// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/deoptimizer.h" #include #include "src/accessors.h" #include "src/ast/prettyprinter.h" #include "src/codegen.h" #include "src/disasm.h" #include "src/frames-inl.h" #include "src/full-codegen/full-codegen.h" #include "src/global-handles.h" #include "src/interpreter/interpreter.h" #include "src/macro-assembler.h" #include "src/tracing/trace-event.h" #include "src/v8.h" namespace v8 { namespace internal { static MemoryChunk* AllocateCodeChunk(MemoryAllocator* allocator) { return allocator->AllocateChunk(Deoptimizer::GetMaxDeoptTableSize(), MemoryAllocator::GetCommitPageSize(), EXECUTABLE, NULL); } DeoptimizerData::DeoptimizerData(MemoryAllocator* allocator) : allocator_(allocator), current_(NULL) { for (int i = 0; i <= Deoptimizer::kLastBailoutType; ++i) { deopt_entry_code_entries_[i] = -1; deopt_entry_code_[i] = AllocateCodeChunk(allocator); } } DeoptimizerData::~DeoptimizerData() { for (int i = 0; i <= Deoptimizer::kLastBailoutType; ++i) { allocator_->Free(deopt_entry_code_[i]); deopt_entry_code_[i] = NULL; } } Code* Deoptimizer::FindDeoptimizingCode(Address addr) { if (function_->IsHeapObject()) { // Search all deoptimizing code in the native context of the function. Isolate* isolate = function_->GetIsolate(); Context* native_context = function_->context()->native_context(); Object* element = native_context->DeoptimizedCodeListHead(); while (!element->IsUndefined(isolate)) { Code* code = Code::cast(element); CHECK(code->kind() == Code::OPTIMIZED_FUNCTION); if (code->contains(addr)) return code; element = code->next_code_link(); } } return NULL; } // We rely on this function not causing a GC. It is called from generated code // without having a real stack frame in place. Deoptimizer* Deoptimizer::New(JSFunction* function, BailoutType type, unsigned bailout_id, Address from, int fp_to_sp_delta, Isolate* isolate) { Deoptimizer* deoptimizer = new Deoptimizer(isolate, function, type, bailout_id, from, fp_to_sp_delta); CHECK(isolate->deoptimizer_data()->current_ == NULL); isolate->deoptimizer_data()->current_ = deoptimizer; return deoptimizer; } // No larger than 2K on all platforms static const int kDeoptTableMaxEpilogueCodeSize = 2 * KB; size_t Deoptimizer::GetMaxDeoptTableSize() { int entries_size = Deoptimizer::kMaxNumberOfEntries * Deoptimizer::table_entry_size_; int commit_page_size = static_cast(MemoryAllocator::GetCommitPageSize()); int page_count = ((kDeoptTableMaxEpilogueCodeSize + entries_size - 1) / commit_page_size) + 1; return static_cast(commit_page_size * page_count); } Deoptimizer* Deoptimizer::Grab(Isolate* isolate) { Deoptimizer* result = isolate->deoptimizer_data()->current_; CHECK_NOT_NULL(result); result->DeleteFrameDescriptions(); isolate->deoptimizer_data()->current_ = NULL; return result; } DeoptimizedFrameInfo* Deoptimizer::DebuggerInspectableFrame( JavaScriptFrame* frame, int jsframe_index, Isolate* isolate) { CHECK(frame->is_optimized()); TranslatedState translated_values(frame); translated_values.Prepare(false, frame->fp()); TranslatedState::iterator frame_it = translated_values.end(); int counter = jsframe_index; for (auto it = translated_values.begin(); it != translated_values.end(); it++) { if (it->kind() == TranslatedFrame::kFunction || it->kind() == TranslatedFrame::kInterpretedFunction) { if (counter == 0) { frame_it = it; break; } counter--; } } CHECK(frame_it != translated_values.end()); DeoptimizedFrameInfo* info = new DeoptimizedFrameInfo(&translated_values, frame_it, isolate); return info; } void Deoptimizer::GenerateDeoptimizationEntries(MacroAssembler* masm, int count, BailoutType type) { TableEntryGenerator generator(masm, type, count); generator.Generate(); } void Deoptimizer::VisitAllOptimizedFunctionsForContext( Context* context, OptimizedFunctionVisitor* visitor) { DisallowHeapAllocation no_allocation; CHECK(context->IsNativeContext()); visitor->EnterContext(context); // Visit the list of optimized functions, removing elements that // no longer refer to optimized code. JSFunction* prev = NULL; Object* element = context->OptimizedFunctionsListHead(); Isolate* isolate = context->GetIsolate(); while (!element->IsUndefined(isolate)) { JSFunction* function = JSFunction::cast(element); Object* next = function->next_function_link(); if (function->code()->kind() != Code::OPTIMIZED_FUNCTION || (visitor->VisitFunction(function), function->code()->kind() != Code::OPTIMIZED_FUNCTION)) { // The function no longer refers to optimized code, or the visitor // changed the code to which it refers to no longer be optimized code. // Remove the function from this list. if (prev != NULL) { prev->set_next_function_link(next, UPDATE_WEAK_WRITE_BARRIER); } else { context->SetOptimizedFunctionsListHead(next); } // The visitor should not alter the link directly. CHECK_EQ(function->next_function_link(), next); // Set the next function link to undefined to indicate it is no longer // in the optimized functions list. function->set_next_function_link(context->GetHeap()->undefined_value(), SKIP_WRITE_BARRIER); } else { // The visitor should not alter the link directly. CHECK_EQ(function->next_function_link(), next); // preserve this element. prev = function; } element = next; } visitor->LeaveContext(context); } void Deoptimizer::VisitAllOptimizedFunctions( Isolate* isolate, OptimizedFunctionVisitor* visitor) { DisallowHeapAllocation no_allocation; // Run through the list of all native contexts. Object* context = isolate->heap()->native_contexts_list(); while (!context->IsUndefined(isolate)) { VisitAllOptimizedFunctionsForContext(Context::cast(context), visitor); context = Context::cast(context)->next_context_link(); } } // Unlink functions referring to code marked for deoptimization, then move // marked code from the optimized code list to the deoptimized code list, // and patch code for lazy deopt. void Deoptimizer::DeoptimizeMarkedCodeForContext(Context* context) { DisallowHeapAllocation no_allocation; // A "closure" that unlinks optimized code that is going to be // deoptimized from the functions that refer to it. class SelectedCodeUnlinker: public OptimizedFunctionVisitor { public: virtual void EnterContext(Context* context) { } // Don't care. virtual void LeaveContext(Context* context) { } // Don't care. virtual void VisitFunction(JSFunction* function) { Code* code = function->code(); if (!code->marked_for_deoptimization()) return; // Unlink this function and evict from optimized code map. SharedFunctionInfo* shared = function->shared(); function->set_code(shared->code()); if (FLAG_trace_deopt) { CodeTracer::Scope scope(code->GetHeap()->isolate()->GetCodeTracer()); PrintF(scope.file(), "[deoptimizer unlinked: "); function->PrintName(scope.file()); PrintF(scope.file(), " / %" V8PRIxPTR "]\n", reinterpret_cast(function)); } } }; // Unlink all functions that refer to marked code. SelectedCodeUnlinker unlinker; VisitAllOptimizedFunctionsForContext(context, &unlinker); Isolate* isolate = context->GetHeap()->isolate(); #ifdef DEBUG Code* topmost_optimized_code = NULL; bool safe_to_deopt_topmost_optimized_code = false; // Make sure all activations of optimized code can deopt at their current PC. // The topmost optimized code has special handling because it cannot be // deoptimized due to weak object dependency. for (StackFrameIterator it(isolate, isolate->thread_local_top()); !it.done(); it.Advance()) { StackFrame::Type type = it.frame()->type(); if (type == StackFrame::OPTIMIZED) { Code* code = it.frame()->LookupCode(); JSFunction* function = static_cast(it.frame())->function(); if (FLAG_trace_deopt) { CodeTracer::Scope scope(isolate->GetCodeTracer()); PrintF(scope.file(), "[deoptimizer found activation of function: "); function->PrintName(scope.file()); PrintF(scope.file(), " / %" V8PRIxPTR "]\n", reinterpret_cast(function)); } SafepointEntry safepoint = code->GetSafepointEntry(it.frame()->pc()); int deopt_index = safepoint.deoptimization_index(); // Turbofan deopt is checked when we are patching addresses on stack. bool turbofanned = code->is_turbofanned() && function->shared()->asm_function() && !FLAG_turbo_asm_deoptimization; bool safe_to_deopt = deopt_index != Safepoint::kNoDeoptimizationIndex || turbofanned; bool builtin = code->kind() == Code::BUILTIN; CHECK(topmost_optimized_code == NULL || safe_to_deopt || turbofanned || builtin); if (topmost_optimized_code == NULL) { topmost_optimized_code = code; safe_to_deopt_topmost_optimized_code = safe_to_deopt; } } } #endif // Move marked code from the optimized code list to the deoptimized // code list, collecting them into a ZoneList. Zone zone(isolate->allocator(), ZONE_NAME); ZoneList codes(10, &zone); // Walk over all optimized code objects in this native context. Code* prev = NULL; Object* element = context->OptimizedCodeListHead(); while (!element->IsUndefined(isolate)) { Code* code = Code::cast(element); CHECK_EQ(code->kind(), Code::OPTIMIZED_FUNCTION); Object* next = code->next_code_link(); if (code->marked_for_deoptimization()) { // Put the code into the list for later patching. codes.Add(code, &zone); if (prev != NULL) { // Skip this code in the optimized code list. prev->set_next_code_link(next); } else { // There was no previous node, the next node is the new head. context->SetOptimizedCodeListHead(next); } // Move the code to the _deoptimized_ code list. code->set_next_code_link(context->DeoptimizedCodeListHead()); context->SetDeoptimizedCodeListHead(code); } else { // Not marked; preserve this element. prev = code; } element = next; } // We need a handle scope only because of the macro assembler, // which is used in code patching in EnsureCodeForDeoptimizationEntry. HandleScope scope(isolate); // Now patch all the codes for deoptimization. for (int i = 0; i < codes.length(); i++) { #ifdef DEBUG if (codes[i] == topmost_optimized_code) { DCHECK(safe_to_deopt_topmost_optimized_code); } #endif // It is finally time to die, code object. // Remove the code from optimized code map. DeoptimizationInputData* deopt_data = DeoptimizationInputData::cast(codes[i]->deoptimization_data()); SharedFunctionInfo* shared = SharedFunctionInfo::cast(deopt_data->SharedFunctionInfo()); shared->EvictFromOptimizedCodeMap(codes[i], "deoptimized code"); // Do platform-specific patching to force any activations to lazy deopt. PatchCodeForDeoptimization(isolate, codes[i]); // We might be in the middle of incremental marking with compaction. // Tell collector to treat this code object in a special way and // ignore all slots that might have been recorded on it. isolate->heap()->mark_compact_collector()->InvalidateCode(codes[i]); } } void Deoptimizer::DeoptimizeAll(Isolate* isolate) { RuntimeCallTimerScope runtimeTimer(isolate, &RuntimeCallStats::DeoptimizeCode); TimerEventScope timer(isolate); TRACE_EVENT0("v8", "V8.DeoptimizeCode"); if (FLAG_trace_deopt) { CodeTracer::Scope scope(isolate->GetCodeTracer()); PrintF(scope.file(), "[deoptimize all code in all contexts]\n"); } DisallowHeapAllocation no_allocation; // For all contexts, mark all code, then deoptimize. Object* context = isolate->heap()->native_contexts_list(); while (!context->IsUndefined(isolate)) { Context* native_context = Context::cast(context); MarkAllCodeForContext(native_context); DeoptimizeMarkedCodeForContext(native_context); context = native_context->next_context_link(); } } void Deoptimizer::DeoptimizeMarkedCode(Isolate* isolate) { RuntimeCallTimerScope runtimeTimer(isolate, &RuntimeCallStats::DeoptimizeCode); TimerEventScope timer(isolate); TRACE_EVENT0("v8", "V8.DeoptimizeCode"); if (FLAG_trace_deopt) { CodeTracer::Scope scope(isolate->GetCodeTracer()); PrintF(scope.file(), "[deoptimize marked code in all contexts]\n"); } DisallowHeapAllocation no_allocation; // For all contexts, deoptimize code already marked. Object* context = isolate->heap()->native_contexts_list(); while (!context->IsUndefined(isolate)) { Context* native_context = Context::cast(context); DeoptimizeMarkedCodeForContext(native_context); context = native_context->next_context_link(); } } void Deoptimizer::MarkAllCodeForContext(Context* context) { Object* element = context->OptimizedCodeListHead(); Isolate* isolate = context->GetIsolate(); while (!element->IsUndefined(isolate)) { Code* code = Code::cast(element); CHECK_EQ(code->kind(), Code::OPTIMIZED_FUNCTION); code->set_marked_for_deoptimization(true); element = code->next_code_link(); } } void Deoptimizer::DeoptimizeFunction(JSFunction* function, Code* code) { Isolate* isolate = function->GetIsolate(); RuntimeCallTimerScope runtimeTimer(isolate, &RuntimeCallStats::DeoptimizeCode); TimerEventScope timer(isolate); TRACE_EVENT0("v8", "V8.DeoptimizeCode"); if (code == nullptr) code = function->code(); if (code->kind() == Code::OPTIMIZED_FUNCTION) { // Mark the code for deoptimization and unlink any functions that also // refer to that code. The code cannot be shared across native contexts, // so we only need to search one. code->set_marked_for_deoptimization(true); DeoptimizeMarkedCodeForContext(function->context()->native_context()); } } void Deoptimizer::ComputeOutputFrames(Deoptimizer* deoptimizer) { deoptimizer->DoComputeOutputFrames(); } bool Deoptimizer::TraceEnabledFor(StackFrame::Type frame_type) { return (frame_type == StackFrame::STUB) ? FLAG_trace_stub_failures : FLAG_trace_deopt; } const char* Deoptimizer::MessageFor(BailoutType type) { switch (type) { case EAGER: return "eager"; case SOFT: return "soft"; case LAZY: return "lazy"; } FATAL("Unsupported deopt type"); return NULL; } Deoptimizer::Deoptimizer(Isolate* isolate, JSFunction* function, BailoutType type, unsigned bailout_id, Address from, int fp_to_sp_delta) : isolate_(isolate), function_(function), bailout_id_(bailout_id), bailout_type_(type), from_(from), fp_to_sp_delta_(fp_to_sp_delta), deoptimizing_throw_(false), catch_handler_data_(-1), catch_handler_pc_offset_(-1), input_(nullptr), output_count_(0), jsframe_count_(0), output_(nullptr), caller_frame_top_(0), caller_fp_(0), caller_pc_(0), caller_constant_pool_(0), input_frame_context_(0), stack_fp_(0), trace_scope_(nullptr) { if (isolate->deoptimizer_lazy_throw()) { isolate->set_deoptimizer_lazy_throw(false); deoptimizing_throw_ = true; } // For COMPILED_STUBs called from builtins, the function pointer is a SMI // indicating an internal frame. if (function->IsSmi()) { function = nullptr; } DCHECK(from != nullptr); if (function != nullptr && function->IsOptimized()) { function->shared()->increment_deopt_count(); if (bailout_type_ == Deoptimizer::SOFT) { isolate->counters()->soft_deopts_executed()->Increment(); // Soft deopts shouldn't count against the overall re-optimization count // that can eventually lead to disabling optimization for a function. int opt_count = function->shared()->opt_count(); if (opt_count > 0) opt_count--; function->shared()->set_opt_count(opt_count); } } compiled_code_ = FindOptimizedCode(function); #if DEBUG DCHECK(compiled_code_ != NULL); if (type == EAGER || type == SOFT || type == LAZY) { DCHECK(compiled_code_->kind() != Code::FUNCTION); } #endif StackFrame::Type frame_type = function == NULL ? StackFrame::STUB : StackFrame::JAVA_SCRIPT; trace_scope_ = TraceEnabledFor(frame_type) ? new CodeTracer::Scope(isolate->GetCodeTracer()) : NULL; #ifdef DEBUG CHECK(AllowHeapAllocation::IsAllowed()); disallow_heap_allocation_ = new DisallowHeapAllocation(); #endif // DEBUG if (compiled_code_->kind() == Code::OPTIMIZED_FUNCTION) { PROFILE(isolate_, CodeDeoptEvent(compiled_code_, from_, fp_to_sp_delta_)); } unsigned size = ComputeInputFrameSize(); int parameter_count = function == nullptr ? 