// Copyright 2009 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef V8_X64_MACRO_ASSEMBLER_X64_H_ #define V8_X64_MACRO_ASSEMBLER_X64_H_ #include "assembler.h" namespace v8 { namespace internal { // Default scratch register used by MacroAssembler (and other code that needs // a spare register). The register isn't callee save, and not used by the // function calling convention. static const Register kScratchRegister = r10; // Forward declaration. class JumpTarget; // MacroAssembler implements a collection of frequently used macros. class MacroAssembler: public Assembler { public: MacroAssembler(void* buffer, int size); void LoadRoot(Register destination, Heap::RootListIndex index); void CompareRoot(Register with, Heap::RootListIndex index); void PushRoot(Heap::RootListIndex index); // --------------------------------------------------------------------------- // GC Support // Set the remembered set bit for [object+offset]. // object is the object being stored into, value is the object being stored. // If offset is zero, then the scratch register contains the array index into // the elements array represented as a Smi. // All registers are clobbered by the operation. void RecordWrite(Register object, int offset, Register value, Register scratch); #ifdef ENABLE_DEBUGGER_SUPPORT // --------------------------------------------------------------------------- // Debugger Support void SaveRegistersToMemory(RegList regs); void RestoreRegistersFromMemory(RegList regs); void PushRegistersFromMemory(RegList regs); void PopRegistersToMemory(RegList regs); void CopyRegistersFromStackToMemory(Register base, Register scratch, RegList regs); #endif // --------------------------------------------------------------------------- // Activation frames void EnterInternalFrame() { EnterFrame(StackFrame::INTERNAL); } void LeaveInternalFrame() { LeaveFrame(StackFrame::INTERNAL); } void EnterConstructFrame() { EnterFrame(StackFrame::CONSTRUCT); } void LeaveConstructFrame() { LeaveFrame(StackFrame::CONSTRUCT); } // Enter specific kind of exit frame; either EXIT or // EXIT_DEBUG. Expects the number of arguments in register rax and // sets up the number of arguments in register rdi and the pointer // to the first argument in register rsi. void EnterExitFrame(StackFrame::Type type, int result_size = 1); // Leave the current exit frame. Expects/provides the return value in // register rax:rdx (untouched) and the pointer to the first // argument in register rsi. void LeaveExitFrame(StackFrame::Type type, int result_size = 1); // --------------------------------------------------------------------------- // JavaScript invokes // Invoke the JavaScript function code by either calling or jumping. void InvokeCode(Register code, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag); void InvokeCode(Handle code, const ParameterCount& expected, const ParameterCount& actual, RelocInfo::Mode rmode, InvokeFlag flag); // Invoke the JavaScript function in the given register. Changes the // current context to the context in the function before invoking. void InvokeFunction(Register function, const ParameterCount& actual, InvokeFlag flag); // Invoke specified builtin JavaScript function. Adds an entry to // the unresolved list if the name does not resolve. void InvokeBuiltin(Builtins::JavaScript id, InvokeFlag flag); // Store the code object for the given builtin in the target register. void GetBuiltinEntry(Register target, Builtins::JavaScript id); // --------------------------------------------------------------------------- // Macro instructions // Expression support void Set(Register dst, int64_t x); void Set(const Operand& dst, int64_t x); // Handle support bool IsUnsafeSmi(Smi* value); bool IsUnsafeSmi(Handle value) { return IsUnsafeSmi(Smi::cast(*value)); } void LoadUnsafeSmi(Register dst, Smi* source); void LoadUnsafeSmi(Register dst, Handle source) { LoadUnsafeSmi(dst, Smi::cast(*source)); } void Move(Register dst, Handle source); void Move(const Operand& dst, Handle source); void Cmp(Register dst, Handle source); void Cmp(const Operand& dst, Handle source); void Push(Handle source); void Push(Smi* smi); // Control Flow void Jump(Address destination, RelocInfo::Mode rmode); void Jump(ExternalReference ext); void Jump(Handle code_object, RelocInfo::Mode rmode); void Call(Address destination, RelocInfo::Mode rmode); void Call(ExternalReference ext); void Call(Handle code_object, RelocInfo::Mode