// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/v8.h" #if V8_TARGET_ARCH_PPC #include "src/codegen.h" #include "src/debug.h" #include "src/deoptimizer.h" #include "src/full-codegen.h" #include "src/runtime/runtime.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void Builtins::Generate_Adaptor(MacroAssembler* masm, CFunctionId id, BuiltinExtraArguments extra_args) { // ----------- S t a t e ------------- // -- r3 : number of arguments excluding receiver // -- r4 : called function (only guaranteed when // extra_args requires it) // -- cp : context // -- sp[0] : last argument // -- ... // -- sp[4 * (argc - 1)] : first argument (argc == r0) // -- sp[4 * argc] : receiver // ----------------------------------- // Insert extra arguments. int num_extra_args = 0; if (extra_args == NEEDS_CALLED_FUNCTION) { num_extra_args = 1; __ push(r4); } else { DCHECK(extra_args == NO_EXTRA_ARGUMENTS); } // JumpToExternalReference expects r0 to contain the number of arguments // including the receiver and the extra arguments. __ addi(r3, r3, Operand(num_extra_args + 1)); __ JumpToExternalReference(ExternalReference(id, masm->isolate())); } // Load the built-in InternalArray function from the current context. static void GenerateLoadInternalArrayFunction(MacroAssembler* masm, Register result) { // Load the native context. __ LoadP(result, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); __ LoadP(result, FieldMemOperand(result, GlobalObject::kNativeContextOffset)); // Load the InternalArray function from the native context. __ LoadP(result, MemOperand(result, Context::SlotOffset( Context::INTERNAL_ARRAY_FUNCTION_INDEX))); } // Load the built-in Array function from the current context. static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) { // Load the native context. __ LoadP(result, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); __ LoadP(result, FieldMemOperand(result, GlobalObject::kNativeContextOffset)); // Load the Array function from the native context. __ LoadP( result, MemOperand(result, Context::SlotOffset(Context::ARRAY_FUNCTION_INDEX))); } void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : number of arguments // -- lr : return address // -- sp[...]: constructor arguments // ----------------------------------- Label generic_array_code, one_or_more_arguments, two_or_more_arguments; // Get the InternalArray function. GenerateLoadInternalArrayFunction(masm, r4); if (FLAG_debug_code) { // Initial map for the builtin InternalArray functions should be maps. __ LoadP(r5, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset)); __ TestIfSmi(r5, r0); __ Assert(ne, kUnexpectedInitialMapForInternalArrayFunction, cr0); __ CompareObjectType(r5, r6, r7, MAP_TYPE); __ Assert(eq, kUnexpectedInitialMapForInternalArrayFunction); } // Run the native code for the InternalArray function called as a normal // function. // tail call a stub InternalArrayConstructorStub stub(masm->isolate()); __ TailCallStub(&stub); } void Builtins::Generate_ArrayCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : number of arguments // -- lr : return address // -- sp[...]: constructor arguments // ----------------------------------- Label generic_array_code, one_or_more_arguments, two_or_more_arguments; // Get the Array function. GenerateLoadArrayFunction(masm, r4); if (FLAG_debug_code) { // Initial map for the builtin Array functions should be maps. __ LoadP(r5, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset)); __ TestIfSmi(r5, r0); __ Assert(ne, kUnexpectedInitialMapForArrayFunction, cr0); __ CompareObjectType(r5, r6, r7, MAP_TYPE); __ Assert(eq, kUnexpectedInitialMapForArrayFunction); } // Run the native code for the Array function called as a normal function. // tail call a stub __ LoadRoot(r5, Heap::kUndefinedValueRootIndex); ArrayConstructorStub stub(masm->isolate()); __ TailCallStub(&stub); } void Builtins::Generate_StringConstructCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : number of arguments // -- r4 : constructor function // -- lr : return address // -- sp[(argc - n - 1) * 4] : arg[n] (zero based) // -- sp[argc * 4] : receiver // ----------------------------------- Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->string_ctor_calls(), 1, r5, r6); Register function = r4; if (FLAG_debug_code) { __ LoadGlobalFunction(Context::STRING_FUNCTION_INDEX, r5); __ cmp(function, r5); __ Assert(eq, kUnexpectedStringFunction); } // Load the first arguments in r3 and get rid of the rest. Label no_arguments; __ cmpi(r3, Operand::Zero()); __ beq(&no_arguments); // First args = sp[(argc - 1) * 4]. __ subi(r3, r3, Operand(1)); __ ShiftLeftImm(r3, r3, Operand(kPointerSizeLog2)); __ add(sp, sp, r3); __ LoadP(r3, MemOperand(sp)); // sp now point to args[0], drop args[0] + receiver. __ Drop(2); Register argument = r5; Label not_cached, argument_is_string; __ LookupNumberStringCache(r3, // Input. argument, // Result. r6, // Scratch. r7, // Scratch. r8, // Scratch. ¬_cached); __ IncrementCounter(counters->string_ctor_cached_number(), 1, r6, r7); __ bind(&argument_is_string); // ----------- S t a t e ------------- // -- r5 : argument converted to string // -- r4 : constructor function // -- lr : return address // ----------------------------------- Label gc_required; __ Allocate(JSValue::kSize, r3, // Result. r6, // Scratch. r7, // Scratch. &gc_required, TAG_OBJECT); // Initialising the String Object. Register map = r6; __ LoadGlobalFunctionInitialMap(function, map, r7); if (FLAG_debug_code) { __ lbz(r7, FieldMemOperand(map, Map::kInstanceSizeOffset)); __ cmpi(r7, Operand(JSValue::kSize >> kPointerSizeLog2)); __ Assert(eq, kUnexpectedStringWrapperInstanceSize); __ lbz(r7, FieldMemOperand(map, Map::kUnusedPropertyFieldsOffset)); __ cmpi(r7, Operand::Zero()); __ Assert(eq, kUnexpectedUnusedPropertiesOfStringWrapper); } __ StoreP(map, FieldMemOperand(r3, HeapObject::kMapOffset), r0); __ LoadRoot(r6, Heap::kEmptyFixedArrayRootIndex); __ StoreP(r6, FieldMemOperand(r3, JSObject::kPropertiesOffset), r0); __ StoreP(r6, FieldMemOperand(r3, JSObject::kElementsOffset), r0); __ StoreP(argument, FieldMemOperand(r3, JSValue::kValueOffset), r0); // Ensure the object is fully initialized. STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize); __ Ret(); // The