0 : (function->shared()->internal_formal_parameter_count() + 1); input_ = new (size) FrameDescription(size, parameter_count); input_->SetFrameType(frame_type); } Code* Deoptimizer::FindOptimizedCode(JSFunction* function) { Code* compiled_code = FindDeoptimizingCode(from_); return (compiled_code == NULL) ? static_cast(isolate_->FindCodeObject(from_)) : compiled_code; } void Deoptimizer::PrintFunctionName() { if (function_ != nullptr && function_->IsJSFunction()) { function_->ShortPrint(trace_scope_->file()); } else { PrintF(trace_scope_->file(), "%s", Code::Kind2String(compiled_code_->kind())); } } Deoptimizer::~Deoptimizer() { DCHECK(input_ == NULL && output_ == NULL); DCHECK(disallow_heap_allocation_ == NULL); delete trace_scope_; } void Deoptimizer::DeleteFrameDescriptions() { delete input_; for (int i = 0; i < output_count_; ++i) { if (output_[i] != input_) delete output_[i]; } delete[] output_; input_ = NULL; output_ = NULL; #ifdef DEBUG CHECK(!AllowHeapAllocation::IsAllowed()); CHECK(disallow_heap_allocation_ != NULL); delete disallow_heap_allocation_; disallow_heap_allocation_ = NULL; #endif // DEBUG } Address Deoptimizer::GetDeoptimizationEntry(Isolate* isolate, int id, BailoutType type, GetEntryMode mode) { CHECK_GE(id, 0); if (id >= kMaxNumberOfEntries) return NULL; if (mode == ENSURE_ENTRY_CODE) { EnsureCodeForDeoptimizationEntry(isolate, type, id); } else { CHECK_EQ(mode, CALCULATE_ENTRY_ADDRESS); } DeoptimizerData* data = isolate->deoptimizer_data(); CHECK_LE(type, kLastBailoutType); MemoryChunk* base = data->deopt_entry_code_[type]; return base->area_start() + (id * table_entry_size_); } int Deoptimizer::GetDeoptimizationId(Isolate* isolate, Address addr, BailoutType type) { DeoptimizerData* data = isolate->deoptimizer_data(); MemoryChunk* base = data->deopt_entry_code_[type]; Address start = base->area_start(); if (addr < start || addr >= start + (kMaxNumberOfEntries * table_entry_size_)) { return kNotDeoptimizationEntry; } DCHECK_EQ(0, static_cast(addr - start) % table_entry_size_); return static_cast(addr - start) / table_entry_size_; } int Deoptimizer::GetOutputInfo(DeoptimizationOutputData* data, BailoutId id, SharedFunctionInfo* shared) { // TODO(kasperl): For now, we do a simple linear search for the PC // offset associated with the given node id. This should probably be // changed to a binary search. int length = data->DeoptPoints(); for (int i = 0; i < length; i++) { if (data->AstId(i) == id) { return data->PcAndState(i)->value(); } } OFStream os(stderr); os << "[couldn't find pc offset for node=" << id.ToInt() << "]\n" << "[method: " << shared->DebugName()->ToCString().get() << "]\n" << "[source:\n" << SourceCodeOf(shared) << "\n]" << std::endl; shared->GetHeap()->isolate()->PushStackTraceAndDie(0xfefefefe, data, shared, 0xfefefeff); FATAL("unable to find pc offset during deoptimization"); return -1; } int Deoptimizer::GetDeoptimizedCodeCount(Isolate* isolate) { int length = 0; // Count all entries in the deoptimizing code list of every context. Object* context = isolate->heap()->native_contexts_list(); while (!context->IsUndefined(isolate)) { Context* native_context = Context::cast(context); Object* element = native_context->DeoptimizedCodeListHead(); while (!element->IsUndefined(isolate)) { Code* code = Code::cast(element); DCHECK(code->kind() == Code::OPTIMIZED_FUNCTION); length++; element = code->next_code_link(); } context = Context::cast(context)->next_context_link(); } return length; } namespace { int LookupCatchHandler(TranslatedFrame* translated_frame, int* data_out) { switch (translated_frame->kind()) { case TranslatedFrame::kFunction: { #ifdef DEBUG JSFunction* function = JSFunction::cast(translated_frame->begin()->GetRawValue()); Code* non_optimized_code = function->shared()->code(); HandlerTable* table = HandlerTable::cast(non_optimized_code->handler_table()); DCHECK_EQ(0, table->NumberOfRangeEntries()); #endif break; } case TranslatedFrame::kInterpretedFunction: { int bytecode_offset = translated_frame->node_id().ToInt(); JSFunction* function = JSFunction::cast(translated_frame->begin()->GetRawValue()); BytecodeArray* bytecode = function->shared()->bytecode_array(); HandlerTable* table = HandlerTable::cast(bytecode->handler_table()); return table->LookupRange(bytecode_offset, data_out, nullptr); } default: break; } return -1; } } // namespace // We rely on this function not causing a GC. It is called from generated code // without having a real stack frame in place. void Deoptimizer::DoComputeOutputFrames() { base::ElapsedTimer timer; // Determine basic deoptimization information. The optimized frame is // described by the input data. DeoptimizationInputData* input_data = DeoptimizationInputData::cast(compiled_code_->deoptimization_data()); { // Read caller's PC, caller's FP and caller's constant pool values // from input frame. Compute caller's frame top address. Register fp_reg = JavaScriptFrame::fp_register(); stack_fp_ = input_->GetRegister(fp_reg.code()); caller_frame_top_ = stack_fp_ + ComputeInputFrameAboveFpFixedSize(); Address fp_address = input_->GetFramePointerAddress(); caller_fp_ = Memory::intptr_at(fp_address); caller_pc_ = Memory::intptr_at(fp_address + CommonFrameConstants::kCallerPCOffset); input_frame_context_ = Memory::intptr_at( fp_address + CommonFrameConstants::kContextOrFrameTypeOffset); if (FLAG_enable_embedded_constant_pool) { caller_constant_pool_ = Memory::intptr_at( fp_address + CommonFrameConstants::kConstantPoolOffset); } } if (trace_scope_ != NULL) { timer.Start(); PrintF(trace_scope_->file(), "[deoptimizing (DEOPT %s): begin ", MessageFor(bailout_type_)); PrintFunctionName(); PrintF(trace_scope_->file(), " (opt #%d) @%d, FP to SP delta: %d, caller sp: 0x%08" V8PRIxPTR "]\n", input_data->OptimizationId()->value(), bailout_id_, fp_to_sp_delta_, caller_frame_top_); if (bailout_type_ == EAGER || bailout_type_ == SOFT || (compiled_code_->is_hydrogen_stub())) { compiled_code_->PrintDeoptLocation(trace_scope_->file(), from_); } } BailoutId node_id = input_data->AstId(bailout_id_); ByteArray* translations = input_data->TranslationByteArray(); unsigned translation_index = input_data->TranslationIndex(bailout_id_)->value(); TranslationIterator state_iterator(translations, translation_index); translated_state_.Init( input_->GetFramePointerAddress(), &state_iterator, input_data->LiteralArray(), input_->GetRegisterValues(), trace_scope_ == nullptr ? nullptr : trace_scope_->file()); // Do the input frame to output frame(s) translation. size_t count = translated_state_.frames().size(); // If we are supposed to go to the catch handler, find the catching frame // for the catch and make sure we only deoptimize upto that frame. if (deoptimizing_throw_) { size_t catch_handler_frame_index = count; for (size_t i = count; i-- > 0;) { catch_handler_pc_offset_ = LookupCatchHandler( &(translated_state_.frames()[i]), &catch_handler_data_); if (catch_handler_pc_offset_ >= 0) { catch_handler_frame_index = i; break; } } CHECK_LT(catch_handler_frame_index, count); count = catch_handler_frame_index + 1; } DCHECK(output_ == NULL); output_ = new FrameDescription*[count]; for (size_t i = 0; i < count; ++i) { output_[i] = NULL; } output_count_ = static_cast(count); // Translate each output frame. int frame_index = 0; // output_frame_index for (size_t i = 0; i < count; ++i, ++frame_index) { // Read the ast node id, function, and frame height for this output frame. TranslatedFrame* translated_frame = &(translated_state_.frames()[i]); switch (translated_frame->kind()) { case TranslatedFrame::kFunction: DoComputeJSFrame(translated_frame, frame_index, deoptimizing_throw_ && i == count - 1); jsframe_count_++; break; case TranslatedFrame::kInterpretedFunction: DoComputeInterpretedFrame(translated_frame, frame_index, deoptimizing_throw_ && i == count - 1); jsframe_count_++; break; case TranslatedFrame::kArgumentsAdaptor: DoComputeArgumentsAdaptorFrame(translated_frame, frame_index); break; case TranslatedFrame::kTailCallerFunction: DoComputeTailCallerFrame(translated_frame, frame_index); // Tail caller frame translations do not produce output frames. frame_index--; output_count_--; break; case TranslatedFrame::kConstructStub: DoComputeConstructStubFrame(translated_frame, frame_index); break; case TranslatedFrame::kGetter: DoComputeAccessorStubFrame(translated_frame, frame_index, false); break; case TranslatedFrame::kSetter: DoComputeAccessorStubFrame(translated_frame, frame_index, true); break; case TranslatedFrame::kCompiledStub: DoComputeCompiledStubFrame(translated_frame, frame_index); break; case TranslatedFrame::kInvalid: FATAL("invalid frame"); break; } } // Print some helpful diagnostic information. if (trace_scope_ != NULL) { double ms = timer.Elapsed().InMillisecondsF(); int index = output_count_ - 1; // Index of the topmost frame. PrintF(trace_scope_->file(), "[deoptimizing (%s): end ", MessageFor(bailout_type_)); PrintFunctionName(); PrintF(trace_scope_->file(), " @%d => node=%d, pc=0x%08" V8PRIxPTR ", caller sp=0x%08" V8PRIxPTR ", state=%s, took %0.3f ms]\n", bailout_id_, node_id.ToInt(), output_[index]->GetPc(), caller_frame_top_, BailoutStateToString(static_cast( output_[index]->GetState()->value())), ms); } } void Deoptimizer::DoComputeJSFrame(TranslatedFrame* translated_frame, int frame_index, bool goto_catch_handler) { SharedFunctionInfo* shared = translated_frame->raw_shared_info(); TranslatedFrame::iterator value_iterator = translated_frame->begin(); bool is_bottommost = (0 == frame_index); bool is_topmost = (output_count_ - 1 == frame_index); int input_index = 0; BailoutId node_id = translated_frame->node_id(); unsigned height = translated_frame->height() - 1; // Do not count the context. unsigned height_in_bytes = height * kPointerSize; if (goto_catch_handler) { // Take the stack height from the handler table. height = catch_handler_data_; // We also make space for the exception itself. height_in_bytes = (height + 1) * kPointerSize; CHECK(is_topmost); } JSFunction* function = JSFunction::cast(value_iterator->GetRawValue()); value_iterator++; input_index++; if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " translating frame "); std::unique_ptr name = shared->DebugName()->ToCString(); PrintF(trace_scope_->file(), "%s", name.get()); PrintF(trace_scope_->file(), " => node=%d, height=%d%s\n", node_id.ToInt(), height_in_bytes, goto_catch_handler ? " (throw)" : ""); } // The 'fixed' part of the frame consists of the incoming parameters and // the part described by JavaScriptFrameConstants. unsigned fixed_frame_size = ComputeJavascriptFixedSize(shared); unsigned output_frame_size = height_in_bytes + fixed_frame_size; // Allocate and store the output frame description. int parameter_count = shared->internal_formal_parameter_count() + 1; FrameDescription* output_frame = new (output_frame_size) FrameDescription(output_frame_size, parameter_count); output_frame->SetFrameType(StackFrame::JAVA_SCRIPT); CHECK(frame_index >= 0 && frame_index < output_count_); CHECK_NULL(output_[frame_index]); output_[frame_index] = output_frame; // The top address of the frame is computed from the previous frame's top and // this frame's size. intptr_t top_address; if (is_bottommost) { top_address = caller_frame_top_ - output_frame_size; } else { top_address = output_[frame_index - 1]->GetTop() - output_frame_size; } output_frame->SetTop(top_address); // Compute the incoming parameter translation. unsigned output_offset = output_frame_size; for (int i = 0; i < parameter_count; ++i) { output_offset -= kPointerSize; WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index, output_offset); } if (trace_scope_ != nullptr) { PrintF(trace_scope_->file(), " -------------------------\n"); } // There are no translation commands for the caller's pc and fp, the // context, and the function. Synthesize their values and set them up // explicitly. // // The caller's pc for the bottommost output frame is the same as in the // input frame. For all subsequent output frames, it can be read from the // previous one. This frame's pc can be computed from the non-optimized // function code and AST id of the bailout. output_offset -= kPCOnStackSize; intptr_t value; if (is_bottommost) { value = caller_pc_; } else { value = output_[frame_index - 1]->GetPc(); } output_frame->SetCallerPc(output_offset, value); DebugPrintOutputSlot(value, frame_index, output_offset, "caller's pc\n"); // The caller's frame pointer for the bottommost output frame is the same // as in the input frame. For all subsequent output frames, it can be // read from the previous one. Also compute and set this frame's frame // pointer. output_offset -= kFPOnStackSize; if (is_bottommost) { value = caller_fp_; } else { value = output_[frame_index - 1]->GetFp(); } output_frame->SetCallerFp(output_offset, value); intptr_t fp_value = top_address + output_offset; output_frame->SetFp(fp_value); if (is_topmost) { Register fp_reg = JavaScriptFrame::fp_register(); output_frame->SetRegister(fp_reg.code(), fp_value); } DebugPrintOutputSlot(value, frame_index, output_offset, "caller's fp\n"); if (FLAG_enable_embedded_constant_pool) { // For the bottommost output frame the constant pool pointer can be gotten // from the input frame. For subsequent output frames, it can be read from // the previous frame. output_offset -= kPointerSize; if (is_bottommost) { value = caller_constant_pool_; } else { value = output_[frame_index - 1]->GetConstantPool(); } output_frame->SetCallerConstantPool(output_offset, value); DebugPrintOutputSlot(value, frame_index, output_offset, "caller's constant_pool\n"); } // For the bottommost output frame the context can be gotten from the input // frame. For all subsequent output frames it can be gotten from the function // so long as we don't inline functions that need local contexts. output_offset -= kPointerSize; // When deoptimizing into a catch block, we need to take the context // from just above the top of the operand stack (we push the context // at the entry of the try block). TranslatedFrame::iterator context_pos = value_iterator; int context_input_index = input_index; if (goto_catch_handler) { for (unsigned i = 0; i < height + 1; ++i) { context_pos++; context_input_index++; } } // Read the context from the translations. Object* context = context_pos->GetRawValue(); if (context->IsUndefined(isolate_)) { // If the context was optimized away, just use the context from // the activation. This should only apply to Crankshaft code. CHECK(!compiled_code_->is_turbofanned()); context = is_bottommost ? reinterpret_cast(input_frame_context_) : function->context(); } value = reinterpret_cast(context); output_frame->SetContext(value); WriteValueToOutput(context, context_input_index, frame_index, output_offset, "context "); if (context == isolate_->heap()->arguments_marker()) { Address output_address = reinterpret_cast
