/[\\x1]/flipperwald", "[\\x1]"); TestScanRegExp("/[\\u]/flipperwald", "[\\u]"); TestScanRegExp("/[\\u1]/flipperwald", "[\\u1]"); TestScanRegExp("/[\\u12]/flipperwald", "[\\u12]"); TestScanRegExp("/[\\u123]/flipperwald", "[\\u123]"); // Escaped ']'s wont end the character class. TestScanRegExp("/[\\]/]/flipperwald", "[\\]/]"); // Escaped slashes are not terminating. TestScanRegExp("/\\//flipperwald", "\\/"); // Starting with '=' works too. TestScanRegExp("/=/", "="); TestScanRegExp("/=?/", "=?"); } static int Utf8LengthHelper(const char* s) { int len = i::StrLength(s); int character_length = len; for (int i = 0; i < len; i++) { unsigned char c = s[i]; int input_offset = 0; int output_adjust = 0; if (c > 0x7f) { if (c < 0xc0) continue; if (c >= 0xf0) { if (c >= 0xf8) { // 5 and 6 byte UTF-8 sequences turn into a kBadChar for each UTF-8 // byte. continue; // Handle first UTF-8 byte. } if ((c & 7) == 0 && ((s[i + 1] & 0x30) == 0)) { // This 4 byte sequence could have been coded as a 3 byte sequence. // Record a single kBadChar for the first byte and continue. continue; } input_offset = 3; // 4 bytes of UTF-8 turn into 2 UTF-16 code units. character_length -= 2; } else if (c >= 0xe0) { if ((c & 0xf) == 0 && ((s[i + 1] & 0x20) == 0)) { // This 3 byte sequence could have been coded as a 2 byte sequence. // Record a single kBadChar for the first byte and continue. continue; } input_offset = 2; // 3 bytes of UTF-8 turn into 1 UTF-16 code unit. output_adjust = 2; } else { if ((c & 0x1e) == 0) { // This 2 byte sequence could have been coded as a 1 byte sequence. // Record a single kBadChar for the first byte and continue. continue; } input_offset = 1; // 2 bytes of UTF-8 turn into 1 UTF-16 code unit. output_adjust = 1; } bool bad = false; for (int j = 1; j <= input_offset; j++) { if ((s[i + j] & 0xc0) != 0x80) { // Bad UTF-8 sequence turns the first in the sequence into kBadChar, // which is a single UTF-16 code unit. bad = true; break; } } if (!bad) { i += input_offset; character_length -= output_adjust; } } } return character_length; } TEST(ScopePositions) { v8::internal::FLAG_harmony_scoping = true; // Test the parser for correctly setting the start and end positions // of a scope. We check the scope positions of exactly one scope // nested in the global scope of a program. 'inner source' is the // source code that determines the part of the source belonging // to the nested scope. 'outer_prefix' and 'outer_suffix' are // parts of the source that belong to the global scope. struct SourceData { const char* outer_prefix; const char* inner_source; const char* outer_suffix; i::ScopeType scope_type; i::StrictMode strict_mode; }; const SourceData source_data[] = { { " with ({}) ", "{ block; }", " more;", i::WITH_SCOPE, i::SLOPPY }, { " with ({}) ", "{ block; }", "; more;", i::WITH_SCOPE, i::SLOPPY }, { " with ({}) ", "{\n" " block;\n" " }", "\n" " more;", i::WITH_SCOPE, i::SLOPPY }, { " with ({}) ", "statement;", " more;", i::WITH_SCOPE, i::SLOPPY }, { " with ({}) ", "statement", "\n" " more;", i::WITH_SCOPE, i::SLOPPY }, { " with ({})\n" " ", "statement;", "\n" " more;", i::WITH_SCOPE, i::SLOPPY }, { " try {} catch ", "(e) { block; }", " more;", i::CATCH_SCOPE, i::SLOPPY }, { " try {} catch ", "(e) { block; }", "; more;", i::CATCH_SCOPE, i::SLOPPY }, { " try {} catch ", "(e) {\n" " block;\n" " }", "\n" " more;", i::CATCH_SCOPE, i::SLOPPY }, { " try {} catch ", "(e) { block; }", " finally { block; } more;", i::CATCH_SCOPE, i::SLOPPY }, { " start;\n" " ", "{ let block; }", " more;", i::BLOCK_SCOPE, i::STRICT }, { " start;\n" " ", "{ let block; }", "; more;", i::BLOCK_SCOPE, i::STRICT }, { " start;\n" " ", "{\n" " let block;\n" " }", "\n" " more;", i::BLOCK_SCOPE, i::STRICT }, { " start;\n" " function fun", "(a,b) { infunction; }", " more;", i::FUNCTION_SCOPE, i::SLOPPY }, { " start;\n" " function fun", "(a,b) {\n" " infunction;\n" " }", "\n" " more;", i::FUNCTION_SCOPE, i::SLOPPY }, // TODO(aperez): Change to use i::ARROW_SCOPE when implemented { " start;\n", "(a,b) => a + b", "; more;", i::FUNCTION_SCOPE, i::SLOPPY }, { " start;\n", "(a,b) => { return a+b; }", "\nmore;", i::FUNCTION_SCOPE, i::SLOPPY }, { " start;\n" " (function fun", "(a,b) { infunction; }", ")();", i::FUNCTION_SCOPE, i::SLOPPY }, { " for ", "(let x = 1 ; x < 10; ++ x) { block; }", " more;", i::BLOCK_SCOPE, i::STRICT }, { " for ", "(let x = 1 ; x < 10; ++ x) { block; }", "; more;", i::BLOCK_SCOPE, i::STRICT }, { " for ", "(let x = 1 ; x < 10; ++ x) {\n" " block;\n" " }", "\n" " more;", i::BLOCK_SCOPE, i::STRICT }, { " for ", "(let x = 1 ; x < 10; ++ x) statement;", " more;", i::BLOCK_SCOPE, i::STRICT }, { " for ", "(let x = 1 ; x < 10; ++ x) statement", "\n" " more;", i::BLOCK_SCOPE, i::STRICT }, { " for ", "(let x = 1 ; x < 10; ++ x)\n" " statement;", "\n" " more;", i::BLOCK_SCOPE, i::STRICT }, { " for ", "(let x in {}) { block; }", " more;", i::BLOCK_SCOPE, i::STRICT }, { " for ", "(let x in {}) { block; }", "; more;", i::BLOCK_SCOPE, i::STRICT }, { " for ", "(let x in {}) {\n" " block;\n" " }", "\n" " more;", i::BLOCK_SCOPE, i::STRICT }, { " for ", "(let x in {}) statement;", " more;", i::BLOCK_SCOPE, i::STRICT }, { " for ", "(let x in {}) statement", "\n" " more;", i::BLOCK_SCOPE, i::STRICT }, { " for ", "(let x in {})\n" " statement;", "\n" " more;", i::BLOCK_SCOPE, i::STRICT }, // Check that 6-byte and 4-byte encodings of UTF-8 strings do not throw // the preparser off in terms of byte offsets. // 6 byte encoding. { " 'foo\355\240\201\355\260\211';\n" " (function fun", "(a,b) { infunction; }", ")();", i::FUNCTION_SCOPE, i::SLOPPY }, // 4 byte encoding. { " 'foo\360\220\220\212';\n" " (function fun", "(a,b) { infunction; }", ")();", i::FUNCTION_SCOPE, i::SLOPPY }, // 3 byte encoding of \u0fff. { " 'foo\340\277\277';\n" " (function fun", "(a,b) { infunction; }", ")();", i::FUNCTION_SCOPE, i::SLOPPY }, // Broken 6 byte encoding with missing last byte. { " 'foo\355\240\201\355\211';\n" " (function fun", "(a,b) { infunction; }", ")();", i::FUNCTION_SCOPE, i::SLOPPY }, // Broken 3 byte encoding of \u0fff with missing last byte. { " 'foo\340\277';\n" " (function fun", "(a,b) { infunction; }", ")();", i::FUNCTION_SCOPE, i::SLOPPY }, // Broken 3 byte encoding of \u0fff with missing 2 last bytes. { " 'foo\340';\n" " (function fun", "(a,b) { infunction; }", ")();", i::FUNCTION_SCOPE, i::SLOPPY }, // Broken 3 byte encoding of \u00ff should be a 2 byte encoding. { " 'foo\340\203\277';\n" " (function fun", "(a,b) { infunction; }", ")();", i::FUNCTION_SCOPE, i::SLOPPY }, // Broken 3 byte encoding of \u007f should be a 2 byte encoding. { " 'foo\340\201\277';\n" " (function fun", "(a,b) { infunction; }", ")();", i::FUNCTION_SCOPE, i::SLOPPY }, // Unpaired lead surrogate. { " 'foo\355\240\201';\n" " (function fun", "(a,b) { infunction; }", ")();", i::FUNCTION_SCOPE, i::SLOPPY }, // Unpaired lead surrogate where following code point is a 3 byte sequence. { " 'foo\355\240\201\340\277\277';\n" " (function fun", "(a,b) { infunction; }", ")();", i::FUNCTION_SCOPE, i::SLOPPY }, // Unpaired lead surrogate where following code point is a 4 byte encoding // of a trail surrogate. { " 'foo\355\240\201\360\215\260\211';\n" " (function fun", "(a,b) { infunction; }", ")();", i::FUNCTION_SCOPE, i::SLOPPY }, // Unpaired trail surrogate. { " 'foo\355\260\211';\n" " (function fun", "(a,b) { infunction; }", ")();", i::FUNCTION_SCOPE, i::SLOPPY }, // 2 byte encoding of \u00ff. { " 'foo\303\277';\n" " (function fun", "(a,b) { infunction; }", ")();", i::FUNCTION_SCOPE, i::SLOPPY }, // Broken 2 byte encoding of \u00ff with missing last byte. { " 'foo\303';\n" " (function fun", "(a,b) { infunction; }", ")();", i::FUNCTION_SCOPE, i::SLOPPY }, // Broken 2 byte encoding of \u007f should be a 1 byte encoding. { " 'foo\301\277';\n" " (function fun", "(a,b) { infunction; }", ")();", i::FUNCTION_SCOPE, i::SLOPPY }, // Illegal 5 byte encoding. { " 'foo\370\277\277\277\277';\n" " (function fun", "(a,b) { infunction; }", ")();", i::FUNCTION_SCOPE, i::SLOPPY }, // Illegal 6 byte encoding. { " 'foo\374\277\277\277\277\277';\n" " (function fun", "(a,b) { infunction; }", ")();", i::FUNCTION_SCOPE, i::SLOPPY }, // Illegal 0xfe byte { " 'foo\376\277\277\277\277\277\277';\n" " (function fun", "(a,b) { infunction; }", ")();", i::FUNCTION_SCOPE, i::SLOPPY }, // Illegal 0xff byte { " 'foo\377\277\277\277\277\277\277\277';\n" " (function fun", "(a,b) { infunction; }", ")();", i::FUNCTION_SCOPE, i::SLOPPY }, { " 'foo';\n" " (function fun", "(a,b) { 'bar\355\240\201\355\260\213'; }", ")();", i::FUNCTION_SCOPE, i::SLOPPY }, { " 'foo';\n" " (function