argument was not found in the number to string cache. Check // if it's a string already before calling the conversion builtin. Label convert_argument; __ bind(¬_cached); __ JumpIfSmi(r3, &convert_argument); // Is it a String? __ LoadP(r5, FieldMemOperand(r3, HeapObject::kMapOffset)); __ lbz(r6, FieldMemOperand(r5, Map::kInstanceTypeOffset)); STATIC_ASSERT(kNotStringTag != 0); __ andi(r0, r6, Operand(kIsNotStringMask)); __ bne(&convert_argument, cr0); __ mr(argument, r3); __ IncrementCounter(counters->string_ctor_conversions(), 1, r6, r7); __ b(&argument_is_string); // Invoke the conversion builtin and put the result into r5. __ bind(&convert_argument); __ push(function); // Preserve the function. __ IncrementCounter(counters->string_ctor_conversions(), 1, r6, r7); { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ push(r3); __ InvokeBuiltin(Builtins::TO_STRING, CALL_FUNCTION); } __ pop(function); __ mr(argument, r3); __ b(&argument_is_string); // Load the empty string into r5, remove the receiver from the // stack, and jump back to the case where the argument is a string. __ bind(&no_arguments); __ LoadRoot(argument, Heap::kempty_stringRootIndex); __ Drop(1); __ b(&argument_is_string); // At this point the argument is already a string. Call runtime to // create a string wrapper. __ bind(&gc_required); __ IncrementCounter(counters->string_ctor_gc_required(), 1, r6, r7); { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ push(argument); __ CallRuntime(Runtime::kNewStringWrapper, 1); } __ Ret(); } static void CallRuntimePassFunction(MacroAssembler* masm, Runtime::FunctionId function_id) { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); // Push a copy of the function onto the stack. // Push function as parameter to the runtime call. __ Push(r4, r4); __ CallRuntime(function_id, 1); // Restore reciever. __ Pop(r4); } static void GenerateTailCallToSharedCode(MacroAssembler* masm) { __ LoadP(ip, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); __ LoadP(ip, FieldMemOperand(ip, SharedFunctionInfo::kCodeOffset)); __ addi(ip, ip, Operand(Code::kHeaderSize - kHeapObjectTag)); __ JumpToJSEntry(ip); } static void GenerateTailCallToReturnedCode(MacroAssembler* masm) { __ addi(ip, r3, Operand(Code::kHeaderSize - kHeapObjectTag)); __ JumpToJSEntry(ip); } void Builtins::Generate_InOptimizationQueue(MacroAssembler* masm) { // Checking whether the queued function is ready for install is optional, // since we come across interrupts and stack checks elsewhere. However, // not checking may delay installing ready functions, and always checking // would be quite expensive. A good compromise is to first check against // stack limit as a cue for an interrupt signal. Label ok; __ LoadRoot(ip, Heap::kStackLimitRootIndex); __ cmpl(sp, ip); __ bge(&ok); CallRuntimePassFunction(masm, Runtime::kTryInstallOptimizedCode); GenerateTailCallToReturnedCode(masm); __ bind(&ok); GenerateTailCallToSharedCode(masm); } static void Generate_Runtime_NewObject(MacroAssembler* masm, bool create_memento, Register original_constructor, Label* count_incremented, Label* allocated) { // ----------- S t a t e ------------- // -- r4: argument for Runtime_NewObject // ----------------------------------- Register result = r7; if (create_memento) { // Get the cell or allocation site. __ LoadP(r5, MemOperand(sp, 2 * kPointerSize)); __ Push(r5, r4, original_constructor); __ CallRuntime(Runtime::kNewObjectWithAllocationSite, 3); __ mr(result, r3); // Runtime_NewObjectWithAllocationSite increments allocation count. // Skip the increment. __ b(count_incremented); } else { __ Push(r4, original_constructor); __ CallRuntime(Runtime::kNewObject, 2); __ mr(result, r3); __ b(allocated); } } static void Generate_JSConstructStubHelper(MacroAssembler* masm, bool is_api_function, bool create_memento) { // ----------- S t a t e ------------- // -- r3 : number of arguments // -- r4 : constructor function // -- r5 : allocation site or undefined // -- r6 : original constructor // -- lr : return address // -- sp[...]: constructor arguments // ----------------------------------- // Should never create mementos for api functions. DCHECK(!is_api_function || !create_memento); Isolate* isolate = masm->isolate(); // Enter a construct frame. { FrameAndConstantPoolScope scope(masm, StackFrame::CONSTRUCT); if (create_memento) { __ AssertUndefinedOrAllocationSite(r5, r7); __ push(r5); } // Preserve the two incoming parameters on the stack. __ SmiTag(r3); __ Push(r3, r4); Label rt_call, allocated, normal_new, count_incremented; __ cmp(r4, r6); __ beq(&normal_new); // Original constructor and function are different. Generate_Runtime_NewObject(masm, create_memento, r6, &count_incremented, &allocated); __ bind(&normal_new); // Try to allocate the object without transitioning into C code. If any of // the preconditions is not met, the code bails out to the runtime call. if (FLAG_inline_new) { Label undo_allocation; ExternalReference debug_step_in_fp = ExternalReference::debug_step_in_fp_address(isolate); __ mov(r5, Operand(debug_step_in_fp)); __ LoadP(r5, MemOperand(r5)); __ cmpi(r5, Operand::Zero()); __ bne(&rt_call); // Load the initial map and verify that it is in fact a map. // r4: constructor function __ LoadP(r5, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset)); __ JumpIfSmi(r5, &rt_call); __ CompareObjectType(r5, r6, r7, MAP_TYPE); __ bne(&rt_call); // Check that the constructor is not constructing a JSFunction (see // comments in Runtime_NewObject in runtime.cc). In which case the // initial map's instance type would be JS_FUNCTION_TYPE. // r4: constructor function // r5: initial map __ CompareInstanceType(r5, r6, JS_FUNCTION_TYPE); __ beq(&rt_call); if (!is_api_function) { Label allocate; MemOperand bit_field3 = FieldMemOperand(r5, Map::kBitField3Offset); // Check if slack tracking is enabled. __ lwz(r7, bit_field3); __ DecodeField(r11, r7); __ cmpi(r11, Operand(Map::kSlackTrackingCounterEnd)); __ blt(&allocate); // Decrease generous allocation count. __ Add(r7, r7, -(1 << Map::Counter::kShift), r0); __ stw(r7, bit_field3); __ cmpi(r11, Operand(Map::kSlackTrackingCounterEnd)); __ bne(&allocate); __ push(r4); __ Push(r5, r4); // r4 = constructor __ CallRuntime(Runtime::kFinalizeInstanceSize, 1); __ Pop(r4, r5); __ bind(&allocate); } // Now allocate the JSObject on the heap. // r4: constructor function // r5: initial map __ lbz(r6, FieldMemOperand(r5, Map::kInstanceSizeOffset)); if (create_memento) { __ addi(r6, r6, Operand(AllocationMemento::kSize / kPointerSize)); } __ Allocate(r6, r7, r8, r9, &rt_call, SIZE_IN_WORDS); // Allocated the JSObject, now initialize the fields. Map is set to // initial map and properties and elements are set to empty fixed array. // r4: constructor function // r5: initial map // r6: object size (not including memento if create_memento) // r7: JSObject (not tagged) __ LoadRoot(r9, Heap::kEmptyFixedArrayRootIndex); __ mr(r8, r7); __ StoreP(r5, MemOperand(r8, JSObject::kMapOffset)); __ StoreP(r9, MemOperand(r8, JSObject::kPropertiesOffset)); __ StoreP(r9, MemOperand(r8, JSObject::kElementsOffset)); __ addi(r8, r8, Operand(JSObject::kElementsOffset + kPointerSize)); __ ShiftLeftImm(r9, r6, Operand(kPointerSizeLog2)); __ add(r9, r7, r9); // End of object. // Fill all the in-object properties with the appropriate filler. // r4: constructor function // r5: initial map // r6: object size (in words, including memento if create_memento) // r7: JSObject (not tagged) // r8: First in-object property of JSObject (not tagged) // r9: End of object DCHECK_EQ(3 * kPointerSize, JSObject::kHeaderSize); __ LoadRoot(r10, Heap::kUndefinedValueRootIndex); if (!is_api_function) { Label no_inobject_slack_tracking; // Check if slack tracking is enabled. __ cmpi(r11, Operand(Map::kSlackTrackingCounterEnd)); __ blt(&no_inobject_slack_tracking); // Allocate object with a slack. __ lbz(r3, FieldMemOperand(r5, Map::kPreAllocatedPropertyFieldsOffset)); if (FLAG_debug_code) { __ ShiftLeftImm(r0, r3, Operand(kPointerSizeLog2)); __ add(r0, r8, r0); // r0: offset of first field after pre-allocated fields __ cmp(r0, r9); __ Assert(le, kUnexpectedNumberOfPreAllocatedPropertyFields); } { Label done; __ cmpi(r3, Operand::Zero()); __ beq(&done); __ InitializeNFieldsWithFiller(r8, r3, r10); __ bind(&done); } // To allow for truncation. __ LoadRoot(r10, Heap::kOnePointerFillerMapRootIndex); // Fill the remaining fields with one pointer filler map. __ bind(&no_inobject_slack_tracking); } if (create_memento) { __ subi(r3, r9, Operand(AllocationMemento::kSize)); __ InitializeFieldsWithFiller(r8, r3, r10); // Fill in memento fields. // r8: points to the allocated but uninitialized memento. __ LoadRoot(r10, Heap::kAllocationMementoMapRootIndex); __ StoreP(r10, MemOperand(r8, AllocationMemento::kMapOffset)); // Load the AllocationSite __ LoadP(r10, MemOperand(sp, 2 * kPointerSize)); __ StoreP(r10, MemOperand(r8, AllocationMemento::kAllocationSiteOffset)); __ addi(r8, r8, Operand(AllocationMemento::kAllocationSiteOffset + kPointerSize)); } else { __ InitializeFieldsWithFiller(r8, r9, r10); } // Add the object tag to make the JSObject real, so that we can continue // and jump into the continuation code at any time from now on. Any // failures need to undo the allocation, so that the heap is in a // consistent state and verifiable. __ addi(r7, r7, Operand(kHeapObjectTag)); // Check if a non-empty properties array is needed. Continue with // allocated object if not fall through to runtime call if it is. // r4: constructor function // r7: JSObject // r8: start of next object (not tagged) __ lbz(r6, FieldMemOperand(r5, Map::kUnusedPropertyFieldsOffset)); // The field instance sizes contains both pre-allocated property fields // and in-object properties. __ lbz(r0, FieldMemOperand(r5, Map::kPreAllocatedPropertyFieldsOffset)); __ add(r6, r6, r0); __ lbz(r0, FieldMemOperand(r5, Map::kInObjectPropertiesOffset)); __ sub(r6, r6, r0, LeaveOE, SetRC); // Done if no extra properties are to be allocated. __ beq(&allocated, cr0); __ Assert(ge, kPropertyAllocationCountFailed, cr0); // Scale the number of elements by pointer size and add the header for // FixedArrays to the start of the next object calculation from above. // r4: constructor // r6: number of elements in properties array // r7: JSObject // r8: start of next object __ addi(r3, r6, Operand(FixedArray::kHeaderSize / kPointerSize)); __ Allocate( r3, r8, r9, r5, &undo_allocation, static_cast(RESULT_CONTAINS_TOP | SIZE_IN_WORDS)); // Initialize the FixedArray. // r4: constructor // r6: number of elements in properties array // r7: JSObject // r8: FixedArray (not tagged) __ LoadRoot(r9, Heap::kFixedArrayMapRootIndex); __ mr(r5, r8); DCHECK_EQ(0 * kPointerSize, JSObject::kMapOffset); __ StoreP(r9, MemOperand(r5)); DCHECK_EQ(1 * kPointerSize, FixedArray::kLengthOffset); __ SmiTag(r3, r6); __ StoreP(r3, MemOperand(r5, kPointerSize)); __ addi(r5, r5, Operand(2 * kPointerSize)); // Initialize the fields to undefined. // r4: constructor function // r5: First element of FixedArray (not tagged) // r6: number of elements in properties array // r7: JSObject // r8: FixedArray (not tagged) DCHECK_EQ(2 * kPointerSize, FixedArray::kHeaderSize); { Label done; __ cmpi(r6, Operand::Zero()); __ beq(&done); if (!is_api_function || create_memento) { __ LoadRoot(r10, Heap::kUndefinedValueRootIndex); } else if (FLAG_debug_code) { __ LoadRoot(r11, Heap::kUndefinedValueRootIndex); __ cmp(r10, r11); __ Assert(eq, kUndefinedValueNotLoaded); } __ InitializeNFieldsWithFiller(r5, r6, r10); __ bind(&done); } // Store the initialized FixedArray into the properties field of // the JSObject // r4: constructor function // r7: JSObject // r8: FixedArray (not tagged) __ addi(r8, r8, Operand(kHeapObjectTag)); // Add the heap tag. __ StoreP(r8, FieldMemOperand(r7, JSObject::kPropertiesOffset), r0); // Continue with JSObject being successfully allocated // r4: constructor function // r7: JSObject __ b(&allocated); // Undo the setting of the new top so that the heap is verifiable. For // example, the map's unused properties potentially do not match the // allocated objects unused properties. // r7: JSObject (previous new top) __ bind(&undo_allocation); __ UndoAllocationInNewSpace(r7, r8); } // Allocate the new receiver object using the runtime call. // r4: constructor function __ bind(&rt_call); Generate_Runtime_NewObject(masm, create_memento, r4, &count_incremented, &allocated); // Receiver for constructor call allocated. // r7: JSObject __ bind(&allocated); if (create_memento) { __ LoadP(r5, MemOperand(sp, kPointerSize * 2)); __ LoadRoot(r8, Heap::kUndefinedValueRootIndex); __ cmp(r5, r8); __ beq(&count_incremented); // r5 is an AllocationSite. We are creating a memento from it, so we // need to increment the memento create count. __ LoadP( r6, FieldMemOperand(r5, AllocationSite::kPretenureCreateCountOffset)); __ AddSmiLiteral(r6, r6, Smi::FromInt(1), r0); __ StoreP( r6, FieldMemOperand(r5, AllocationSite::kPretenureCreateCountOffset), r0); __ bind(&count_incremented); } __ Push(r7, r7); // Reload the number of arguments and the constructor from the stack. // sp[0]: receiver // sp[1]: receiver // sp[2]: constructor function // sp[3]: number of arguments (smi-tagged) __ LoadP(r4, MemOperand(sp, 2 * kPointerSize)); __ LoadP(r6, MemOperand(sp, 3 * kPointerSize)); // Set up pointer to last argument. __ addi(r5, fp, Operand(StandardFrameConstants::kCallerSPOffset)); // Set up number of arguments for function call below __ SmiUntag(r3, r6); // Copy arguments and receiver to the expression stack. // r3: number of arguments // r4: constructor function // r5: address of last argument (caller sp) // r6: number of arguments (smi-tagged) // sp[0]: receiver // sp[1]: receiver // sp[2]: constructor function // sp[3]: number of arguments (smi-tagged) Label loop, no_args; __ cmpi(r3, Operand::Zero()); __ beq(&no_args); __ ShiftLeftImm(ip, r3, Operand(kPointerSizeLog2)); __ mtctr(r3); __ bind(&loop); __ subi(ip, ip, Operand(kPointerSize)); __ LoadPX(r0, MemOperand(r5, ip)); __ push(r0); __ bdnz(&loop); __ bind(&no_args); // Call the function. // r3: number of arguments // r4: constructor function if (is_api_function) { __ LoadP(cp, FieldMemOperand(r4, JSFunction::kContextOffset)); Handle code = masm->isolate()->builtins()->HandleApiCallConstruct(); __ Call(code, RelocInfo::CODE_TARGET); } else { ParameterCount actual(r3); __ InvokeFunction(r4, actual, CALL_FUNCTION, NullCallWrapper()); } // Store offset of return address for deoptimizer. if (!is_api_function) { masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset()); } // Restore context from the frame. // r3: result // sp[0]: receiver // sp[1]: constructor function // sp[2]: number of arguments (smi-tagged) __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); // If the result is an object (in the ECMA sense), we should get rid // of the receiver and use the result; see ECMA-262 section 13.2.2-7 // on page 74. Label use_receiver, exit; // If the result is a smi, it is *not* an object in the ECMA sense. // r3: result // sp[0]: receiver (newly allocated object) // sp[1]: constructor function // sp[2]: number of arguments (smi-tagged) __ JumpIfSmi(r3, &use_receiver); // If the type of the result (stored in its map) is less than // FIRST_SPEC_OBJECT_TYPE, it is not an object in the ECMA sense. __ CompareObjectType(r3, r4, r6, FIRST_SPEC_OBJECT_TYPE); __ bge(&exit); // Throw away the result of the constructor invocation and use the // on-stack receiver as the result. __ bind(&use_receiver); __ LoadP(r3, MemOperand(sp)); // Remove receiver from the stack, remove caller arguments, and // return. __ bind(&exit); // r3: result // sp[0]: receiver (newly allocated object) // sp[1]: constructor function // sp[2]: number of arguments (smi-tagged) __ LoadP(r4, MemOperand(sp, 2 * kPointerSize)); // Leave construct frame. } __ SmiToPtrArrayOffset(r4, r4); __ add(sp, sp, r4); __ addi(sp, sp, Operand(kPointerSize)); __ IncrementCounter(isolate->counters()->constructed_objects(), 1, r4, r5); __ blr(); } void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, false, FLAG_pretenuring_call_new); } void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, true, false); } void Builtins::Generate_JSConstructStubForDerived(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : number of arguments // -- r4 : constructor function // -- r5 : allocation site or undefined // -- r6 : original constructor // -- lr : return address // -- sp[...]: constructor arguments // ----------------------------------- // TODO(dslomov): support pretenuring CHECK(!FLAG_pretenuring_call_new); { FrameAndConstantPoolScope scope(masm, StackFrame::CONSTRUCT); // Smi-tagged arguments count. __ mr(r7, r3); __ SmiTag(r7, SetRC); // receiver is the hole. __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); __ Push(r7, ip); // Set up pointer to last argument. __ addi(r5, fp, Operand(StandardFrameConstants::kCallerSPOffset)); // Copy arguments and receiver to the expression stack. // r3: number of arguments // r4: constructor function // r5: address of last argument (caller sp) // r7: number of arguments (smi-tagged) // cr0: compare against zero of arguments // sp[0]: receiver // sp[1]: number of arguments (smi-tagged) Label loop, no_args; __ beq(&no_args, cr0); __ ShiftLeftImm(ip, r3, Operand(kPointerSizeLog2)); __ mtctr(r3); __ bind(&loop); __ subi(ip, ip, Operand(kPointerSize)); __ LoadPX(r0, MemOperand(r5, ip)); __ push(r0); __ bdnz(&loop); __ bind(&no_args); // Call the function. // r3: number of arguments // r4: constructor function ParameterCount actual(r3); __ InvokeFunction(r4, actual, CALL_FUNCTION, NullCallWrapper()); // Restore context from the frame. // r3: result // sp[0]: number of arguments (smi-tagged) __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); __ LoadP(r4, MemOperand(sp, 0)); // Leave construct frame. } __ SmiToPtrArrayOffset(r4, r4); __ add(sp, sp, r4); __ addi(sp, sp, Operand(kPointerSize)); __ blr(); } static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, bool is_construct) { // Called from Generate_JS_Entry // r3: code entry // r4: function // r5: receiver // r6: argc // r7: argv // r0,r8-r9, cp may be clobbered ProfileEntryHookStub::MaybeCallEntryHook(masm); // Clear the context before we push it when entering the internal frame. __ li(cp, Operand::Zero()); // Enter an internal frame. { FrameScope scope(masm, StackFrame::INTERNAL); // Set up the context from the function argument. __ LoadP(cp, FieldMemOperand(r4, JSFunction::kContextOffset)); __ InitializeRootRegister(); // Push the function and the receiver onto the stack. __ push(r4); __ push(r5); // Copy arguments to the stack in a loop. // r4: function // r6: argc // r7: argv, i.e. points to first arg Label loop, entry; __ ShiftLeftImm(r0, r6, Operand(kPointerSizeLog2)); __ add(r5, r7, r0); // r5 points past last arg. __ b(&entry); __ bind(&loop); __ LoadP(r8, MemOperand(r7)); // read next parameter __ addi(r7, r7, Operand(kPointerSize)); __ LoadP(r0, MemOperand(r8)); // dereference handle __ push(r0); // push parameter __ bind(&entry); __ cmp(r7, r5); __ bne(&loop); // Initialize all JavaScript callee-saved registers, since they will be seen // by the garbage collector as part of handlers. __ LoadRoot(r7, Heap::kUndefinedValueRootIndex); __ mr(r14, r7); __ mr(r15, r7); __ mr(r16, r7); __ mr(r17, r7); // Invoke the code and pass argc as r3. __ mr(r3, r6); if (is_construct) { // No type feedback cell is available __ LoadRoot(r5, Heap::kUndefinedValueRootIndex); CallConstructStub stub(masm->isolate(), NO_CALL_CONSTRUCTOR_FLAGS); __ CallStub(&stub); } else { ParameterCount actual(r3); __ InvokeFunction(r4, actual, CALL_FUNCTION, NullCallWrapper()); } // Exit the JS frame and remove the parameters (except function), and // return. } __ blr(); // r3: result } void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, false); } void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, true); } void Builtins::Generate_CompileLazy(MacroAssembler* masm) { CallRuntimePassFunction(masm, Runtime::kCompileLazy); GenerateTailCallToReturnedCode(masm); } static void CallCompileOptimized(MacroAssembler* masm, bool concurrent) { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); // Push a copy of the function onto the stack. // Push function as parameter to the runtime call. __ Push(r4, r4); // Whether to compile in a background thread. __ Push(masm->isolate()->factory()->ToBoolean(concurrent)); __ CallRuntime(Runtime::kCompileOptimized, 2); // Restore receiver. __ pop(r4); } void Builtins::Generate_CompileOptimized(MacroAssembler* masm) { CallCompileOptimized(masm, false); GenerateTailCallToReturnedCode(masm); } void Builtins::Generate_CompileOptimizedConcurrent(MacroAssembler* masm) { CallCompileOptimized(masm, true); GenerateTailCallToReturnedCode(masm); } static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) { // For now, we are relying on the fact that make_code_young doesn't do any // garbage collection which allows us to save/restore the registers without // worrying about which of them contain pointers. We also don't build an // internal frame to make the code faster, since we shouldn't have to do stack // crawls in MakeCodeYoung. This seems a bit fragile. // Point r3 at the start of the PlatformCodeAge sequence. __ mr(r3, ip); // The following registers must be saved and restored when calling through to // the runtime: // r3 - contains return address (beginning of patch sequence) // r4 - isolate // lr - return address FrameScope scope(masm, StackFrame::MANUAL); __ mflr(r0); __ MultiPush(r0.bit() | r3.bit() | r4.bit() | fp.bit()); __ PrepareCallCFunction(2, 0, r5); __ mov(r4, Operand(ExternalReference::isolate_address(masm->isolate()))); __ CallCFunction( ExternalReference::get_make_code_young_function(masm->isolate()), 2); __ MultiPop(r0.bit() | r3.bit() | r4.bit() | fp.bit()); __ mtlr(r0); __ mr(ip, r3); __ Jump(ip); } #define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C) \ void Builtins::Generate_Make##C##CodeYoungAgainEvenMarking( \ MacroAssembler* masm) { \ GenerateMakeCodeYoungAgainCommon(masm); \ } \ void Builtins::Generate_Make##C##CodeYoungAgainOddMarking( \ MacroAssembler* masm) { \ GenerateMakeCodeYoungAgainCommon(masm); \ } CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR) #undef DEFINE_CODE_AGE_BUILTIN_GENERATOR void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) { // For now, we are relying on the fact that make_code_young doesn't do any // garbage collection which allows us to save/restore the registers without // worrying about which of them contain pointers. We also don't build an // internal frame to make the code faster, since we shouldn't have to do stack // crawls in MakeCodeYoung. This seems a bit fragile. // Point r3 at the start of the PlatformCodeAge sequence. __ mr(r3, ip); // The following registers must be saved and restored when calling through to // the runtime: // r3 - contains return address (beginning of patch sequence) // r4 - isolate // lr - return address FrameScope scope(masm, StackFrame::MANUAL); __ mflr(r0); __ MultiPush(r0.bit() | r3.bit() | r4.bit() | fp.bit()); __ PrepareCallCFunction(2, 0, r5); __ mov(r4, Operand(ExternalReference::isolate_address(masm->isolate()))); __ CallCFunction( ExternalReference::get_mark_code_as_executed_function(masm->isolate()), 2); __ MultiPop(r0.bit() | r3.bit() | r4.bit() | fp.bit()); __ mtlr(r0); __ mr(ip, r3); // Perform prologue operations usually performed by the young code stub. __ PushFixedFrame(r4); __ addi(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp)); // Jump to point after the code-age stub. __ addi(r3, ip, Operand(kNoCodeAgeSequenceLength)); __ Jump(r3); } void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) { GenerateMakeCodeYoungAgainCommon(masm); } static void Generate_NotifyStubFailureHelper(MacroAssembler* masm, SaveFPRegsMode save_doubles) { { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); // Preserve registers across notification, this is important for compiled // stubs that tail call the runtime on deopts passing their parameters in // registers. __ MultiPush(kJSCallerSaved | kCalleeSaved); // Pass the function and deoptimization type to the runtime system. __ CallRuntime(Runtime::kNotifyStubFailure, 0, save_doubles); __ MultiPop(kJSCallerSaved | kCalleeSaved); } __ addi(sp, sp, Operand(kPointerSize)); // Ignore state __ blr(); // Jump to miss handler } void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) { Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs); } void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) { Generate_NotifyStubFailureHelper(masm, kSaveFPRegs); } static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm, Deoptimizer::BailoutType type) { { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); // Pass the function and deoptimization type to the runtime system. __ LoadSmiLiteral(r3, Smi::FromInt(static_cast(type))); __ push(r3); __ CallRuntime(Runtime::kNotifyDeoptimized, 1); } // Get the full