(output_[frame_index]->GetTop()) + output_offset; values_to_materialize_.push_back({output_address, context_pos}); } value_iterator++; input_index++; // The function was mentioned explicitly in the BEGIN_FRAME. output_offset -= kPointerSize; value = reinterpret_cast(function); WriteValueToOutput(function, 0, frame_index, output_offset, "function "); if (trace_scope_ != nullptr) { PrintF(trace_scope_->file(), " -------------------------\n"); } // Translate the rest of the frame. for (unsigned i = 0; i < height; ++i) { output_offset -= kPointerSize; WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index, output_offset); } if (goto_catch_handler) { // Write out the exception for the catch handler. output_offset -= kPointerSize; Object* exception_obj = reinterpret_cast( input_->GetRegister(FullCodeGenerator::result_register().code())); WriteValueToOutput(exception_obj, input_index, frame_index, output_offset, "exception "); input_index++; } CHECK_EQ(0u, output_offset); // Update constant pool. Code* non_optimized_code = shared->code(); if (FLAG_enable_embedded_constant_pool) { intptr_t constant_pool_value = reinterpret_cast(non_optimized_code->constant_pool()); output_frame->SetConstantPool(constant_pool_value); if (is_topmost) { Register constant_pool_reg = JavaScriptFrame::constant_pool_pointer_register(); output_frame->SetRegister(constant_pool_reg.code(), constant_pool_value); } } // Compute this frame's PC and state. FixedArray* raw_data = non_optimized_code->deoptimization_data(); DeoptimizationOutputData* data = DeoptimizationOutputData::cast(raw_data); Address start = non_optimized_code->instruction_start(); unsigned pc_and_state = GetOutputInfo(data, node_id, function->shared()); unsigned pc_offset = goto_catch_handler ? catch_handler_pc_offset_ : FullCodeGenerator::PcField::decode(pc_and_state); intptr_t pc_value = reinterpret_cast(start + pc_offset); output_frame->SetPc(pc_value); // If we are going to the catch handler, then the exception lives in // the accumulator. BailoutState state = goto_catch_handler ? BailoutState::TOS_REGISTER : FullCodeGenerator::BailoutStateField::decode(pc_and_state); output_frame->SetState(Smi::FromInt(static_cast(state))); // Clear the context register. The context might be a de-materialized object // and will be materialized by {Runtime_NotifyDeoptimized}. For additional // safety we use Smi(0) instead of the potential {arguments_marker} here. if (is_topmost) { intptr_t context_value = reinterpret_cast(Smi::kZero); Register context_reg = JavaScriptFrame::context_register(); output_frame->SetRegister(context_reg.code(), context_value); } // Set the continuation for the topmost frame. if (is_topmost) { Builtins* builtins = isolate_->builtins(); Code* continuation = builtins->builtin(Builtins::kNotifyDeoptimized); if (bailout_type_ == LAZY) { continuation = builtins->builtin(Builtins::kNotifyLazyDeoptimized); } else if (bailout_type_ == SOFT) { continuation = builtins->builtin(Builtins::kNotifySoftDeoptimized); } else { CHECK_EQ(bailout_type_, EAGER); } output_frame->SetContinuation( reinterpret_cast(continuation->entry())); } } void Deoptimizer::DoComputeInterpretedFrame(TranslatedFrame* translated_frame, int frame_index, bool goto_catch_handler) { SharedFunctionInfo* shared = translated_frame->raw_shared_info(); TranslatedFrame::iterator value_iterator = translated_frame->begin(); bool is_bottommost = (0 == frame_index); bool is_topmost = (output_count_ - 1 == frame_index); int input_index = 0; int bytecode_offset = translated_frame->node_id().ToInt(); unsigned height = translated_frame->height(); unsigned height_in_bytes = height * kPointerSize; // All tranlations for interpreted frames contain the accumulator and hence // are assumed to be in bailout state {BailoutState::TOS_REGISTER}. However // such a state is only supported for the topmost frame. We need to skip // pushing the accumulator for any non-topmost frame. if (!is_topmost) height_in_bytes -= kPointerSize; JSFunction* function = JSFunction::cast(value_iterator->GetRawValue()); value_iterator++; input_index++; if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " translating interpreted frame "); std::unique_ptr name = shared->DebugName()->ToCString(); PrintF(trace_scope_->file(), "%s", name.get()); PrintF(trace_scope_->file(), " => bytecode_offset=%d, height=%d%s\n", bytecode_offset, height_in_bytes, goto_catch_handler ? " (throw)" : ""); } if (goto_catch_handler) { bytecode_offset = catch_handler_pc_offset_; } // The 'fixed' part of the frame consists of the incoming parameters and // the part described by InterpreterFrameConstants. unsigned fixed_frame_size = ComputeInterpretedFixedSize(shared); unsigned output_frame_size = height_in_bytes + fixed_frame_size; // Allocate and store the output frame description. int parameter_count = shared->internal_formal_parameter_count() + 1; FrameDescription* output_frame = new (output_frame_size) FrameDescription(output_frame_size, parameter_count); output_frame->SetFrameType(StackFrame::INTERPRETED); CHECK(frame_index >= 0 && frame_index < output_count_); CHECK_NULL(output_[frame_index]); output_[frame_index] = output_frame; // The top address of the frame is computed from the previous frame's top and // this frame's size. intptr_t top_address; if (is_bottommost) { top_address = caller_frame_top_ - output_frame_size; } else { top_address = output_[frame_index - 1]->GetTop() - output_frame_size; } output_frame->SetTop(top_address); // Compute the incoming parameter translation. unsigned output_offset = output_frame_size; for (int i = 0; i < parameter_count; ++i) { output_offset -= kPointerSize; WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index, output_offset); } if (trace_scope_ != nullptr) { PrintF(trace_scope_->file(), " -------------------------\n"); } // There are no translation commands for the caller's pc and fp, the // context, the function, new.target and the bytecode offset. Synthesize // their values and set them up // explicitly. // // The caller's pc for the bottommost output frame is the same as in the // input frame. For all subsequent output frames, it can be read from the // previous one. This frame's pc can be computed from the non-optimized // function code and AST id of the bailout. output_offset -= kPCOnStackSize; intptr_t value; if (is_bottommost) { value = caller_pc_; } else { value = output_[frame_index - 1]->GetPc(); } output_frame->SetCallerPc(output_offset, value); DebugPrintOutputSlot(value, frame_index, output_offset, "caller's pc\n"); // The caller's frame pointer for the bottommost output frame is the same // as in the input frame. For all subsequent output frames, it can be // read from the previous one. Also compute and set this frame's frame // pointer. output_offset -= kFPOnStackSize; if (is_bottommost) { value = caller_fp_; } else { value = output_[frame_index - 1]->GetFp(); } output_frame->SetCallerFp(output_offset, value); intptr_t fp_value = top_address + output_offset; output_frame->SetFp(fp_value); if (is_topmost) { Register fp_reg = InterpretedFrame::fp_register(); output_frame->SetRegister(fp_reg.code(), fp_value); } DebugPrintOutputSlot(value, frame_index, output_offset, "caller's fp\n"); if (FLAG_enable_embedded_constant_pool) { // For the bottommost output frame the constant pool pointer can be gotten // from the input frame. For subsequent output frames, it can be read from // the previous frame. output_offset -= kPointerSize; if (is_bottommost) { value = caller_constant_pool_; } else { value = output_[frame_index - 1]->GetConstantPool(); } output_frame->SetCallerConstantPool(output_offset, value); DebugPrintOutputSlot(value, frame_index, output_offset, "caller's constant_pool\n"); } // For the bottommost output frame the context can be gotten from the input // frame. For all subsequent output frames it can be gotten from the function // so long as we don't inline functions that need local contexts. output_offset -= kPointerSize; // When deoptimizing into a catch block, we need to take the context // from a register that was specified in the handler table. TranslatedFrame::iterator context_pos = value_iterator; int context_input_index = input_index; if (goto_catch_handler) { // Skip to the translated value of the register specified // in the handler table. for (int i = 0; i < catch_handler_data_ + 1; ++i) { context_pos++; context_input_index++; } } // Read the context from the translations. Object* context = context_pos->GetRawValue(); value = reinterpret_cast(context); output_frame->SetContext(value); WriteValueToOutput(context, context_input_index, frame_index, output_offset, "context "); if (context == isolate_->heap()->arguments_marker()) { Address output_address = reinterpret_cast
(output_[frame_index]->GetTop()) + output_offset; values_to_materialize_.push_back({output_address, context_pos}); } value_iterator++; input_index++; // The function was mentioned explicitly in the BEGIN_FRAME. output_offset -= kPointerSize; value = reinterpret_cast(function); WriteValueToOutput(function, 0, frame_index, output_offset, "function "); // The new.target slot is only used during function activiation which is // before the first deopt point, so should never be needed. Just set it to // undefined. output_offset -= kPointerSize; Object* new_target = isolate_->heap()->undefined_value(); WriteValueToOutput(new_target, 0, frame_index, output_offset, "new_target "); // Set the bytecode array pointer. output_offset -= kPointerSize; Object* bytecode_array = shared->HasDebugInfo() ? shared->GetDebugInfo()->DebugBytecodeArray() : shared->bytecode_array(); WriteValueToOutput(bytecode_array, 0, frame_index, output_offset, "bytecode array "); // The bytecode offset was mentioned explicitly in the BEGIN_FRAME. output_offset -= kPointerSize; int raw_bytecode_offset = BytecodeArray::kHeaderSize - kHeapObjectTag + bytecode_offset; Smi* smi_bytecode_offset = Smi::FromInt(raw_bytecode_offset); WriteValueToOutput(smi_bytecode_offset, 0, frame_index, output_offset, "bytecode offset "); if (trace_scope_ != nullptr) { PrintF(trace_scope_->file(), " -------------------------\n"); } // Translate the rest of the interpreter registers in the frame. for (unsigned i = 0; i < height - 1; ++i) { output_offset -= kPointerSize; WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index, output_offset); } // Translate the accumulator register (depending on frame position). if (is_topmost) { // For topmost frame, put the accumulator on the stack. The bailout state // for interpreted frames is always set to {BailoutState::TOS_REGISTER} and // the {NotifyDeoptimized} builtin pops it off the topmost frame (possibly // after materialization). output_offset -= kPointerSize; if (goto_catch_handler) { // If we are lazy deopting to a catch handler, we set the accumulator to // the exception (which lives in the result register). intptr_t accumulator_value = input_->GetRegister(FullCodeGenerator::result_register().code()); WriteValueToOutput(reinterpret_cast(accumulator_value), 0, frame_index, output_offset, "accumulator "); value_iterator++; } else { WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index, output_offset, "accumulator "); } } else { // For non-topmost frames, skip the accumulator translation. For those // frames, the return value from the callee will become the accumulator. value_iterator++; input_index++; } CHECK_EQ(0u, output_offset); // Compute this frame's PC and state. The PC will be a special builtin that // continues the bytecode dispatch. Note that non-topmost and lazy-style // bailout handlers also advance the bytecode offset before dispatch, hence // simulating what normal handlers do upon completion of the operation. Builtins* builtins = isolate_->builtins(); Code* dispatch_builtin = (!is_topmost || (bailout_type_ == LAZY)) && !goto_catch_handler ? builtins->builtin(Builtins::kInterpreterEnterBytecodeAdvance) : builtins->builtin(Builtins::kInterpreterEnterBytecodeDispatch); output_frame->SetPc(reinterpret_cast(dispatch_builtin->entry())); // Restore accumulator (TOS) register. output_frame->SetState( Smi::FromInt(static_cast(BailoutState::TOS_REGISTER))); // Update constant pool. if (FLAG_enable_embedded_constant_pool) { intptr_t constant_pool_value = reinterpret_cast(dispatch_builtin->constant_pool()); output_frame->SetConstantPool(constant_pool_value); if (is_topmost) { Register constant_pool_reg = InterpretedFrame::constant_pool_pointer_register(); output_frame->SetRegister(constant_pool_reg.code(), constant_pool_value); } } // Clear the context register. The context might be a de-materialized object // and will be materialized by {Runtime_NotifyDeoptimized}. For additional // safety we use Smi(0) instead of the potential {arguments_marker} here. if (is_topmost) { intptr_t context_value = reinterpret_cast(Smi::kZero); Register context_reg = JavaScriptFrame::context_register(); output_frame->SetRegister(context_reg.code(), context_value); } // Set the continuation for the topmost frame. if (is_topmost) { Code* continuation = builtins->builtin(Builtins::kNotifyDeoptimized); if (bailout_type_ == LAZY) { continuation = builtins->builtin(Builtins::kNotifyLazyDeoptimized); } else if (bailout_type_ == SOFT) { continuation = builtins->builtin(Builtins::kNotifySoftDeoptimized); } else { CHECK_EQ(bailout_type_, EAGER); } output_frame->SetContinuation( reinterpret_cast(continuation->entry())); } } void Deoptimizer::DoComputeArgumentsAdaptorFrame( TranslatedFrame* translated_frame, int frame_index) { TranslatedFrame::iterator value_iterator = translated_frame->begin(); bool is_bottommost = (0 == frame_index); int input_index = 0; unsigned height = translated_frame->height(); unsigned height_in_bytes = height * kPointerSize; JSFunction* function = JSFunction::cast(value_iterator->GetRawValue()); value_iterator++; input_index++; if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " translating arguments adaptor => height=%d\n", height_in_bytes); } unsigned fixed_frame_size = ArgumentsAdaptorFrameConstants::kFixedFrameSize; unsigned output_frame_size = height_in_bytes + fixed_frame_size; // Allocate and store the output frame description. int parameter_count = height; FrameDescription* output_frame = new (output_frame_size) FrameDescription(output_frame_size, parameter_count); output_frame->SetFrameType(StackFrame::ARGUMENTS_ADAPTOR); // Arguments adaptor can not be topmost. CHECK(frame_index < output_count_ - 1); CHECK(output_[frame_index] == NULL); output_[frame_index] = output_frame; // The top address of the frame is computed from the previous frame's top and // this frame's size. intptr_t top_address; if (is_bottommost) { top_address = caller_frame_top_ - output_frame_size; } else { top_address = output_[frame_index - 1]->GetTop() - output_frame_size; } output_frame->SetTop(top_address); // Compute the incoming parameter translation. unsigned output_offset = output_frame_size; for (int i = 0; i < parameter_count; ++i) { output_offset -= kPointerSize; WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index, output_offset); } // Read caller's PC from the previous frame. output_offset -= kPCOnStackSize; intptr_t value; if (is_bottommost) { value = caller_pc_; } else { value = output_[frame_index - 1]->GetPc(); } output_frame->SetCallerPc(output_offset, value); DebugPrintOutputSlot(value, frame_index, output_offset, "caller's pc\n"); // Read caller's FP from the previous frame, and set this frame's FP. output_offset -= kFPOnStackSize; if (is_bottommost) { value = caller_fp_; } else { value = output_[frame_index - 1]->GetFp(); } output_frame->SetCallerFp(output_offset, value); intptr_t fp_value = top_address + output_offset; output_frame->SetFp(fp_value); DebugPrintOutputSlot(value, frame_index, output_offset, "caller's fp\n"); if (FLAG_enable_embedded_constant_pool) { // Read the caller's constant pool from the previous frame. output_offset -= kPointerSize; if (is_bottommost) { value = caller_constant_pool_; } else { value = output_[frame_index - 1]->GetConstantPool(); } output_frame->SetCallerConstantPool(output_offset, value); DebugPrintOutputSlot(value, frame_index, output_offset, "caller's constant_pool\n"); } // A marker value is used in place of the context. output_offset -= kPointerSize; intptr_t context = reinterpret_cast( Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); output_frame->SetFrameSlot(output_offset, context); DebugPrintOutputSlot(context, frame_index, output_offset, "context (adaptor sentinel)\n"); // The function was mentioned explicitly in the ARGUMENTS_ADAPTOR_FRAME. output_offset -= kPointerSize; value = reinterpret_cast(function); WriteValueToOutput(function, 0, frame_index, output_offset, "function "); // Number of incoming arguments. output_offset -= kPointerSize; value = reinterpret_cast(Smi::FromInt(height - 1)); output_frame->SetFrameSlot(output_offset, value); DebugPrintOutputSlot(value, frame_index, output_offset, "argc "); if (trace_scope_ != nullptr) { PrintF(trace_scope_->file(), "(%d)\n", height - 1); } DCHECK(0 == output_offset); Builtins* builtins = isolate_->builtins(); Code* adaptor_trampoline = builtins->builtin(Builtins::kArgumentsAdaptorTrampoline); intptr_t pc_value = reinterpret_cast( adaptor_trampoline->instruction_start() + isolate_->heap()->arguments_adaptor_deopt_pc_offset()->value()); output_frame->SetPc(pc_value); if (FLAG_enable_embedded_constant_pool) { intptr_t constant_pool_value = reinterpret_cast(adaptor_trampoline->constant_pool()); output_frame->SetConstantPool(constant_pool_value); } } void Deoptimizer::DoComputeTailCallerFrame(TranslatedFrame* translated_frame, int frame_index) { SharedFunctionInfo* shared = translated_frame->raw_shared_info(); bool is_bottommost = (0 == frame_index); // Tail caller frame can't be topmost. CHECK_NE(output_count_ - 1, frame_index); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " translating tail caller frame "); std::unique_ptr name = shared->DebugName()->ToCString(); PrintF(trace_scope_->file(), "%s\n", name.get()); } if (!is_bottommost) return; // Drop arguments adaptor frame below current frame if it exsits. Address fp_address = input_->GetFramePointerAddress(); Address adaptor_fp_address = Memory::Address_at(fp_address + CommonFrameConstants::kCallerFPOffset); if (Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR) != Memory::Object_at(adaptor_fp_address + CommonFrameConstants::kContextOrFrameTypeOffset)) { return; } int caller_params_count = Smi::cast( Memory::Object_at(adaptor_fp_address + ArgumentsAdaptorFrameConstants::kLengthOffset)) ->value(); int callee_params_count = function_->shared()->internal_formal_parameter_count(); // Both caller and callee parameters count do not include receiver. int offset = (caller_params_count - callee_params_count) * kPointerSize; intptr_t new_stack_fp = reinterpret_cast(adaptor_fp_address) + offset; intptr_t new_caller_frame_top = new_stack_fp + (callee_params_count + 1) * kPointerSize + CommonFrameConstants::kFixedFrameSizeAboveFp; intptr_t adaptor_caller_pc = Memory::intptr_at( adaptor_fp_address + CommonFrameConstants::kCallerPCOffset); intptr_t adaptor_caller_fp = Memory::intptr_at( adaptor_fp_address + CommonFrameConstants::kCallerFPOffset); if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " dropping caller arguments adaptor frame: offset=%d, " "fp: 0x%08" V8PRIxPTR " -> 0x%08" V8PRIxPTR ", " "caller sp: 0x%08" V8PRIxPTR " -> 0x%08" V8PRIxPTR "\n", offset, stack_fp_, new_stack_fp, caller_frame_top_, new_caller_frame_top); } caller_frame_top_ = new_caller_frame_top; caller_fp_ = adaptor_caller_fp; caller_pc_ = adaptor_caller_pc; } void Deoptimizer::DoComputeConstructStubFrame(TranslatedFrame* translated_frame, int frame_index) { TranslatedFrame::iterator value_iterator = translated_frame->begin(); bool is_topmost = (output_count_ - 1 == frame_index); // The construct frame could become topmost only if we inlined a constructor // call which does a tail call (otherwise the tail callee's frame would be // the topmost one). So it could only be the LAZY case. CHECK(!is_topmost || bailout_type_ == LAZY); int input_index = 0; Builtins* builtins = isolate_->builtins(); Code* construct_stub = builtins->builtin(Builtins::kJSConstructStubGeneric); unsigned height = translated_frame->height(); unsigned height_in_bytes = height * kPointerSize; // If the construct frame appears to be topmost we should ensure that the // value of result register is preserved during continuation execution. // We do this here by "pushing" the result of the constructor function to the // top of the reconstructed stack and then using the // BailoutState::TOS_REGISTER machinery. if (is_topmost) { height_in_bytes += kPointerSize; } // Skip function. value_iterator++; input_index++; if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " translating construct stub => height=%d\n", height_in_bytes); } unsigned fixed_frame_size = ConstructFrameConstants::kFixedFrameSize; unsigned output_frame_size = height_in_bytes + fixed_frame_size; // Allocate and store the output frame description. FrameDescription* output_frame = new (output_frame_size) FrameDescription(output_frame_size); output_frame->SetFrameType(StackFrame::CONSTRUCT); // Construct stub can not be topmost. DCHECK(frame_index > 0 && frame_index < output_count_); DCHECK(output_[frame_index] == NULL); output_[frame_index] = output_frame; // The top address of the frame is computed from the previous frame's top and // this frame's size. intptr_t top_address; top_address = output_[frame_index - 1]->GetTop() - output_frame_size; output_frame->SetTop(top_address); // Compute the incoming parameter translation. int parameter_count = height; unsigned output_offset = output_frame_size; for (int i = 0; i < parameter_count; ++i) { output_offset -= kPointerSize; // The allocated receiver of a construct stub frame is passed as the // receiver parameter through the translation. It might be encoding // a captured object, override the slot address for a captured object. WriteTranslatedValueToOutput( &value_iterator, &input_index, frame_index, output_offset, nullptr, (i == 0) ? reinterpret_cast
(top_address) : nullptr); } // Read caller's PC from the previous frame. output_offset -= kPCOnStackSize; intptr_t callers_pc = output_[frame_index - 1]->GetPc(); output_frame->SetCallerPc(output_offset, callers_pc); DebugPrintOutputSlot(callers_pc, frame_index, output_offset, "caller's pc\n"); // Read caller's FP from the previous frame, and set this frame's FP. output_offset -= kFPOnStackSize; intptr_t value = output_[frame_index - 1]->GetFp(); output_frame->SetCallerFp(output_offset, value); intptr_t fp_value = top_address + output_offset; output_frame->SetFp(fp_value); if (is_topmost) { Register fp_reg = JavaScriptFrame::fp_register(); output_frame->SetRegister(fp_reg.code(), fp_value); } DebugPrintOutputSlot(value, frame_index, output_offset, "caller's fp\n"); if (FLAG_enable_embedded_constant_pool) { // Read the caller's constant pool from the previous frame. output_offset -= kPointerSize; value = output_[frame_index - 1]->GetConstantPool(); output_frame->SetCallerConstantPool(output_offset, value); DebugPrintOutputSlot(value, frame_index, output_offset, "caller's constant_pool\n"); } // A marker value is used to mark the frame. output_offset -= kPointerSize; value = reinterpret_cast(Smi::FromInt(StackFrame::CONSTRUCT)); output_frame->SetFrameSlot(output_offset, value); DebugPrintOutputSlot(value, frame_index, output_offset, "typed frame marker\n"); // The context can be gotten from the previous frame. output_offset -= kPointerSize; value = output_[frame_index - 1]->GetContext(); output_frame->SetFrameSlot(output_offset, value); DebugPrintOutputSlot(value, frame_index, output_offset, "context\n"); // Number of incoming arguments. output_offset -= kPointerSize; value = reinterpret_cast(Smi::FromInt(height - 1)); output_frame->SetFrameSlot(output_offset, value); DebugPrintOutputSlot(value, frame_index, output_offset, "argc "); if (trace_scope_ != nullptr) { PrintF(trace_scope_->file(), "(%d)\n", height - 1); } // The newly allocated object was passed as receiver in the artificial // constructor stub environment created by HEnvironment::CopyForInlining(). output_offset -= kPointerSize; value = output_frame->GetFrameSlot(output_frame_size - kPointerSize); output_frame->SetFrameSlot(output_offset, value); DebugPrintOutputSlot(value, frame_index, output_offset, "allocated receiver\n"); if (is_topmost) { // Ensure the result is restored back when we return to the stub. output_offset -= kPointerSize; Register result_reg = FullCodeGenerator::result_register(); value = input_->GetRegister(result_reg.code()); output_frame->SetFrameSlot(output_offset, value); DebugPrintOutputSlot(value, frame_index, output_offset, "constructor result\n"); output_frame->SetState( Smi::FromInt(static_cast(BailoutState::TOS_REGISTER))); } CHECK_EQ(0u, output_offset); intptr_t pc = reinterpret_cast( construct_stub->instruction_start() + isolate_->heap()->construct_stub_deopt_pc_offset()->value()); output_frame->SetPc(pc); if (FLAG_enable_embedded_constant_pool) { intptr_t constant_pool_value = reinterpret_cast(construct_stub->constant_pool()); output_frame->SetConstantPool(constant_pool_value); if (is_topmost) { Register constant_pool_reg = JavaScriptFrame::constant_pool_pointer_register(); output_frame->SetRegister(constant_pool_reg.code(), fp_value); } } // Clear the context register. The context might be a de-materialized object // and will be materialized by {Runtime_NotifyDeoptimized}. For additional // safety we use Smi(0) instead of the potential {arguments_marker} here. if (is_topmost) { intptr_t context_value = reinterpret_cast(Smi::kZero); Register context_reg = JavaScriptFrame::context_register(); output_frame->SetRegister(context_reg.code(), context_value); } // Set the continuation for the topmost frame. if (is_topmost) { Builtins* builtins = isolate_->builtins(); DCHECK_EQ(LAZY, bailout_type_); Code* continuation = builtins->builtin(Builtins::kNotifyLazyDeoptimized); output_frame->SetContinuation( reinterpret_cast(continuation->entry())); } } void Deoptimizer::DoComputeAccessorStubFrame(TranslatedFrame* translated_frame, int frame_index, bool is_setter_stub_frame) { TranslatedFrame::iterator value_iterator = translated_frame->begin(); bool is_topmost = (output_count_ - 1 == frame_index); // The accessor frame could become topmost only if we inlined an accessor // call which does a tail call (otherwise the tail callee's frame would be // the topmost one). So it could only be the LAZY case. CHECK(!is_topmost || bailout_type_ == LAZY); int input_index = 0; // Skip accessor. value_iterator++; input_index++; // The receiver (and the implicit return value, if any) are expected in // registers by the LoadIC/StoreIC, so they don't belong to the output stack // frame. This means that we have to use a height of 0. unsigned height = 0; unsigned height_in_bytes = height * kPointerSize; // If the accessor frame appears to be topmost we should ensure that the // value of result register is preserved during continuation execution. // We do this here by "pushing" the result of the accessor function to the // top of the reconstructed stack and then using the // BailoutState::TOS_REGISTER machinery. // We don't need to restore the result in case of a setter call because we // have to return the stored value but not the result of the setter function. bool should_preserve_result = is_topmost && !is_setter_stub_frame; if (should_preserve_result) { height_in_bytes += kPointerSize; } const char* kind = is_setter_stub_frame ? "setter" : "getter"; if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " translating %s stub => height=%u\n", kind, height_in_bytes); } // We need 1 stack entry for the return address and enough entries for the // StackFrame::INTERNAL (FP, frame type, context, code object and constant // pool (if enabled)- see MacroAssembler::EnterFrame). // For a setter stub frame we need one additional entry for the implicit // return value, see StoreStubCompiler::CompileStoreViaSetter. unsigned fixed_frame_entries = (StandardFrameConstants::kFixedFrameSize / kPointerSize) + 1 + (is_setter_stub_frame ? 1 : 0); unsigned fixed_frame_size = fixed_frame_entries * kPointerSize; unsigned output_frame_size = height_in_bytes + fixed_frame_size; // Allocate and store the output frame description. FrameDescription* output_frame = new (output_frame_size) FrameDescription(output_frame_size); output_frame->SetFrameType(StackFrame::INTERNAL); // A frame for an accessor stub can not be bottommost. CHECK(frame_index > 0 && frame_index < output_count_); CHECK_NULL(output_[frame_index]); output_[frame_index] = output_frame; // The top address of the frame is computed from the previous frame's top and // this frame's size. intptr_t top_address = output_[frame_index - 1]->GetTop() - output_frame_size; output_frame->SetTop(top_address); unsigned output_offset = output_frame_size; // Read caller's PC from the previous frame. output_offset -= kPCOnStackSize; intptr_t callers_pc = output_[frame_index - 1]->GetPc(); output_frame->SetCallerPc(output_offset, callers_pc); DebugPrintOutputSlot(callers_pc, frame_index, output_offset, "caller's pc\n"); // Read caller's FP from the previous frame, and set this frame's FP. output_offset -= kFPOnStackSize; intptr_t value = output_[frame_index - 1]->GetFp(); output_frame->SetCallerFp(output_offset, value); intptr_t fp_value = top_address + output_offset; output_frame->SetFp(fp_value); if (is_topmost) { Register fp_reg = JavaScriptFrame::fp_register(); output_frame->SetRegister(fp_reg.code(), fp_value); } DebugPrintOutputSlot(value, frame_index, output_offset, "caller's fp\n"); if (FLAG_enable_embedded_constant_pool) { // Read the caller's constant pool from the previous frame. output_offset -= kPointerSize; value = output_[frame_index - 1]->GetConstantPool(); output_frame->SetCallerConstantPool(output_offset, value); DebugPrintOutputSlot(value, frame_index, output_offset, "caller's constant_pool\n"); } // Set the frame type. output_offset -= kPointerSize; value = reinterpret_cast(Smi::FromInt(StackFrame::INTERNAL)); output_frame->SetFrameSlot(output_offset, value); DebugPrintOutputSlot(value, frame_index, output_offset, "frame type "); if (trace_scope_ != nullptr) { PrintF(trace_scope_->file(), "(%s sentinel)\n", kind); } // Get Code object from accessor stub. output_offset -= kPointerSize; Builtins::Name name = is_setter_stub_frame ? Builtins::kStoreIC_Setter_ForDeopt : Builtins::kLoadIC_Getter_ForDeopt; Code* accessor_stub = isolate_->builtins()->builtin(name); value = reinterpret_cast(accessor_stub); output_frame->SetFrameSlot(output_offset, value); DebugPrintOutputSlot(value, frame_index, output_offset, "code object\n"); // The context can be gotten from the previous frame. output_offset -= kPointerSize; value = output_[frame_index - 1]->GetContext(); output_frame->SetFrameSlot(output_offset, value); DebugPrintOutputSlot(value, frame_index, output_offset, "context\n"); // Skip receiver. value_iterator++; input_index++; if (is_setter_stub_frame) { // The implicit return value was part of the artificial setter stub // environment. output_offset -= kPointerSize; WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index, output_offset); } if (should_preserve_result) { // Ensure the result is restored back when we return to the stub. output_offset -= kPointerSize; Register result_reg = FullCodeGenerator::result_register(); value = input_->GetRegister(result_reg.code()); output_frame->SetFrameSlot(output_offset, value); DebugPrintOutputSlot(value, frame_index, output_offset, "accessor result\n"); output_frame->SetState( Smi::FromInt(static_cast(BailoutState::TOS_REGISTER))); } else { output_frame->SetState( Smi::FromInt(static_cast(BailoutState::NO_REGISTERS))); } CHECK_EQ(0u, output_offset); Smi* offset = is_setter_stub_frame ? isolate_->heap()->setter_stub_deopt_pc_offset() : isolate_->heap()->getter_stub_deopt_pc_offset(); intptr_t pc = reinterpret_cast( accessor_stub->instruction_start() + offset->value()); output_frame->SetPc(pc); if (FLAG_enable_embedded_constant_pool) { intptr_t constant_pool_value = reinterpret_cast(accessor_stub->constant_pool()); output_frame->SetConstantPool(constant_pool_value); if (is_topmost) { Register constant_pool_reg = JavaScriptFrame::constant_pool_pointer_register(); output_frame->SetRegister(constant_pool_reg.code(), fp_value); } } // Clear the context register. The context might be a de-materialized object // and will be materialized by {Runtime_NotifyDeoptimized}. For additional // safety we use Smi(0) instead of the potential {arguments_marker} here. if (is_topmost) { intptr_t context_value = reinterpret_cast(Smi::kZero); Register context_reg = JavaScriptFrame::context_register(); output_frame->SetRegister(context_reg.code(), context_value); } // Set the continuation for the topmost frame. if (is_topmost) { Builtins* builtins = isolate_->builtins(); DCHECK_EQ(LAZY, bailout_type_); Code* continuation = builtins->builtin(Builtins::kNotifyLazyDeoptimized); output_frame->SetContinuation( reinterpret_cast(continuation->entry())); } } void Deoptimizer::DoComputeCompiledStubFrame(TranslatedFrame* translated_frame, int frame_index) { // // FROM TO // | .... | | .... | // +-------------------------+ +-------------------------+ // | JSFunction