// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if V8_TARGET_ARCH_IA32 #include "codegen.h" #include "deoptimizer.h" #include "full-codegen.h" #include "safepoint-table.h" namespace v8 { namespace internal { const int Deoptimizer::table_entry_size_ = 10; int Deoptimizer::patch_size() { return Assembler::kCallInstructionLength; } void Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(Handle code) { Isolate* isolate = code->GetIsolate(); HandleScope scope(isolate); // Compute the size of relocation information needed for the code // patching in Deoptimizer::DeoptimizeFunction. int min_reloc_size = 0; int prev_pc_offset = 0; DeoptimizationInputData* deopt_data = DeoptimizationInputData::cast(code->deoptimization_data()); for (int i = 0; i < deopt_data->DeoptCount(); i++) { int pc_offset = deopt_data->Pc(i)->value(); if (pc_offset == -1) continue; ASSERT_GE(pc_offset, prev_pc_offset); int pc_delta = pc_offset - prev_pc_offset; // We use RUNTIME_ENTRY reloc info which has a size of 2 bytes // if encodable with small pc delta encoding and up to 6 bytes // otherwise. if (pc_delta <= RelocInfo::kMaxSmallPCDelta) { min_reloc_size += 2; } else { min_reloc_size += 6; } prev_pc_offset = pc_offset; } // If the relocation information is not big enough we create a new // relocation info object that is padded with comments to make it // big enough for lazy doptimization. int reloc_length = code->relocation_info()->length(); if (min_reloc_size > reloc_length) { int comment_reloc_size = RelocInfo::kMinRelocCommentSize; // Padding needed. int min_padding = min_reloc_size - reloc_length; // Number of comments needed to take up at least that much space. int additional_comments = (min_padding + comment_reloc_size - 1) / comment_reloc_size; // Actual padding size. int padding = additional_comments * comment_reloc_size; // Allocate new relocation info and copy old relocation to the end // of the new relocation info array because relocation info is // written and read backwards. Factory* factory = isolate->factory(); Handle new_reloc = factory->NewByteArray(reloc_length + padding, TENURED); OS::MemCopy(new_reloc->GetDataStartAddress() + padding, code->relocation_info()->GetDataStartAddress(), reloc_length); // Create a relocation writer to write the comments in the padding // space. Use position 0 for everything to ensure short encoding. RelocInfoWriter reloc_info_writer( new_reloc->GetDataStartAddress() + padding, 0); intptr_t comment_string = reinterpret_cast(RelocInfo::kFillerCommentString); RelocInfo rinfo(0, RelocInfo::COMMENT, comment_string, NULL); for (int i = 0; i < additional_comments; ++i) { #ifdef DEBUG byte* pos_before = reloc_info_writer.pos(); #endif reloc_info_writer.Write(&rinfo); ASSERT(RelocInfo::kMinRelocCommentSize == pos_before - reloc_info_writer.pos()); } // Replace relocation information on the code object. code->set_relocation_info(*new_reloc); } } void Deoptimizer::PatchCodeForDeoptimization(Isolate* isolate, Code* code) { Address code_start_address = code->instruction_start(); // We will overwrite the code's relocation info in-place. Relocation info // is written backward. The relocation info is the payload of a byte // array. Later on we will slide this to the start of the byte array and // create a filler object in the remaining space. ByteArray* reloc_info = code->relocation_info(); Address reloc_end_address = reloc_info->address() + reloc_info->Size(); RelocInfoWriter reloc_info_writer(reloc_end_address, code_start_address); // For each LLazyBailout instruction insert a call to the corresponding // deoptimization entry. // Since the call is a relative encoding, write new // reloc info. We do not need any of the existing reloc info because the // existing code will not be used again (we