// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if defined(V8_TARGET_ARCH_IA32) #include "codegen.h" #include "deoptimizer.h" #include "full-codegen.h" #include "safepoint-table.h" namespace v8 { namespace internal { const int Deoptimizer::table_entry_size_ = 10; int Deoptimizer::patch_size() { return Assembler::kCallInstructionLength; } void Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(Handle code) { Isolate* isolate = code->GetIsolate(); HandleScope scope(isolate); // Compute the size of relocation information needed for the code // patching in Deoptimizer::DeoptimizeFunction. int min_reloc_size = 0; int prev_pc_offset = 0; DeoptimizationInputData* deopt_data = DeoptimizationInputData::cast(code->deoptimization_data()); for (int i = 0; i < deopt_data->DeoptCount(); i++) { int pc_offset = deopt_data->Pc(i)->value(); if (pc_offset == -1) continue; ASSERT_GE(pc_offset, prev_pc_offset); int pc_delta = pc_offset - prev_pc_offset; // We use RUNTIME_ENTRY reloc info which has a size of 2 bytes // if encodable with small pc delta encoding and up to 6 bytes // otherwise. if (pc_delta <= RelocInfo::kMaxSmallPCDelta) { min_reloc_size += 2; } else { min_reloc_size += 6; } prev_pc_offset = pc_offset; } // If the relocation information is not big enough we create a new // relocation info object that is padded with comments to make it // big enough for lazy doptimization. int reloc_length = code->relocation_info()->length(); if (min_reloc_size > reloc_length) { int comment_reloc_size = RelocInfo::kMinRelocCommentSize; // Padding needed. int min_padding = min_reloc_size - reloc_length; // Number of comments needed to take up at least that much space. int additional_comments = (min_padding + comment_reloc_size - 1) / comment_reloc_size; // Actual padding size. int padding = additional_comments * comment_reloc_size; // Allocate new relocation info and copy old relocation to the end // of the new relocation info array because relocation info is // written and read backwards. Factory* factory = isolate->factory(); Handle new_reloc = factory->NewByteArray(reloc_length + padding, TENURED); memcpy(new_reloc->GetDataStartAddress() + padding, code->relocation_info()->GetDataStartAddress(), reloc_length); // Create a relocation writer to write the comments in the padding // space. Use position 0 for everything to ensure short encoding. RelocInfoWriter reloc_info_writer( new_reloc->GetDataStartAddress() + padding, 0); intptr_t comment_string = reinterpret_cast(RelocInfo::kFillerCommentString); RelocInfo rinfo(0, RelocInfo::COMMENT, comment_string, NULL); for (int i = 0; i < additional_comments; ++i) { #ifdef DEBUG byte* pos_before = reloc_info_writer.pos(); #endif reloc_info_writer.Write(&rinfo); ASSERT(RelocInfo::kMinRelocCommentSize == pos_before - reloc_info_writer.pos()); } // Replace relocation information on the code object. code->set_relocation_info(*new_reloc); } } void Deoptimizer::DeoptimizeFunctionWithPreparedFunctionList( JSFunction* function) { Isolate* isolate = function->GetIsolate(); HandleScope scope(isolate); AssertNoAllocation no_allocation; ASSERT(function->IsOptimized()); ASSERT(function->FunctionsInFunctionListShareSameCode()); // The optimized code is going to be patched, so we cannot use it // any more. Play safe and reset the whole cache. function->shared()->ClearOptimizedCodeMap(); // Get the optimized code. Code* code = function->code(); Address code_start_address = code->instruction_start(); // We will overwrite the code's relocation info in-place. Relocation info // is written backward. The relocation info is the payload of a byte // array. Later on we will slide this to the start of the byte array and // create a filler object in the remaining space. ByteArray* reloc_info = code->relocation_info(); Address reloc_end_address = reloc_info->address() + reloc_info->Size(); RelocInfoWriter reloc_info_writer(reloc_end_address, code_start_address); // For each LLazyBailout instruction insert a call to the corresponding // deoptimization entry. // Since the call is a relative encoding, write new // reloc info. We do not need any of the existing reloc info because the // existing code will not be used again (we zap it in debug builds). // // Emit call to lazy deoptimization at all lazy deopt points. DeoptimizationInputData* deopt_data = DeoptimizationInputData::cast(code->deoptimization_data()); #ifdef DEBUG Address prev_call_address = NULL; #endif for (int i = 0; i < deopt_data->DeoptCount(); i++) { if (deopt_data->Pc(i)->value() == -1) continue; // Patch lazy deoptimization entry. Address call_address = code_start_address + deopt_data->Pc(i)->value(); CodePatcher patcher(call_address, patch_size()); Address deopt_entry = GetDeoptimizationEntry(i, LAZY); patcher.masm()->call(deopt_entry, RelocInfo::NONE32); // We use RUNTIME_ENTRY for deoptimization bailouts. RelocInfo rinfo(call_address + 1, // 1 after the call opcode. RelocInfo::RUNTIME_ENTRY, reinterpret_cast(deopt_entry), NULL); reloc_info_writer.Write(&rinfo); ASSERT_GE(reloc_info_writer.pos(), reloc_info->address() + ByteArray::kHeaderSize); ASSERT(prev_call_address == NULL || call_address >= prev_call_address + patch_size()); ASSERT(call_address + patch_size() <= code->instruction_end()); #ifdef DEBUG prev_call_address = call_address; #endif } // Move the relocation info to the beginning of the byte array. int new_reloc_size = reloc_end_address - reloc_info_writer.pos(); memmove(code->relocation_start(), reloc_info_writer.pos(), new_reloc_size); // The relocation info is in place, update the size. reloc_info->set_length(new_reloc_size); // Handle the junk part after the new relocation info. We will create // a non-live object in the extra space at the end of the