continuation | | JSFunction continuation | // +-------------------------+ +-------------------------+ // | | saved frame (FP) | | saved frame (FP) | // | +=========================+<-fpreg +=========================+<-fpreg // | |constant pool (if ool_cp)| |constant pool (if ool_cp)| // | +-------------------------+ +-------------------------| // | | JSFunction context | | JSFunction context | // v +-------------------------+ +-------------------------| // | COMPILED_STUB marker | | STUB_FAILURE marker | // +-------------------------+ +-------------------------+ // | | | caller args.arguments_ | // | ... | +-------------------------+ // | | | caller args.length_ | // |-------------------------|<-spreg +-------------------------+ // | caller args pointer | // +-------------------------+ // | caller stack param 1 | // parameters in registers +-------------------------+ // and spilled to stack | .... | // +-------------------------+ // | caller stack param n | // +-------------------------+<-spreg // reg = number of parameters // reg = failure handler address // reg = saved frame // reg = JSFunction context // // Caller stack params contain the register parameters to the stub first, // and then, if the descriptor specifies a constant number of stack // parameters, the stack parameters as well. TranslatedFrame::iterator value_iterator = translated_frame->begin(); int input_index = 0; CHECK(compiled_code_->is_hydrogen_stub()); int major_key = CodeStub::GetMajorKey(compiled_code_); CodeStubDescriptor descriptor(isolate_, compiled_code_->stub_key()); // The output frame must have room for all pushed register parameters // and the standard stack frame slots. Include space for an argument // object to the callee and optionally the space to pass the argument // object to the stub failure handler. int param_count = descriptor.GetRegisterParameterCount(); int stack_param_count = descriptor.GetStackParameterCount(); // The translated frame contains all of the register parameters // plus the context. CHECK_EQ(translated_frame->height(), param_count + 1); CHECK_GE(param_count, 0); int height_in_bytes = kPointerSize * (param_count + stack_param_count); int fixed_frame_size = StubFailureTrampolineFrameConstants::kFixedFrameSize; int output_frame_size = height_in_bytes + fixed_frame_size; if (trace_scope_ != NULL) { PrintF(trace_scope_->file(), " translating %s => StubFailureTrampolineStub, height=%d\n", CodeStub::MajorName(static_cast(major_key)), height_in_bytes); } // The stub failure trampoline is a single frame. FrameDescription* output_frame = new (output_frame_size) FrameDescription(output_frame_size); output_frame->SetFrameType(StackFrame::STUB_FAILURE_TRAMPOLINE); CHECK_EQ(frame_index, 0); output_[frame_index] = output_frame; // The top address of the frame is computed from the previous frame's top and // this frame's size. intptr_t top_address = caller_frame_top_ - output_frame_size; output_frame->SetTop(top_address); // Set caller's PC (JSFunction continuation). unsigned output_frame_offset = output_frame_size - kFPOnStackSize; intptr_t value = caller_pc_; output_frame->SetCallerPc(output_frame_offset, value); DebugPrintOutputSlot(value, frame_index, output_frame_offset, "caller's pc\n"); // Read caller's FP from the input frame, and set this frame's FP. value = caller_fp_; output_frame_offset -= kFPOnStackSize; output_frame->SetCallerFp(output_frame_offset, value); intptr_t frame_ptr = top_address + output_frame_offset; Register fp_reg = StubFailureTrampolineFrame::fp_register(); output_frame->SetRegister(fp_reg.code(), frame_ptr); output_frame->SetFp(frame_ptr); DebugPrintOutputSlot(value, frame_index, output_frame_offset, "caller's fp\n"); if (FLAG_enable_embedded_constant_pool) { // Read the caller's constant pool from the input frame. value = caller_constant_pool_; output_frame_offset -= kPointerSize; output_frame->SetCallerConstantPool(output_frame_offset, value); DebugPrintOutputSlot(value, frame_index, output_frame_offset, "caller's constant_pool\n"); } // The marker for the typed stack frame output_frame_offset -= kPointerSize; value = reinterpret_cast( Smi::FromInt(StackFrame::STUB_FAILURE_TRAMPOLINE)); output_frame->SetFrameSlot(output_frame_offset, value); DebugPrintOutputSlot(value, frame_index, output_frame_offset, "function (stub failure sentinel)\n"); intptr_t caller_arg_count = stack_param_count; bool arg_count_known = !descriptor.stack_parameter_count().is_valid(); // Build the Arguments object for the caller's parameters and a pointer to it. output_frame_offset -= kPointerSize; int args_arguments_offset = output_frame_offset; intptr_t the_hole = reinterpret_cast( isolate_->heap()->the_hole_value()); if (arg_count_known) { value = frame_ptr + StandardFrameConstants::kCallerSPOffset + (caller_arg_count - 1) * kPointerSize; } else { value = the_hole; } output_frame->SetFrameSlot(args_arguments_offset, value); DebugPrintOutputSlot( value, frame_index, args_arguments_offset, arg_count_known ? "args.arguments\n" : "args.arguments (the hole)\n"); output_frame_offset -= kPointerSize; int length_frame_offset = output_frame_offset; value = arg_count_known ? caller_arg_count : the_hole; output_frame->SetFrameSlot(length_frame_offset, value); DebugPrintOutputSlot( value, frame_index, length_frame_offset, arg_count_known ? "args.length\n" : "args.length (the hole)\n"); output_frame_offset -= kPointerSize; value = frame_ptr + StandardFrameConstants::kCallerSPOffset - (output_frame_size - output_frame_offset) + kPointerSize; output_frame->SetFrameSlot(output_frame_offset, value); DebugPrintOutputSlot(value, frame_index, output_frame_offset, "args*\n"); // Copy the register parameters to the failure frame. int arguments_length_offset = -1; for (int i = 0; i < param_count; ++i) { output_frame_offset -= kPointerSize; WriteTranslatedValueToOutput(&value_iterator, &input_index, 0, output_frame_offset); if (!arg_count_known && descriptor.GetRegisterParameter(i) .is(descriptor.stack_parameter_count())) { arguments_length_offset = output_frame_offset; } } Object* maybe_context = value_iterator->GetRawValue(); CHECK(maybe_context->IsContext()); Register context_reg = StubFailureTrampolineFrame::context_register(); value = reinterpret_cast(maybe_context); output_frame->SetRegister(context_reg.code(), value); ++value_iterator; // Copy constant stack parameters to the failure frame. If the number of stack // parameters is not known in the descriptor, the arguments object is the way // to access them. for (int i = 0; i < stack_param_count; i++) { output_frame_offset -= kPointerSize; Object** stack_parameter = reinterpret_cast( frame_ptr + StandardFrameConstants::kCallerSPOffset + (stack_param_count - i - 1) * kPointerSize); value = reinterpret_cast(*stack_parameter); output_frame->SetFrameSlot(output_frame_offset, value); DebugPrintOutputSlot(value, frame_index, output_frame_offset, "stack parameter\n"); } CHECK_EQ(0u, output_frame_offset); if (!arg_count_known) { CHECK_GE(arguments_length_offset, 0); // We know it's a smi because 1) the code stub guarantees the stack // parameter count is in smi range, and 2) the DoTranslateCommand in the // parameter loop above translated that to a tagged value. Smi* smi_caller_arg_count = reinterpret_cast( output_frame->GetFrameSlot(arguments_length_offset)); caller_arg_count = smi_caller_arg_count->value(); output_frame->SetFrameSlot(length_frame_offset, caller_arg_count); DebugPrintOutputSlot(caller_arg_count, frame_index, length_frame_offset, "args.length\n"); value = frame_ptr + StandardFrameConstants::kCallerSPOffset + (caller_arg_count - 1) * kPointerSize; output_frame->SetFrameSlot(args_arguments_offset, value); DebugPrintOutputSlot(value, frame_index, args_arguments_offset, "args.arguments"); } // Copy the double registers from the input into the output frame. CopyDoubleRegisters(output_frame); // Fill registers containing handler and number of parameters. SetPlatformCompiledStubRegisters(output_frame, &descriptor); // Compute this frame's PC, state, and continuation. Code* trampoline = NULL; StubFunctionMode function_mode = descriptor.function_mode(); StubFailureTrampolineStub(isolate_, function_mode) .FindCodeInCache(&trampoline); DCHECK(trampoline != NULL); output_frame->SetPc(reinterpret_cast( trampoline->instruction_start())); if (FLAG_enable_embedded_constant_pool) { Register constant_pool_reg = StubFailureTrampolineFrame::constant_pool_pointer_register(); intptr_t constant_pool_value = reinterpret_cast(trampoline->constant_pool()); output_frame->SetConstantPool(constant_pool_value); output_frame->SetRegister(constant_pool_reg.code(), constant_pool_value); } output_frame->SetState( Smi::FromInt(static_cast(BailoutState::NO_REGISTERS))); Code* notify_failure = isolate_->builtins()->builtin(Builtins::kNotifyStubFailureSaveDoubles); output_frame->SetContinuation( reinterpret_cast(notify_failure->entry())); } void Deoptimizer::MaterializeHeapObjects(JavaScriptFrameIterator* it) { // Walk to the last JavaScript output frame to find out if it has // adapted arguments. for (int frame_index = 0; frame_index < jsframe_count(); ++frame_index) { if (frame_index != 0) it->Advance(); } translated_state_.Prepare(it->frame()->has_adapted_arguments(), reinterpret_cast
(stack_fp_)); for (auto& materialization : values_to_materialize_) { Handle value = materialization.value_->GetValue(); if (trace_scope_ != nullptr) { PrintF("Materialization [0x%08" V8PRIxPTR "] <- 0x%08" V8PRIxPTR " ; ", reinterpret_cast(materialization.output_slot_address_), reinterpret_cast(*value)); value->ShortPrint(trace_scope_->file()); PrintF(trace_scope_->file(), "\n"); } *(reinterpret_cast(materialization.output_slot_address_)) = reinterpret_cast(*value); } isolate_->materialized_object_store()->Remove( reinterpret_cast
(stack_fp_)); } void Deoptimizer::WriteTranslatedValueToOutput( TranslatedFrame::iterator* iterator, int* input_index, int frame_index, unsigned output_offset, const char* debug_hint_string, Address output_address_for_materialization) { Object* value = (*iterator)->GetRawValue(); WriteValueToOutput(value, *input_index, frame_index, output_offset, debug_hint_string); if (value == isolate_->heap()->arguments_marker()) { Address output_address = reinterpret_cast
(output_[frame_index]->GetTop()) + output_offset; if (output_address_for_materialization == nullptr) { output_address_for_materialization = output_address; } values_to_materialize_.push_back( {output_address_for_materialization, *iterator}); } (*iterator)++; (*input_index)++; } void Deoptimizer::WriteValueToOutput(Object* value, int input_index, int frame_index, unsigned output_offset, const char* debug_hint_string) { output_[frame_index]->SetFrameSlot(output_offset, reinterpret_cast(value)); if (trace_scope_ != nullptr) { DebugPrintOutputSlot(reinterpret_cast(value), frame_index, output_offset, debug_hint_string); value->ShortPrint(trace_scope_->file()); PrintF(trace_scope_->file(), " (input #%d)\n", input_index); } } void Deoptimizer::DebugPrintOutputSlot(intptr_t value, int frame_index, unsigned output_offset, const char* debug_hint_string) { if (trace_scope_ != nullptr) { Address output_address = reinterpret_cast
(output_[frame_index]->GetTop()) + output_offset; PrintF(trace_scope_->file(), " 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR " ; %s", reinterpret_cast(output_address), output_offset, value, debug_hint_string == nullptr ? "" : debug_hint_string); } } unsigned Deoptimizer::ComputeInputFrameAboveFpFixedSize() const { unsigned fixed_size = CommonFrameConstants::kFixedFrameSizeAboveFp; if (!function_->IsSmi()) { fixed_size += ComputeIncomingArgumentSize(function_->shared()); } return fixed_size; } unsigned Deoptimizer::ComputeInputFrameSize() const { // The fp-to-sp delta already takes the context, constant pool pointer and the // function into account so we have to avoid double counting them. unsigned fixed_size_above_fp = ComputeInputFrameAboveFpFixedSize(); unsigned result = fixed_size_above_fp + fp_to_sp_delta_; if (compiled_code_->kind() == Code::OPTIMIZED_FUNCTION) { unsigned stack_slots = compiled_code_->stack_slots(); unsigned outgoing_size = ComputeOutgoingArgumentSize(compiled_code_, bailout_id_); CHECK_EQ(fixed_size_above_fp + (stack_slots * kPointerSize) - CommonFrameConstants::kFixedFrameSizeAboveFp + outgoing_size, result); } return result; } // static unsigned Deoptimizer::ComputeJavascriptFixedSize(SharedFunctionInfo* shared) { // The fixed part of the frame consists of the return address, frame // pointer, function, context, and all the incoming arguments. return ComputeIncomingArgumentSize(shared) + StandardFrameConstants::kFixedFrameSize; } // static unsigned Deoptimizer::ComputeInterpretedFixedSize(SharedFunctionInfo* shared) { // The fixed part of the frame consists of the return address, frame // pointer, function, context, new.target, bytecode offset and all the // incoming arguments. return ComputeIncomingArgumentSize(shared) + InterpreterFrameConstants::kFixedFrameSize; } // static unsigned Deoptimizer::ComputeIncomingArgumentSize(SharedFunctionInfo* shared) { return (shared->internal_formal_parameter_count() + 1) * kPointerSize; } // static unsigned Deoptimizer::ComputeOutgoingArgumentSize(Code* code, unsigned bailout_id) { DeoptimizationInputData* data = DeoptimizationInputData::cast(code->deoptimization_data()); unsigned height = data->ArgumentsStackHeight(bailout_id)->value(); return height * kPointerSize; } void Deoptimizer::EnsureCodeForDeoptimizationEntry(Isolate* isolate, BailoutType type, int max_entry_id) { // We cannot run this if the serializer is enabled because this will // cause us to emit relocation information for the external // references. This is fine because the deoptimizer's code section // isn't meant to be serialized at all. CHECK(type == EAGER || type == SOFT || type == LAZY); DeoptimizerData* data = isolate->deoptimizer_data(); int entry_count = data->deopt_entry_code_entries_[type]; if (max_entry_id < entry_count) return; entry_count = Max(entry_count, Deoptimizer::kMinNumberOfEntries); while (max_entry_id >= entry_count) entry_count *= 2; CHECK(entry_count <= Deoptimizer::kMaxNumberOfEntries); MacroAssembler masm(isolate, NULL, 16 * KB, CodeObjectRequired::kYes); masm.set_emit_debug_code(false); GenerateDeoptimizationEntries(&masm, entry_count, type); CodeDesc desc; masm.GetCode(&desc); DCHECK(!RelocInfo::RequiresRelocation(desc)); MemoryChunk* chunk = data->deopt_entry_code_[type]; CHECK(static_cast(Deoptimizer::GetMaxDeoptTableSize()) >= desc.instr_size); if (!chunk->CommitArea(desc.instr_size)) { V8::FatalProcessOutOfMemory( "Deoptimizer::EnsureCodeForDeoptimizationEntry"); } CopyBytes(chunk->area_start(), desc.buffer, static_cast(desc.instr_size)); Assembler::FlushICache(isolate, chunk->area_start(), desc.instr_size); data->deopt_entry_code_entries_[type] = entry_count; } FrameDescription::FrameDescription(uint32_t frame_size, int parameter_count) : frame_size_(frame_size), parameter_count_(parameter_count), top_(kZapUint32), pc_(kZapUint32), fp_(kZapUint32), context_(kZapUint32), constant_pool_(kZapUint32) { // Zap all the registers. for (int r = 0; r < Register::kNumRegisters; r++) { // TODO(jbramley): It isn't safe to use kZapUint32 here. If the register // isn't used before the next safepoint, the GC will try to scan it as a // tagged value. kZapUint32 looks like a valid tagged pointer, but it isn't. SetRegister(r, kZapUint32); } // Zap all the slots. for (unsigned o = 0; o < frame_size; o += kPointerSize) { SetFrameSlot(o, kZapUint32); } } void TranslationBuffer::Add(int32_t value) { // This wouldn't handle kMinInt correctly if it ever encountered it. DCHECK(value != kMinInt); // Encode the sign bit in the least significant bit. bool is_negative = (value < 0); uint32_t bits = ((is_negative ? -value : value) << 1) | static_cast(is_negative); // Encode the individual bytes using the least significant bit of // each byte to indicate whether or