codegen state from the stack and untag it -> r9. __ LoadP(r9, MemOperand(sp, 0 * kPointerSize)); __ SmiUntag(r9); // Switch on the state. Label with_tos_register, unknown_state; __ cmpi(r9, Operand(FullCodeGenerator::NO_REGISTERS)); __ bne(&with_tos_register); __ addi(sp, sp, Operand(1 * kPointerSize)); // Remove state. __ Ret(); __ bind(&with_tos_register); __ LoadP(r3, MemOperand(sp, 1 * kPointerSize)); __ cmpi(r9, Operand(FullCodeGenerator::TOS_REG)); __ bne(&unknown_state); __ addi(sp, sp, Operand(2 * kPointerSize)); // Remove state. __ Ret(); __ bind(&unknown_state); __ stop("no cases left"); } void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER); } void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT); } void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY); } void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) { // Lookup the function in the JavaScript frame. __ LoadP(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); // Pass function as argument. __ push(r3); __ CallRuntime(Runtime::kCompileForOnStackReplacement, 1); } // If the code object is null, just return to the unoptimized code. Label skip; __ CmpSmiLiteral(r3, Smi::FromInt(0), r0); __ bne(&skip); __ Ret(); __ bind(&skip); // Load deoptimization data from the code object. // = [#deoptimization_data_offset] __ LoadP(r4, FieldMemOperand(r3, Code::kDeoptimizationDataOffset)); #if V8_OOL_CONSTANT_POOL { ConstantPoolUnavailableScope constant_pool_unavailable(masm); __ LoadP(kConstantPoolRegister, FieldMemOperand(r3, Code::kConstantPoolOffset)); #endif // Load the OSR entrypoint offset from the deoptimization data. // = [#header_size + #osr_pc_offset] __ LoadP(r4, FieldMemOperand( r4, FixedArray::OffsetOfElementAt( DeoptimizationInputData::kOsrPcOffsetIndex))); __ SmiUntag(r4); // Compute the target address = code_obj + header_size + osr_offset // = + #header_size + __ add(r3, r3, r4); __ addi(r0, r3, Operand(Code::kHeaderSize - kHeapObjectTag)); __ mtlr(r0); // And "return" to the OSR entry point of the function. __ Ret(); #if V8_OOL_CONSTANT_POOL } #endif } void Builtins::Generate_OsrAfterStackCheck(MacroAssembler* masm) { // We check the stack limit as indicator that recompilation might be done. Label ok; __ LoadRoot(ip, Heap::kStackLimitRootIndex); __ cmpl(sp, ip); __ bge(&ok); { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kStackGuard, 0); } __ Jump(masm->isolate()->builtins()->OnStackReplacement(), RelocInfo::CODE_TARGET); __ bind(&ok); __ Ret(); } void Builtins::Generate_FunctionCall(MacroAssembler* masm) { // 1. Make sure we have at least one argument. // r3: actual number of arguments { Label done; __ cmpi(r3, Operand::Zero()); __ bne(&done); __ LoadRoot(r5, Heap::kUndefinedValueRootIndex); __ push(r5); __ addi(r3, r3, Operand(1)); __ bind(&done); } // 2. Get the function to call (passed as receiver) from the stack, check // if it is a function. // r3: actual number of arguments Label slow, non_function; __ ShiftLeftImm(r4, r3, Operand(kPointerSizeLog2)); __ add(r4, sp, r4); __ LoadP(r4, MemOperand(r4)); __ JumpIfSmi(r4, &non_function); __ CompareObjectType(r4, r5, r5, JS_FUNCTION_TYPE); __ bne(&slow); // 3a. Patch the first argument if necessary when calling a function. // r3: actual number of arguments // r4: function Label shift_arguments; __ li(r7, Operand::Zero()); // indicate regular JS_FUNCTION { Label convert_to_object, use_global_proxy, patch_receiver; // Change context eagerly in case we need the global receiver. __ LoadP(cp, FieldMemOperand(r4, JSFunction::kContextOffset)); // Do not transform the receiver for strict mode functions. __ LoadP(r5, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); __ lwz(r6, FieldMemOperand(r5, SharedFunctionInfo::kCompilerHintsOffset)); __ TestBit(r6, #if V8_TARGET_ARCH_PPC64 SharedFunctionInfo::kStrictModeFunction, #else SharedFunctionInfo::kStrictModeFunction + kSmiTagSize, #endif r0); __ bne(&shift_arguments, cr0); // Do not transform the receiver for native (Compilerhints already in r6). __ TestBit(r6, #if V8_TARGET_ARCH_PPC64 SharedFunctionInfo::kNative, #else SharedFunctionInfo::kNative + kSmiTagSize, #endif r0); __ bne(&shift_arguments, cr0); // Compute the receiver in sloppy mode. __ ShiftLeftImm(ip, r3, Operand(kPointerSizeLog2)); __ add(r5, sp, ip); __ LoadP(r5, MemOperand(r5, -kPointerSize)); // r3: actual number of arguments // r4: function // r5: first argument __ JumpIfSmi(r5, &convert_to_object); __ LoadRoot(r6, Heap::kUndefinedValueRootIndex); __ cmp(r5, r6); __ beq(&use_global_proxy); __ LoadRoot(r6, Heap::kNullValueRootIndex); __ cmp(r5, r6); __ beq(&use_global_proxy); STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); __ CompareObjectType(r5, r6, r6, FIRST_SPEC_OBJECT_TYPE); __ bge(&shift_arguments); __ bind(&convert_to_object); { // Enter an internal frame in order to preserve argument count. FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ SmiTag(r3); __ Push(r3, r5); __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); __ mr(r5, r3); __ pop(r3); __ SmiUntag(r3); // Exit the internal frame. } // Restore the function to r4, and the flag to r7. __ ShiftLeftImm(r7, r3, Operand(kPointerSizeLog2)); __ add(r7, sp, r7); __ LoadP(r4, MemOperand(r7)); __ li(r7, Operand::Zero()); __ b(&patch_receiver); __ bind(&use_global_proxy); __ LoadP(r5, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX)); __ LoadP(r5, FieldMemOperand(r5, GlobalObject::kGlobalProxyOffset)); __ bind(&patch_receiver); __ ShiftLeftImm(ip, r3, Operand(kPointerSizeLog2)); __ add(r6, sp, ip); __ StoreP(r5, MemOperand(r6, -kPointerSize)); __ b(&shift_arguments); } // 3b. Check for function proxy. __ bind(&slow); __ li(r7, Operand(1, RelocInfo::NONE32)); // indicate function proxy __ cmpi(r5, Operand(JS_FUNCTION_PROXY_TYPE)); __ beq(&shift_arguments); __ bind(&non_function); __ li(r7, Operand(2, RelocInfo::NONE32)); // indicate non-function // 3c. Patch the first argument when calling a non-function. The // CALL_NON_FUNCTION builtin expects the non-function callee as // receiver, so overwrite the first argument which will ultimately // become the receiver. // r3: actual number of arguments // r4: function // r7: call type (0: JS function, 1: function proxy, 2: non-function) __ ShiftLeftImm(ip, r3, Operand(kPointerSizeLog2)); __ add(r5, sp, ip); __ StoreP(r4, MemOperand(r5, -kPointerSize)); // 4. Shift arguments and return address one slot down on the stack // (overwriting the original receiver). Adjust argument count to make // the original first argument the new receiver. // r3: actual number of arguments // r4: function // r7: call type (0: JS function, 1: function proxy, 2: non-function) __ bind(&shift_arguments); { Label loop; // Calculate the copy start address (destination). Copy end address is sp. __ ShiftLeftImm(ip, r3, Operand(kPointerSizeLog2)); __ add(r5, sp, ip); __ bind(&loop); __ LoadP(ip, MemOperand(r5, -kPointerSize)); __ StoreP(ip, MemOperand(r5)); __ subi(r5, r5, Operand(kPointerSize)); __ cmp(r5, sp); __ bne(&loop); // Adjust the actual number of arguments and remove the top element // (which is a copy of the last argument). __ subi(r3, r3, Operand(1)); __ pop(); } // 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin, // or a function proxy via CALL_FUNCTION_PROXY. // r3: actual number of arguments // r4: function // r7: call type (0: JS function, 1: function proxy, 2: non-function) { Label function, non_proxy; __ cmpi(r7, Operand::Zero()); __ beq(&function); // Expected number of arguments is 0 for CALL_NON_FUNCTION. __ li(r5, Operand::Zero()); __ cmpi(r7, Operand(1)); __ bne(&non_proxy); __ push(r4); // re-add proxy object as additional argument __ addi(r3, r3, Operand(1)); __ GetBuiltinFunction(r4, Builtins::CALL_FUNCTION_PROXY); __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), RelocInfo::CODE_TARGET); __ bind(&non_proxy); __ GetBuiltinFunction(r4, Builtins::CALL_NON_FUNCTION); __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), RelocInfo::CODE_TARGET); __ bind(&function); } // 5b. Get the code to call from the function and check that the number of // expected arguments matches what we're providing. If so, jump // (tail-call) to the code in register edx without checking arguments. // r3: actual number of arguments // r4: function __ LoadP(r6, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); __ LoadWordArith( r5, FieldMemOperand(r6, SharedFunctionInfo::kFormalParameterCountOffset)); #if !V8_TARGET_ARCH_PPC64 __ SmiUntag(r5); #endif __ cmp(r5, r3); // Check formal and actual parameter counts. __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), RelocInfo::CODE_TARGET, ne); __ LoadP(ip, FieldMemOperand(r4, JSFunction::kCodeEntryOffset)); ParameterCount expected(0); __ InvokeCode(ip, expected, expected, JUMP_FUNCTION, NullCallWrapper()); } void Builtins::Generate_FunctionApply(MacroAssembler* masm) { const int kIndexOffset = StandardFrameConstants::kExpressionsOffset - (2 * kPointerSize); const int kLimitOffset = StandardFrameConstants::kExpressionsOffset - (1 * kPointerSize); const int kArgsOffset = 2 * kPointerSize; const int kRecvOffset = 3 * kPointerSize; const int kFunctionOffset = 4 * kPointerSize; { FrameAndConstantPoolScope frame_scope(masm, StackFrame::INTERNAL); __ LoadP(r3, MemOperand(fp, kFunctionOffset)); // get the function __ push(r3); __ LoadP(r3, MemOperand(fp, kArgsOffset)); // get the args array __ push(r3); __ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION); // Check the stack for overflow. We are not trying to catch // interruptions (e.g. debug break and preemption) here, so the "real stack // limit" is checked. Label okay; __ LoadRoot(r5, Heap::kRealStackLimitRootIndex); // Make r5 the space we have left. The stack might already be overflowed // here which will cause r5 to become negative. __ sub(r5, sp, r5); // Check if the arguments will overflow the stack. __ SmiToPtrArrayOffset(r0, r3); __ cmp(r5, r0); __ bgt(&okay); // Signed comparison. // Out of stack space. __ LoadP(r4, MemOperand(fp, kFunctionOffset)); __ Push(r4, r3); __ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION); // End of stack check. // Push current limit and index. __ bind(&okay); __ li(r4, Operand::Zero()); __ Push(r3, r4); // limit and initial index. // Get the receiver. __ LoadP(r3, MemOperand(fp, kRecvOffset)); // Check that the function is a JS function (otherwise it must be a proxy). Label push_receiver; __ LoadP(r4, MemOperand(fp, kFunctionOffset)); __ CompareObjectType(r4, r5, r5, JS_FUNCTION_TYPE); __ bne(&push_receiver); // Change context eagerly to get the right global object if necessary. __ LoadP(cp, FieldMemOperand(r4, JSFunction::kContextOffset)); // Load the shared function info while the function is still in r4. __ LoadP(r5, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); // Compute the receiver. // Do not transform the receiver for strict mode functions. Label call_to_object, use_global_proxy; __ lwz(r5, FieldMemOperand(r5, SharedFunctionInfo::kCompilerHintsOffset)); __ TestBit(r5, #if V8_TARGET_ARCH_PPC64 SharedFunctionInfo::kStrictModeFunction, #else SharedFunctionInfo::kStrictModeFunction + kSmiTagSize, #endif r0); __ bne(&push_receiver, cr0); // Do not transform the receiver for strict mode functions. __ TestBit(r5, #if V8_TARGET_ARCH_PPC64 SharedFunctionInfo::kNative, #else SharedFunctionInfo::kNative + kSmiTagSize, #endif r0); __ bne(&push_receiver, cr0); // Compute the receiver in sloppy mode. __ JumpIfSmi(r3, &call_to_object); __ LoadRoot(r4, Heap::kNullValueRootIndex); __ cmp(r3, r4); __ beq(&use_global_proxy); __ LoadRoot(r4, Heap::kUndefinedValueRootIndex); __ cmp(r3, r4); __ beq(&use_global_proxy); // Check if the receiver is already a JavaScript object. // r3: receiver STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); __ CompareObjectType(r3, r4, r4, FIRST_SPEC_OBJECT_TYPE); __ bge(&push_receiver); // Convert the receiver to a regular object. // r3: receiver __ bind(&call_to_object); __ push(r3); __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); __ b(&push_receiver); __ bind(&use_global_proxy); __ LoadP(r3, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX)); __ LoadP(r3, FieldMemOperand(r3, GlobalObject::kGlobalProxyOffset)); // Push the receiver. // r3: receiver __ bind(&push_receiver); __ push(r3); // Copy all arguments from the array to the stack. Label entry, loop; __ LoadP(r3, MemOperand(fp, kIndexOffset)); __ b(&entry); // Load the current argument from the arguments array and push it to the // stack. // r3: current argument