former reloc info. Address junk_address = reloc_info->address() + reloc_info->Size(); ASSERT(junk_address <= reloc_end_address); isolate->heap()->CreateFillerObjectAt(junk_address, reloc_end_address - junk_address); // Add the deoptimizing code to the list. DeoptimizingCodeListNode* node = new DeoptimizingCodeListNode(code); DeoptimizerData* data = isolate->deoptimizer_data(); node->set_next(data->deoptimizing_code_list_); data->deoptimizing_code_list_ = node; // We might be in the middle of incremental marking with compaction. // Tell collector to treat this code object in a special way and // ignore all slots that might have been recorded on it. isolate->heap()->mark_compact_collector()->InvalidateCode(code); ReplaceCodeForRelatedFunctions(function, code); if (FLAG_trace_deopt) { PrintF("[forced deoptimization: "); function->PrintName(); PrintF(" / %x]\n", reinterpret_cast(function)); } } static const byte kJnsInstruction = 0x79; static const byte kJnsOffset = 0x13; static const byte kCallInstruction = 0xe8; static const byte kNopByteOne = 0x66; static const byte kNopByteTwo = 0x90; void Deoptimizer::PatchStackCheckCodeAt(Code* unoptimized_code, Address pc_after, Code* check_code, Code* replacement_code) { Address call_target_address = pc_after - kIntSize; ASSERT_EQ(check_code->entry(), Assembler::target_address_at(call_target_address)); // The back edge bookkeeping code matches the pattern: // // sub , // jns ok // call // test eax, // ok: ... // // We will patch away the branch so the code is: // // sub , ;; Not changed // nop // nop // call // test eax, // ok: ASSERT_EQ(kJnsInstruction, *(call_target_address - 3)); ASSERT_EQ(kJnsOffset, *(call_target_address - 2)); ASSERT_EQ(kCallInstruction, *(call_target_address - 1)); *(call_target_address - 3) = kNopByteOne; *(call_target_address - 2) = kNopByteTwo; Assembler::set_target_address_at(call_target_address, replacement_code->entry()); unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch( unoptimized_code, call_target_address, replacement_code); } void Deoptimizer::RevertStackCheckCodeAt(Code* unoptimized_code, Address pc_after, Code* check_code, Code* replacement_code) { Address call_target_address = pc_after - kIntSize; ASSERT_EQ(replacement_code->entry(), Assembler::target_address_at(call_target_address)); // Replace the nops from patching (Deoptimizer::PatchStackCheckCode) to // restore the conditional branch. ASSERT_EQ(kNopByteOne, *(call_target_address - 3)); ASSERT_EQ(kNopByteTwo, *(call_target_address - 2)); ASSERT_EQ(kCallInstruction, *(call_target_address - 1)); *(call_target_address - 3) = kJnsInstruction; *(call_target_address - 2) = kJnsOffset; Assembler::set_target_address_at(call_target_address, check_code->entry()); check_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch( unoptimized_code, call_target_address, check_code); } static int LookupBailoutId(DeoptimizationInputData* data, BailoutId ast_id) { ByteArray* translations = data->TranslationByteArray(); int length = data->DeoptCount(); for (int i = 0; i < length; i++) { if (data->AstId(i) == ast_id) { TranslationIterator it(translations, data->TranslationIndex(i)->value()); int value = it.Next(); ASSERT(Translation::BEGIN == static_cast(value)); // Read the number of frames. value = it.Next(); if (value == 1) return i; } } UNREACHABLE(); return -1; } void Deoptimizer::DoComputeOsrOutputFrame() { DeoptimizationInputData* data = DeoptimizationInputData::cast( compiled_code_->deoptimization_data()); unsigned ast_id = data->OsrAstId()->value(); // TODO(kasperl): This should not be the bailout_id_. It should be // the ast id. Confusing. ASSERT(bailout_id_ == ast_id); int bailout_id = LookupBailoutId(data, BailoutId(ast_id)); unsigned translation_index = data->TranslationIndex(bailout_id)->value(); ByteArray* translations = data->TranslationByteArray(); TranslationIterator iterator(translations, translation_index); Translation::Opcode opcode = static_cast(iterator.Next()); ASSERT(Translation::BEGIN == opcode); USE(opcode); int count = iterator.Next(); iterator.Next(); // Drop JS frames count. ASSERT(count == 1); USE(count); opcode = static_cast(iterator.Next()); USE(opcode); ASSERT(Translation::JS_FRAME == opcode); unsigned node_id = iterator.Next(); USE(node_id); ASSERT(node_id == ast_id); int closure_id = iterator.Next(); USE(closure_id); ASSERT_EQ(Translation::kSelfLiteralId, closure_id); unsigned height = iterator.Next(); unsigned height_in_bytes = height * kPointerSize; USE(height_in_bytes); unsigned fixed_size = ComputeFixedSize(function_); unsigned input_frame_size = input_->GetFrameSize(); ASSERT(fixed_size + height_in_bytes == input_frame_size); unsigned stack_slot_size = compiled_code_->stack_slots() * kPointerSize; unsigned outgoing_height = data->ArgumentsStackHeight(bailout_id)->value(); unsigned outgoing_size = outgoing_height * kPointerSize; unsigned output_frame_size = fixed_size + stack_slot_size + outgoing_size; ASSERT(outgoing_size == 0); // OSR does not happen in the middle of a call. if (FLAG_trace_osr) { PrintF("[on-stack replacement: begin 0x%08" V8PRIxPTR " ", reinterpret_cast(function_)); function_->PrintName(); PrintF(" => node=%u, frame=%d->%d, ebp:esp=0x%08x:0x%08x]\n", ast_id, input_frame_size, output_frame_size, input_->GetRegister(ebp.code()), input_->GetRegister(esp.code())); } // There's only one output frame in the OSR case. output_count_ = 1; output_ = new FrameDescription*[1]; output_[0] = new(output_frame_size) FrameDescription( output_frame_size, function_); output_[0]->SetFrameType(StackFrame::JAVA_SCRIPT); // Clear the incoming parameters in the optimized frame to avoid // confusing the garbage collector. unsigned output_offset = output_frame_size - kPointerSize; int