rmode); // Compare object type for heap object. // Always use unsigned comparisons: above and below, not less and greater. // Incoming register is heap_object and outgoing register is map. // They may be the same register, and may be kScratchRegister. void CmpObjectType(Register heap_object, InstanceType type, Register map); // Compare instance type for map. // Always use unsigned comparisons: above and below, not less and greater. void CmpInstanceType(Register map, InstanceType type); // FCmp is similar to integer cmp, but requires unsigned // jcc instructions (je, ja, jae, jb, jbe, je, and jz). void FCmp(); // --------------------------------------------------------------------------- // Exception handling // Push a new try handler and link into try handler chain. The return // address must be pushed before calling this helper. void PushTryHandler(CodeLocation try_location, HandlerType type); // --------------------------------------------------------------------------- // Inline caching support // Generates code that verifies that the maps of objects in the // prototype chain of object hasn't changed since the code was // generated and branches to the miss label if any map has. If // necessary the function also generates code for security check // in case of global object holders. The scratch and holder // registers are always clobbered, but the object register is only // clobbered if it the same as the holder register. The function // returns a register containing the holder - either object_reg or // holder_reg. Register CheckMaps(JSObject* object, Register object_reg, JSObject* holder, Register holder_reg, Register scratch, Label* miss); // Generate code for checking access rights - used for security checks // on access to global objects across environments. The holder register // is left untouched, but the scratch register and kScratchRegister, // which must be different, are clobbered. void CheckAccessGlobalProxy(Register holder_reg, Register scratch, Label* miss); // --------------------------------------------------------------------------- // Allocation support // Allocate an object in new space. If the new space is exhausted control // continues at the gc_required label. The allocated object is returned in // result and end of the new object is returned in result_end. The register // scratch can be passed as no_reg in which case an additional object // reference will be added to the reloc info. The returned pointers in result // and result_end have not yet been tagged as heap objects. If // result_contains_top_on_entry is true the content of result is known to be // the allocation top on entry (could be result_end from a previous call to // AllocateObjectInNewSpace). If result_contains_top_on_entry is true scratch // should be no_reg as it is never used. void AllocateObjectInNewSpace(int object_size, Register result, Register result_end, Register scratch, Label* gc_required, AllocationFlags flags); void AllocateObjectInNewSpace(int header_size, ScaleFactor element_size, Register element_count, Register result, Register result_end, Register scratch, Label* gc_required, AllocationFlags flags); void AllocateObjectInNewSpace(Register object_size, Register result, Register result_end, Register scratch, Label* gc_required, AllocationFlags flags); // Undo allocation in new space. The object passed and objects allocated after // it will no longer be allocated. Make sure that no pointers are left to the // object(s) no longer allocated as they would be invalid when allocation is // un-done. void UndoAllocationInNewSpace(Register object); // --------------------------------------------------------------------------- // Support functions. // Check if result is zero and op is negative. void NegativeZeroTest(Register result, Register op, Label* then_label); // Check if result is zero and op is negative in code using jump targets. void NegativeZeroTest(CodeGenerator* cgen, Register result, Register op, JumpTarget* then_target); // Check if result is zero and any of op1 and op2 are negative. // Register scratch is destroyed, and it must be different from op2. void NegativeZeroTest(Register result, Register op1, Register op2, Register scratch, Label* then_label); // Try to get function prototype of a function and puts the value in // the result register. Checks that the function really is a // function and jumps to the miss label if the fast checks