fun", "(a,b) { 'bar\360\220\220\214'; }", ")();", i::FUNCTION_SCOPE, i::SLOPPY }, { NULL, NULL, NULL, i::EVAL_SCOPE, i::SLOPPY } }; i::Isolate* isolate = CcTest::i_isolate(); i::Factory* factory = isolate->factory(); v8::HandleScope handles(CcTest::isolate()); v8::Handle context = v8::Context::New(CcTest::isolate()); v8::Context::Scope context_scope(context); isolate->stack_guard()->SetStackLimit(i::GetCurrentStackPosition() - 128 * 1024); for (int i = 0; source_data[i].outer_prefix; i++) { int kPrefixLen = Utf8LengthHelper(source_data[i].outer_prefix); int kInnerLen = Utf8LengthHelper(source_data[i].inner_source); int kSuffixLen = Utf8LengthHelper(source_data[i].outer_suffix); int kPrefixByteLen = i::StrLength(source_data[i].outer_prefix); int kInnerByteLen = i::StrLength(source_data[i].inner_source); int kSuffixByteLen = i::StrLength(source_data[i].outer_suffix); int kProgramSize = kPrefixLen + kInnerLen + kSuffixLen; int kProgramByteSize = kPrefixByteLen + kInnerByteLen + kSuffixByteLen; i::ScopedVector program(kProgramByteSize + 1); i::SNPrintF(program, "%s%s%s", source_data[i].outer_prefix, source_data[i].inner_source, source_data[i].outer_suffix); // Parse program source. i::Handle source = factory->NewStringFromUtf8( i::CStrVector(program.start())).ToHandleChecked(); CHECK_EQ(source->length(), kProgramSize); i::Handle script = factory->NewScript(source); i::CompilationInfoWithZone info(script); i::Parser::ParseInfo parse_info = {isolate->stack_guard()->real_climit(), isolate->heap()->HashSeed(), isolate->unicode_cache()}; i::Parser parser(&info, &parse_info); parser.set_allow_lazy(true); parser.set_allow_harmony_scoping(true); parser.set_allow_arrow_functions(true); info.MarkAsGlobal(); info.SetStrictMode(source_data[i].strict_mode); parser.Parse(); CHECK(info.function() != NULL); // Check scope types and positions. i::Scope* scope = info.function()->scope(); CHECK(scope->is_global_scope()); CHECK_EQ(scope->start_position(), 0); CHECK_EQ(scope->end_position(), kProgramSize); CHECK_EQ(scope->inner_scopes()->length(), 1); i::Scope* inner_scope = scope->inner_scopes()->at(0); CHECK_EQ(inner_scope->scope_type(), source_data[i].scope_type); CHECK_EQ(inner_scope->start_position(), kPrefixLen); // The end position of a token is one position after the last // character belonging to that token. CHECK_EQ(inner_scope->end_position(), kPrefixLen + kInnerLen); } } const char* ReadString(unsigned* start) { int length = start[0]; char* result = i::NewArray(length + 1); for (int i = 0; i < length; i++) { result[i] = start[i + 1]; } result[length] = '\0'; return result; } i::Handle FormatMessage(i::Vector data) { i::Isolate* isolate = CcTest::i_isolate(); i::Factory* factory = isolate->factory(); const char* message = ReadString(&data[i::PreparseDataConstants::kMessageTextPos]); i::Handle format = v8::Utils::OpenHandle( *v8::String::NewFromUtf8(CcTest::isolate(), message)); int arg_count = data[i::PreparseDataConstants::kMessageArgCountPos]; const char* arg = NULL; i::Handle args_array; if (arg_count == 1) { // Position after text found by skipping past length field and // length field content words. int pos = i::PreparseDataConstants::kMessageTextPos + 1 + data[i::PreparseDataConstants::kMessageTextPos]; arg = ReadString(&data[pos]); args_array = factory->NewJSArray(1); i::JSArray::SetElement(args_array, 0, v8::Utils::OpenHandle(*v8_str(arg)), NONE, i::SLOPPY).Check(); } else { CHECK_EQ(0, arg_count); args_array = factory->NewJSArray(0); } i::Handle builtins(isolate->js_builtins_object()); i::Handle format_fun = i::Object::GetProperty( isolate, builtins, "FormatMessage").ToHandleChecked(); i::Handle arg_handles[] = { format, args_array }; i::Handle result = i::Execution::Call( isolate, format_fun, builtins, 2, arg_handles).ToHandleChecked(); CHECK(result->IsString()); i::DeleteArray(message); i::DeleteArray(arg); data.Dispose(); return i::Handle::cast(result); } enum ParserFlag { kAllowLazy, kAllowNativesSyntax, kAllowHarmonyScoping, kAllowModules, kAllowGenerators, kAllowHarmonyNumericLiterals, kAllowArrowFunctions, kAllowClasses }; enum ParserSyncTestResult { kSuccessOrError, kSuccess, kError }; template void SetParserFlags(i::ParserBase* parser, i::EnumSet flags) { parser->set_allow_lazy(flags.Contains(kAllowLazy)); parser->set_allow_natives_syntax(flags.Contains(kAllowNativesSyntax)); parser->set_allow_harmony_scoping(flags.Contains(kAllowHarmonyScoping)); parser->set_allow_modules(flags.Contains(kAllowModules)); parser->set_allow_generators(flags.Contains(kAllowGenerators)); parser->set_allow_harmony_numeric_literals( flags.Contains(kAllowHarmonyNumericLiterals)); parser->set_allow_arrow_functions(flags.Contains(kAllowArrowFunctions)); parser->set_allow_classes(flags.Contains(kAllowClasses)); } void TestParserSyncWithFlags(i::Handle source, i::EnumSet flags, ParserSyncTestResult result) { i::Isolate* isolate = CcTest::i_isolate(); i::Factory* factory = isolate->factory(); uintptr_t stack_limit = isolate->stack_guard()->real_climit(); // Preparse the data. i::CompleteParserRecorder log; { i::Scanner scanner(isolate->unicode_cache()); i::GenericStringUtf16CharacterStream stream(source, 0, source->length()); i::PreParser preparser(&scanner, &log, stack_limit); SetParserFlags(&preparser, flags); scanner.Initialize(&stream); i::PreParser::PreParseResult result = preparser.PreParseProgram(); CHECK_EQ(i::PreParser::kPreParseSuccess, result); } bool preparse_error = log.HasError(); // Parse the data i::FunctionLiteral* function; { i::Handle script = factory->NewScript(source); i::CompilationInfoWithZone info(script); i::Parser::ParseInfo parse_info = {isolate->stack_guard()->real_climit(), isolate->heap()->HashSeed(), isolate->unicode_cache()}; i::Parser parser(&info, &parse_info); SetParserFlags(&parser, flags); info.MarkAsGlobal(); parser.Parse(); function = info.function(); } // Check that preparsing fails iff parsing fails. if (function == NULL) { // Extract exception from the parser. CHECK(isolate->has_pending_exception()); i::Handle exception_handle( i::JSObject::cast(isolate->pending_exception())); i::Handle message_string = i::Handle::cast(i::Object::GetProperty( isolate, exception_handle, "message").ToHandleChecked()); if (result == kSuccess) { v8::base::OS::Print( "Parser failed on:\n" "\t%s\n" "with error:\n" "\t%s\n" "However, we expected no error.", source->ToCString().get(), message_string->ToCString().get()); CHECK(false); } if (!preparse_error) { v8::base::OS::Print( "Parser failed on:\n" "\t%s\n" "with error:\n" "\t%s\n" "However, the preparser succeeded", source->ToCString().get(), message_string->ToCString().get()); CHECK(false); } // Check that preparser and parser produce the same error. i::Handle preparser_message = FormatMessage(log.ErrorMessageData()); if (!i::String::Equals(message_string, preparser_message)) { v8::base::OS::Print( "Expected parser and preparser to produce the same error on:\n" "\t%s\n" "However, found the following error messages\n" "\tparser: %s\n" "\tpreparser: %s\n", source->ToCString().get(), message_string->ToCString().get(), preparser_message->ToCString().get()); CHECK(false); } } else if (preparse_error) { v8::base::OS::Print( "Preparser failed on:\n" "\t%s\n" "with error:\n" "\t%s\n" "However, the parser succeeded", source->ToCString().get(), FormatMessage(log.ErrorMessageData())->ToCString().get()); CHECK(false); } else if (result == kError) { v8::base::OS::Print( "Expected error on:\n" "\t%s\n" "However, parser and preparser succeeded", source->ToCString().get()); CHECK(false); } } void TestParserSync(const char* source, const ParserFlag* varying_flags, size_t varying_flags_length, ParserSyncTestResult result = kSuccessOrError, const ParserFlag* always_true_flags = NULL, size_t always_true_flags_length = 0) { i::Handle str = CcTest::i_isolate()->factory()->NewStringFromAsciiChecked(source); for (int bits = 0; bits < (1 << varying_flags_length); bits++) { i::EnumSet flags; for (size_t flag_index = 0; flag_index < varying_flags_length; ++flag_index) { if ((bits & (1 << flag_index)) != 0) flags.Add(varying_flags[flag_index]); } for (size_t flag_index = 0; flag_index < always_true_flags_length; ++flag_index) { flags.Add(always_true_flags[flag_index]); } TestParserSyncWithFlags(str, flags, result); } } TEST(ParserSync) { const char* context_data[][2] = { { "", "" }, { "{", "}" }, { "if (true) ", " else {}" }, { "if (true) {} else ", "" }, { "if (true) ", "" }, { "do ", " while (false)" }, { "while (false) ", "" }, { "for (;;) ", "" }, { "with ({})", "" }, { "switch (12) { case 12: ", "}" }, { "switch (12) { default: ", "}" }, { "switch (12) { ", "case 12: }" }, { "label2: ", "" }, { NULL, NULL } }; const char* statement_data[] = { "{}", "var x", "var x = 1", "const x", "const x = 1", ";", "12", "if (false) {} else ;", "if (false) {} else {}", "if (false) {} else 12", "if (false) ;" "if (false) {}", "if (false) 12", "do {} while (false)", "for (;;) ;", "for (;;) {}", "for (;;) 12", "continue", "continue label", "continue\nlabel", "break", "break label", "break\nlabel", // TODO(marja): activate once parsing 'return' is merged into ParserBase. // "return", // "return 12", // "return\n12", "with ({}) ;", "with ({}) {}", "with ({}) 12", "switch ({}) { default: }" "label3: " "throw", "throw 12", "throw\n12", "try {} catch(e) {}", "try {} finally {}", "try {} catch(e) {} finally {}", "debugger", NULL }; const char* termination_data[] = { "", ";", "\n", ";\n", "\n;", NULL }; v8::HandleScope handles(CcTest::isolate()); v8::Handle context = v8::Context::New(CcTest::isolate()); v8::Context::Scope context_scope(context); CcTest::i_isolate()->stack_guard()->SetStackLimit( i::GetCurrentStackPosition() - 128 * 1024); static const ParserFlag flags1[] = {kAllowLazy, kAllowHarmonyScoping, kAllowModules, kAllowGenerators, kAllowArrowFunctions}; for (int i = 0; context_data[i][0] != NULL; ++i) { for (int j = 0; statement_data[j] != NULL; ++j) { for (int k = 0; termination_data[k] != NULL; ++k) { int kPrefixLen = i::StrLength(context_data[i][0]); int kStatementLen = i::StrLength(statement_data[j]); int kTerminationLen = i::StrLength(termination_data[k]); int kSuffixLen = i::StrLength(context_data[i][1]); int kProgramSize = kPrefixLen + kStatementLen + kTerminationLen + kSuffixLen + i::StrLength("label: for (;;) { }"); // Plug the source code pieces together. i::ScopedVector program(kProgramSize + 1); int length = i::SNPrintF(program, "label: for (;;) { %s%s%s%s }", context_data[i][0], statement_data[j], termination_data[k], context_data[i][1]); CHECK(length == kProgramSize); TestParserSync(program.start(), flags1, arraysize(flags1)); } } } // Neither Harmony numeric literals nor our natives syntax have any // interaction with the flags above, so test these separately to reduce // the combinatorial explosion. static const ParserFlag flags2[] = { kAllowHarmonyNumericLiterals }; TestParserSync("0o1234", flags2, arraysize(flags2)); TestParserSync("0b1011", flags2, arraysize(flags2)); static const ParserFlag flags3[] = { kAllowNativesSyntax }; TestParserSync("%DebugPrint(123)", flags3, arraysize(flags3)); } TEST(StrictOctal) { // Test that syntax error caused by octal literal is reported correctly as // such (issue 2220). v8::V8::Initialize(); v8::HandleScope scope(CcTest::isolate()); v8::Context::Scope context_scope( v8::Context::New(CcTest::isolate())); v8::TryCatch try_catch; const char* script = "\"use strict\"; \n" "a = function() { \n" " b = function() { \n" " 01; \n" " }; \n" "}; \n"; v8::Script::Compile(v8::String::NewFromUtf8(CcTest::isolate(), script)); CHECK(try_catch.HasCaught()); v8::String::Utf8Value exception(try_catch.Exception()); CHECK_EQ("SyntaxError: Octal literals are not allowed in strict mode.", *exception); } void RunParserSyncTest(const char* context_data[][2], const char* statement_data[], ParserSyncTestResult result, const ParserFlag* flags = NULL, int flags_len = 0, const ParserFlag* always_true_flags = NULL, int always_true_flags_len = 0) { v8::HandleScope handles(CcTest::isolate()); v8::Handle context = v8::Context::New(CcTest::isolate()); v8::Context::Scope context_scope(context); CcTest::i_isolate()->stack_guard()->SetStackLimit( i::GetCurrentStackPosition() - 128 * 1024); static const ParserFlag default_flags[] = { kAllowLazy, kAllowHarmonyScoping, kAllowModules, kAllowGenerators, kAllowNativesSyntax, kAllowArrowFunctions, kAllowClasses}; ParserFlag* generated_flags = NULL; if (flags == NULL) { flags = default_flags; flags_len = arraysize(default_flags); if (always_true_flags != NULL) { // Remove always_true_flags from default_flags. CHECK(always_true_flags_len < flags_len); generated_flags = new ParserFlag[flags_len - always_true_flags_len]; int flag_index = 0; for (int i = 0; i < flags_len; ++i) { bool use_flag = true; for (int j = 0; j < always_true_flags_len; ++j) { if (flags[i] == always_true_flags[j]) { use_flag = false; break; } } if (use_flag) generated_flags[flag_index++] = flags[i]; } CHECK(flag_index == flags_len - always_true_flags_len); flags_len = flag_index; flags = generated_flags; } } for (int i = 0; context_data[i][0] != NULL; ++i) { for (int j = 0; statement_data[j] != NULL; ++j) { int kPrefixLen = i::StrLength(context_data[i][0]); int kStatementLen = i::StrLength(statement_data[j]); int kSuffixLen = i::StrLength(context_data[i][1]); int kProgramSize = kPrefixLen + kStatementLen + kSuffixLen; // Plug the source code pieces together. i::ScopedVector program(kProgramSize + 1); int length = i::SNPrintF(program, "%s%s%s", context_data[i][0], statement_data[j], context_data[i][1]); CHECK(length == kProgramSize); TestParserSync(program.start(), flags, flags_len, result, always_true_flags, always_true_flags_len); } } delete[] generated_flags; } TEST(ErrorsEvalAndArguments) { // Tests that both preparsing and parsing produce the right kind of errors for // using "eval" and "arguments" as identifiers. Without the strict mode, it's // ok to use "eval" or "arguments" as identifiers. With the strict mode, it // isn't. const char* context_data[][2] = { { "\"use strict\";", "" }, { "var eval; function test_func() {\"use strict\"; ", "}"}, { NULL, NULL } }; const char* statement_data[] = { "var eval;", "var arguments", "var foo, eval;", "var foo, arguments;", "try { } catch (eval) { }", "try { } catch (arguments) { }", "function eval() { }", "function arguments() { }", "function foo(eval) { }", "function foo(arguments) { }", "function foo(bar, eval) { }", "function foo(bar, arguments) { }", "(eval) => { }", "(arguments) => { }", "(foo, eval) => { }", "(foo, arguments) => { }", "eval = 1;", "arguments = 1;", "var foo = eval = 1;", "var foo = arguments = 1;", "++eval;", "++arguments;", "eval++;", "arguments++;", NULL }; RunParserSyncTest(context_data, statement_data, kError); } TEST(NoErrorsEvalAndArgumentsSloppy) { // Tests that both preparsing and parsing accept "eval" and "arguments" as // identifiers when needed. const char* context_data[][2] = { { "", "" }, { "function test_func() {", "}"}, { NULL, NULL } }; const char* statement_data[] = { "var eval;", "var arguments", "var foo, eval;", "var foo, arguments;", "try { } catch (eval) { }", "try { } catch (arguments) { }", "function eval() { }", "function arguments() { }", "function foo(eval) { }", "function foo(arguments) { }", "function foo(bar, eval) { }", "function foo(bar, arguments) { }", "eval = 1;", "arguments = 1;", "var foo = eval = 1;", "var foo = arguments = 1;", "++eval;", "++arguments;", "eval++;", "arguments++;", NULL }; RunParserSyncTest(context_data, statement_data, kSuccess); } TEST(NoErrorsEvalAndArgumentsStrict) { const char* context_data[][2] = { { "\"use strict\";", "" }, { "function test_func() { \"use strict\";", "}" }, { "() => { \"use strict\"; ", "}" }, { NULL, NULL } }; const char* statement_data[] = { "eval;", "arguments;", "var foo = eval;", "var foo = arguments;", "var foo = { eval: 1 };", "var foo = { arguments: 1 };", "var foo = { }; foo.eval = {};", "var foo = { }; foo.arguments = {};", NULL }; static const ParserFlag always_flags[] = {kAllowArrowFunctions}; RunParserSyncTest(context_data, statement_data, kSuccess, NULL, 0, always_flags, arraysize(always_flags)); } TEST(ErrorsFutureStrictReservedWords) { // Tests that both preparsing and parsing produce the right kind of errors for // using future strict reserved words as identifiers. Without the strict mode, // it's ok to use future strict reserved words as identifiers. With the strict // mode, it isn't. const char* context_data[][2] = { { "\"use strict\";", "" }, { "function test_func() {\"use strict\"; ", "}"}, { "() => { \"use strict\"; ", "}" }, { NULL, NULL } }; const char* statement_data[] = { "var interface;", "var foo, interface;", "try { } catch (interface) { }", "function interface() { }", "function foo(interface) { }", "function foo(bar, interface) { }", "interface = 1;", "var foo = interface = 1;", "++interface;", "interface++;", "var yield = 13;", NULL }; static const ParserFlag always_flags[] = {kAllowArrowFunctions}; RunParserSyncTest(context_data, statement_data, kError, NULL, 0, always_flags, arraysize(always_flags)); } TEST(NoErrorsFutureStrictReservedWords) { const