not more bytes follow. do { uint32_t next = bits >> 7; contents_.push_back(((bits << 1) & 0xFF) | (next != 0)); bits = next; } while (bits != 0); } int32_t TranslationIterator::Next() { // Run through the bytes until we reach one with a least significant // bit of zero (marks the end). uint32_t bits = 0; for (int i = 0; true; i += 7) { DCHECK(HasNext()); uint8_t next = buffer_->get(index_++); bits |= (next >> 1) << i; if ((next & 1) == 0) break; } // The bits encode the sign in the least significant bit. bool is_negative = (bits & 1) == 1; int32_t result = bits >> 1; return is_negative ? -result : result; } Handle TranslationBuffer::CreateByteArray(Factory* factory) { Handle result = factory->NewByteArray(CurrentIndex(), TENURED); contents_.CopyTo(result->GetDataStartAddress()); return result; } void Translation::BeginConstructStubFrame(int literal_id, unsigned height) { buffer_->Add(CONSTRUCT_STUB_FRAME); buffer_->Add(literal_id); buffer_->Add(height); } void Translation::BeginGetterStubFrame(int literal_id) { buffer_->Add(GETTER_STUB_FRAME); buffer_->Add(literal_id); } void Translation::BeginSetterStubFrame(int literal_id) { buffer_->Add(SETTER_STUB_FRAME); buffer_->Add(literal_id); } void Translation::BeginArgumentsAdaptorFrame(int literal_id, unsigned height) { buffer_->Add(ARGUMENTS_ADAPTOR_FRAME); buffer_->Add(literal_id); buffer_->Add(height); } void Translation::BeginTailCallerFrame(int literal_id) { buffer_->Add(TAIL_CALLER_FRAME); buffer_->Add(literal_id); } void Translation::BeginJSFrame(BailoutId node_id, int literal_id, unsigned height) { buffer_->Add(JS_FRAME); buffer_->Add(node_id.ToInt()); buffer_->Add(literal_id); buffer_->Add(height); } void Translation::BeginInterpretedFrame(BailoutId bytecode_offset, int literal_id, unsigned height) { buffer_->Add(INTERPRETED_FRAME); buffer_->Add(bytecode_offset.ToInt()); buffer_->Add(literal_id); buffer_->Add(height); } void Translation::BeginCompiledStubFrame(int height) { buffer_->Add(COMPILED_STUB_FRAME); buffer_->Add(height); } void Translation::BeginArgumentsObject(int args_length) { buffer_->Add(ARGUMENTS_OBJECT); buffer_->Add(args_length); } void Translation::BeginCapturedObject(int length) { buffer_->Add(CAPTURED_OBJECT); buffer_->Add(length); } void Translation::DuplicateObject(int object_index) { buffer_->Add(DUPLICATED_OBJECT); buffer_->Add(object_index); } void Translation::StoreRegister(Register reg) { buffer_->Add(REGISTER); buffer_->Add(reg.code()); } void Translation::StoreInt32Register(Register reg) { buffer_->Add(INT32_REGISTER); buffer_->Add(reg.code()); } void Translation::StoreUint32Register(Register reg) { buffer_->Add(UINT32_REGISTER); buffer_->Add(reg.code()); } void Translation::StoreBoolRegister(Register reg) { buffer_->Add(BOOL_REGISTER); buffer_->Add(reg.code()); } void Translation::StoreFloatRegister(FloatRegister reg) { buffer_->Add(FLOAT_REGISTER); buffer_->Add(reg.code()); } void Translation::StoreDoubleRegister(DoubleRegister reg) { buffer_->Add(DOUBLE_REGISTER); buffer_->Add(reg.code()); } void Translation::StoreStackSlot(int index) { buffer_->Add(STACK_SLOT); buffer_->Add(index); } void Translation::StoreInt32StackSlot(int index) { buffer_->Add(INT32_STACK_SLOT); buffer_->Add(index); } void Translation::StoreUint32StackSlot(int index) { buffer_->Add(UINT32_STACK_SLOT); buffer_->Add(index); } void Translation::StoreBoolStackSlot(int index) { buffer_->Add(BOOL_STACK_SLOT); buffer_->Add(index); } void Translation::StoreFloatStackSlot(int index) { buffer_->Add(FLOAT_STACK_SLOT); buffer_->Add(index); } void Translation::StoreDoubleStackSlot(int index) { buffer_->Add(DOUBLE_STACK_SLOT); buffer_->Add(index); } void Translation::StoreLiteral(int literal_id) { buffer_->Add(LITERAL); buffer_->Add(literal_id); } void Translation::StoreArgumentsObject(bool args_known, int args_index, int args_length) { buffer_->Add(ARGUMENTS_OBJECT); buffer_->Add(args_known); buffer_->Add(args_index); buffer_->Add(args_length); } void Translation::StoreJSFrameFunction() { StoreStackSlot((StandardFrameConstants::kCallerPCOffset - StandardFrameConstants::kFunctionOffset) / kPointerSize); } int Translation::NumberOfOperandsFor(Opcode opcode) { switch (opcode) { case GETTER_STUB_FRAME: case SETTER_STUB_FRAME: case DUPLICATED_OBJECT: case ARGUMENTS_OBJECT: case CAPTURED_OBJECT: case REGISTER: case INT32_REGISTER: case UINT32_REGISTER: case BOOL_REGISTER: case FLOAT_REGISTER: case DOUBLE_REGISTER: case STACK_SLOT: case INT32_STACK_SLOT: case UINT32_STACK_SLOT: case BOOL_STACK_SLOT: case FLOAT_STACK_SLOT: case DOUBLE_STACK_SLOT: case LITERAL: case COMPILED_STUB_FRAME: case TAIL_CALLER_FRAME: return 1; case BEGIN: case ARGUMENTS_ADAPTOR_FRAME: case CONSTRUCT_STUB_FRAME: return 2; case JS_FRAME: case INTERPRETED_FRAME: return 3; } FATAL("Unexpected translation type"); return -1; } #if defined(OBJECT_PRINT) || defined(ENABLE_DISASSEMBLER) const char* Translation::StringFor(Opcode opcode) { #define TRANSLATION_OPCODE_CASE(item) case item: return #item; switch (opcode) { TRANSLATION_OPCODE_LIST(TRANSLATION_OPCODE_CASE) } #undef TRANSLATION_OPCODE_CASE UNREACHABLE(); return ""; } #endif Handle MaterializedObjectStore::Get(Address fp) { int index = StackIdToIndex(fp); if (index == -1) { return Handle::null(); } Handle array = GetStackEntries(); CHECK_GT(array->length(), index); return Handle::cast(Handle(array->get(index), isolate())); } void MaterializedObjectStore::Set(Address fp, Handle materialized_objects) { int index = StackIdToIndex(fp); if (index == -1) { index = frame_fps_.length(); frame_fps_.Add(fp); } Handle array = EnsureStackEntries(index + 1); array->set(index, *materialized_objects); } bool MaterializedObjectStore::Remove(Address fp) { int index = StackIdToIndex(fp); if (index == -1) { return false; } CHECK_GE(index, 0); frame_fps_.Remove(index); FixedArray* array = isolate()->heap()->materialized_objects(); CHECK_LT(index, array->length()); for (int i = index; i < frame_fps_.length(); i++) { array->set(i, array->get(i + 1)); } array->set(frame_fps_.length(), isolate()->heap()->undefined_value()); return true; } int MaterializedObjectStore::StackIdToIndex(Address fp) { for (int i = 0; i < frame_fps_.length(); i++) { if (frame_fps_[i] == fp) { return i; } } return -1; } Handle MaterializedObjectStore::GetStackEntries() { return Handle(isolate()->heap()->materialized_objects()); } Handle MaterializedObjectStore::EnsureStackEntries(int length) { Handle array = GetStackEntries(); if (array->length() >= length) { return array; } int new_length = length > 10 ? length : 10; if (new_length < 2 * array->length()) { new_length = 2 * array->length(); } Handle new_array = isolate()->factory()->NewFixedArray(new_length, TENURED); for (int i = 0; i < array->length(); i++) { new_array->set(i, array->get(i)); } for (int i = array->length(); i < length; i++) { new_array->set(i, isolate()->heap()->undefined_value()); } isolate()->heap()->SetRootMaterializedObjects(*new_array); return new_array; } namespace { Handle GetValueForDebugger(TranslatedFrame::iterator it, Isolate* isolate) { if (it->GetRawValue() == isolate->heap()->arguments_marker()) { if (!it->IsMaterializableByDebugger()) { return isolate->factory()->undefined_value(); } } return it->GetValue(); } } // namespace DeoptimizedFrameInfo::DeoptimizedFrameInfo(TranslatedState* state, TranslatedState::iterator frame_it, Isolate* isolate) { // If the previous frame is an adaptor frame, we will take the parameters // from there. TranslatedState::iterator parameter_frame = frame_it; if (parameter_frame != state->begin()) { parameter_frame--; } int parameter_count; if (parameter_frame->kind() == TranslatedFrame::kArgumentsAdaptor) { parameter_count = parameter_frame->height() - 1; // Ignore the receiver. } else { parameter_frame = frame_it; parameter_count = frame_it->shared_info()->internal_formal_parameter_count(); } TranslatedFrame::iterator parameter_it = parameter_frame->begin(); parameter_it++; // Skip the function. parameter_it++; // Skip the receiver. // Figure out whether there is a construct stub frame on top of // the parameter frame. has_construct_stub_ = parameter_frame != state->begin() && (parameter_frame - 1)->kind() == TranslatedFrame::kConstructStub; if (frame_it->kind() == TranslatedFrame::kInterpretedFunction) { source_position_ = Deoptimizer::ComputeSourcePositionFromBytecodeArray( *frame_it->shared_info(), frame_it->node_id()); } else { DCHECK_EQ(TranslatedFrame::kFunction, frame_it->kind()); source_position_ = Deoptimizer::ComputeSourcePositionFromBaselineCode( *frame_it->shared_info(), frame_it->node_id()); } TranslatedFrame::iterator value_it = frame_it->begin(); // Get the function. Note that this might materialize the function. // In case the debugger mutates this value, we should deoptimize // the function and remember the value in the materialized value store. function_ = Handle::cast(value_it->GetValue()); parameters_.resize(static_cast(parameter_count)); for (int i = 0; i < parameter_count; i++) { Handle parameter = GetValueForDebugger(parameter_it, isolate); SetParameter(i, parameter); parameter_it++; } // Skip the function, the receiver and the arguments. int skip_count = frame_it->shared_info()->internal_formal_parameter_count() + 2; TranslatedFrame::iterator stack_it = frame_it->begin(); for (int i = 0; i < skip_count; i++) { stack_it++; } // Get the context. context_ = GetValueForDebugger(stack_it, isolate); stack_it++; // Get the expression stack. int stack_height = frame_it->height(); if (frame_it->kind() == TranslatedFrame::kFunction || frame_it->kind() == TranslatedFrame::kInterpretedFunction) { // For full-code frames, we should not count the context. // For interpreter frames, we should not count the accumulator. // TODO(jarin): Clean up the indexing in translated frames. stack_height--; } expression_stack_.resize(static_cast(stack_height)); for (int i = 0; i < stack_height; i++) { Handle expression = GetValueForDebugger(stack_it, isolate); SetExpression(i, expression); stack_it++; } // For interpreter frame, skip the accumulator. if (frame_it->kind() == TranslatedFrame::kInterpretedFunction) { stack_it++; } CHECK(stack_it == frame_it->end()); } Deoptimizer::DeoptInfo Deoptimizer::GetDeoptInfo(Code* code, Address pc) { SourcePosition last_position = SourcePosition::Unknown(); DeoptimizeReason last_reason = DeoptimizeReason::kNoReason; int last_deopt_id = kNoDeoptimizationId; int mask = RelocInfo::ModeMask(RelocInfo::DEOPT_REASON) | RelocInfo::ModeMask(RelocInfo::DEOPT_ID) | RelocInfo::ModeMask(RelocInfo::DEOPT_SCRIPT_OFFSET) | RelocInfo::ModeMask(RelocInfo::DEOPT_INLINING_ID); for (RelocIterator it(code, mask); !it.done(); it.next()) { RelocInfo* info = it.rinfo(); if (info->pc() >= pc) { return DeoptInfo(last_position, last_reason, last_deopt_id); } if (info->rmode() == RelocInfo::DEOPT_SCRIPT_OFFSET) { int script_offset = static_cast(info->data()); it.next(); DCHECK(it.rinfo()->rmode() == RelocInfo::DEOPT_INLINING_ID); int inlining_id = static_cast(it.rinfo()->data()); last_position = SourcePosition(script_offset, inlining_id); } else if (info->rmode() == RelocInfo::DEOPT_ID) { last_deopt_id = static_cast(info->data()); } else if (info->rmode() == RelocInfo::DEOPT_REASON) { last_reason = static_cast(info->data()); } } return DeoptInfo(SourcePosition::Unknown(), DeoptimizeReason::kNoReason, -1); } // static int Deoptimizer::ComputeSourcePositionFromBaselineCode( SharedFunctionInfo* shared, BailoutId node_id) { DCHECK(shared->HasBaselineCode()); Code* code = shared->code(); FixedArray* raw_data = code->deoptimization_data(); DeoptimizationOutputData* data = DeoptimizationOutputData::cast(raw_data); unsigned pc_and_state = Deoptimizer::GetOutputInfo(data, node_id, shared); int code_offset = static_cast(FullCodeGenerator::PcField::decode(pc_and_state)); return AbstractCode::cast(code)->SourcePosition(code_offset); } // static int Deoptimizer::ComputeSourcePositionFromBytecodeArray( SharedFunctionInfo* shared, BailoutId node_id) { DCHECK(shared->HasBytecodeArray()); return AbstractCode::cast(shared->bytecode_array()) ->SourcePosition(node_id.ToInt()); } // static TranslatedValue TranslatedValue::NewArgumentsObject(TranslatedState* container, int length, int object_index) { TranslatedValue slot(container, kArgumentsObject); slot.materialization_info_ = {object_index, length}; return slot; } // static TranslatedValue TranslatedValue::NewDeferredObject(TranslatedState* container, int length, int object_index) { TranslatedValue slot(container, kCapturedObject); slot.materialization_info_ = {object_index, length}; return slot; } // static TranslatedValue TranslatedValue::NewDuplicateObject(TranslatedState* container, int id) { TranslatedValue slot(container, kDuplicatedObject); slot.materialization_info_ = {id, -1}; return slot; } // static TranslatedValue TranslatedValue::NewFloat(TranslatedState* container, float value) { TranslatedValue slot(container, kFloat); slot.float_value_ = value; return slot; } // static TranslatedValue TranslatedValue::NewDouble(TranslatedState* container, double value) { TranslatedValue slot(container, kDouble); slot.double_value_ = value; return slot; } // static TranslatedValue TranslatedValue::NewInt32(TranslatedState* container, int32_t value) { TranslatedValue slot(container, kInt32); slot.int32_value_ = value; return slot; } // static TranslatedValue TranslatedValue::NewUInt32(TranslatedState* container, uint32_t value) { TranslatedValue slot(container, kUInt32); slot.uint32_value_ = value; return slot; } // static TranslatedValue TranslatedValue::NewBool(TranslatedState* container, uint32_t value) { TranslatedValue slot(container, kBoolBit); slot.uint32_value_ = value; return slot; } // static TranslatedValue TranslatedValue::NewTagged(TranslatedState* container, Object* literal) { TranslatedValue slot(container, kTagged); slot.raw_literal_ = literal; return slot; } // static TranslatedValue TranslatedValue::NewInvalid(TranslatedState* container) { return TranslatedValue(container, kInvalid); } Isolate* TranslatedValue::isolate() const { return container_->isolate(); } Object* TranslatedValue::raw_literal() const { DCHECK_EQ(kTagged, kind()); return raw_literal_; } int32_t TranslatedValue::int32_value() const { DCHECK_EQ(kInt32, kind()); return int32_value_; } uint32_t TranslatedValue::uint32_value() const { DCHECK(kind() == kUInt32 || kind() == kBoolBit); return uint32_value_; } float TranslatedValue::float_value() const { DCHECK_EQ(kFloat, kind()); return float_value_; } double TranslatedValue::double_value() const { DCHECK_EQ(kDouble, kind()); return double_value_; } int TranslatedValue::object_length() const { DCHECK(kind() == kArgumentsObject || kind() == kCapturedObject); return materialization_info_.length_; } int TranslatedValue::object_index() const { DCHECK(kind() == kArgumentsObject || kind() == kCapturedObject || kind() == kDuplicatedObject); return materialization_info_.id_; } Object* TranslatedValue::GetRawValue() const { // If we have a value, return it. Handle result_handle; if (value_.ToHandle(&result_handle)) { return *result_handle; } // Otherwise, do a best effort to get the value without allocation. switch (kind()) { case kTagged: return raw_literal(); case kInt32: { bool is_smi = Smi::IsValid(int32_value()); if (is_smi) { return Smi::FromInt(int32_value()); } break; } case kUInt32: { bool is_smi = (uint32_value() <= static_cast(Smi::kMaxValue)); if (is_smi) { return Smi::FromInt(static_cast(uint32_value())); } break; } case kBoolBit: { if (uint32_value() == 0) { return isolate()->heap()->false_value(); } else { CHECK_EQ(1U, uint32_value()); return isolate()->heap()->true_value(); } } default: break; } // If we could not get the value without allocation, return the arguments // marker. return isolate()->heap()->arguments_marker(); } Handle TranslatedValue::GetValue() { Handle result; // If we already have a value, then get it. if (value_.ToHandle(&result)) return result; // Otherwise we have