zap it in debug builds). // // Emit call to lazy deoptimization at all lazy deopt points. DeoptimizationInputData* deopt_data = DeoptimizationInputData::cast(code->deoptimization_data()); #ifdef DEBUG Address prev_call_address = NULL; #endif for (int i = 0; i < deopt_data->DeoptCount(); i++) { if (deopt_data->Pc(i)->value() == -1) continue; // Patch lazy deoptimization entry. Address call_address = code_start_address + deopt_data->Pc(i)->value(); CodePatcher patcher(call_address, patch_size()); Address deopt_entry = GetDeoptimizationEntry(isolate, i, LAZY); patcher.masm()->call(deopt_entry, RelocInfo::NONE32); // We use RUNTIME_ENTRY for deoptimization bailouts. RelocInfo rinfo(call_address + 1, // 1 after the call opcode. RelocInfo::RUNTIME_ENTRY, reinterpret_cast(deopt_entry), NULL); reloc_info_writer.Write(&rinfo); ASSERT_GE(reloc_info_writer.pos(), reloc_info->address() + ByteArray::kHeaderSize); ASSERT(prev_call_address == NULL || call_address >= prev_call_address + patch_size()); ASSERT(call_address + patch_size() <= code->instruction_end()); #ifdef DEBUG prev_call_address = call_address; #endif } // Move the relocation info to the beginning of the byte array. int new_reloc_size = reloc_end_address - reloc_info_writer.pos(); OS::MemMove( code->relocation_start(), reloc_info_writer.pos(), new_reloc_size); // The relocation info is in place, update the size. reloc_info->set_length(new_reloc_size); // Handle the junk part after the new relocation info. We will create // a non-live object in the extra space at the end of the former reloc info. Address junk_address = reloc_info->address() + reloc_info->Size(); ASSERT(junk_address <= reloc_end_address); isolate->heap()->CreateFillerObjectAt(junk_address, reloc_end_address - junk_address); } static const byte kJnsInstruction = 0x79; static const byte kJnsOffset = 0x11; static const byte kCallInstruction = 0xe8; static const byte kNopByteOne = 0x66; static const byte kNopByteTwo = 0x90; // The back edge bookkeeping code matches the pattern: // // sub , // jns ok // call // ok: // // The patched back edge looks like this: // // sub , ;; Not changed // nop // nop // call // ok: void Deoptimizer::PatchInterruptCodeAt(Code* unoptimized_code, Address pc_after, Code* interrupt_code, Code* replacement_code) { ASSERT(!InterruptCodeIsPatched(unoptimized_code, pc_after, interrupt_code, replacement_code)); // Turn the jump into nops. Address call_target_address = pc_after - kIntSize; *(call_target_address - 3) = kNopByteOne; *(call_target_address - 2) = kNopByteTwo; // Replace the call address. Assembler::set_target_address_at(call_target_address, replacement_code->entry()); unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch( unoptimized_code, call_target_address, replacement_code); } void Deoptimizer::RevertInterruptCodeAt(Code* unoptimized_code, Address pc_after, Code* interrupt_code, Code* replacement_code) { ASSERT(InterruptCodeIsPatched(unoptimized_code, pc_after, interrupt_code, replacement_code)); // Restore the original jump. Address call_target_address = pc_after - kIntSize; *(call_target_address - 3) = kJnsInstruction; *(call_target_address - 2) = kJnsOffset; // Restore the original call address. Assembler::set_target_address_at(call_target_address, interrupt_code->entry()); interrupt_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch( unoptimized_code, call_target_address, interrupt_code); } #ifdef DEBUG bool Deoptimizer::InterruptCodeIsPatched(Code* unoptimized_code, Address pc_after, Code* interrupt_code, Code* replacement_code) { Address call_target_address = pc_after - kIntSize; ASSERT_EQ(kCallInstruction, *(call_target_address - 1)); if (*(call_target_address - 3) == kNopByteOne) { ASSERT_EQ(replacement_code->entry(), Assembler::target_address_at(call_target_address)); ASSERT_EQ(kNopByteTwo, *(call_target_address - 2)); return true; } else { ASSERT_EQ(interrupt_code->entry(), Assembler::target_address_at(call_target_address)); ASSERT_EQ(kJnsInstruction, *(call_target_address - 3)); ASSERT_EQ(kJnsOffset, *(call_target_address - 2)); return false; } } #endif // DEBUG static int LookupBailoutId(DeoptimizationInputData* data, BailoutId ast_id) { ByteArray* translations = data->TranslationByteArray(); int length = data->DeoptCount(); for (int i = 0; i < length; i++) { if (data->AstId(i) == ast_id) { TranslationIterator it(translations, data->TranslationIndex(i)->value()); int value = it.Next(); ASSERT(Translation::BEGIN == static_cast(value)); // Read the number of frames. value = it.Next(); if (value == 1) return i; } } UNREACHABLE(); return -1; } void Deoptimizer::DoComputeOsrOutputFrame() { DeoptimizationInputData* data = DeoptimizationInputData::cast( compiled_code_->deoptimization_data()); unsigned ast_id = data->OsrAstId()->value(); // TODO(kasperl): This should not be the bailout_id_. It should be // the ast id. Confusing. ASSERT(bailout_id_ == ast_id); int bailout_id = LookupBailoutId(data, BailoutId(ast_id)); unsigned translation_index = data->TranslationIndex(bailout_id)->value(); ByteArray* translations = data->TranslationByteArray(); TranslationIterator iterator(translations, translation_index); Translation::Opcode opcode = static_cast(iterator.Next()); ASSERT(Translation::BEGIN == opcode); USE(opcode); int count = iterator.Next(); iterator.Next(); // Drop JS frames count. ASSERT(count == 1); USE(count); opcode = static_cast(iterator.Next()); USE(opcode); ASSERT(Translation::JS_FRAME == opcode); unsigned node_id = iterator.Next(); USE(node_id); ASSERT(node_id == ast_id); int closure_id = iterator.Next(); USE(closure_id); ASSERT_EQ(Translation::kSelfLiteralId, closure_id); unsigned height = iterator.Next(); unsigned height_in_bytes = height * kPointerSize; USE(height_in_bytes); unsigned fixed_size = ComputeFixedSize(function_); unsigned input_frame_size = input_->GetFrameSize(); ASSERT(fixed_size + height_in_bytes == input_frame_size); unsigned stack_slot_size = compiled_code_->stack_slots() * kPointerSize; unsigned outgoing_height = data->ArgumentsStackHeight(bailout_id)->value(); unsigned outgoing_size = outgoing_height * kPointerSize; unsigned output_frame_size = fixed_size + stack_slot_size + outgoing_size; ASSERT(outgoing_size == 0); // OSR does not happen in the middle of a call. if (FLAG_trace_osr) { PrintF("[on-stack replacement: begin 0x%08" V8PRIxPTR " ", reinterpret_cast(function_)); PrintFunctionName(); PrintF(" => node=%u, frame=%d->%d, ebp:esp=0x%08x:0x%08x]\n", ast_id, input_frame_size, output_frame_size, input_->GetRegister(ebp.code()), input_->GetRegister(esp.code())); } // There's only one output frame in the OSR case. output_count_ = 1; output_ = new FrameDescription*[1]; output_[0] = new(output_frame_size) FrameDescription( output_frame_size, function_); output_[0]->SetFrameType(StackFrame::JAVA_SCRIPT); // Clear the incoming parameters in the optimized frame to avoid // confusing the garbage collector. unsigned output_offset = output_frame_size - kPointerSize; int parameter_count = function_->shared()->formal_parameter_count() + 1; for (int i = 0; i < parameter_count; ++i) { output_[0]->SetFrameSlot(output_offset, 0); output_offset -= kPointerSize; } // Translate the incoming parameters. This may overwrite some of the // incoming argument slots we've just cleared. int input_offset = input_frame_size - kPointerSize; bool ok = true; int limit = input_offset - (parameter_count * kPointerSize); while (ok && input_offset > limit) { ok = DoOsrTranslateCommand(&iterator, &input_offset); } // There are no translation