char* context_data[][2] = { { "", "" }, { "function test_func() {", "}"}, { "() => {", "}" }, { NULL, NULL } }; const char* statement_data[] = { "var interface;", "var foo, interface;", "try { } catch (interface) { }", "function interface() { }", "function foo(interface) { }", "function foo(bar, interface) { }", "interface = 1;", "var foo = interface = 1;", "++interface;", "interface++;", "var yield = 13;", NULL }; static const ParserFlag always_flags[] = {kAllowArrowFunctions}; RunParserSyncTest(context_data, statement_data, kSuccess, NULL, 0, always_flags, arraysize(always_flags)); } TEST(ErrorsReservedWords) { // Tests that both preparsing and parsing produce the right kind of errors for // using future reserved words as identifiers. These tests don't depend on the // strict mode. const char* context_data[][2] = { { "", "" }, { "\"use strict\";", "" }, { "var eval; function test_func() {", "}"}, { "var eval; function test_func() {\"use strict\"; ", "}"}, { "var eval; () => {", "}"}, { "var eval; () => {\"use strict\"; ", "}"}, { NULL, NULL } }; const char* statement_data[] = { "var super;", "var foo, super;", "try { } catch (super) { }", "function super() { }", "function foo(super) { }", "function foo(bar, super) { }", "(super) => { }", "(bar, super) => { }", "super = 1;", "var foo = super = 1;", "++super;", "super++;", "function foo super", NULL }; RunParserSyncTest(context_data, statement_data, kError); } TEST(NoErrorsLetSloppyAllModes) { // In sloppy mode, it's okay to use "let" as identifier. const char* context_data[][2] = { { "", "" }, { "function f() {", "}" }, { "(function f() {", "})" }, { NULL, NULL } }; const char* statement_data[] = { "var let;", "var foo, let;", "try { } catch (let) { }", "function let() { }", "(function let() { })", "function foo(let) { }", "function foo(bar, let) { }", "let = 1;", "var foo = let = 1;", "let * 2;", "++let;", "let++;", "let: 34", "function let(let) { let: let(let + let(0)); }", "({ let: 1 })", "({ get let() { 1 } })", "let(100)", NULL }; RunParserSyncTest(context_data, statement_data, kSuccess); } TEST(NoErrorsYieldSloppyAllModes) { // In sloppy mode, it's okay to use "yield" as identifier, *except* inside a // generator (see other test). const char* context_data[][2] = { { "", "" }, { "function not_gen() {", "}" }, { "(function not_gen() {", "})" }, { NULL, NULL } }; const char* statement_data[] = { "var yield;", "var foo, yield;", "try { } catch (yield) { }", "function yield() { }", "(function yield() { })", "function foo(yield) { }", "function foo(bar, yield) { }", "yield = 1;", "var foo = yield = 1;", "yield * 2;", "++yield;", "yield++;", "yield: 34", "function yield(yield) { yield: yield (yield + yield(0)); }", "({ yield: 1 })", "({ get yield() { 1 } })", "yield(100)", "yield[100]", NULL }; RunParserSyncTest(context_data, statement_data, kSuccess); } TEST(NoErrorsYieldSloppyGeneratorsEnabled) { // In sloppy mode, it's okay to use "yield" as identifier, *except* inside a // generator (see next test). const char* context_data[][2] = { { "", "" }, { "function not_gen() {", "}" }, { "function * gen() { function not_gen() {", "} }" }, { "(function not_gen() {", "})" }, { "(function * gen() { (function not_gen() {", "}) })" }, { NULL, NULL } }; const char* statement_data[] = { "var yield;", "var foo, yield;", "try { } catch (yield) { }", "function yield() { }", "(function yield() { })", "function foo(yield) { }", "function foo(bar, yield) { }", "function * yield() { }", "(function * yield() { })", "yield = 1;", "var foo = yield = 1;", "yield * 2;", "++yield;", "yield++;", "yield: 34", "function yield(yield) { yield: yield (yield + yield(0)); }", "({ yield: 1 })", "({ get yield() { 1 } })", "yield(100)", "yield[100]", NULL }; // This test requires kAllowGenerators to succeed. static const ParserFlag always_true_flags[] = { kAllowGenerators }; RunParserSyncTest(context_data, statement_data, kSuccess, NULL, 0, always_true_flags, 1); } TEST(ErrorsYieldStrict) { const char* context_data[][2] = { { "\"use strict\";", "" }, { "\"use strict\"; function not_gen() {", "}" }, { "function test_func() {\"use strict\"; ", "}"}, { "\"use strict\"; function * gen() { function not_gen() {", "} }" }, { "\"use strict\"; (function not_gen() {", "})" }, { "\"use strict\"; (function * gen() { (function not_gen() {", "}) })" }, { "() => {\"use strict\"; ", "}" }, { NULL, NULL } }; const char* statement_data[] = { "var yield;", "var foo, yield;", "try { } catch (yield) { }", "function yield() { }", "(function yield() { })", "function foo(yield) { }", "function foo(bar, yield) { }", "function * yield() { }", "(function * yield() { })", "yield = 1;", "var foo = yield = 1;", "++yield;", "yield++;", "yield: 34;", NULL }; RunParserSyncTest(context_data, statement_data, kError); } TEST(NoErrorsGenerator) { const char* context_data[][2] = { { "function * gen() {", "}" }, { "(function * gen() {", "})" }, { "(function * () {", "})" }, { NULL, NULL } }; const char* statement_data[] = { // A generator without a body is valid. "" // Valid yield expressions inside generators. "yield 2;", "yield * 2;", "yield * \n 2;", "yield yield 1;", "yield * yield * 1;", "yield 3 + (yield 4);", "yield * 3 + (yield * 4);", "(yield * 3) + (yield * 4);", "yield 3; yield 4;", "yield * 3; yield * 4;", "(function (yield) { })", "yield { yield: 12 }", "yield /* comment */ { yield: 12 }", "yield * \n { yield: 12 }", "yield /* comment */ * \n { yield: 12 }", // You can return in a generator. "yield 1; return", "yield * 1; return", "yield 1; return 37", "yield * 1; return 37", "yield 1; return 37; yield 'dead';", "yield * 1; return 37; yield * 'dead';", // Yield is still a valid key in object literals. "({ yield: 1 })", "({ get yield() { } })", // Yield without RHS. "yield;", "yield", "yield\n", "yield /* comment */" "yield // comment\n" "(yield)", "[yield]", "{yield}", "yield, yield", "yield; yield", "(yield) ? yield : yield", "(yield) \n ? yield : yield", // If there is a newline before the next token, we don't look for RHS. "yield\nfor (;;) {}", NULL }; // This test requires kAllowGenerators to succeed. static const ParserFlag always_true_flags[] = { kAllowGenerators }; RunParserSyncTest(context_data, statement_data, kSuccess, NULL, 0, always_true_flags, 1); } TEST(ErrorsYieldGenerator) { const char* context_data[][2] = { { "function * gen() {", "}" }, { "\"use strict\"; function * gen() {", "}" }, { NULL, NULL } }; const char* statement_data[] = { // Invalid yield expressions inside generators. "var yield;", "var foo, yield;", "try { } catch (yield) { }", "function yield() { }", // The name of the NFE is let-bound in the generator, which does not permit // yield to be an identifier. "(function yield() { })", "(function * yield() { })", // Yield isn't valid as a formal parameter for generators. "function * foo(yield) { }", "(function * foo(yield) { })", "yield = 1;", "var foo = yield = 1;", "++yield;", "yield++;", "yield *", "(yield *)", // Yield binds very loosely, so this parses as "yield (3 + yield 4)", which // is invalid. "yield 3 + yield 4;", "yield: 34", "yield ? 1 : 2", // Parses as yield (/ yield): invalid. "yield / yield", "+ yield", "+ yield 3", // Invalid (no newline allowed between yield and *). "yield\n*3", // Invalid (we see a newline, so we parse {yield:42} as a statement, not an // object literal, and yield is not a valid label). "yield\n{yield: 42}", "yield /* comment */\n {yield: 42}", "yield //comment\n {yield: 42}", NULL }; RunParserSyncTest(context_data, statement_data, kError); } TEST(ErrorsNameOfStrictFunction) { // Tests that illegal tokens as names of a strict function produce the correct // errors. const char* context_data[][2] = { { "function ", ""}, { "\"use strict\"; function", ""}, { "function * ", ""}, { "\"use strict\"; function * ", ""}, { NULL, NULL } }; const char* statement_data[] = { "eval() {\"use strict\";}", "arguments() {\"use strict\";}", "interface() {\"use strict\";}", "yield() {\"use strict\";}", // Future reserved words are always illegal "function super() { }", "function super() {\"use strict\";}", NULL }; RunParserSyncTest(context_data, statement_data, kError); } TEST(NoErrorsNameOfStrictFunction) { const char* context_data[][2] = { { "function ", ""}, { NULL, NULL } }; const char* statement_data[] = { "eval() { }", "arguments() { }", "interface() { }", "yield() { }", NULL }; RunParserSyncTest(context_data, statement_data, kSuccess); } TEST(NoErrorsNameOfStrictGenerator) { const char* context_data[][2] = { { "function * ", ""}, { NULL, NULL } }; const