parameter_count = function_->shared()->formal_parameter_count() + 1; for (int i = 0; i < parameter_count; ++i) { output_[0]->SetFrameSlot(output_offset, 0); output_offset -= kPointerSize; } // Translate the incoming parameters. This may overwrite some of the // incoming argument slots we've just cleared. int input_offset = input_frame_size - kPointerSize; bool ok = true; int limit = input_offset - (parameter_count * kPointerSize); while (ok && input_offset > limit) { ok = DoOsrTranslateCommand(&iterator, &input_offset); } // There are no translation commands for the caller's pc and fp, the // context, and the function. Set them up explicitly. for (int i = StandardFrameConstants::kCallerPCOffset; ok && i >= StandardFrameConstants::kMarkerOffset; i -= kPointerSize) { uint32_t input_value = input_->GetFrameSlot(input_offset); if (FLAG_trace_osr) { const char* name = "UNKNOWN"; switch (i) { case StandardFrameConstants::kCallerPCOffset: name = "caller's pc"; break; case StandardFrameConstants::kCallerFPOffset: name = "fp"; break; case StandardFrameConstants::kContextOffset: name = "context"; break; case StandardFrameConstants::kMarkerOffset: name = "function"; break; } PrintF(" [sp + %d] <- 0x%08x ; [sp + %d] (fixed part - %s)\n", output_offset, input_value, input_offset, name); } output_[0]->SetFrameSlot(output_offset, input_->GetFrameSlot(input_offset)); input_offset -= kPointerSize; output_offset -= kPointerSize; } // All OSR stack frames are dynamically aligned to an 8-byte boundary. int frame_pointer = input_->GetRegister(ebp.code()); if ((frame_pointer & kPointerSize) != 0) { frame_pointer -= kPointerSize; has_alignment_padding_ = 1; } int32_t alignment_state = (has_alignment_padding_ == 1) ? kAlignmentPaddingPushed : kNoAlignmentPadding; if (FLAG_trace_osr) { PrintF(" [sp + %d] <- 0x%08x ; (alignment state)\n", output_offset, alignment_state); } output_[0]->SetFrameSlot(output_offset, alignment_state); output_offset -= kPointerSize; // Translate the rest of the frame. while (ok && input_offset >= 0) { ok = DoOsrTranslateCommand(&iterator, &input_offset); } // If translation of any command failed, continue using the input frame. if (!ok) { delete output_[0]; output_[0] = input_; output_[0]->SetPc(reinterpret_cast(from_)); } else { // Set up the frame pointer and the context pointer. output_[0]->SetRegister(ebp.code(), frame_pointer); output_[0]->SetRegister(esi.code(), input_->GetRegister(esi.code())); unsigned pc_offset = data->OsrPcOffset()->value(); uint32_t pc = reinterpret_cast( compiled_code_->entry() + pc_offset); output_[0]->SetPc(pc); } Code* continuation = function_->GetIsolate()->builtins()->builtin(Builtins::kNotifyOSR); output_[0]->SetContinuation( reinterpret_cast(continuation->entry())); if (FLAG_trace_osr) { PrintF("[on-stack replacement translation %s: 0x%08" V8PRIxPTR " ", ok ? "finished" : "aborted", reinterpret_cast(function_)); function_->PrintName(); PrintF(" => pc=0x%0x]\n", output_[0]->GetPc()); } } void Deoptimizer::DoComputeArgumentsAdaptorFrame(TranslationIterator* iterator, int frame_index) { JSFunction* function = JSFunction::cast(ComputeLiteral(iterator->Next())); unsigned height = iterator->Next(); unsigned height_in_bytes = height * kPointerSize; if (trace_) { PrintF(" translating arguments adaptor => height=%d\n", height_in_bytes); } unsigned fixed_frame_size = ArgumentsAdaptorFrameConstants::kFrameSize; unsigned output_frame_size = height_in_bytes + fixed_frame_size; // Allocate and store the output frame description. FrameDescription* output_frame = new(output_frame_size) FrameDescription(output_frame_size, function); output_frame->SetFrameType(StackFrame::ARGUMENTS_ADAPTOR); // Arguments adaptor can not be topmost or bottommost. ASSERT(frame_index > 0 && frame_index < output_count_ - 1); ASSERT(output_[frame_index] == NULL); output_[frame_index] = output_frame; // The top address of the frame is computed from the previous // frame's top and this frame's size. uint32_t top_address; top_address = output_[frame_index - 1]->GetTop() - output_frame_size; output_frame->SetTop(top_address); // Compute the incoming parameter translation. int parameter_count = height; unsigned output_offset = output_frame_size; for (int i = 0; i < parameter_count; ++i) { output_offset -= kPointerSize; DoTranslateCommand(iterator, frame_index, output_offset); } // Read caller's PC from the previous frame. output_offset -= kPointerSize; intptr_t callers_pc = output_[frame_index - 1]->GetPc(); output_frame->SetFrameSlot(output_offset, callers_pc); if (trace_) { PrintF(" 0x%08x: [top + %d] <- 0x%08x ; caller's pc\n", top_address + output_offset, output_offset, callers_pc); } // Read caller's FP from the previous frame, and set this frame's FP. output_offset -= kPointerSize; intptr_t value = output_[frame_index - 1]->GetFp(); output_frame->SetFrameSlot(output_offset, value); intptr_t fp_value = top_address + output_offset; output_frame->SetFp(fp_value); if (trace_) { PrintF(" 0x%08x: [top + %d] <- 0x%08x ; caller's fp\n", fp_value, output_offset, value); } // A marker value is used in place of the context. output_offset -= kPointerSize; intptr_t context = reinterpret_cast( Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); output_frame->SetFrameSlot(output_offset, context); if (trace_) { PrintF(" 0x%08x: [top + %d] <- 0x%08x ; context (adaptor sentinel)\n", top_address + output_offset, output_offset, context); } // The function was mentioned explicitly in the ARGUMENTS_ADAPTOR_FRAME. output_offset -= kPointerSize; value = reinterpret_cast(function); output_frame->SetFrameSlot(output_offset, value); if (trace_) { PrintF(" 0x%08x: [top + %d] <- 0x%08x ; function\n", top_address + output_offset, output_offset, value); } // Number