commands for the caller's pc and fp, the // context, and the function. Set them up explicitly. for (int i = StandardFrameConstants::kCallerPCOffset; ok && i >= StandardFrameConstants::kMarkerOffset; i -= kPointerSize) { uint32_t input_value = input_->GetFrameSlot(input_offset); if (FLAG_trace_osr) { const char* name = "UNKNOWN"; switch (i) { case StandardFrameConstants::kCallerPCOffset: name = "caller's pc"; break; case StandardFrameConstants::kCallerFPOffset: name = "fp"; break; case StandardFrameConstants::kContextOffset: name = "context"; break; case StandardFrameConstants::kMarkerOffset: name = "function"; break; } PrintF(" [sp + %d] <- 0x%08x ; [sp + %d] (fixed part - %s)\n", output_offset, input_value, input_offset, name); } output_[0]->SetFrameSlot(output_offset, input_->GetFrameSlot(input_offset)); input_offset -= kPointerSize; output_offset -= kPointerSize; } // All OSR stack frames are dynamically aligned to an 8-byte boundary. int frame_pointer = input_->GetRegister(ebp.code()); if ((frame_pointer & kPointerSize) != 0) { frame_pointer -= kPointerSize; has_alignment_padding_ = 1; } int32_t alignment_state = (has_alignment_padding_ == 1) ? kAlignmentPaddingPushed : kNoAlignmentPadding; if (FLAG_trace_osr) { PrintF(" [sp + %d] <- 0x%08x ; (alignment state)\n", output_offset, alignment_state); } output_[0]->SetFrameSlot(output_offset, alignment_state); output_offset -= kPointerSize; // Translate the rest of the frame. while (ok && input_offset >= 0) { ok = DoOsrTranslateCommand(&iterator, &input_offset); } // If translation of any command failed, continue using the input frame. if (!ok) { delete output_[0]; output_[0] = input_; output_[0]->SetPc(reinterpret_cast(from_)); } else { // Set up the frame pointer and the context pointer. output_[0]->SetRegister(ebp.code(), frame_pointer); output_[0]->SetRegister(esi.code(), input_->GetRegister(esi.code())); unsigned pc_offset = data->OsrPcOffset()->value(); uint32_t pc = reinterpret_cast( compiled_code_->entry() + pc_offset); output_[0]->SetPc(pc); } Code* continuation = function_->GetIsolate()->builtins()->builtin(Builtins::kNotifyOSR); output_[0]->SetContinuation( reinterpret_cast(continuation->entry())); if (FLAG_trace_osr) { PrintF("[on-stack replacement translation %s: 0x%08" V8PRIxPTR " ", ok ? "finished" : "aborted", reinterpret_cast(function_)); PrintFunctionName(); PrintF(" => pc=0x%0x]\n", output_[0]->GetPc()); } } void Deoptimizer::FillInputFrame(Address tos, JavaScriptFrame* frame) { // Set the register values. The values are not important as there are no // callee saved registers in JavaScript frames, so all registers are // spilled. Registers ebp and esp are set to the correct values though. for (int i = 0; i < Register::kNumRegisters; i++) { input_->SetRegister(i, i * 4); } input_->SetRegister(esp.code(), reinterpret_cast(frame->sp())); input_->SetRegister(ebp.code(), reinterpret_cast(frame->fp())); for (int i = 0; i < DoubleRegister::NumAllocatableRegisters(); i++) { input_->SetDoubleRegister(i, 0.0); } // Fill the frame content from the actual data on the frame. for (unsigned i = 0; i < input_->GetFrameSize(); i += kPointerSize) { input_->SetFrameSlot(i, Memory::uint32_at(tos + i)); } } void Deoptimizer::SetPlatformCompiledStubRegisters( FrameDescription* output_frame, CodeStubInterfaceDescriptor* descriptor) { intptr_t handler = reinterpret_cast(descriptor->deoptimization_handler_); int params = descriptor->register_param_count_; if (descriptor->stack_parameter_count_ != NULL) { params++; } output_frame->SetRegister(eax.code(), params); output_frame->SetRegister(ebx.code(), handler); } void Deoptimizer::CopyDoubleRegisters(FrameDescription* output_frame) { for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; ++i) { double double_value = input_->GetDoubleRegister(i); output_frame->SetDoubleRegister(i, double_value); } } bool Deoptimizer::HasAlignmentPadding(JSFunction* function) { int parameter_count = function->shared()->formal_parameter_count() + 1; unsigned input_frame_size = input_->GetFrameSize(); unsigned alignment_state_offset = input_frame_size - parameter_count * kPointerSize - StandardFrameConstants::kFixedFrameSize - kPointerSize; ASSERT(JavaScriptFrameConstants::kDynamicAlignmentStateOffset == JavaScriptFrameConstants::kLocal0Offset); int32_t alignment_state = input_->GetFrameSlot(alignment_state_offset); return (alignment_state == kAlignmentPaddingPushed); } #define __ masm()-> void Deoptimizer::EntryGenerator::Generate() { GeneratePrologue(); // Save all general purpose registers before messing with them. const int kNumberOfRegisters = Register::kNumRegisters; const int kDoubleRegsSize = kDoubleSize * XMMRegister::kNumAllocatableRegisters; __ sub(esp, Immediate(kDoubleRegsSize)); if (CpuFeatures::IsSupported(SSE2)) { CpuFeatureScope scope(masm(), SSE2); for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; ++i) { XMMRegister xmm_reg = XMMRegister::FromAllocationIndex(i); int offset = i * kDoubleSize; __ movdbl(Operand(esp, offset), xmm_reg); } } __ pushad(); const int kSavedRegistersAreaSize = kNumberOfRegisters * kPointerSize + kDoubleRegsSize; // Get the bailout id from the stack. __ mov(ebx, Operand(esp, kSavedRegistersAreaSize)); // Get the address of the location in the code object // and compute the fp-to-sp delta in register edx. __ mov(ecx, Operand(esp, kSavedRegistersAreaSize + 1 * kPointerSize)); __ lea(edx, Operand(esp, kSavedRegistersAreaSize + 2 * kPointerSize)); __ sub(edx, ebp); __ neg(edx); // Allocate a new deoptimizer object. __ PrepareCallCFunction(6, eax); __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); __ mov(Operand(esp, 0 * kPointerSize), eax); // Function. __ mov(Operand(esp, 1 * kPointerSize), Immediate(type())); // Bailout type. __ mov(Operand(esp, 2 * kPointerSize), ebx); // Bailout id. __ mov(Operand(esp, 3 * kPointerSize), ecx); // Code address or 0. __ mov(Operand(esp, 4 * kPointerSize), edx); // Fp-to-sp delta. __ mov(Operand(esp, 5 * kPointerSize), Immediate(ExternalReference::isolate_address(isolate()))); { AllowExternalCallThatCantCauseGC scope(masm()); __ CallCFunction(ExternalReference::new_deoptimizer_function(isolate()), 6); } // Preserve deoptimizer object in register eax and get the input // frame descriptor pointer. __ mov(ebx, Operand(eax, Deoptimizer::input_offset())); // Fill in the input registers. for (int i = kNumberOfRegisters - 1; i >= 0; i--) { int offset = (i * kPointerSize) + FrameDescription::registers_offset(); __ pop(Operand(ebx, offset)); } int double_regs_offset = FrameDescription::double_registers_offset(); if (CpuFeatures::IsSupported(SSE2)) { CpuFeatureScope scope(masm(), SSE2); // Fill in the double input registers. for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; ++i) { int dst_offset = i * kDoubleSize + double_regs_offset; int src_offset = i * kDoubleSize; __ movdbl(xmm0, Operand(esp, src_offset)); __ movdbl(Operand(ebx, dst_offset), xmm0); } } // Clear FPU all exceptions. // TODO(ulan): Find out why the TOP register is not zero here in some cases, // and check that the generated code never deoptimizes with unbalanced stack. __ fnclex(); // Remove the bailout id, return address and the double registers. __ add(esp, Immediate(kDoubleRegsSize + 2 * kPointerSize)); // Compute a pointer to the unwinding limit in register ecx; that is // the first stack slot not part of the input frame. __ mov(ecx, Operand(ebx, FrameDescription::frame_size_offset())); __ add(ecx, esp); // Unwind the stack down to - but not including - the unwinding // limit and copy the contents of the activation frame to the input // frame description. __ lea(edx, Operand(ebx, FrameDescription::frame_content_offset())); Label pop_loop_header; __ jmp(&pop_loop_header); Label pop_loop; __ bind(&pop_loop); __ pop(Operand(edx, 0)); __ add(edx, Immediate(sizeof(uint32_t))); __ bind(&pop_loop_header); __ cmp(ecx, esp); __ j(not_equal, &pop_loop); // Compute the output frame in the deoptimizer. __ push(eax); __ PrepareCallCFunction(1, ebx); __ mov(Operand(esp, 0 * kPointerSize), eax); { AllowExternalCallThatCantCauseGC scope(masm()); __ CallCFunction( ExternalReference::compute_output_frames_function(isolate()), 1); } __ pop(eax); if (type() != OSR) { // If frame was dynamically aligned, pop padding. Label no_padding; __ cmp(Operand(eax, Deoptimizer::has_alignment_padding_offset()), Immediate(0)); __ j(equal, &no_padding); __ pop(ecx); if (FLAG_debug_code) { __ cmp(ecx, Immediate(kAlignmentZapValue)); __ Assert(equal, kAlignmentMarkerExpected); } __ bind(&no_padding); } else { // If frame needs dynamic alignment push padding. Label no_padding; __ cmp(Operand(eax, Deoptimizer::has_alignment_padding_offset()), Immediate(0)); __ j(equal, &no_padding); __ push(Immediate(kAlignmentZapValue)); __ bind(&no_padding); } // Replace the current frame with the output frames. Label outer_push_loop, inner_push_loop, outer_loop_header, inner_loop_header; // Outer loop state: eax = current FrameDescription**, edx = one past the // last FrameDescription**. __ mov(edx, Operand(eax, Deoptimizer::output_count_offset())); __ mov(eax, Operand(eax, Deoptimizer::output_offset())); __ lea(edx, Operand(eax, edx, times_4, 0)); __ jmp(&outer_loop_header); __ bind(&outer_push_loop); // Inner loop state: ebx = current FrameDescription*, ecx = loop index. __ mov(ebx, Operand(eax, 0)); __ mov(ecx, Operand(ebx, FrameDescription::frame_size_offset())); __ jmp(&inner_loop_header); __ bind(&inner_push_loop); __ sub(ecx, Immediate(sizeof(uint32_t))); __ push(Operand(ebx, ecx, times_1, FrameDescription::frame_content_offset())); __ bind(&inner_loop_header); __ test(ecx, ecx); __ j(not_zero, &inner_push_loop); __ add(eax, Immediate(kPointerSize)); __ bind(&outer_loop_header); __ cmp(eax, edx); __ j(below, &outer_push_loop); // In case of OSR or a failed STUB, we have to restore the XMM registers. if (CpuFeatures::IsSupported(SSE2)) { CpuFeatureScope scope(masm(), SSE2); for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; ++i) { XMMRegister xmm_reg = XMMRegister::FromAllocationIndex(i); int src_offset = i * kDoubleSize + double_regs_offset; __ movdbl(xmm_reg, Operand(ebx, src_offset)); } } // Push state, pc, and continuation from the last output frame. if (type() != OSR) { __ push(Operand(ebx, FrameDescription::state_offset())); } __ push(Operand(ebx, FrameDescription::pc_offset())); __ push(Operand(ebx, FrameDescription::continuation_offset())); // Push the registers from the last output frame. for (int i = 0; i < kNumberOfRegisters; i++) { int offset = (i * kPointerSize) + FrameDescription::registers_offset(); __ push(Operand(ebx, offset)); } // Restore the registers from the stack. __ popad(); // Return to the continuation point. __ ret(0); } void Deoptimizer::TableEntryGenerator::GeneratePrologue() { // Create a sequence of deoptimization entries. Label done; for (int i = 0; i < count(); i++) { int start = masm()->pc_offset(); USE(start); __ push_imm32(i); __ jmp(&done); ASSERT(masm()->pc_offset() - start == table_entry_size_); } __ bind(&done); } void FrameDescription::SetCallerPc(unsigned offset, intptr_t value) { SetFrameSlot(offset, value); } void FrameDescription::SetCallerFp(unsigned offset, intptr_t value) { SetFrameSlot(offset, value); } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_IA32