to materialize. switch (kind()) { case TranslatedValue::kTagged: case TranslatedValue::kInt32: case TranslatedValue::kUInt32: case TranslatedValue::kBoolBit: case TranslatedValue::kFloat: case TranslatedValue::kDouble: { MaterializeSimple(); return value_.ToHandleChecked(); } case TranslatedValue::kArgumentsObject: case TranslatedValue::kCapturedObject: case TranslatedValue::kDuplicatedObject: return container_->MaterializeObjectAt(object_index()); case TranslatedValue::kInvalid: FATAL("unexpected case"); return Handle::null(); } FATAL("internal error: value missing"); return Handle::null(); } void TranslatedValue::MaterializeSimple() { // If we already have materialized, return. if (!value_.is_null()) return; Object* raw_value = GetRawValue(); if (raw_value != isolate()->heap()->arguments_marker()) { // We can get the value without allocation, just return it here. value_ = Handle(raw_value, isolate()); return; } switch (kind()) { case kInt32: { value_ = Handle(isolate()->factory()->NewNumber(int32_value())); return; } case kUInt32: value_ = Handle(isolate()->factory()->NewNumber(uint32_value())); return; case kFloat: value_ = Handle(isolate()->factory()->NewNumber(float_value())); return; case kDouble: value_ = Handle(isolate()->factory()->NewNumber(double_value())); return; case kCapturedObject: case kDuplicatedObject: case kArgumentsObject: case kInvalid: case kTagged: case kBoolBit: FATAL("internal error: unexpected materialization."); break; } } bool TranslatedValue::IsMaterializedObject() const { switch (kind()) { case kCapturedObject: case kDuplicatedObject: case kArgumentsObject: return true; default: return false; } } bool TranslatedValue::IsMaterializableByDebugger() const { // At the moment, we only allow materialization of doubles. return (kind() == kDouble); } int TranslatedValue::GetChildrenCount() const { if (kind() == kCapturedObject || kind() == kArgumentsObject) { return object_length(); } else { return 0; } } uint32_t TranslatedState::GetUInt32Slot(Address fp, int slot_offset) { Address address = fp + slot_offset; #if V8_TARGET_BIG_ENDIAN && V8_HOST_ARCH_64_BIT return Memory::uint32_at(address + kIntSize); #else return Memory::uint32_at(address); #endif } void TranslatedValue::Handlify() { if (kind() == kTagged) { value_ = Handle(raw_literal(), isolate()); raw_literal_ = nullptr; } } TranslatedFrame TranslatedFrame::JSFrame(BailoutId node_id, SharedFunctionInfo* shared_info, int height) { TranslatedFrame frame(kFunction, shared_info->GetIsolate(), shared_info, height); frame.node_id_ = node_id; return frame; } TranslatedFrame TranslatedFrame::InterpretedFrame( BailoutId bytecode_offset, SharedFunctionInfo* shared_info, int height) { TranslatedFrame frame(kInterpretedFunction, shared_info->GetIsolate(), shared_info, height); frame.node_id_ = bytecode_offset; return frame; } TranslatedFrame TranslatedFrame::AccessorFrame( Kind kind, SharedFunctionInfo* shared_info) { DCHECK(kind == kSetter || kind == kGetter); return TranslatedFrame(kind, shared_info->GetIsolate(), shared_info); } TranslatedFrame TranslatedFrame::ArgumentsAdaptorFrame( SharedFunctionInfo* shared_info, int height) { return TranslatedFrame(kArgumentsAdaptor, shared_info->GetIsolate(), shared_info, height); } TranslatedFrame TranslatedFrame::TailCallerFrame( SharedFunctionInfo* shared_info) { return TranslatedFrame(kTailCallerFunction, shared_info->GetIsolate(), shared_info, 0); } TranslatedFrame TranslatedFrame::ConstructStubFrame( SharedFunctionInfo* shared_info, int height) { return TranslatedFrame(kConstructStub, shared_info->GetIsolate(), shared_info, height); } int TranslatedFrame::GetValueCount() { switch (kind()) { case kFunction: { int parameter_count = raw_shared_info_->internal_formal_parameter_count() + 1; // + 1 for function. return height_ + parameter_count + 1; } case kInterpretedFunction: { int parameter_count = raw_shared_info_->internal_formal_parameter_count() + 1; // + 2 for function and context. return height_ + parameter_count + 2; } case kGetter: return 2; // Function and receiver. case kSetter: return 3; // Function, receiver and the value to set. case kArgumentsAdaptor: case kConstructStub: return 1 + height_; case kTailCallerFunction: return 1; // Function. case kCompiledStub: return height_; case kInvalid: UNREACHABLE(); break; } UNREACHABLE(); return -1; } void TranslatedFrame::Handlify() { if (raw_shared_info_ != nullptr) { shared_info_ = Handle(raw_shared_info_); raw_shared_info_ = nullptr; } for (auto& value : values_) { value.Handlify(); } } TranslatedFrame TranslatedState::CreateNextTranslatedFrame( TranslationIterator* iterator, FixedArray* literal_array, Address fp, FILE* trace_file) { Translation::Opcode opcode = static_cast(iterator->Next()); switch (opcode) { case Translation::JS_FRAME: { BailoutId node_id = BailoutId(iterator->Next()); SharedFunctionInfo* shared_info = SharedFunctionInfo::cast(literal_array->get(iterator->Next())); int height = iterator->Next(); if (trace_file != nullptr) { std::unique_ptr name = shared_info->DebugName()->ToCString(); PrintF(trace_file, " reading input frame %s", name.get()); int arg_count = shared_info->internal_formal_parameter_count() + 1; PrintF(trace_file, " => node=%d, args=%d, height=%d; inputs:\n", node_id.ToInt(), arg_count, height); } return TranslatedFrame::JSFrame(node_id, shared_info, height); } case Translation::INTERPRETED_FRAME: { BailoutId bytecode_offset = BailoutId(iterator->Next()); SharedFunctionInfo* shared_info = SharedFunctionInfo::cast(literal_array->get(iterator->Next())); int height = iterator->Next(); if (trace_file != nullptr) { std::unique_ptr name = shared_info->DebugName()->ToCString(); PrintF(trace_file, " reading input frame %s", name.get()); int arg_count = shared_info->internal_formal_parameter_count() + 1; PrintF(trace_file, " => bytecode_offset=%d, args=%d, height=%d; inputs:\n", bytecode_offset.ToInt(), arg_count, height); } return TranslatedFrame::InterpretedFrame(bytecode_offset, shared_info, height); } case Translation::ARGUMENTS_ADAPTOR_FRAME: { SharedFunctionInfo* shared_info = SharedFunctionInfo::cast(literal_array->get(iterator->Next())); int height = iterator->Next(); if (trace_file != nullptr) { std::unique_ptr name = shared_info->DebugName()->ToCString(); PrintF(trace_file, " reading arguments adaptor frame %s", name.get()); PrintF(trace_file, " => height=%d; inputs:\n", height); } return TranslatedFrame::ArgumentsAdaptorFrame(shared_info, height); } case Translation::TAIL_CALLER_FRAME: { SharedFunctionInfo* shared_info = SharedFunctionInfo::cast(literal_array->get(iterator->Next())); if (trace_file != nullptr) { std::unique_ptr name = shared_info->DebugName()->ToCString(); PrintF(trace_file, " reading tail caller frame marker %s\n", name.get()); } return TranslatedFrame::TailCallerFrame(shared_info); } case Translation::CONSTRUCT_STUB_FRAME: { SharedFunctionInfo* shared_info = SharedFunctionInfo::cast(literal_array->get(iterator->Next())); int height = iterator->Next(); if (trace_file != nullptr) { std::unique_ptr name = shared_info->DebugName()->ToCString(); PrintF(trace_file, " reading construct stub frame %s", name.get()); PrintF(trace_file, " => height=%d; inputs:\n", height); } return TranslatedFrame::ConstructStubFrame(shared_info, height); } case Translation::GETTER_STUB_FRAME: { SharedFunctionInfo* shared_info = SharedFunctionInfo::cast(literal_array->get(iterator->Next())); if (trace_file != nullptr) { std::unique_ptr name = shared_info->DebugName()->ToCString(); PrintF(trace_file, " reading getter frame %s; inputs:\n", name.get()); } return TranslatedFrame::AccessorFrame(TranslatedFrame::kGetter, shared_info); } case Translation::SETTER_STUB_FRAME: { SharedFunctionInfo* shared_info = SharedFunctionInfo::cast(literal_array->get(iterator->Next())); if (trace_file != nullptr) { std::unique_ptr name = shared_info->DebugName()->ToCString(); PrintF(trace_file, " reading setter frame %s; inputs:\n", name.get()); } return TranslatedFrame::AccessorFrame(TranslatedFrame::kSetter, shared_info); } case Translation::COMPILED_STUB_FRAME: { int height = iterator->Next(); if (trace_file != nullptr) { PrintF(trace_file, " reading compiler stub frame => height=%d; inputs:\n", height); } return TranslatedFrame::CompiledStubFrame(height, literal_array->GetIsolate()); } case Translation::BEGIN: case Translation::DUPLICATED_OBJECT: case Translation::ARGUMENTS_OBJECT: case Translation::CAPTURED_OBJECT: case Translation::REGISTER: case Translation::INT32_REGISTER: case Translation::UINT32_REGISTER: case Translation::BOOL_REGISTER: case Translation::FLOAT_REGISTER: case Translation::DOUBLE_REGISTER: case Translation::STACK_SLOT: case Translation::INT32_STACK_SLOT: case Translation::UINT32_STACK_SLOT: case Translation::BOOL_STACK_SLOT: case Translation::FLOAT_STACK_SLOT: case Translation::DOUBLE_STACK_SLOT: case Translation::LITERAL: break; } FATAL("We should never get here - unexpected deopt info."); return TranslatedFrame::InvalidFrame(); } // static void TranslatedFrame::AdvanceIterator( std::deque::iterator* iter) { int values_to_skip = 1; while (values_to_skip > 0) { // Consume the current element. values_to_skip--; // Add all the children. values_to_skip += (*iter)->GetChildrenCount(); (*iter)++; } } // We can't intermix stack decoding and allocations because // deoptimization infrastracture is not GC safe. // Thus we build a temporary structure in malloced space. TranslatedValue TranslatedState::CreateNextTranslatedValue( int frame_index, int value_index, TranslationIterator* iterator, FixedArray* literal_array, Address fp, RegisterValues* registers, FILE* trace_file) { disasm::NameConverter converter; Translation::Opcode opcode = static_cast(iterator->Next()); switch (opcode) { case Translation::BEGIN: case Translation::JS_FRAME: case Translation::INTERPRETED_FRAME: case Translation::ARGUMENTS_ADAPTOR_FRAME: case Translation::TAIL_CALLER_FRAME: case Translation::CONSTRUCT_STUB_FRAME: case Translation::GETTER_STUB_FRAME: case Translation::SETTER_STUB_FRAME: case Translation::COMPILED_STUB_FRAME: // Peeled off before getting here. break; case Translation::DUPLICATED_OBJECT: { int object_id = iterator->Next(); if (trace_file != nullptr) { PrintF(trace_file, "duplicated object #%d", object_id); } object_positions_.push_back(object_positions_[object_id]); return TranslatedValue::NewDuplicateObject(this, object_id); } case Translation::ARGUMENTS_OBJECT: { int arg_count = iterator->Next(); int object_index = static_cast(object_positions_.size()); if (trace_file != nullptr) { PrintF(trace_file, "argumets object #%d (length = %d)", object_index, arg_count); } object_positions_.push_back({frame_index, value_index}); return TranslatedValue::NewArgumentsObject(this, arg_count, object_index); } case Translation::CAPTURED_OBJECT: { int field_count = iterator->Next(); int object_index = static_cast(object_positions_.size()); if (trace_file != nullptr) { PrintF(trace_file, "captured object #%d (length = %d)", object_index, field_count); } object_positions_.push_back({frame_index, value_index}); return TranslatedValue::NewDeferredObject(this, field_count, object_index); } case Translation::REGISTER: { int input_reg = iterator->Next(); if (registers == nullptr) return TranslatedValue::NewInvalid(this); intptr_t value = registers->GetRegister(input_reg); if (trace_file != nullptr) { PrintF(trace_file, "0x%08" V8PRIxPTR " ; %s ", value, converter.NameOfCPURegister(input_reg)); reinterpret_cast(value)->ShortPrint(trace_file); } return TranslatedValue::NewTagged(this, reinterpret_cast(value)); } case Translation::INT32_REGISTER: { int input_reg = iterator->Next(); if (registers == nullptr) return TranslatedValue::NewInvalid(this); intptr_t value = registers->GetRegister(input_reg); if (trace_file != nullptr) { PrintF(trace_file, "%" V8PRIdPTR " ; %s ", value, converter.NameOfCPURegister(input_reg)); } return TranslatedValue::NewInt32(this, static_cast(value)); } case Translation::UINT32_REGISTER: { int input_reg = iterator->Next(); if (registers == nullptr) return TranslatedValue::NewInvalid(this); intptr_t value = registers->GetRegister(input_reg); if (trace_file != nullptr) { PrintF(trace_file, "%" V8PRIuPTR " ; %s (uint)", value, converter.NameOfCPURegister(input_reg)); reinterpret_cast(value)->ShortPrint(trace_file); } return TranslatedValue::NewUInt32(this, static_cast(value)); } case Translation::BOOL_REGISTER: { int input_reg = iterator->Next(); if (registers == nullptr) return TranslatedValue::NewInvalid(this); intptr_t value = registers->GetRegister(input_reg); if (trace_file != nullptr) { PrintF(trace_file, "%" V8PRIdPTR " ; %s (bool)", value, converter.NameOfCPURegister(input_reg)); } return TranslatedValue::NewBool(this, static_cast(value)); } case Translation::FLOAT_REGISTER: { int input_reg = iterator->Next(); if (registers == nullptr) return TranslatedValue::NewInvalid(this); float value = registers->GetFloatRegister(input_reg); if (trace_file != nullptr) { PrintF(trace_file, "%e ; %s (float)", value, RegisterConfiguration::Crankshaft()->GetFloatRegisterName( input_reg)); } return TranslatedValue::NewFloat(this, value); } case Translation::DOUBLE_REGISTER: { int input_reg = iterator->Next(); if (registers == nullptr) return TranslatedValue::NewInvalid(this); double value = registers->GetDoubleRegister(input_reg); if (trace_file != nullptr) { PrintF(trace_file, "%e ; %s (double)", value, RegisterConfiguration::Crankshaft()->GetDoubleRegisterName( input_reg)); } return TranslatedValue::NewDouble(this, value); } case Translation::STACK_SLOT: { int slot_offset = OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next()); intptr_t value = *(reinterpret_cast(fp + slot_offset)); if (trace_file != nullptr) { PrintF(trace_file, "0x%08" V8PRIxPTR " ; [fp %c %d] ", value, slot_offset < 0 ? '-' : '+', std::abs(slot_offset)); reinterpret_cast(value)->ShortPrint(trace_file); } return TranslatedValue::NewTagged(this, reinterpret_cast(value)); } case Translation::INT32_STACK_SLOT: { int slot_offset = OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next()); uint32_t value = GetUInt32Slot(fp, slot_offset); if (trace_file != nullptr) { PrintF(trace_file, "%d ; (int) [fp %c %d] ", static_cast(value), slot_offset < 0 ? '-' : '+', std::abs(slot_offset)); } return TranslatedValue::NewInt32(this, value); } case Translation::UINT32_STACK_SLOT: { int slot_offset = OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next()); uint32_t value = GetUInt32Slot(fp, slot_offset); if (trace_file != nullptr) { PrintF(trace_file, "%u ; (uint) [fp %c %d] ", value, slot_offset < 0 ? '-' : '+', std::abs(slot_offset)); } return TranslatedValue::NewUInt32(this, value); } case Translation::BOOL_STACK_SLOT: { int slot_offset = OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next()); uint32_t value = GetUInt32Slot(fp, slot_offset); if (trace_file != nullptr) { PrintF(trace_file, "%u ; (bool) [fp %c %d] ", value, slot_offset < 0 ? '-' : '+', std::abs(slot_offset)); } return TranslatedValue::NewBool(this, value); } case Translation::FLOAT_STACK_SLOT: { int slot_offset = OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next()); float value = ReadFloatValue(fp + slot_offset); if (trace_file != nullptr) { PrintF(trace_file, "%e ; (float) [fp %c %d] ", value, slot_offset < 0 ? '-' : '+', std::abs(slot_offset)); } return TranslatedValue::NewFloat(this, value); } case Translation::DOUBLE_STACK_SLOT: { int slot_offset = OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next()); double value = ReadDoubleValue(fp + slot_offset); if (trace_file != nullptr) { PrintF(trace_file, "%e ; (double) [fp %c %d] ", value, slot_offset < 0 ? '-' : '+', std::abs(slot_offset)); } return TranslatedValue::NewDouble(this, value); } case Translation::LITERAL: { int literal_index = iterator->Next(); Object* value = literal_array->get(literal_index); if (trace_file != nullptr) { PrintF(trace_file, "0x%08" V8PRIxPTR " ; (literal %d) ", reinterpret_cast(value), literal_index); reinterpret_cast(value)->ShortPrint(trace_file); } return TranslatedValue::NewTagged(this, value); } } FATAL("We should never get here - unexpected deopt info."); return TranslatedValue(nullptr, TranslatedValue::kInvalid); } TranslatedState::TranslatedState(JavaScriptFrame* frame) : isolate_(nullptr), stack_frame_pointer_(nullptr), has_adapted_arguments_(false) { int deopt_index = Safepoint::kNoDeoptimizationIndex; DeoptimizationInputData* data = static_cast(frame)->GetDeoptimizationData(&deopt_index); DCHECK(data != nullptr && deopt_index != Safepoint::kNoDeoptimizationIndex); TranslationIterator it(data->TranslationByteArray(), data->TranslationIndex(deopt_index)->value()); Init(frame->fp(), &it, data->LiteralArray(), nullptr /* registers */, nullptr /* trace file */); } TranslatedState::TranslatedState() : isolate_(nullptr), stack_frame_pointer_(nullptr), has_adapted_arguments_(false) {} void TranslatedState::Init(Address input_frame_pointer, TranslationIterator* iterator, FixedArray* literal_array, RegisterValues* registers, FILE* trace_file) { DCHECK(frames_.empty()); isolate_ = literal_array->GetIsolate(); // Read out the 'header' translation. Translation::Opcode opcode = static_cast(iterator->Next()); CHECK(opcode == Translation::BEGIN); int count = iterator->Next(); iterator->Next(); // Drop JS frames count. frames_.reserve(count); std::stack nested_counts; // Read the frames for (int i = 0; i < count; i++) { // Read the frame descriptor. frames_.push_back(CreateNextTranslatedFrame( iterator, literal_array, input_frame_pointer, trace_file)); TranslatedFrame& frame = frames_.back(); // Read the values. int values_to_process = frame.GetValueCount(); while (values_to_process > 0 || !nested_counts.empty()) { if (trace_file != nullptr) { if (nested_counts.empty()) { // For top level values, print the value number. PrintF(trace_file, " %3i: ", frame.GetValueCount() - values_to_process); } else { // Take care of indenting for nested values. PrintF(trace_file, " "); for (size_t j = 0; j < nested_counts.size(); j++) { PrintF(trace_file, " "); } } } TranslatedValue value = CreateNextTranslatedValue( i, static_cast(frame.values_.size()), iterator, literal_array, input_frame_pointer, registers, trace_file); frame.Add(value); if (trace_file != nullptr) { PrintF(trace_file, "\n"); } // Update the value count and resolve the nesting. values_to_process--; int children_count = value.GetChildrenCount(); if (children_count > 0) { nested_counts.push(values_to_process); values_to_process = children_count; } else { while (values_to_process == 0 && !nested_counts.empty()) { values_to_process = nested_counts.top(); nested_counts.pop(); } } } } CHECK(!iterator->HasNext() || static_cast(iterator->Next()) == Translation::BEGIN); } void TranslatedState::Prepare(bool has_adapted_arguments, Address stack_frame_pointer) { for (auto& frame : frames_) frame.Handlify(); stack_frame_pointer_ = stack_frame_pointer; has_adapted_arguments_ = has_adapted_arguments; UpdateFromPreviouslyMaterializedObjects(); } Handle TranslatedState::MaterializeAt(int frame_index, int* value_index) { TranslatedFrame* frame = &(frames_[frame_index]); CHECK(static_cast(*value_index) < frame->values_.size()); TranslatedValue* slot = &(frame->values_[*value_index]); (*value_index)++; switch (slot->kind()) { case TranslatedValue::kTagged: case TranslatedValue::kInt32: case TranslatedValue::kUInt32: case TranslatedValue::kBoolBit: case TranslatedValue::kFloat: case TranslatedValue::kDouble: { slot->MaterializeSimple(); Handle value = slot->GetValue(); if (value->IsMutableHeapNumber()) { HeapNumber::cast(*value)->set_map(isolate()->heap()->heap_number_map()); } return value; } case TranslatedValue::kArgumentsObject: { int length = slot->GetChildrenCount(); Handle arguments; if (GetAdaptedArguments(&arguments, frame_index)) { // Store the materialized object and consume the nested values. for (int i = 0; i < length; ++i) { MaterializeAt(frame_index, value_index); } } else { Handle function = Handle::cast(frame->front().GetValue()); arguments = isolate_->factory()->NewArgumentsObject(function, length); Handle array = isolate_->factory()->NewFixedArray(length); DCHECK_EQ(array->length(), length); arguments->set_elements(*array); for (int i = 0; i < length; ++i) { Handle value = MaterializeAt(frame_index, value_index); array->set(i, *value); } } slot->value_ = arguments; return arguments; } case TranslatedValue::kCapturedObject: { int length = slot->GetChildrenCount(); // The map must be a tagged object. CHECK(frame->values_[*value_index].kind() == TranslatedValue::kTagged); Handle result; if (slot->value_.ToHandle(&result)) { // This has been previously materialized, return the previous value. // We still need to skip all the nested objects. for (int i = 0; i < length; i++) { MaterializeAt(frame_index, value_index); } return result; } Handle map_object = MaterializeAt(frame_index, value_index); Handle map = Map::GeneralizeAllFieldRepresentations(Handle::cast(map_object)); switch (map->instance_type()) { case MUTABLE_HEAP_NUMBER_TYPE: case HEAP_NUMBER_TYPE: { // Reuse the HeapNumber value directly as it is already properly // tagged and skip materializing the HeapNumber explicitly. Handle object = MaterializeAt(frame_index, value_index); slot->value_ = object; // On 32-bit architectures, there is an extra slot there because // the escape analysis calculates the number of slots as // object-size/pointer-size. To account for this, we read out // any extra slots. for (int i = 0; i < length - 2; i++) { MaterializeAt(frame_index, value_index); } return object; } case JS_OBJECT_TYPE: case JS_ERROR_TYPE: case JS_ARGUMENTS_TYPE: { Handle object = isolate_->factory()->NewJSObjectFromMap(map, NOT_TENURED); slot->value_ = object; Handle properties = MaterializeAt(frame_index, value_index); Handle elements = MaterializeAt(frame_index, value_index); object->set_properties(FixedArray::cast(*properties)); object->set_elements(FixedArrayBase::cast(*elements)); for (int i = 0; i < length - 3; ++i) { Handle value = MaterializeAt(frame_index, value_index); FieldIndex index = FieldIndex::ForPropertyIndex(object->map(), i); object->FastPropertyAtPut(index, *value); } return object; } case JS_ARRAY_TYPE: { Handle object = Handle::cast( isolate_->factory()->NewJSObjectFromMap(map, NOT_TENURED)); slot->value_ = object; Handle properties = MaterializeAt(frame_index, value_index); Handle elements = MaterializeAt(frame_index, value_index); Handle length = MaterializeAt(frame_index, value_index); object->set_properties(FixedArray::cast(*properties)); object->set_elements(FixedArrayBase::cast(*elements)); object->set_length(*length); return object; } case JS_FUNCTION_TYPE: { Handle temporary_shared = isolate_->factory()->NewSharedFunctionInfo( isolate_->factory()->empty_string(), MaybeHandle(), false); Handle object = isolate_->factory()->NewFunctionFromSharedFunctionInfo( map, temporary_shared, isolate_->factory()->undefined_value(), NOT_TENURED); slot->value_ = object; Handle properties = MaterializeAt(frame_index, value_index); Handle elements = MaterializeAt(frame_index, value_index); Handle prototype = MaterializeAt(frame_index, value_index); Handle shared = MaterializeAt(frame_index, value_index); Handle context = MaterializeAt(frame_index, value_index); Handle literals = MaterializeAt(frame_index, value_index); Handle entry = MaterializeAt(frame_index, value_index); Handle next_link = MaterializeAt(frame_index, value_index); object->ReplaceCode(*isolate_->builtins()->CompileLazy()); object->set_map(*map); object->set_properties(FixedArray::cast(*properties)); object->set_elements(FixedArrayBase::cast(*elements)); object->set_prototype_or_initial_map(*prototype); object->set_shared(SharedFunctionInfo::cast(*shared)); object->set_context(Context::cast(*context)); object->set_literals(LiteralsArray::cast(*literals)); CHECK(entry->IsNumber()); // Entry to compile lazy stub. CHECK(next_link->IsUndefined(isolate_)); return object; } case CONS_STRING_TYPE: { Handle object = Handle::cast( isolate_->factory() ->NewConsString(isolate_->factory()->undefined_string(), isolate_->factory()->undefined_string()) .ToHandleChecked()); slot->value_ = object; Handle hash = MaterializeAt(frame_index, value_index); Handle length = MaterializeAt(frame_index, value_index); Handle first = MaterializeAt(frame_index, value_index); Handle second = MaterializeAt(frame_index, value_index); object->set_map(*map); object->set_length(Smi::cast(*length)->value()); object->set_first(String::cast(*first)); object->set_second(String::cast(*second)); CHECK(hash->IsNumber()); // The {Name::kEmptyHashField} value. return object; } case CONTEXT_EXTENSION_TYPE: { Handle object = isolate_->factory()->NewContextExtension( isolate_->factory()->NewScopeInfo(1), isolate_->factory()->undefined_value()); slot->value_ = object; Handle scope_info = MaterializeAt(frame_index, value_index); Handle extension = MaterializeAt(frame_index, value_index); object->set_scope_info(ScopeInfo::cast(*scope_info)); object->set_extension(*extension); return object; } case FIXED_ARRAY_TYPE: { Handle lengthObject = MaterializeAt(frame_index, value_index); int32_t length = 0; CHECK(lengthObject->ToInt32(&length)); Handle object = isolate_->factory()->NewFixedArray(length); // We need to set the map, because the fixed array we are // materializing could be a context or an arguments object, // in which case we must retain that information. object->set_map(*map); slot->value_ = object; for (int i = 0; i < length; ++i) { Handle value = MaterializeAt(frame_index, value_index); object->set(i, *value); } return object; } case FIXED_DOUBLE_ARRAY_TYPE: { DCHECK_EQ(*map, isolate_->heap()->fixed_double_array_map()); Handle lengthObject = MaterializeAt(frame_index, value_index); int32_t length = 0; CHECK(lengthObject->ToInt32(&length)); Handle object = isolate_->factory()->NewFixedDoubleArray(length); slot->value_ = object; if (length > 0) { Handle double_array = Handle::cast(object); for (int i = 0; i < length; ++i) { Handle value = MaterializeAt(frame_index, value_index); CHECK(value->IsNumber()); double_array->set(i, value->Number()); } } return object; } default: PrintF(stderr, "[couldn't handle instance type %d]\n", map->instance_type()); FATAL("unreachable"); return Handle::null(); } UNREACHABLE(); break; } case TranslatedValue::kDuplicatedObject: { int object_index = slot->object_index(); TranslatedState::ObjectPosition pos = object_positions_[object_index]; // Make sure the duplicate is refering to a previous object. CHECK(pos.frame_index_ < frame_index || (pos.frame_index_ == frame_index && pos.value_index_ < *value_index - 1)); Handle object = frames_[pos.frame_index_].values_[pos.value_index_].GetValue(); // The object should have a (non-sentinel) value. CHECK(!object.is_null() && !object.is_identical_to(isolate_->factory()->arguments_marker())); slot->value_ = object; return object; } case TranslatedValue::kInvalid: UNREACHABLE(); break; } FATAL("We should never get here - unexpected deopt slot kind."); return Handle::null(); } Handle TranslatedState::MaterializeObjectAt(int object_index) { TranslatedState::ObjectPosition pos = object_positions_[object_index]; return MaterializeAt(pos.frame_index_, &(pos.value_index_)); } bool TranslatedState::GetAdaptedArguments(Handle* result, int frame_index) { if (frame_index == 0) { // Top level frame -> we need to go to the parent frame on the stack. if (!has_adapted_arguments_) return false; // This is top level frame, so we need to go to the stack to get // this function's argument. (Note that this relies on not inlining // recursive functions!) Handle function = Handle::cast(frames_[frame_index].front().GetValue()); *result = Accessors::FunctionGetArguments(function); return true; } else { TranslatedFrame* previous_frame = &(frames_[frame_index]); if (previous_frame->kind() != TranslatedFrame::kArgumentsAdaptor) { return false; } // We get the adapted arguments from the parent translation. int length = previous_frame->height(); Handle function = Handle::cast(previous_frame->front().GetValue()); Handle arguments = isolate_->factory()->NewArgumentsObject(function, length); Handle array = isolate_->factory()->NewFixedArray(length); arguments->set_elements(*array); TranslatedFrame::iterator arg_iterator = previous_frame->begin(); arg_iterator++; // Skip function. for (int i = 0; i < length; ++i) { Handle value = arg_iterator->GetValue(); array->set(i, *value); arg_iterator++; } CHECK(arg_iterator == previous_frame->end()); *result = arguments; return true; } } TranslatedFrame* TranslatedState::GetArgumentsInfoFromJSFrameIndex( int jsframe_index, int* args_count) { for (size_t i = 0; i < frames_.size(); i++) { if (frames_[i].kind() == TranslatedFrame::kFunction || frames_[i].kind() == TranslatedFrame::kInterpretedFunction) { if (jsframe_index > 0) { jsframe_index--; } else { // We have the JS function frame, now check if it has arguments adaptor. if (i > 0 && frames_[i - 1].kind() == TranslatedFrame::kArgumentsAdaptor) { *args_count = frames_[i - 1].height(); return &(frames_[i - 1]); } *args_count = frames_[i].shared_info()->internal_formal_parameter_count() + 1; return &(frames_[i]); } } } return nullptr; } void TranslatedState::StoreMaterializedValuesAndDeopt(JavaScriptFrame* frame) { MaterializedObjectStore* materialized_store = isolate_->materialized_object_store(); Handle previously_materialized_objects = materialized_store->Get(stack_frame_pointer_); Handle marker = isolate_->factory()->arguments_marker(); int length = static_cast(object_positions_.size()); bool new_store = false; if (previously_materialized_objects.is_null()) { previously_materialized_objects = isolate_->factory()->NewFixedArray(length); for (int i = 0; i < length; i++) { previously_materialized_objects->set(i, *marker); } new_store = true; } CHECK_EQ(length, previously_materialized_objects->length()); bool value_changed = false; for (int i = 0; i < length; i++) { TranslatedState::ObjectPosition pos = object_positions_[i]; TranslatedValue* value_info = &(frames_[pos.frame_index_].values_[pos.value_index_]); CHECK(value_info->IsMaterializedObject()); Handle value(value_info->GetRawValue(), isolate_); if (!value.is_identical_to(marker)) { if (previously_materialized_objects->get(i) == *marker) { previously_materialized_objects->set(i, *value); value_changed = true; } else { CHECK(previously_materialized_objects->get(i) == *value); } } } if (new_store && value_changed) { materialized_store->Set(stack_frame_pointer_, previously_materialized_objects); CHECK(frames_[0].kind() == TranslatedFrame::kFunction || frames_[0].kind() == TranslatedFrame::kInterpretedFunction || frames_[0].kind() == TranslatedFrame::kTailCallerFunction); CHECK_EQ(frame->function(), frames_[0].front().GetRawValue()); Deoptimizer::DeoptimizeFunction(frame->function(), frame->LookupCode()); } } void TranslatedState::UpdateFromPreviouslyMaterializedObjects() { MaterializedObjectStore* materialized_store = isolate_->materialized_object_store(); Handle previously_materialized_objects = materialized_store->Get(stack_frame_pointer_); // If we have no previously materialized objects, there is nothing to do. if (previously_materialized_objects.is_null()) return; Handle marker = isolate_->factory()->arguments_marker(); int length = static_cast(object_positions_.size()); CHECK_EQ(length, previously_materialized_objects->length()); for (int i = 0; i < length; i++) { // For a previously materialized objects, inject their value into the // translated values. if (previously_materialized_objects->get(i) != *marker) { TranslatedState::ObjectPosition pos = object_positions_[i]; TranslatedValue* value_info = &(frames_[pos.frame_index_].values_[pos.value_index_]); CHECK(value_info->IsMaterializedObject()); value_info->value_ = Handle(previously_materialized_objects->get(i), isolate_); } } } } // namespace internal } // namespace v8