of incoming arguments. output_offset -= kPointerSize; value = reinterpret_cast(Smi::FromInt(height - 1)); output_frame->SetFrameSlot(output_offset, value); if (trace_) { PrintF(" 0x%08x: [top + %d] <- 0x%08x ; argc (%d)\n", top_address + output_offset, output_offset, value, height - 1); } ASSERT(0 == output_offset); Builtins* builtins = isolate_->builtins(); Code* adaptor_trampoline = builtins->builtin(Builtins::kArgumentsAdaptorTrampoline); uint32_t pc = reinterpret_cast( adaptor_trampoline->instruction_start() + isolate_->heap()->arguments_adaptor_deopt_pc_offset()->value()); output_frame->SetPc(pc); } void Deoptimizer::DoCompiledStubFrame(TranslationIterator* iterator, int frame_index) { // // FROM TO // | .... | | .... | // +-------------------------+ +-------------------------+ // | JSFunction continuation | | JSFunction continuation | // +-------------------------+ +-------------------------+ // | | saved frame (ebp) | | saved frame (ebp) | // | +=========================+<-ebp +=========================+<-ebp // | | JSFunction context | | JSFunction context | // v +-------------------------+ +-------------------------| // | COMPILED_STUB marker | | STUB_FAILURE marker | // +-------------------------+ +-------------------------+ // | | | caller args.length_ | // | ... | +-------------------------+ // | | | caller args.arguments_ | // |-------------------------|<-esp +-------------------------+ // | caller args pointer | // +-------------------------+ // | caller stack param 1 | // parameters in registers +-------------------------+ // and spilled to stack | .... | // +-------------------------+ // | caller stack param n | // +-------------------------+<-esp // eax = number of parameters // ebx = failure handler address // ebp = saved frame // esi = JSFunction context // ASSERT(compiled_code_->kind() == Code::COMPILED_STUB); int major_key = compiled_code_->major_key(); CodeStubInterfaceDescriptor* descriptor = isolate_->code_stub_interface_descriptor(major_key); // The output frame must have room for all pushed register parameters // and the standard stack frame slots. int output_frame_size = StandardFrameConstants::kFixedFrameSize + kPointerSize * descriptor->register_param_count_; // Include space for an argument object to the callee and optionally // the space to pass the argument object to the stub failure handler. output_frame_size += sizeof(Arguments) + kPointerSize; FrameDescription* output_frame = new(output_frame_size) FrameDescription(output_frame_size, 0); ASSERT(frame_index == 0); output_[frame_index] = output_frame; Code* notify_failure = isolate_->builtins()->builtin(Builtins::kNotifyStubFailure); output_frame->SetState(Smi::FromInt(FullCodeGenerator::NO_REGISTERS)); output_frame->SetContinuation( reinterpret_cast(notify_failure->entry())); Code* trampoline = NULL; int extra = descriptor->extra_expression_stack_count_; StubFailureTrampolineStub(extra).FindCodeInCache(&trampoline, isolate_); ASSERT(trampoline != NULL); output_frame->SetPc(reinterpret_cast( trampoline->instruction_start())); unsigned input_frame_size = input_->GetFrameSize(); intptr_t frame_ptr = input_->GetRegister(ebp.code()); // JSFunction continuation intptr_t input_frame_offset = input_frame_size - kPointerSize; intptr_t output_frame_offset = output_frame_size - kPointerSize; intptr_t value = input_->GetFrameSlot(input_frame_offset); output_frame->SetFrameSlot(output_frame_offset, value); // saved frame ptr input_frame_offset -= kPointerSize; value = input_->GetFrameSlot(input_frame_offset); output_frame_offset -= kPointerSize; output_frame->SetFrameSlot(output_frame_offset, value); // Restore context input_frame_offset -= kPointerSize; value = input_->GetFrameSlot(input_frame_offset); output_frame->SetRegister(esi.code(), value); output_frame_offset -= kPointerSize; output_frame->SetFrameSlot(output_frame_offset, value); // Internal frame markers output_frame_offset -= kPointerSize; value = reinterpret_cast( Smi::FromInt(StackFrame::STUB_FAILURE_TRAMPOLINE)); output_frame->SetFrameSlot(output_frame_offset, value); int caller_arg_count = 0; if (descriptor->stack_parameter_count_ != NULL) { caller_arg_count = input_->GetRegister(descriptor->stack_parameter_count_->code()); } // Build the Arguments object for the caller's parameters and a pointer to it. output_frame_offset -= kPointerSize; value = frame_ptr + StandardFrameConstants::kCallerSPOffset + (caller_arg_count - 1) * kPointerSize; output_frame->SetFrameSlot(output_frame_offset, value); output_frame->SetFrameSlot(output_frame_offset, value); output_frame_offset -= kPointerSize; output_frame->SetFrameSlot(output_frame_offset, caller_arg_count); value = frame_ptr - (output_frame_size - output_frame_offset) - StandardFrameConstants::kMarkerOffset; output_frame_offset -= kPointerSize; output_frame->SetFrameSlot(output_frame_offset, value); // Copy the register parameters to the failure frame. for (int i = 0; i < descriptor->register_param_count_; ++i) { output_frame_offset -= kPointerSize; DoTranslateCommand(iterator, 0, output_frame_offset); } output_frame->SetRegister(ebp.code(), frame_ptr); output_frame->SetFp(frame_ptr); for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; ++i) { double double_value = input_->GetDoubleRegister(i); output_frame->SetDoubleRegister(i, double_value); } intptr_t handler = reinterpret_cast(descriptor->deoptimization_handler_); int params = descriptor->register_param_count_; if (descriptor->stack_parameter_count_ != NULL) { params++; } output_frame->SetRegister(eax.code(), params); output_frame->SetRegister(ebx.code(), handler); } void Deoptimizer::DoComputeConstructStubFrame(TranslationIterator* iterator, int frame_index) { Builtins* builtins = isolate_->builtins(); Code* construct_stub = builtins->builtin(Builtins::kJSConstructStubGeneric); JSFunction* function = JSFunction::cast(ComputeLiteral(iterator->Next())); unsigned height = iterator->Next(); unsigned height_in_bytes = height * kPointerSize; if (trace_) { PrintF(" translating construct stub => height=%d\n", height_in_bytes); } unsigned fixed_frame_size = 7 * kPointerSize; unsigned output_frame_size = height_in_bytes + fixed_frame_size; // Allocate and store the output frame description. FrameDescription* output_frame = new(output_frame_size) FrameDescription(output_frame_size, function); output_frame->SetFrameType(StackFrame::CONSTRUCT); // Construct stub can not be topmost or bottommost. ASSERT(frame_index > 0 && frame_index < output_count_ - 1); ASSERT(output_[frame_index] == NULL); output_[frame_index] = output_frame; // The top address of the frame is computed from the previous // frame's top and this frame's size. uint32_t top_address; top_address = output_[frame_index - 1]->GetTop() - output_frame_size; output_frame->SetTop(top_address); // Compute the incoming parameter translation. int parameter_count = height; unsigned output_offset = output_frame_size; for (int i = 0; i < parameter_count; ++i) { output_offset -= kPointerSize; DoTranslateCommand(iterator, frame_index, output_offset); } // Read caller's PC from the previous frame. output_offset -= kPointerSize; intptr_t callers_pc = output_[frame_index - 1]->GetPc(); output_frame->SetFrameSlot(output_offset, callers_pc); if (trace_) { PrintF(" 0x%08x: [top + %d] <- 0x%08x ; caller's pc\n", top_address + output_offset, output_offset, callers_pc); } // Read caller's FP from the previous frame, and set this frame's FP. output_offset -= kPointerSize; intptr_t value = output_[frame_index - 1]->GetFp(); output_frame->SetFrameSlot(output_offset, value); intptr_t fp_value = top_address + output_offset; output_frame->SetFp(fp_value); if (trace_) { PrintF(" 0x%08x: [top + %d] <- 0x%08x ; caller's fp\n", fp_value, output_offset, value); } // The context can be gotten from the previous frame. output_offset -= kPointerSize; value = output_[frame_index - 1]->GetContext(); output_frame->SetFrameSlot(output_offset, value); if (trace_) { PrintF(" 0x%08x: [top + %d] <- 0x%08x ; context\n", top_address + output_offset, output_offset, value); } // A marker value is used in place of the function. output_offset -= kPointerSize; value = reinterpret_cast(Smi::FromInt(StackFrame::CONSTRUCT)); output_frame->SetFrameSlot(output_offset, value); if (trace_) { PrintF(" 0x%08x: [top + %d] <- 0x%08x ; function (construct sentinel)\n", top_address + output_offset, output_offset, value); } // The output frame reflects a JSConstructStubGeneric frame. output_offset -= kPointerSize; value = reinterpret_cast(construct_stub); output_frame->SetFrameSlot(output_offset, value); if (trace_) { PrintF(" 0x%08x: [top + %d] <- 0x%08x ; code object\n", top_address + output_offset, output_offset, value); } // Number of incoming arguments. output_offset -= kPointerSize; value = reinterpret_cast(Smi::FromInt(height - 1)); output_frame->SetFrameSlot(output_offset, value); if (trace_) { PrintF(" 0x%08x: [top + %d] <- 0x%08x ; argc (%d)\n", top_address + output_offset, output_offset, value, height - 1); } // The newly allocated object was passed as receiver in the artificial // constructor stub environment created by HEnvironment::CopyForInlining(). output_offset -= kPointerSize; value = output_frame->GetFrameSlot(output_frame_size - kPointerSize); output_frame->SetFrameSlot(output_offset, value); if (trace_) { PrintF(" 0x%08x: [top + %d] <- 0x%08x ; allocated receiver\n", top_address + output_offset, output_offset, value); } ASSERT(0 == output_offset); uint32_t pc = reinterpret_cast( construct_stub->instruction_start() + isolate_->heap()->construct_stub_deopt_pc_offset()->value()); output_frame->SetPc(pc); } void Deoptimizer::DoComputeAccessorStubFrame(TranslationIterator* iterator, int frame_index, bool is_setter_stub_frame) { JSFunction* accessor = JSFunction::cast(ComputeLiteral(iterator->Next())); // The receiver (and the implicit return value, if any) are expected in // registers by the LoadIC/StoreIC, so they don't belong to the output stack // frame. This means that we have to use a height of 0. unsigned height = 0; unsigned height_in_bytes = height * kPointerSize; const char* kind = is_setter_stub_frame ? "setter" : "getter"; if (trace_) { PrintF(" translating %s stub => height=%u\n", kind, height_in_bytes); } // We need 1 stack entry for the return address + 4 stack entries from // StackFrame::INTERNAL (FP, context, frame type, code object, see // MacroAssembler::EnterFrame). For a setter stub frame we need one additional // entry for the implicit return value, see // StoreStubCompiler::CompileStoreViaSetter. unsigned fixed_frame_entries = 1 + 4 + (is_setter_stub_frame ? 