fail. The // function register will be untouched; the other register may be // clobbered. void TryGetFunctionPrototype(Register function, Register result, Label* miss); // Generates code for reporting that an illegal operation has // occurred. void IllegalOperation(int num_arguments); // --------------------------------------------------------------------------- // Runtime calls // Call a code stub. void CallStub(CodeStub* stub); // Return from a code stub after popping its arguments. void StubReturn(int argc); // Call a runtime routine. // Eventually this should be used for all C calls. void CallRuntime(Runtime::Function* f, int num_arguments); // Convenience function: Same as above, but takes the fid instead. void CallRuntime(Runtime::FunctionId id, int num_arguments); // Tail call of a runtime routine (jump). // Like JumpToBuiltin, but also takes care of passing the number // of arguments. void TailCallRuntime(const ExternalReference& ext, int num_arguments, int result_size); // Jump to the builtin routine. void JumpToBuiltin(const ExternalReference& ext, int result_size); // --------------------------------------------------------------------------- // Utilities void Ret(); struct Unresolved { int pc; uint32_t flags; // see Bootstrapper::FixupFlags decoders/encoders. const char* name; }; List* unresolved() { return &unresolved_; } Handle CodeObject() { return code_object_; } // --------------------------------------------------------------------------- // StatsCounter support void SetCounter(StatsCounter* counter, int value); void IncrementCounter(StatsCounter* counter, int value); void DecrementCounter(StatsCounter* counter, int value); // --------------------------------------------------------------------------- // Debugging // Calls Abort(msg) if the condition cc is not satisfied. // Use --debug_code to enable. void Assert(Condition cc, const char* msg); // Like Assert(), but always enabled. void Check(Condition cc, const char* msg); // Print a message to stdout and abort execution. void Abort(const char* msg); // Verify restrictions about code generated in stubs. void set_generating_stub(bool value) { generating_stub_ = value; } bool generating_stub() { return generating_stub_; } void set_allow_stub_calls(bool value) { allow_stub_calls_ = value; } bool allow_stub_calls() { return allow_stub_calls_; } private: List unresolved_; bool generating_stub_; bool allow_stub_calls_; Handle code_object_; // This handle will be patched with the code // object on installation. // Helper functions for generating invokes. void InvokePrologue(const ParameterCount& expected, const ParameterCount& actual, Handle code_constant, Register code_register, Label* done, InvokeFlag flag); // Get the code for the given builtin. Returns if able to resolve // the function in the 'resolved' flag. Handle ResolveBuiltin(Builtins::JavaScript id, bool* resolved); // Activation support. void EnterFrame(StackFrame::Type type); void LeaveFrame(StackFrame::Type type); // Allocation support helpers. void LoadAllocationTopHelper(Register result, Register result_end, Register scratch, AllocationFlags flags); void UpdateAllocationTopHelper(Register result_end, Register scratch); }; // ----------------------------------------------------------------------------- // Static helper functions. // Generate an Operand for loading a field from an object. static inline Operand FieldOperand(Register object, int offset) { return Operand(object, offset - kHeapObjectTag); } // Generate an Operand for loading an indexed field from an object. static inline Operand FieldOperand(Register object, Register index, ScaleFactor scale, int offset) { return Operand(object, index, scale, offset - kHeapObjectTag); } #ifdef GENERATED_CODE_COVERAGE extern void LogGeneratedCodeCoverage(const char* file_line); #define CODE_COVERAGE_STRINGIFY(x) #x #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x) #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__) #define ACCESS_MASM(masm) { \ byte* x64_coverage_function = \ reinterpret_cast(FUNCTION_ADDR(LogGeneratedCodeCoverage)); \ masm->pushfd(); \ masm->pushad(); \ masm->push(Immediate(reinterpret_cast(&__FILE_LINE__))); \ masm->call(x64_coverage_function, RelocInfo::RUNTIME_ENTRY); \ masm->pop(rax); \ masm->popad(); \ masm->popfd(); \ } \ masm-> #else #define ACCESS_MASM(masm) masm-> #endif } } // namespace v8::internal #endif // V8_X64_MACRO_ASSEMBLER_X64_H_