char* statement_data[] = { "eval() { }", "arguments() { }", "interface() { }", "yield() { }", NULL }; // This test requires kAllowGenerators to succeed. static const ParserFlag always_true_flags[] = { kAllowGenerators }; RunParserSyncTest(context_data, statement_data, kSuccess, NULL, 0, always_true_flags, 1); } TEST(ErrorsIllegalWordsAsLabelsSloppy) { // Using future reserved words as labels is always an error. const char* context_data[][2] = { { "", ""}, { "function test_func() {", "}" }, { "() => {", "}" }, { NULL, NULL } }; const char* statement_data[] = { "super: while(true) { break super; }", NULL }; RunParserSyncTest(context_data, statement_data, kError); } TEST(ErrorsIllegalWordsAsLabelsStrict) { // Tests that illegal tokens as labels produce the correct errors. const char* context_data[][2] = { { "\"use strict\";", "" }, { "function test_func() {\"use strict\"; ", "}"}, { "() => {\"use strict\"; ", "}" }, { NULL, NULL } }; const char* statement_data[] = { "super: while(true) { break super; }", "interface: while(true) { break interface; }", "yield: while(true) { break yield; }", NULL }; RunParserSyncTest(context_data, statement_data, kError); } TEST(NoErrorsIllegalWordsAsLabels) { // Using eval and arguments as labels is legal even in strict mode. const char* context_data[][2] = { { "", ""}, { "function test_func() {", "}" }, { "() => {", "}" }, { "\"use strict\";", "" }, { "\"use strict\"; function test_func() {", "}" }, { "\"use strict\"; () => {", "}" }, { NULL, NULL } }; const char* statement_data[] = { "mylabel: while(true) { break mylabel; }", "eval: while(true) { break eval; }", "arguments: while(true) { break arguments; }", NULL }; static const ParserFlag always_flags[] = {kAllowArrowFunctions}; RunParserSyncTest(context_data, statement_data, kSuccess, NULL, 0, always_flags, arraysize(always_flags)); } TEST(ErrorsParenthesizedLabels) { // Parenthesized identifiers shouldn't be recognized as labels. const char* context_data[][2] = { { "", ""}, { "function test_func() {", "}" }, { "() => {", "}" }, { NULL, NULL } }; const char* statement_data[] = { "(mylabel): while(true) { break mylabel; }", NULL }; RunParserSyncTest(context_data, statement_data, kError); } TEST(NoErrorsParenthesizedDirectivePrologue) { // Parenthesized directive prologue shouldn't be recognized. const char* context_data[][2] = { { "", ""}, { NULL, NULL } }; const char* statement_data[] = { "(\"use strict\"); var eval;", NULL }; RunParserSyncTest(context_data, statement_data, kSuccess); } TEST(ErrorsNotAnIdentifierName) { const char* context_data[][2] = { { "", ""}, { "\"use strict\";", ""}, { NULL, NULL } }; const char* statement_data[] = { "var foo = {}; foo.{;", "var foo = {}; foo.};", "var foo = {}; foo.=;", "var foo = {}; foo.888;", "var foo = {}; foo.-;", "var foo = {}; foo.--;", NULL }; RunParserSyncTest(context_data, statement_data, kError); } TEST(NoErrorsIdentifierNames) { // Keywords etc. are valid as property names. const char* context_data[][2] = { { "", ""}, { "\"use strict\";", ""}, { NULL, NULL } }; const char* statement_data[] = { "var foo = {}; foo.if;", "var foo = {}; foo.yield;", "var foo = {}; foo.super;", "var foo = {}; foo.interface;", "var foo = {}; foo.eval;", "var foo = {}; foo.arguments;", NULL }; RunParserSyncTest(context_data, statement_data, kSuccess); } TEST(DontRegressPreParserDataSizes) { // These tests make sure that Parser doesn't start producing less "preparse // data" (data which the embedder can cache). v8::V8::Initialize(); v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope handles(isolate); CcTest::i_isolate()->stack_guard()->SetStackLimit( i::GetCurrentStackPosition() - 128 * 1024); struct TestCase { const char* program; int functions; } test_cases[] = { // No functions. {"var x = 42;", 0}, // Functions. {"function foo() {}", 1}, {"function foo() {} function bar() {}", 2}, // Getter / setter functions are recorded as functions if they're on the top // level. {"var x = {get foo(){} };", 1}, // Functions insize lazy functions are not recorded. {"function lazy() { function a() {} function b() {} function c() {} }", 1}, {"function lazy() { var x = {get foo(){} } }", 1}, {NULL, 0} }; for (int i = 0; test_cases[i].program; i++) { const char* program = test_cases[i].program; i::Factory* factory = CcTest::i_isolate()->factory(); i::Handle source = factory->NewStringFromUtf8(i::CStrVector(program)).ToHandleChecked(); i::Handle script = factory->NewScript(source); i::CompilationInfoWithZone info(script); i::ScriptData* sd = NULL; info.SetCachedData(&sd, v8::ScriptCompiler::kProduceParserCache); i::Parser::Parse(&info, true); i::ParseData pd(sd); if (pd.FunctionCount() != test_cases[i].functions) { v8::base::OS::Print( "Expected preparse data for program:\n" "\t%s\n" "to contain %d functions, however, received %d functions.\n", program, test_cases[i].functions, pd.FunctionCount()); CHECK(false); } delete sd; } } TEST(FunctionDeclaresItselfStrict) { // Tests that we produce the right kinds of errors when a function declares // itself strict (we cannot produce there errors as soon as we see the // offending identifiers, because we don't know at that point whether the // function is strict or not). const char* context_data[][2] = { {"function eval() {", "}"}, {"function arguments() {", "}"}, {"function yield() {", "}"}, {"function interface() {", "}"}, {"function foo(eval) {", "}"}, {"function foo(arguments) {", "}"}, {"function foo(yield) {", "}"}, {"function foo(interface) {", "}"}, {"function foo(bar, eval) {", "}"}, {"function foo(bar, arguments) {", "}"}, {"function foo(bar, yield) {", "}"}, {"function foo(bar, interface) {", "}"}, {"function foo(bar, bar) {", "}"}, { NULL, NULL } }; const char* strict_statement_data[] = { "\"use strict\";", NULL }; const char* non_strict_statement_data[] = { ";", NULL }; RunParserSyncTest(context_data, strict_statement_data, kError); RunParserSyncTest(context_data, non_strict_statement_data, kSuccess); } TEST(ErrorsTryWithoutCatchOrFinally) { const char* context_data[][2] = { {"", ""}, { NULL, NULL } }; const char* statement_data[] = { "try { }", "try { } foo();", "try { } catch (e) foo();", "try { } catch { }", "try { } finally foo();", NULL }; RunParserSyncTest(context_data, statement_data, kError); } TEST(NoErrorsTryCatchFinally) { const char* context_data[][2] = { {"", ""}, { NULL, NULL } }; const char* statement_data[] = { "try { } catch (e) { }", "try { } catch (e) { } finally { }", "try { } finally { }", NULL }; RunParserSyncTest(context_data, statement_data, kSuccess); } TEST(ErrorsRegexpLiteral) { const char* context_data[][2] = { {"var r = ", ""}, { NULL, NULL } }; const char* statement_data[] = { "/unterminated", NULL }; RunParserSyncTest(context_data, statement_data, kError); } TEST(NoErrorsRegexpLiteral) { const char* context_data[][2] = { {"var r = ", ""}, { NULL, NULL } }; const char* statement_data[] = { "/foo/", "/foo/g", "/foo/whatever", // This is an error but not detected by the parser. NULL }; RunParserSyncTest(context_data, statement_data, kSuccess); } TEST(Intrinsics) { const char* context_data[][2] = { {"", ""}, { NULL, NULL } }; const char* statement_data[] = { "%someintrinsic(arg)", NULL }; // This test requires kAllowNativesSyntax to succeed. static const ParserFlag always_true_flags[] = { kAllowNativesSyntax }; RunParserSyncTest(context_data, statement_data, kSuccess, NULL, 0, always_true_flags, 1); } TEST(NoErrorsNewExpression) { const char* context_data[][2] = { {"", ""}, {"var f =", ""}, { NULL, NULL } }; const char* statement_data[] = { "new foo", "new foo();", "new foo(1);", "new foo(1, 2);", // The first () will be processed as a part of the NewExpression and the // second () will be processed as part of LeftHandSideExpression. "new foo()();", // The first () will be processed as a part of the inner NewExpression and // the second () will be processed as a part of the outer NewExpression. "new new foo()();", "new foo.bar;", "new foo.bar();", "new foo.bar.baz;", "new foo.bar().baz;", "new foo[bar];", "new foo[bar]();", "new foo[bar][baz];", "new foo[bar]()[baz];", "new foo[bar].baz(baz)()[bar].baz;", "new \"foo\"", // Runtime error "new 1", // Runtime error // This even runs: "(new new Function(\"this.x = 1\")).x;", "new new Test_Two(String, 2).v(0123).length;", NULL }; RunParserSyncTest(context_data, statement_data, kSuccess); } TEST(ErrorsNewExpression) { const char* context_data[][2] = { {"", ""}, {"var f =", ""}, { NULL, NULL } }; const char* statement_data[] = { "new foo bar", "new ) foo", "new ++foo", "new foo ++", NULL }; RunParserSyncTest(context_data, statement_data, kError); } TEST(StrictObjectLiteralChecking) { const