1 : 0); unsigned fixed_frame_size = fixed_frame_entries * kPointerSize; unsigned output_frame_size = height_in_bytes + fixed_frame_size; // Allocate and store the output frame description. FrameDescription* output_frame = new(output_frame_size) FrameDescription(output_frame_size, accessor); output_frame->SetFrameType(StackFrame::INTERNAL); // A frame for an accessor stub can not be the topmost or bottommost one. ASSERT(frame_index > 0 && frame_index < output_count_ - 1); ASSERT(output_[frame_index] == NULL); output_[frame_index] = output_frame; // The top address of the frame is computed from the previous frame's top and // this frame's size. intptr_t top_address = output_[frame_index - 1]->GetTop() - output_frame_size; output_frame->SetTop(top_address); unsigned output_offset = output_frame_size; // Read caller's PC from the previous frame. output_offset -= kPointerSize; intptr_t callers_pc = output_[frame_index - 1]->GetPc(); output_frame->SetFrameSlot(output_offset, callers_pc); if (trace_) { PrintF(" 0x%08" V8PRIxPTR ": [top + %u] <- 0x%08" V8PRIxPTR " ; caller's pc\n", top_address + output_offset, output_offset, callers_pc); } // Read caller's FP from the previous frame, and set this frame's FP. output_offset -= kPointerSize; intptr_t value = output_[frame_index - 1]->GetFp(); output_frame->SetFrameSlot(output_offset, value); intptr_t fp_value = top_address + output_offset; output_frame->SetFp(fp_value); if (trace_) { PrintF(" 0x%08" V8PRIxPTR ": [top + %u] <- 0x%08" V8PRIxPTR " ; caller's fp\n", fp_value, output_offset, value); } // The context can be gotten from the previous frame. output_offset -= kPointerSize; value = output_[frame_index - 1]->GetContext(); output_frame->SetFrameSlot(output_offset, value); if (trace_) { PrintF(" 0x%08" V8PRIxPTR ": [top + %u] <- 0x%08" V8PRIxPTR " ; context\n", top_address + output_offset, output_offset, value); } // A marker value is used in place of the function. output_offset -= kPointerSize; value = reinterpret_cast(Smi::FromInt(StackFrame::INTERNAL)); output_frame->SetFrameSlot(output_offset, value); if (trace_) { PrintF(" 0x%08" V8PRIxPTR ": [top + %u] <- 0x%08" V8PRIxPTR " ; function (%s sentinel)\n", top_address + output_offset, output_offset, value, kind); } // Get Code object from accessor stub. output_offset -= kPointerSize; Builtins::Name name = is_setter_stub_frame ? Builtins::kStoreIC_Setter_ForDeopt : Builtins::kLoadIC_Getter_ForDeopt; Code* accessor_stub = isolate_->builtins()->builtin(name); value = reinterpret_cast(accessor_stub); output_frame->SetFrameSlot(output_offset, value); if (trace_) { PrintF(" 0x%08" V8PRIxPTR ": [top + %u] <- 0x%08" V8PRIxPTR " ; code object\n", top_address + output_offset, output_offset, value); } // Skip receiver. Translation::Opcode opcode = static_cast(iterator->Next()); iterator->Skip(Translation::NumberOfOperandsFor(opcode)); if (is_setter_stub_frame) { // The implicit return value was part of the artificial setter stub // environment. output_offset -= kPointerSize; DoTranslateCommand(iterator, frame_index, output_offset); } ASSERT(0 == output_offset); Smi* offset = is_setter_stub_frame ? isolate_->heap()->setter_stub_deopt_pc_offset() : isolate_->heap()->getter_stub_deopt_pc_offset(); intptr_t pc = reinterpret_cast( accessor_stub->instruction_start() + offset->value()); output_frame->SetPc(pc); } void Deoptimizer::DoComputeJSFrame(TranslationIterator* iterator, int frame_index) { BailoutId node_id = BailoutId(iterator->Next()); JSFunction* function; if (frame_index != 0) { function = JSFunction::cast(ComputeLiteral(iterator->Next())); } else { int closure_id = iterator->Next(); USE(closure_id); ASSERT_EQ(Translation::kSelfLiteralId, closure_id); function = function_; } unsigned height = iterator->Next(); unsigned height_in_bytes = height * kPointerSize; if (trace_) { PrintF(" translating "); function->PrintName(); PrintF(" => node=%d, height=%d\n", node_id.ToInt(), height_in_bytes); } // The 'fixed' part of the frame consists of the incoming parameters and // the part described by JavaScriptFrameConstants. unsigned fixed_frame_size = ComputeFixedSize(function); unsigned input_frame_size = input_->GetFrameSize(); unsigned output_frame_size = height_in_bytes + fixed_frame_size; // Allocate and store the output frame description. FrameDescription* output_frame = new(output_frame_size) FrameDescription(output_frame_size, function); output_frame->SetFrameType(StackFrame::JAVA_SCRIPT); bool is_bottommost = (0 == frame_index); bool is_topmost = (output_count_ - 1 == frame_index); ASSERT(frame_index >= 0 && frame_index < output_count_); ASSERT(output_[frame_index] == NULL); output_[frame_index] = output_frame; // Compute the incoming parameter translation. int parameter_count = function->shared()->formal_parameter_count() + 1; unsigned output_offset = output_frame_size; unsigned input_offset = input_frame_size; unsigned alignment_state_offset = input_offset - parameter_count * kPointerSize - StandardFrameConstants::kFixedFrameSize - kPointerSize; ASSERT(JavaScriptFrameConstants::kDynamicAlignmentStateOffset == JavaScriptFrameConstants::kLocal0Offset); // The top address for the bottommost output frame can be computed from // the input frame pointer and the output frame's height. For all // subsequent output frames, it can be computed from the previous one's // top address and the current frame's size. uint32_t top_address; if (is_bottommost) { int32_t alignment_state = input_->GetFrameSlot(alignment_state_offset); has_alignment_padding_ = (alignment_state == kAlignmentPaddingPushed) ? 1 : 0; // 2 = context and function in the frame. // If the optimized frame had alignment padding, adjust the frame pointer // to point to the new position of the old frame pointer after padding // is removed. Subtract 2 * kPointerSize for the context and function slots. top_address = input_->GetRegister(ebp.code()) - (2 * kPointerSize) - height_in_bytes + has_alignment_padding_ * kPointerSize; } else { top_address = output_[frame_index - 1]->GetTop() - output_frame_size; } output_frame->SetTop(top_address); for (int i = 0; i < parameter_count; ++i) { output_offset -= kPointerSize; DoTranslateCommand(iterator, frame_index, output_offset); } input_offset -= (parameter_count * kPointerSize); // There are no translation commands for the caller's pc and fp, the // context, and the function. Synthesize their values and set them up // explicitly. // // The caller's pc for the bottommost output frame is the same as in the // input frame. For all subsequent output frames, it can be read from the // previous one. This