index __ bind(&loop); __ LoadP(r4, MemOperand(fp, kArgsOffset)); __ Push(r4, r3); // Call the runtime to access the property in the arguments array. __ CallRuntime(Runtime::kGetProperty, 2); __ push(r3); // Use inline caching to access the arguments. __ LoadP(r3, MemOperand(fp, kIndexOffset)); __ AddSmiLiteral(r3, r3, Smi::FromInt(1), r0); __ StoreP(r3, MemOperand(fp, kIndexOffset)); // Test if the copy loop has finished copying all the elements from the // arguments object. __ bind(&entry); __ LoadP(r4, MemOperand(fp, kLimitOffset)); __ cmp(r3, r4); __ bne(&loop); // Call the function. Label call_proxy; ParameterCount actual(r3); __ SmiUntag(r3); __ LoadP(r4, MemOperand(fp, kFunctionOffset)); __ CompareObjectType(r4, r5, r5, JS_FUNCTION_TYPE); __ bne(&call_proxy); __ InvokeFunction(r4, actual, CALL_FUNCTION, NullCallWrapper()); __ LeaveFrame(StackFrame::INTERNAL, 3 * kPointerSize); __ blr(); // Call the function proxy. __ bind(&call_proxy); __ push(r4); // add function proxy as last argument __ addi(r3, r3, Operand(1)); __ li(r5, Operand::Zero()); __ GetBuiltinFunction(r4, Builtins::CALL_FUNCTION_PROXY); __ Call(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), RelocInfo::CODE_TARGET); // Tear down the internal frame and remove function, receiver and args. } __ addi(sp, sp, Operand(3 * kPointerSize)); __ blr(); } static void ArgumentAdaptorStackCheck(MacroAssembler* masm, Label* stack_overflow) { // ----------- S t a t e ------------- // -- r3 : actual number of arguments // -- r4 : function (passed through to callee) // -- r5 : expected number of arguments // ----------------------------------- // Check the stack for overflow. We are not trying to catch // interruptions (e.g. debug break and preemption) here, so the "real stack // limit" is checked. __ LoadRoot(r8, Heap::kRealStackLimitRootIndex); // Make r8 the space we have left. The stack might already be overflowed // here which will cause r8 to become negative. __ sub(r8, sp, r8); // Check if the arguments will overflow the stack. __ ShiftLeftImm(r0, r5, Operand(kPointerSizeLog2)); __ cmp(r8, r0); __ ble(stack_overflow); // Signed comparison. } static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { __ SmiTag(r3); __ LoadSmiLiteral(r7, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); __ mflr(r0); __ push(r0); #if V8_OOL_CONSTANT_POOL __ Push(fp, kConstantPoolRegister, r7, r4, r3); #else __ Push(fp, r7, r4, r3); #endif __ addi(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize)); } static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : result being passed through // ----------------------------------- // Get the number of arguments passed (as a smi), tear down the frame and // then tear down the parameters. __ LoadP(r4, MemOperand(fp, -(StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize))); int stack_adjustment = kPointerSize; // adjust for receiver __ LeaveFrame(StackFrame::ARGUMENTS_ADAPTOR, stack_adjustment); __ SmiToPtrArrayOffset(r0, r4); __ add(sp, sp, r0); } void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : actual number of arguments // -- r4 : function (passed through to callee) // -- r5 : expected number of arguments // ----------------------------------- Label stack_overflow; ArgumentAdaptorStackCheck(masm, &stack_overflow); Label invoke, dont_adapt_arguments; Label enough, too_few; __ LoadP(ip, FieldMemOperand(r4, JSFunction::kCodeEntryOffset)); __ cmp(r3, r5); __ blt(&too_few); __ cmpi(r5, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel)); __ beq(&dont_adapt_arguments); { // Enough parameters: actual >= expected __ bind(&enough); EnterArgumentsAdaptorFrame(masm); // Calculate copy start address into r3 and copy end address into r5. // r3: actual number of arguments as a smi // r4: function // r5: expected number of arguments // ip: code entry to call __ SmiToPtrArrayOffset(r3, r3); __ add(r3, r3, fp); // adjust for return address and receiver __ addi(r3, r3, Operand(2 * kPointerSize)); __ ShiftLeftImm(r5, r5, Operand(kPointerSizeLog2)); __ sub(r5, r3, r5); // Copy the arguments (including the receiver) to the new stack frame. // r3: copy start address // r4: function // r5: copy end address // ip: code entry to call Label copy; __ bind(©); __ LoadP(r0, MemOperand(r3, 0)); __ push(r0); __ cmp(r3, r5); // Compare before moving to next argument. __ subi(r3, r3, Operand(kPointerSize)); __ bne(©); __ b(&invoke); } { // Too few parameters: Actual < expected __ bind(&too_few); EnterArgumentsAdaptorFrame(masm); // Calculate copy start address into r0 and copy end address is fp. // r3: actual number of arguments as a smi // r4: function // r5: expected number of arguments // ip: code entry to call __ SmiToPtrArrayOffset(r3, r3); __ add(r3, r3, fp); // Copy the arguments (including the receiver) to the new stack frame. // r3: copy start address // r4: function // r5: expected number of arguments // ip: code entry to call Label copy; __ bind(©); // Adjust load for return address and receiver. __ LoadP(r0, MemOperand(r3, 2 * kPointerSize)); __ push(r0); __ cmp(r3, fp); // Compare before moving to next argument. __ subi(r3, r3, Operand(kPointerSize)); __ bne(©); // Fill the remaining expected arguments with undefined. // r4: function // r5: expected number of arguments // ip: code entry to call __ LoadRoot(r0, Heap::kUndefinedValueRootIndex); __ ShiftLeftImm(r5, r5, Operand(kPointerSizeLog2)); __ sub(r5, fp, r5); // Adjust for frame. __ subi(r5, r5, Operand(StandardFrameConstants::kFixedFrameSizeFromFp + 2 * kPointerSize)); Label fill; __ bind(&fill); __ push(r0); __ cmp(sp, r5); __ bne(&fill); } // Call the entry point. __ bind(&invoke); __ CallJSEntry(ip); // Store offset of return address for deoptimizer. masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset()); // Exit frame and return. LeaveArgumentsAdaptorFrame(masm); __ blr(); // ------------------------------------------- // Dont adapt arguments. // ------------------------------------------- __ bind(&dont_adapt_arguments); __ JumpToJSEntry(ip); __ bind(&stack_overflow); { FrameScope frame(masm, StackFrame::MANUAL); EnterArgumentsAdaptorFrame(masm); __ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION); __ bkpt(0); } } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_PPC