char* strict_context_data[][2] = { {"\"use strict\"; var myobject = {", "};"}, {"\"use strict\"; var myobject = {", ",};"}, { NULL, NULL } }; const char* non_strict_context_data[][2] = { {"var myobject = {", "};"}, {"var myobject = {", ",};"}, { NULL, NULL } }; // These are only errors in strict mode. const char* statement_data[] = { "foo: 1, foo: 2", "\"foo\": 1, \"foo\": 2", "foo: 1, \"foo\": 2", "1: 1, 1: 2", "1: 1, \"1\": 2", "get: 1, get: 2", // Not a getter for real, just a property called get. "set: 1, set: 2", // Not a setter for real, just a property called set. NULL }; RunParserSyncTest(non_strict_context_data, statement_data, kSuccess); RunParserSyncTest(strict_context_data, statement_data, kError); } TEST(ErrorsObjectLiteralChecking) { const char* context_data[][2] = { {"\"use strict\"; var myobject = {", "};"}, {"var myobject = {", "};"}, { NULL, NULL } }; const char* statement_data[] = { ",", "foo: 1, get foo() {}", "foo: 1, set foo(v) {}", "\"foo\": 1, get \"foo\"() {}", "\"foo\": 1, set \"foo\"(v) {}", "1: 1, get 1() {}", "1: 1, set 1() {}", // It's counter-intuitive, but these collide too (even in classic // mode). Note that we can have "foo" and foo as properties in classic // mode, // but we cannot have "foo" and get foo, or foo and get "foo". "foo: 1, get \"foo\"() {}", "foo: 1, set \"foo\"(v) {}", "\"foo\": 1, get foo() {}", "\"foo\": 1, set foo(v) {}", "1: 1, get \"1\"() {}", "1: 1, set \"1\"() {}", "\"1\": 1, get 1() {}" "\"1\": 1, set 1(v) {}" // Wrong number of parameters "get bar(x) {}", "get bar(x, y) {}", "set bar() {}", "set bar(x, y) {}", // Parsing FunctionLiteral for getter or setter fails "get foo( +", "get foo() \"error\"", NULL}; RunParserSyncTest(context_data, statement_data, kError); } TEST(NoErrorsObjectLiteralChecking) { const char* context_data[][2] = { {"var myobject = {", "};"}, {"var myobject = {", ",};"}, {"\"use strict\"; var myobject = {", "};"}, {"\"use strict\"; var myobject = {", ",};"}, { NULL, NULL } }; const char* statement_data[] = { "foo: 1, bar: 2", "\"foo\": 1, \"bar\": 2", "1: 1, 2: 2", // Syntax: IdentifierName ':' AssignmentExpression "foo: bar = 5 + baz", // Syntax: 'get' PropertyName '(' ')' '{' FunctionBody '}' "get foo() {}", "get \"foo\"() {}", "get 1() {}", // Syntax: 'set' PropertyName '(' PropertySetParameterList ')' // '{' FunctionBody '}' "set foo(v) {}", "set \"foo\"(v) {}", "set 1(v) {}", // Non-colliding getters and setters -> no errors "foo: 1, get bar() {}", "foo: 1, set bar(v) {}", "\"foo\": 1, get \"bar\"() {}", "\"foo\": 1, set \"bar\"(v) {}", "1: 1, get 2() {}", "1: 1, set 2(v) {}", // Keywords, future reserved and strict future reserved are also allowed as // property names. "if: 4", "interface: 5", "super: 6", "eval: 7", "arguments: 8", NULL }; RunParserSyncTest(context_data, statement_data, kSuccess); } TEST(TooManyArguments) { const char* context_data[][2] = { {"foo(", "0)"}, { NULL, NULL } }; using v8::internal::Code; char statement[Code::kMaxArguments * 2 + 1]; for (int i = 0; i < Code::kMaxArguments; ++i) { statement[2 * i] = '0'; statement[2 * i + 1] = ','; } statement[Code::kMaxArguments * 2] = 0; const char* statement_data[] = { statement, NULL }; // The test is quite slow, so run it with a reduced set of flags. static const ParserFlag empty_flags[] = {kAllowLazy}; RunParserSyncTest(context_data, statement_data, kError, empty_flags, 1); } TEST(StrictDelete) { // "delete " is not allowed in strict mode. const char* strict_context_data[][2] = { {"\"use strict\"; ", ""}, { NULL, NULL } }; const char* sloppy_context_data[][2] = { {"", ""}, { NULL, NULL } }; // These are errors in the strict mode. const char* sloppy_statement_data[] = { "delete foo;", "delete foo + 1;", "delete (foo);", "delete eval;", "delete interface;", NULL }; // These are always OK const char* good_statement_data[] = { "delete this;", "delete 1;", "delete 1 + 2;", "delete foo();", "delete foo.bar;", "delete foo[bar];", "delete foo--;", "delete --foo;", "delete new foo();", "delete new foo(bar);", NULL }; // These are always errors const char* bad_statement_data[] = { "delete if;", NULL }; RunParserSyncTest(strict_context_data, sloppy_statement_data, kError); RunParserSyncTest(sloppy_context_data, sloppy_statement_data, kSuccess); RunParserSyncTest(strict_context_data, good_statement_data, kSuccess); RunParserSyncTest(sloppy_context_data, good_statement_data, kSuccess); RunParserSyncTest(strict_context_data, bad_statement_data, kError); RunParserSyncTest(sloppy_context_data, bad_statement_data, kError); } TEST(InvalidLeftHandSide) { const char* assignment_context_data[][2] = { {"", " = 1;"}, {"\"use strict\"; ", " = 1;"}, { NULL, NULL } }; const char* prefix_context_data[][2] = { {"++", ";"}, {"\"use strict\"; ++", ";"}, {NULL, NULL}, }; const char* postfix_context_data[][2] = { {"", "++;"}, {"\"use strict\"; ", "++;"}, { NULL, NULL } }; // Good left hand sides for assigment or prefix / postfix operations. const char* good_statement_data[] = { "foo", "foo.bar", "foo[bar]", "foo()[bar]", "foo().bar", "this.foo", "this[foo]", "new foo()[bar]", "new foo().bar", "foo()", "foo(bar)", "foo[bar]()", "foo.bar()", "this()", "this.foo()", "this[foo].bar()", "this.foo[foo].bar(this)(bar)[foo]()", NULL }; // Bad left hand sides for assigment or prefix / postfix operations. const char* bad_statement_data_common[] = { "2", "new foo", "new foo()", "null", "if", // Unexpected token "{x: 1}", // Unexpected token "this", "\"bar\"", "(foo + bar)", "new new foo()[bar]", // means: new (new foo()[bar]) "new new foo().bar", // means: new (new foo()[bar]) NULL }; // These are not okay for assignment, but okay for prefix / postix. const char* bad_statement_data_for_assignment[] = { "++foo", "foo++", "foo + bar", NULL }; RunParserSyncTest(assignment_context_data, good_statement_data, kSuccess); RunParserSyncTest(assignment_context_data, bad_statement_data_common, kError); RunParserSyncTest(assignment_context_data, bad_statement_data_for_assignment, kError); RunParserSyncTest(prefix_context_data, good_statement_data, kSuccess); RunParserSyncTest(prefix_context_data, bad_statement_data_common, kError); RunParserSyncTest(postfix_context_data, good_statement_data, kSuccess); RunParserSyncTest(postfix_context_data, bad_statement_data_common, kError); } TEST(FuncNameInferrerBasic) { // Tests that function names are inferred properly. i::FLAG_allow_natives_syntax = true; v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope scope(isolate); LocalContext env; CompileRun("var foo1 = function() {}; " "var foo2 = function foo3() {}; " "function not_ctor() { " " var foo4 = function() {}; " " return %FunctionGetInferredName(foo4); " "} " "function Ctor() { " " var foo5 = function() {}; " " return %FunctionGetInferredName(foo5); " "} " "var obj1 = { foo6: function() {} }; " "var obj2 = { 'foo7': function() {} }; " "var obj3 = {}; " "obj3[1] = function() {}; " "var obj4 = {}; " "obj4[1] = function foo8() {}; " "var obj5 = {}; " "obj5['foo9'] = function() {}; " "var obj6 = { obj7 : { foo10: function() {} } };"); ExpectString("%FunctionGetInferredName(foo1)", "foo1"); // foo2 is not unnamed -> its name is not inferred. ExpectString("%FunctionGetInferredName(foo2)", ""); ExpectString("not_ctor()", "foo4"); ExpectString("Ctor()", "Ctor.foo5"); ExpectString("%FunctionGetInferredName(obj1.foo6)", "obj1.foo6"); ExpectString("%FunctionGetInferredName(obj2.foo7)", "obj2.foo7"); ExpectString("%FunctionGetInferredName(obj3[1])", "obj3.