frame's pc can be computed from the non-optimized // function code and AST id of the bailout. output_offset -= kPointerSize; input_offset -= kPointerSize; intptr_t value; if (is_bottommost) { value = input_->GetFrameSlot(input_offset); } else { value = output_[frame_index - 1]->GetPc(); } output_frame->SetFrameSlot(output_offset, value); if (trace_) { PrintF(" 0x%08x: [top + %d] <- 0x%08x ; caller's pc\n", top_address + output_offset, output_offset, value); } // The caller's frame pointer for the bottommost output frame is the same // as in the input frame. For all subsequent output frames, it can be // read from the previous one. Also compute and set this frame's frame // pointer. output_offset -= kPointerSize; input_offset -= kPointerSize; if (is_bottommost) { value = input_->GetFrameSlot(input_offset); } else { value = output_[frame_index - 1]->GetFp(); } output_frame->SetFrameSlot(output_offset, value); intptr_t fp_value = top_address + output_offset; ASSERT(!is_bottommost || (input_->GetRegister(ebp.code()) + has_alignment_padding_ * kPointerSize) == fp_value); output_frame->SetFp(fp_value); if (is_topmost) output_frame->SetRegister(ebp.code(), fp_value); if (trace_) { PrintF(" 0x%08x: [top + %d] <- 0x%08x ; caller's fp\n", fp_value, output_offset, value); } ASSERT(!is_bottommost || !has_alignment_padding_ || (fp_value & kPointerSize) != 0); // For the bottommost output frame the context can be gotten from the input // frame. For all subsequent output frames it can be gotten from the function // so long as we don't inline functions that need local contexts. output_offset -= kPointerSize; input_offset -= kPointerSize; if (is_bottommost) { value = input_->GetFrameSlot(input_offset); } else { value = reinterpret_cast(function->context()); } output_frame->SetFrameSlot(output_offset, value); output_frame->SetContext(value); if (is_topmost) output_frame->SetRegister(esi.code(), value); if (trace_) { PrintF(" 0x%08x: [top + %d] <- 0x%08x ; context\n", top_address + output_offset, output_offset, value); } // The function was mentioned explicitly in the BEGIN_FRAME. output_offset -= kPointerSize; input_offset -= kPointerSize; value = reinterpret_cast(function); // The function for the bottommost output frame should also agree with the // input frame. ASSERT(!is_bottommost || input_->GetFrameSlot(input_offset) == value); output_frame->SetFrameSlot(output_offset, value); if (trace_) { PrintF(" 0x%08x: [top + %d] <- 0x%08x ; function\n", top_address + output_offset, output_offset, value); } // Translate the rest of the frame. for (unsigned i = 0; i < height; ++i) { output_offset -= kPointerSize; DoTranslateCommand(iterator, frame_index, output_offset); } ASSERT(0 == output_offset); // Compute this frame's PC, state, and continuation. Code* non_optimized_code = function->shared()->code(); FixedArray* raw_data = non_optimized_code->deoptimization_data(); DeoptimizationOutputData* data = DeoptimizationOutputData::cast(raw_data); Address start = non_optimized_code->instruction_start(); unsigned pc_and_state = GetOutputInfo(data, node_id, function->shared()); unsigned pc_offset = FullCodeGenerator::PcField::decode(pc_and_state); uint32_t pc_value = reinterpret_cast(start + pc_offset); output_frame->SetPc(pc_value); FullCodeGenerator::State state = FullCodeGenerator::StateField::decode(pc_and_state); output_frame->SetState(Smi::FromInt(state)); // Set the continuation for the topmost frame. if (is_topmost && bailout_type_ != DEBUGGER) { Builtins* builtins = isolate_->builtins(); Code* continuation = (bailout_type_ == EAGER) ? builtins->builtin(Builtins::kNotifyDeoptimized) : builtins->builtin(Builtins::kNotifyLazyDeoptimized); output_frame->SetContinuation( reinterpret_cast(continuation->entry())); } } void Deoptimizer::FillInputFrame(Address tos, JavaScriptFrame* frame) { // Set the register values. The values are not important as there are no // callee saved registers in JavaScript frames, so all registers are // spilled. Registers ebp and esp are set to the correct values though. for (int i = 0; i < Register::kNumRegisters; i++) { input_->SetRegister(i, i * 4); } input_->SetRegister(esp.code(), reinterpret_cast(frame->sp())); input_->SetRegister(ebp.code(), reinterpret_cast(frame->fp())); for (int i = 0; i < DoubleRegister::NumAllocatableRegisters(); i++) { input_->SetDoubleRegister(i, 0.0); } // Fill the frame content from the actual data on the frame. for (unsigned i = 0; i < input_->GetFrameSize(); i += kPointerSize) { input_->SetFrameSlot(i, Memory::uint32_at(tos + i)); } } #define __ masm()-> void Deoptimizer::EntryGenerator::Generate() { GeneratePrologue(); Isolate* isolate = masm()->isolate(); // Save all general purpose registers before messing with them. const int kNumberOfRegisters = Register::kNumRegisters; const int kDoubleRegsSize = kDoubleSize * XMMRegister::kNumAllocatableRegisters; __ sub(esp, Immediate(kDoubleRegsSize)); if (CpuFeatures::IsSupported(SSE2)) { CpuFeatures::Scope scope(SSE2); for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; ++i) { XMMRegister xmm_reg = XMMRegister::FromAllocationIndex(i); int offset = i * kDoubleSize; __ movdbl(Operand(esp, offset), xmm_reg); } } __ pushad(); const int kSavedRegistersAreaSize = kNumberOfRegisters * kPointerSize + kDoubleRegsSize; // Get the bailout id from the stack. __ mov(ebx, Operand(esp, kSavedRegistersAreaSize)); // Get the address of the location in the code object if possible // and compute the fp-to-sp delta in register edx. if (type() == EAGER) { __ Set(ecx, Immediate(0)); __ lea(edx, Operand(esp, kSavedRegistersAreaSize + 1 * kPointerSize)); } else { __ mov(ecx, Operand(esp, kSavedRegistersAreaSize + 1 * kPointerSize)); __ lea(edx, Operand(esp, kSavedRegistersAreaSize + 2 * kPointerSize)); } __ sub(edx, ebp); __ neg(edx); // Allocate a new deoptimizer object. __ PrepareCallCFunction(6, eax); __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); __ mov(Operand(esp, 0 * kPointerSize), eax); // Function. __ mov(Operand(esp, 1 * kPointerSize), Immediate(type())); // Bailout type. __ mov(Operand(esp, 2 * kPointerSize), ebx); // Bailout id. __ mov(Operand(esp, 3 * kPointerSize), ecx); // Code address or 0. __ mov(Operand(esp, 4 * kPointerSize), edx); // Fp-to-sp delta. __ mov(Operand(esp, 5 * kPointerSize), Immediate(ExternalReference::isolate_address())); { AllowExternalCallThatCantCauseGC scope(masm()); __ CallCFunction(ExternalReference::new_deoptimizer_function(isolate), 6); } // Preserve deoptimizer object in register eax and get the input // frame descriptor pointer. __ mov(ebx, Operand(eax, Deoptimizer::input_offset())); // Fill in the input registers. for (int i = kNumberOfRegisters - 1; i >= 0; i--) { int offset = (i * kPointerSize) + FrameDescription::registers_offset(); __ pop(Operand(ebx, offset)); } int double_regs_offset = FrameDescription::double_registers_offset(); if (CpuFeatures::IsSupported(SSE2)) { CpuFeatures::Scope scope(SSE2); // Fill in the double input registers. for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; ++i) { int dst_offset = i * kDoubleSize + double_regs_offset; int src_offset = i * kDoubleSize; __ movdbl(xmm0, Operand(esp, src_offset)); __ movdbl(Operand(ebx, dst_offset), xmm0); } } // Clear FPU all exceptions. // TODO(ulan): Find out why the TOP register is not zero here in some cases, // and check that the generated code never deoptimizes with unbalanced stack. __ fnclex(); // Remove the bailout id and the double registers from the stack. if (type() == EAGER) { __ add(esp, Immediate(kDoubleRegsSize + kPointerSize)); } else { __ add(esp, Immediate(kDoubleRegsSize + 2 * kPointerSize)); } // Compute a pointer to the unwinding limit in register ecx; that is // the first stack slot not part of the input frame. __ mov(ecx, Operand(ebx, FrameDescription::frame_size_offset())); __ add(ecx, esp); // Unwind the stack down to - but not including - the unwinding // limit and copy the contents of the activation frame to the input // frame description. __ lea(edx, Operand(ebx, FrameDescription::frame_content_offset())); Label pop_loop_header; __ jmp(&pop_loop_header); Label pop_loop; __ bind(&pop_loop); __ pop(Operand(edx, 0)); __ add(edx, Immediate(sizeof(uint32_t))); __ bind(&pop_loop_header); __ cmp(ecx, esp); __ j(not_equal, &pop_loop); // Compute the output frame in the deoptimizer. __ push(eax); __ PrepareCallCFunction(1, ebx); __ mov(Operand(esp, 0 * kPointerSize), eax); { AllowExternalCallThatCantCauseGC scope(masm()); __ CallCFunction( ExternalReference::compute_output_frames_function(isolate), 1); } __ pop(eax); if (type() != OSR) { // If frame was dynamically aligned, pop padding. Label no_padding; __ cmp(Operand(eax, Deoptimizer::has_alignment_padding_offset()), Immediate(0)); __ j(equal, &no_padding); __ pop(ecx); if (FLAG_debug_code) { __ cmp(ecx, Immediate(kAlignmentZapValue)); __ Assert(equal, "alignment marker expected"); } __ bind(&no_padding); } else { // If frame needs dynamic alignment push padding. Label no_padding; __ cmp(Operand(eax, Deoptimizer::has_alignment_padding_offset()), Immediate(0)); __ j(equal, &no_padding); __ push(Immediate(kAlignmentZapValue)); __ bind(&no_padding); } // Replace the current frame with the output frames. Label outer_push_loop, inner_push_loop, outer_loop_header, inner_loop_header; // Outer loop state: eax = current FrameDescription**, edx = one past the // last FrameDescription**. __ mov(edx, Operand(eax, Deoptimizer::output_count_offset())); __ mov(eax, Operand(eax, Deoptimizer::output_offset())); __ lea(edx, Operand(eax, edx, times_4, 0)); __ jmp(&outer_loop_header); __ bind(&outer_push_loop); // Inner loop state: ebx = current FrameDescription*, ecx = loop index. __ mov(ebx, Operand(eax, 0)); __ mov(ecx, Operand(ebx, FrameDescription::frame_size_offset())); __ jmp(&inner_loop_header); __ bind(&inner_push_loop); __ sub(ecx, Immediate(sizeof(uint32_t))); __ push(Operand(ebx, ecx, times_1, FrameDescription::frame_content_offset())); __ bind(&inner_loop_header); __ test(ecx, ecx); __ j(not_zero, &inner_push_loop); __ add(eax, Immediate(kPointerSize)); __ bind(&outer_loop_header); __ cmp(eax, edx); __ j(below, &outer_push_loop); // In case of OSR or a failed STUB, we have to restore the XMM registers. if (CpuFeatures::IsSupported(SSE2)) { CpuFeatures::Scope scope(SSE2); for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; ++i) { XMMRegister xmm_reg = XMMRegister::FromAllocationIndex(i); int src_offset = i * kDoubleSize + double_regs_offset; __ movdbl(xmm_reg, Operand(ebx, src_offset)); } } // Push state, pc, and continuation from the last output frame. if (type() != OSR) { __ push(Operand(ebx, FrameDescription::state_offset())); } __ push(Operand(ebx, FrameDescription::pc_offset())); __ push(Operand(ebx, FrameDescription::continuation_offset())); // Push the registers from the last output frame. for (int i = 0; i < kNumberOfRegisters; i++) { int offset = (i * kPointerSize) + FrameDescription::registers_offset(); __ push(Operand(ebx, offset)); } // Restore the registers from the stack. __ popad(); // Return to the continuation point. __ ret(0); } void Deoptimizer::TableEntryGenerator::GeneratePrologue() { // Create a sequence of deoptimization entries. Label done; for (int i = 0; i < count(); i++) { int start = masm()->pc_offset(); USE(start); __ push_imm32(i); __ jmp(&done); ASSERT(masm()->pc_offset() - start == table_entry_size_); } __ bind(&done); } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_IA32