(anonymous function)"); ExpectString("%FunctionGetInferredName(obj4[1])", ""); ExpectString("%FunctionGetInferredName(obj5['foo9'])", "obj5.foo9"); ExpectString("%FunctionGetInferredName(obj6.obj7.foo10)", "obj6.obj7.foo10"); } TEST(FuncNameInferrerTwoByte) { // Tests function name inferring in cases where some parts of the inferred // function name are two-byte strings. i::FLAG_allow_natives_syntax = true; v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope scope(isolate); LocalContext env; uint16_t* two_byte_source = AsciiToTwoByteString( "var obj1 = { oXj2 : { foo1: function() {} } }; " "%FunctionGetInferredName(obj1.oXj2.foo1)"); uint16_t* two_byte_name = AsciiToTwoByteString("obj1.oXj2.foo1"); // Make it really non-ASCII (replace the Xs with a non-ASCII character). two_byte_source[14] = two_byte_source[78] = two_byte_name[6] = 0x010d; v8::Local source = v8::String::NewFromTwoByte(isolate, two_byte_source); v8::Local result = CompileRun(source); CHECK(result->IsString()); v8::Local expected_name = v8::String::NewFromTwoByte(isolate, two_byte_name); CHECK(result->Equals(expected_name)); i::DeleteArray(two_byte_source); i::DeleteArray(two_byte_name); } TEST(FuncNameInferrerEscaped) { // The same as FuncNameInferrerTwoByte, except that we express the two-byte // character as a unicode escape. i::FLAG_allow_natives_syntax = true; v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope scope(isolate); LocalContext env; uint16_t* two_byte_source = AsciiToTwoByteString( "var obj1 = { o\\u010dj2 : { foo1: function() {} } }; " "%FunctionGetInferredName(obj1.o\\u010dj2.foo1)"); uint16_t* two_byte_name = AsciiToTwoByteString("obj1.oXj2.foo1"); // Fix to correspond to the non-ASCII name in two_byte_source. two_byte_name[6] = 0x010d; v8::Local source = v8::String::NewFromTwoByte(isolate, two_byte_source); v8::Local result = CompileRun(source); CHECK(result->IsString()); v8::Local expected_name = v8::String::NewFromTwoByte(isolate, two_byte_name); CHECK(result->Equals(expected_name)); i::DeleteArray(two_byte_source); i::DeleteArray(two_byte_name); } TEST(RegressionLazyFunctionWithErrorWithArg) { // The bug occurred when a lazy function had an error which requires a // parameter (such as "unknown label" here). The error message was processed // before the AstValueFactory containing the error message string was // internalized. v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope scope(isolate); LocalContext env; i::FLAG_lazy = true; i::FLAG_min_preparse_length = 0; CompileRun("function this_is_lazy() {\n" " break p;\n" "}\n" "this_is_lazy();\n"); } TEST(SerializationOfMaybeAssignmentFlag) { i::Isolate* isolate = CcTest::i_isolate(); i::Factory* factory = isolate->factory(); i::HandleScope scope(isolate); LocalContext env; const char* src = "function h() {" " var result = [];" " function f() {" " result.push(2);" " }" " function assertResult(r) {" " f();" " result = [];" " }" " assertResult([2]);" " assertResult([2]);" " return f;" "};" "h();"; i::ScopedVector program(Utf8LengthHelper(src) + 1); i::SNPrintF(program, "%s", src); i::Handle source = factory->InternalizeUtf8String(program.start()); source->PrintOn(stdout); printf("\n"); i::Zone zone(isolate); v8::Local v = CompileRun(src); i::Handle o = v8::Utils::OpenHandle(*v); i::Handle f = i::Handle::cast(o); i::Context* context = f->context(); i::AstValueFactory avf(&zone, isolate->heap()->HashSeed()); avf.Internalize(isolate); const i::AstRawString* name = avf.GetOneByteString("result"); i::Handle str = name->string(); CHECK(str->IsInternalizedString()); i::Scope* global_scope = new (&zone) i::Scope(NULL, i::GLOBAL_SCOPE, &avf, &zone); global_scope->Initialize(); i::Scope* s = i::Scope::DeserializeScopeChain(context, global_scope, &zone); DCHECK(s != global_scope); DCHECK(name != NULL); // Get result from h's function context (that is f's context) i::Variable* var = s->Lookup(name); CHECK(var != NULL); // Maybe assigned should survive deserialization CHECK(var->maybe_assigned() == i::kMaybeAssigned); // TODO(sigurds) Figure out if is_used should survive context serialization. } TEST(IfArgumentsArrayAccessedThenParametersMaybeAssigned) { i::Isolate* isolate = CcTest::i_isolate(); i::Factory* factory = isolate->factory(); i::HandleScope scope(isolate); LocalContext env; const char* src = "function f(x) {" " var a = arguments;" " function g(i) {" " ++a[0];" " };" " return g;" " }" "f(0);"; i::ScopedVector program(Utf8LengthHelper(src) + 1); i::SNPrintF(program, "%s", src); i::Handle source = factory->InternalizeUtf8String(program.start()); source->PrintOn(stdout); printf("\n"); i::Zone zone(isolate); v8::Local v = CompileRun(src); i::Handle o = v8::Utils::OpenHandle(*v); i::Handle f = i::Handle::cast(o); i::Context* context = f->context(); i::AstValueFactory avf(&zone, isolate->heap()->HashSeed()); avf.Internalize(isolate); i::Scope* global_scope = new (&zone) i::Scope(NULL, i::GLOBAL_SCOPE, &avf, &zone); global_scope->Initialize(); i::Scope* s = i::Scope::DeserializeScopeChain(context, global_scope, &zone); DCHECK(s != global_scope); const i::AstRawString* name_x = avf.GetOneByteString("x"); // Get result from f's function context (that is g's outer context) i::Variable* var_x = s->Lookup(name_x); CHECK(var_x != NULL); CHECK(var_x->maybe_assigned() == i::kMaybeAssigned); } TEST(ExportsMaybeAssigned) { i::FLAG_use_strict = true; i::FLAG_harmony_scoping = true; i::FLAG_harmony_modules = true; i::Isolate* isolate = CcTest::i_isolate(); i::Factory* factory = isolate->factory(); i::HandleScope scope(isolate); LocalContext env; const char* src = "module A {" " export var x = 1;" " export function f() { return x };" " export const y = 2;" " module B {}" " export module C {}" "};" "A.f"; i::ScopedVector program(Utf8LengthHelper(src) + 1); i::SNPrintF(program, "%s", src); i::Handle source = factory->InternalizeUtf8String(program.start()); source->PrintOn(stdout); printf("\n"); i::Zone zone(isolate); v8::Local v = CompileRun(src); i::Handle o = v8::Utils::OpenHandle(*v); i::Handle f = i::Handle::cast(o); i::Context* context = f->context(); i::AstValueFactory avf(&zone, isolate->heap()->HashSeed()); avf.Internalize(isolate); i::Scope* global_scope = new (&zone) i::Scope(NULL, i::GLOBAL_SCOPE, &avf, &zone); global_scope->Initialize(); i::Scope* s = i::Scope::DeserializeScopeChain(context, global_scope, &zone); DCHECK(s != global_scope); const i::AstRawString* name_x = avf.GetOneByteString("x"); const i::AstRawString* name_f = avf.GetOneByteString("f"); const i::AstRawString* name_y = avf.GetOneByteString("y"); const i::AstRawString* name_B = avf.GetOneByteString("B"); const i::AstRawString* name_C = avf.GetOneByteString("C"); // Get result from h's function context (that is f's context) i::Variable* var_x = s->Lookup(name_x); CHECK(var_x != NULL); CHECK(var_x->maybe_assigned() == i::kMaybeAssigned); i::Variable* var_f = s->Lookup(name_f); CHECK(var_f != NULL); CHECK(var_f->maybe_assigned() == i::kMaybeAssigned); i::Variable* var_y = s->Lookup(name_y); CHECK(var_y != NULL); CHECK(var_y->maybe_assigned() == i::kNotAssigned); i::Variable* var_B = s->Lookup(name_B); CHECK(var_B != NULL); CHECK(var_B->maybe_assigned() == i::kNotAssigned); i::Variable* var_C = s->Lookup(name_C); CHECK(var_C != NULL); CHECK(var_C->maybe_assigned() == i::kNotAssigned); } TEST(InnerAssignment) { i::Isolate* isolate = CcTest::i_isolate(); i::Factory* factory = isolate->factory(); i::HandleScope scope(isolate); LocalContext env; const char* prefix = "function f() {"; const char* midfix = " function g() {"; const char* suffix = "}}"; struct { const char* source; bool assigned; bool strict; } outers[] = { // Actual assignments. { "var x; var x = 5;", true, false }, { "var x; { var x = 5; }", true, false }, { "'use strict'; let x; x = 6;", true, true }, { "var x = 5; function x() {}", true, false }, // Actual non-assignments. { "var x;", false, false }, { "var x = 5;", false, false }, { "'use strict'; let x;", false, true }, { "'use strict'; let x = 6;", false, true }, { "'use strict'; var x = 0; { let x = 6; }", false, true }, { "'use strict'; var x = 0; { let x; x = 6; }", false, true }, { "'use strict'; let x = 0; { let x = 6; }", false, true }, { "'use strict'; let x = 0; { let x; x = 6; }", false, true }, { "var x; try {} catch (x) { x = 5; }", false, false }, { "function x() {}", false, false }, // Eval approximation. { "var x; eval('');", true, false }, { "eval(''); var x;", true, false }, { "'use strict'; let x; eval('');", true, true }, { "'use strict'; eval(''); let x;", true, true }, // Non-assignments not recognized, because the analysis is approximative. { "var x; var x;", true, false }, { "var x = 5; var x;", true, false }, { "var x; { var x; }", true, false }, { "var x; function x() {}", true, false }, { "function x() {}; var x;", true, false }, { "var x; try {} catch (x) { var x = 5; }", true, false }, }; struct { const char* source; bool assigned; bool with; } inners[] = { // Actual assignments. { "x = 1;", true, false }, { "x++;", true, false }, { "++x;", true, false }, { "x--;", true, false }, { "--x;", true, false }, { "{ x = 1; }", true, false }, { "'use strict'; { let x; }; x = 0;", true, false }, { "'use strict'; { const x = 1; }; x = 0;", true, false }, { "'use strict'; { function x() {} }; x = 0;", true, false }, { "with ({}) { x = 1; }", true, true }, { "eval('');", true, false }, { "'use strict'; { let y; eval('') }", true, false }, { "function h() { x = 0; }", true, false }, { "(function() { x = 0; })", true, false }, { "(function() { x = 0; })", true, false }, { "with ({}) (function() { x = 0; })", true, true }, // Actual non-assignments. { "", false, false }, { "x;", false, false }, { "var x;", false, false }, { "var x = 8;", false, false }, { "var x; x = 8;", false, false }, { "'use strict'; let x;", false, false }, { "'use strict'; let x = 8;", false, false }, { "'use strict'; let x; x = 8;", false, false }, { "'use strict'; const x = 8;", false, false }, { "function x() {}", false, false }, { "function x() { x = 0; }", false, false }, { "function h(x) { x = 0; }", false, false }, { "'use strict'; { let x; x = 0; }", false, false }, { "{ var x; }; x = 0;", false, false }, { "with ({}) {}", false, true }, { "var x; { with ({}) { x = 1; } }", false, true }, { "try {} catch(x) { x = 0; }", false, false }, { "try {} catch(x) { with ({}) { x = 1; } }", false, true }, // Eval approximation. { "eval('');", true, false }, { "function h() { eval(''); }", true, false }, { "(function() { eval(''); })", true, false }, // Shadowing not recognized because of eval approximation. { "var x; eval('');", true, false }, { "'use strict'; let x; eval('');", true, false }, { "try {} catch(x) { eval(''); }", true, false }, { "function x() { eval(''); }", true, false }, { "(function(x) { eval(''); })", true, false }, }; // Used to trigger lazy compilation of function int comment_len = 2048; i::ScopedVector comment(comment_len + 1); i::SNPrintF(comment, "/*%0*d*/", comment_len - 4, 0); int prefix_len = Utf8LengthHelper(prefix); int midfix_len = Utf8LengthHelper(midfix); int suffix_len = Utf8LengthHelper(suffix); for (unsigned i = 0; i < arraysize(outers); ++i) { const char* outer = outers[i].source; int outer_len = Utf8LengthHelper(outer); for (unsigned j = 0; j < arraysize(inners); ++j) { for (unsigned outer_lazy = 0; outer_lazy < 2; ++outer_lazy) { for (unsigned inner_lazy = 0; inner_lazy < 2; ++inner_lazy) { if (outers[i].strict && inners[j].with) continue; const char* inner = inners[j].source; int inner_len = Utf8LengthHelper(inner); int outer_comment_len = outer_lazy ? comment_len : 0; int inner_comment_len = inner_lazy ? comment_len : 0; const char* outer_comment = outer_lazy ? comment.start() : ""; const char* inner_comment = inner_lazy ? comment.start() : ""; int len = prefix_len + outer_comment_len + outer_len + midfix_len + inner_comment_len + inner_len + suffix_len; i::ScopedVector program(len + 1); i::SNPrintF(program, "%s%s%s%s%s%s%s", prefix, outer_comment, outer, midfix, inner_comment, inner, suffix); i::Handle source = factory->InternalizeUtf8String(program.start()); source->PrintOn(stdout); printf("\n"); i::Handle script = factory->NewScript(source); i::CompilationInfoWithZone info(script); i::Parser::ParseInfo parse_info = { isolate->stack_guard()->real_climit(), isolate->heap()->HashSeed(), isolate->unicode_cache()}; i::Parser parser(&info, &parse_info); parser.set_allow_harmony_scoping(true); CHECK(parser.Parse()); CHECK(i::Rewriter::Rewrite(&info)); CHECK(i::Scope::Analyze(&info)); CHECK(info.function() != NULL); i::Scope* scope = info.function()->scope(); CHECK_EQ(scope->inner_scopes()->length(), 1); i::Scope* inner_scope = scope->inner_scopes()->at(0); const i::AstRawString* var_name = info.ast_value_factory()->GetOneByteString("x"); i::Variable* var = inner_scope->Lookup(var_name); bool expected = outers[i].assigned || inners[j].assigned; CHECK(var != NULL); CHECK(var->is_used() || !expected); CHECK((var->maybe_assigned() == i::kMaybeAssigned) == expected); } } } } } namespace { int* global_use_counts = NULL; void MockUseCounterCallback(v8::Isolate* isolate, v8::Isolate::UseCounterFeature feature) { ++global_use_counts[feature]; } } TEST(UseAsmUseCount) { i::Isolate* isolate = CcTest::i_isolate(); i::HandleScope scope(isolate); LocalContext env; int use_counts[v8::Isolate::kUseCounterFeatureCount] = {}; global_use_counts = use_counts; CcTest::isolate()->SetUseCounterCallback(MockUseCounterCallback); CompileRun("\"use asm\";\n" "var foo = 1;\n" "\"use asm\";\n" // Only the first one counts. "function bar() { \"use asm\"; var baz = 1; }"); CHECK_EQ(2, use_counts[v8::Isolate::kUseAsm]); } TEST(ErrorsArrowFunctions) { // Tests that parser and preparser generate the same kind of errors // on invalid arrow function syntax. const char* context_data[][2] = { {"", ";"}, {"v = ", ";"}, {"bar ? (", ") : baz;"}, {"bar ? baz : (", ");"}, {"bar[", "];"}, {"bar, ", ";"}, {"", ", bar;"}, {NULL, NULL} }; const char* statement_data[] = { "=> 0", "=>", "() =>", "=> {}", ") => {}", ", => {}", "(,) => {}", "return => {}", "() => {'value': 42}", // Check that the early return introduced in ParsePrimaryExpression // does not accept stray closing parentheses. ")", ") => 0", "foo[()]", "()", // Parameter lists with extra parens should be recognized as errors. "(()) => 0", "((x)) => 0", "((x, y)) => 0", "(x, (y)) => 0", "((x, y, z)) => 0", "(x, (y, z)) => 0", "((x, y), z) => 0", // Parameter lists are always validated as strict, so those are errors. "eval => {}", "arguments => {}", "yield => {}", "interface => {}", "(eval) => {}", "(arguments) => {}", "(yield) => {}", "(interface) => {}", "(eval, bar) => {}", "(bar, eval) => {}", "(bar, arguments) => {}", "(bar, yield) => {}", "(bar, interface) => {}", // TODO(aperez): Detecting duplicates does not work in PreParser. // "(bar, bar) => {}", // The parameter list is parsed as an expression, but only // a comma-separated list of identifier is valid. "32 => {}", "(32) => {}", "(a, 32) => {}", "if => {}", "(if) => {}", "(a, if) => {}", "a + b => {}", "(a + b) => {}", "(a + b, c) => {}", "(a, b - c) => {}", "\"a\" => {}", "(\"a\") => {}", "(\"a\", b) => {}", "(a, \"b\") => {}", "-a => {}", "(-a) => {}", "(-a, b) => {}", "(a, -b) => {}", "{} => {}", "({}) => {}", "(a, {}) => {}", "({}, a) => {}", "a++ => {}", "(a++) => {}", "(a++, b) => {}", "(a, b++) => {}", "[] => {}", "([]) => {}", "(a, []) => {}", "([], a) => {}", "(a = b) => {}", "(a = b, c) => {}", "(a, b = c) => {}", "(foo ? bar : baz) => {}", "(a, foo ? bar : baz) => {}", "(foo ? bar : baz, a) => {}", NULL }; // The test is quite slow, so run it with a reduced set of flags. static const ParserFlag flags[] = { kAllowLazy, kAllowHarmonyScoping, kAllowGenerators }; static const ParserFlag always_flags[] = { kAllowArrowFunctions }; RunParserSyncTest(context_data, statement_data, kError, flags, arraysize(flags), always_flags, arraysize(always_flags)); } TEST(NoErrorsArrowFunctions) { // Tests that parser and preparser accept valid arrow functions syntax. const char* context_data[][2] = { {"", ";"}, {"bar ? (", ") : baz;"}, {"bar ? baz : (", ");"}, {"bar, ", ";"}, {"", ", bar;"}, {NULL, NULL} }; const char* statement_data[] = { "() => {}", "() => { return 42 }", "x => { return x; }", "(x) => { return x; }", "(x, y) => { return x + y; }", "(x, y, z) => { return x + y + z; }", "(x, y) => { x.a = y; }", "() => 42", "x => x", "x => x * x", "(x) => x", "(x) => x * x", "(x, y) => x + y", "(x, y, z) => x, y, z", "(x, y) => x.a = y", "() => ({'value': 42})", "x => y => x + y", "(x, y) => (u, v) => x*u + y*v", "(x, y) => z => z * (x + y)", "x => (y, z) => z * (x + y)", // Those are comma-separated expressions, with arrow functions as items. // They stress the code for validating arrow function parameter lists. "a, b => 0", "a, b, (c, d) => 0", "(a, b, (c, d) => 0)", "(a, b) => 0, (c, d) => 1", "(a, b => {}, a => a + 1)", "((a, b) => {}, (a => a + 1))", "(a, (a, (b, c) => 0))", // Arrow has more precedence, this is the same as: foo ? bar : (baz = {}) "foo ? bar : baz => {}", NULL }; static const ParserFlag always_flags[] = {kAllowArrowFunctions}; RunParserSyncTest(context_data, statement_data, kSuccess, NULL, 0, always_flags, arraysize(always_flags)); } TEST(NoErrorsSuper) { // Tests that parser and preparser accept 'super' keyword in right places. const char* context_data[][2] = {{"", ";"}, {"k = ", ";"}, {"foo(", ");"}, {NULL, NULL}}; const char* statement_data[] = { "super.x", "super[27]", "new super", "new super()", "new super(12, 45)", "new new super", "new new super()", "new new super()()", "z.super", // Ok, property lookup. NULL}; static const ParserFlag always_flags[] = {kAllowClasses}; RunParserSyncTest(context_data, statement_data, kSuccess, NULL, 0, always_flags, arraysize(always_flags)); } TEST(ErrorsSuper) { // Tests that parser and preparser generate same errors for 'super'. const char* context_data[][2] = {{"", ";"}, {"k = ", ";"}, {"foo(", ");"}, {NULL, NULL}}; const char* statement_data[] = { "super = x", "y = super", "f(super)", NULL}; static const ParserFlag always_flags[] = {kAllowClasses}; RunParserSyncTest(context_data, statement_data, kError, NULL, 0, always_flags, arraysize(always_flags)); }